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Abstract

This paper presents an online learning mechanism to address the challenge of state tracking
for unknown linear systems under general adversarial disturbances. The reference trajectory
is assumed to be generated by unknown exosystem dynamics, which relaxes the common
assumption of known dynamics for exosystems. Learning a tracking control policy for un-
known systems with unknown exosystem dynamics under general disturbances is challenging
and surprisingly unsettled. To face this challenge, the presented online learning algorithm
has two stages: In the first stage, an algorithm identifies the dynamics of the uncertain
system and in the second stage, an online parametrized memory-augmented controller ac-
counts for the identification error, unknown exosystem dynamics as well as disturbances.
The controller’s parameters are learned to optimize a general convex cost function, and
learning the control parameters is formulated as an online convex optimization problem.
This approach uses the memory of previous disturbances and reference values to capture
their effects on performance over time. Besides, it implicitly learns the dynamics of the
exosystems. The algorithm enables online tuning of controller parameters to achieve state
tracking and disturbance rejection while minimizing general convex costs. It is shown that
the algorithm achieves a policy regret of O(Tz/ 3). In the simulation results, the performance
of the presented tracking algorithm was compared with the certainty equivalent H.-control
and linear quadratic regulator.

1 Introduction

Reference tracking is a fundamental problem in control theory (Isidori, |[1989; [Huang) 2004; Dixon et al.,
2004; [Vamvoudakis et al., 2017), where the goal is to design a control policy that steers the closed-loop
system towards a reference trajectory or set-point. Significant progress has been made toward developing
reference tracking controllers for both linear and nonlinear systems. Most of the existing results, however,
have made all or some of the following assumptions: 1) the system dynamics are known; 2) the exosystem
dynamics generating the reference trajectories are known; 3) the system is deterministic and might be under
bounded energy disturbances or the system is stochastic and under independent and identically distributed
(ii.d.) noise, mostly Gaussian noise; and 4) only asymptotic tracking is of concern, and no optimality of
performance is concerned.

Several learning-based or adaptive controllers have been presented to deal with epistemic uncertainties (i.e.,
uncertainties that can be reduced by collecting data) in system dynamics and in exosystem dynamics (i.e.,
to relax numbers 1 and 2 of the above-mentioned assumptions). Traditional adaptive controllers do not
provide performance guarantees, as they only optimize an instantaneous cost function [Lewis| (1986)); |Sutton,
& Barto| (2018); Bertsekas (2019); [Zhang & Lewis| (2012)). In contrast, reinforcement learning (RL) [Yao &
Yaol (2022)); [Wang et al.| (2022)); |Chen et al.| (2019); (Gao & Jiang|(2022)); Deng et al.| (2021)); [Mei et al.| (2022);
Modares et al|(2016|) leads to learning adaptive optimal control policies by optimizing a long-horizon cost
function using collected data. Despite this advantage, existing RL-based control solutions are limited to
deterministic systems with no disturbances [Li & Wul (2020); [Hao et al.| (2021)) or bounded disturbances |Li
et al.| (2020); Mohammadi et al.| (2021) and stochastic systems with Gaussian noise |Cheng et al.| (2019). For
the case of bounded disturbances, RL algorithms typically reformulate the Hs-optimal control design into a
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robust min-max or H-optimal control problem [Khalil| (2002)); Modares et al.| (2015), which can be overly
conservative. For stochastic systems, existing RL algorithms are either based on policy gradient under which
the controller is parametrized and its parameters are learned through the gradient descent method or based
on policy iteration method under which the policies are iteratively evaluated until convergence. The former
requires approximating the expected gradient of the cost function, and the latter requires approximating the
expected cost itself. Estimating this expected cost, however, is only computationally tractable if the noise
is Gaussian. Moreover, in practical control systems, adversaries aiming to degrade the control performance
can act as adversarial disturbances that are unpredictable and do not follow any distribution or bounds.

In this paper, the main focus is on constructing tracking controllers for linear systems when the underlying
system dynamics and exosystem dynamics are unknown, and disturbances are adversarial. Adversarial
disturbances can take any arbitrary form and are not restricted to those that are bounded with a known
bound or follow a probability distribution. A control policy in the form of (disturbance, reference)-action
is developed that leverages a fixed-size history of disturbances and reference values in its actions. the
presented online learning algorithm extends the results of [Yaghmaie & Modares| (2023)); [Hazan et al.| (2020)
to systems with unknown dynamics and has two stages: In the first stage, a system identifier algorithm
estimates the unknown dynamics and uncertainty, and in the second stage, an online parameterized memory-
augmented controller is learned to optimize a convex cost function while accounting for the identification
error, unknown exosystem dynamics, and adversarial disturbances. [Yaghmaie & Modares| (2023) provides
a concise parameterization of the control policy resulting in /O(T) regret bound benchmarking against
the best linear control policy when the system dynamics is known. In this extension to their work, our
algorithm achieves a regret bound of O(T 2/ 3) for linear systems with unknown dynamics. Besides the
theoretical guarantees, in the simulation results, we compare the performance of the presented algorithm
with a couple of relevant solutions including the H,, and Linear Quadratic Regulator (LQR) control to
highlight its superior performance.

2 Related works

In this section, the related works to the problem of optimal tracking were summarized. These works are
focused on scenarios with an induced disturbance on the states and also where the dynamics of the system
are unknown.

System identification Linear dynamic system identification is the process of determining the mathematical
model that describes the input-output behavior of a linear dynamic system and it has been studied in [Ljung
(1998). The least-squares method and its variants, such as total least squares and recursive least squares,
are widely used to identify the system’s parameters Tatari et al.| (2021)); [Faradonbeh et al. (2017)); [Sarkar,
et al.| (2019)). System identification using machine learning techniques, such as artificial neural networks
and support vector machines, has also gained popularity in recent years Nagumo & Noda| (1967)); |[Weber,
et al.|[(2019); |Chiuso & Pillonetto| (2019). The choice of method depends on the system’s characteristics, the
available data, and the required accuracy of the identified model. A properly identified model can facilitate
the design of robust controllers and the prediction of system behavior under different operating conditions.
In situations where there is an adversarial disturbance, the use of the least-squares method may produce
unreliable estimates. Thus, this paper exploits the method introduced by (Theorem 19 in [Hazan et al.
(2020)).

Output regulation theory The output regulation theory, as introduced by Isidori and Huang in their works
(Isidori, |1989; Huang, |2004), has been widely utilized in the design of model-free reinforcement learning (RL)
algorithms for solving optimal tracking problems, as well as in attenuating the effects of disturbances (Gao
et al.| |2017; |Chen et al.| 2022 [Jiang et al., [2020b; |Chen et all 2019} [Jiang et al.| [2020a; |Gao & Jiang] 2016
2015). However, a limitation of RL and adaptive dynamic programming (ADP) approaches based on the
output regulation theory is that they assume the disturbance is generated by a dynamical system, which
is not always the case in many real-world applications. This constraint restricts the applicability of the
output regulation theory in practical scenarios. Additionally, ADP methods typically optimize risk-neutral
(expected) or risk-aware measures of the cost function under the assumption of i.i.d and Gaussian noise.
This assumption is made because either the value function is learned directly based on collected data to
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estimate expected or risk-aware accumulated rewards in policy interaction or value iteration methods, or the
expected or risk-aware cost function or its derivative with respect to control parameters is learned from data
in policy gradient methods. For general disturbances, usually a robust control approach is utilized which is
discussed below.

Robust control design: To handle general disturbances with limited energy, the H.,-control theory is
often employed to guarantee an Ls-gain performance bound (Doyle, [1995; [Khalil, [2002; Modares et al.,
2015). That said, the H.,-approach is known to be overly conservative, as the resulting robust controller is
designed to hedge against the worst-case disturbance sequence, which is rarely encountered in reality.

Gaussian disturbance: The Linear Quadratic Regulator (LQR) can be used to design an optimal controller
for linear systems subject to Gaussian process disturbance (noise) (Bertsekas, [2012). It is also the optimal
controller for noise-free linear systems. However, in many practical control systems, the disturbance does
not follow a Gaussian distribution or the cost function is not quadratic, meaning the LQR controller does
not provide guaranteed performance anymore.

3 Optimal Reference Tracking Problem

Notations and preliminaries: Let I represent an identity matrix with the appropriate size. Let 1 and 0
denote matrices with appropriate sizes consisting of all ones and all zeros, respectively. The gradient of a
function f(x) with respect to z is denoted by V, f. The Lo-norm of  is denoted by ||z z, = (3720 [lzx 12)2
where ||| is the instantaneous Euclidean norm of the vector zj. For matrix A, the spectral norm is
denoted by ||A||, and the Frobenius norm is denoted by ||Al|r. Let Ig be an indicator function on set E.
For a time-dependent variable xy, the notation x;.;, j > 4 is defined as z;.; = {Zi, Tig1, - xj}. The notation
O() is leveraged throughout the paper to express the regret upper bound as a function of 7.

3.1 Tracking Problem

Consider the following linear dynamical system
Tht1 = Axy, + Buy, + Wk, (1)

where the variables x, € R™ and uj € R™ represent the state and control input of the system, respectively.
In equation [I} wy € R™ denotes the adversarial (unknown and arbitrary) disturbance. Only a bound, which
also does not need to be known a priori, is assumed on the disturbance for theoretical reasons. It can be
assumed that x¢o = 0 without loss of generality and incorporate the initial condition into wy.

The objective of this paper is to choose the input variable uy in such a way that the state of the system xy,
follows an arbitrary reference signal rj that is not known beforehand. This reference signal is only revealed
sequentially after the control input has been applied.

241 = Sz,

(2)

T = sz,

where 2z, € RP, r, € R™ represent the state and the output of the reference generator.

In the sequel, a list of a few definitions and results are brought that are related to equation [[fequation 2] and
the tracking problem.

Definition 1 (Agarwal et all, |2019) Consider
Tp1 = Axy + Buy,
and v € [0,1), K > 1. A linear controller K is (k,v)-stable if | K| < K and~||/~1'}(||2 <KE1—-9)tVEt>0

where A = A+ BK. This can also be represented as a decomposition of Ax = QLQ™", where ||L| <
(L =), and | A]l, | BIl, |QII, lQ, IK] < &
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Definition 2 (Strong Controllability)(Definition 7 in|Hazan et al.| (2020)) A linear dynamical system (A, B)
is said to have controllability index A if the matriz Gy s full-row rank, and

Gy = [B,AB,A*’B..A*'B], (3)

where Gy is defined as the matriz associated with (A, B) for A > 1. In addition, such a system is also (\, k)
strongly controllable if |(GAGL)™Y|| < k. In a controllable system, the controllability index X\ has an upper
bound of the number of states in the system.

It is worth noting that, due to the Cayley-Hamilton theorem, the controllability index of a controllable
system is never greater than the dimension of the state space. Assuming that the system (A + BK, B) is
(\, k) strongly controllable, similar to the concept of stability, a measurable counterpart of controllability
was initially presented by |Cohen et al.| (2018).

Lemma 1 (Maintaining Stability) (Lemma 15 in |Hazan et al| (2020)) Consider an identified dynamical
system with (A, B). Assume that the original system is (li v)-strongly stable. It can be shown that control
gain K is (k+ea.,7 — 25%€a p)- strongly stable for (A, B), as long as |A — A|,|B — B|| < ea.p, resulting
in:

JAILIBI < 5+ eap A+ BE = QLQ™, B <1— 7+ 25 p. (4)
The @ matrix in both, the actual and identified systems, coincide.
Theorem [I] is typically leveraged to present a fundamental discovery outlining the necessary and sufficient
condition for the existence of a linear feedback strategy that can solve the state tracking problem. Specifically,

the problem concerns ensuring that xx — r; in the absence of disturbances. In this context, the term "linear
feedback policy" denotes a particular approach utilized to address the problem.

Theorem 1 (Isidori, |1989) Consider the dynamical system in equation and the reference signal in equa-
tion @ Assume that wy = 0, (A, B) is stabilizable. Assume that the learner has previous knowledge on Ky,
such that A+ BKyy is strongly stable. Then, the controller

up"(Ky) = Kppay, + Kz (5)

solves the classical state tracking problem xy — 1, if and only if there exist matrices I1 € R™*P gnd I" € R™*P
such that

IIS=All+BI', I-F =0 (6)
and Kff =TI —beH.
3.2 Performance index

The main goal of this paper is to design a control policy 7 : (#1.x, W1.k—1,71.5) — uj that optimizes an average
cost function, reflecting the designer’s intentions. The total cost linked to a given policy 7 is determined as
follows

T
JT(T() = ch(xkauk)v (7)
k=1

where ¢, is the rolling cost. Also, the average cost of a policy 7 is defined as the below equation

_ 1 E
JT(’]T) = T ch(xk,uk). (8)
k=1

W
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3.3 The presented policy

The conventional linear controller in the form of equation [5] aims to mitigate the impact of adversarial or
arbitrary disturbances on the cost function by determining gains Ky, and Ky using H.c-control design.
However, this approach is overly conservative and encounters difficulties in online control design due to the
non-convexity of the cost function ¢ (zx, ux) with respect to Ky, and K. To tackle this issue and overcome
the limitations of conservative controllers, a memory-augmented policy is presented in the form of equation 9]
and which is capable of handling adversarial disturbances and unknown dynamics.

Definition 3 A Memory-augmented Control Policy is denoted by w(K, M, P)

My my—1
uf (K, M, P) = Kay + My Y~ Pl (9)
t=1 s=0

where K € K is a fived matriz and Y = [M, P] = [M©] . MIme=1 [P0l plm=1] ¢ Y are parameters
to be learned. The domains IC, Y are defined as

K={K:A+ BK is (k,v) — stable},

Y={y = [MO _ ptmw=tl pll plree=1) M| | PH| < ki (1 — )t

Since the policy parameters are learned, which are changing over time, My = [M ]£0]7 M ,me_l]] and P, =

[P,EO], e Plgm”_”] are representing as the policy parameters at step k. Observe that the memory-augmented
policy in equation [J] is linear in both the system state xj and the histories of the reference signal and
disturbance, with lengths of m, and m,,, respectively.

Let A = A+ BK and define

h—1
‘I’fiyh(Mkth;kfl) =AY Ty<p1 + Z A%(BMIL{ZZHLSyfjng (10)
=0
h-1 _
1/15’:(131@7%1:1@71) = Z A%BPILZ__J-J_?]]Ingjng- (11)
=0

Let z7 be the state attained upon execution of the policy 7 (K, Mo.x—1, Po.x—1) that generates the control
input in equation |§| at time k. In Lemma 3 of [Yaghmaie & Modares| (2023)), it has been shown that

my+h—1
K ih K.,k
xp =z (Mok—1, Poik—1) =Axxp_p, + E U (My—p—1:k—1)Wk—y—1
y=0

(12)
my+h—1
+ Z ?ﬂg’zh(Pk—h—l:k—ﬂ?“k—z.
z=0
or equivalently

k-1 k—1
a7 = xp (Mog—1, Pok—1) = Z \Ifﬁf(Mo:k_l)wk_y_l + Z%ﬁff(%:k—ﬁm_z. (13)

y=0 z=0

Remark 1 The memory-augmented controller is more general than the linear controller policy. Indeed, a
linear control policy is a special case of the memory-augmented policy.

The convexity of the cost function ¢y (xy,uy) with respect to M and P is discussed in detail in Lemmas 2
and 3 of [Yaghmaie & Modares| (2023).
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3.4 Assumptions and the optimal tracking problem

In this subsection, a list of the assumptions is brought to be used throughout the paper and define the
optimal tracking problem in the presence of adversarial disturbances.

Assumption 1 (dynamical system) The pair (A, B) is unknown but stabilizable. The actual system
matrices (A, B) and the identified system dynamics matrices (A, B) are bounded, i.c., ||A|,[|B| < x and
IAl, [|Bll, < k + €a,5, where e, g denotes the distance between the actual and identified system matrices.

Assumption 2 (disturbance) The disturbance sequence wy, is bounded, i.e., ||w|| < Ky for some K, > 0.
Moreover, the disturbance wy does not depend on the control input uy.

Assumption 3 (reference signal) The dynamics of the reference signal generator are unknown but de-
tectable. The state of the reference signal zi is not measurable but the output rp is measurable and Ty, zx
are bounded, i.e., ||rg|| < k. and ||zk|| < K.

Assumption [3] stipulates that the reference signal must be bounded, as an unbounded reference signal may
lead to an unbounded average cost. This assumption is commonly employed in analyzing average cost, as
observed in works like |Abbasi-Yadkori et al| (2014) and |Adib Yaghmaie et al.| (2019)). Nevertheless, the
issue of tracking unbounded reference signals can be tackled by exploring discounted cost settings, where an
appropriate discounting factor can ensure the boundedness of the discounted cost. This approach has been
demonstrated in other studies, including |[Kiumarsi et al.| (2014).

Assumption 4 (cost function) The cost ci(zk,ur) is convex in xy, ug. Moreover, when |z||, ||u| < D,
it holds that |c(zk,ur)| < BD? and ||V ek (z,u)|, [|Vuck(z,uw)|| < GeD for some B> 0 and G. > 0.

Assumption [4] widens the range of the cost function to include general convex functions, not limited to
quadratic cost functions, resulting in a more comprehensive assumption.

Problem 1 (Optimal Tracking Against Adversarial Disturbances with Unknown Dynamics)
Consider the dynamical system in equation[d] the reference generator in equation [I-equation[q and the cost
function in equation[] Let Assumptions hold. Design a memory-augmented control policy in the form
of equation[9 to optimize equation[]

4 Memory-augmented online state-tracking algorithm

We propose Algorithm [I] to solve Problem [} The algorithm uses the concept of truncated state and cost
which will be defined in the sequel.

4.1 Truncated state, input and cost

Similar to |Yaghmaie & Modares| (2023)), we limit everything to a fixed memory length of H. Let 27, 4f,: fi
represent the truncated state, input, and cost if the system had started at #_, = 0. The expressions for
7, uy, are

T (Mg—m-1:6-1, Pr—m-1:6-1) = (14)
M+ H—1 A H 1
Z \Ile’;’H(Mk_H_M_l)wk_y_l + Z 77Z’llc(,’zH(Pl'c—H—lzk—l)Tk—z,
y=0 z=0
U (My—g—1:ky Pe—mr—1:1) = (15)
Moy me—1
Kif (My—g—16-1, Po—mr—1:5-1) + Z M,Ltil]wk,t + Z P;LS]TIPS,
=1 =
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and the truncated cost fi reads

FeMi—g—1, e, M1, Po—pr—1, .., Po—1)

7T ~T (16)
= cu (T (Mi—m—1:6—1, Po—m—1:6—1) — Tk, Uy (Mi— g —1:1, Po—Hr—1:1))-

In Appendix [A] some theoretical results are provided regarding the memory-augmented controllers, and the
associated states and costs which are essential in obtaining the main result in Theorem [

4.2 The overall online learning algorithm (Algorithm 1)

Algorithm [I] involves two stages. In the first stage, the system dynamics are identified, then, in the second
stage, the online controller is learned. This approach is commonly known as the explore-then-commit pipeline
and will be explained in the sequel.

The algorithm starts in Line 1 with the selection of a stabilizing controller gain K, as well as other necessary
parameters.

System identification (Algorithm SysId): Following the initiation of the algorithm, the identification
stage begins by executing Algorithm SysId. As it is detailed in Algorithm SysId, the controller in equation [20]
is used to collect Tp samples. System identification using binary inputs with values of -1 and 1 (also called
bipolar inputs) is a method to analyze and model the behavior of a system. By systematically applying
binary input sequences consisting of -1 and 1, the system’s response is measured and recorded. Then,
a deterministic-equivalent matrix pair (fl, 3) is identified through an iterative procedure that determines
matrices of the form (A + BK)!B, followed by solving a linear system of equations to recover the original
matrix A. Note that during this stage, the trajectory to be followed is disregarded. The estimated dynamics
(A, B) is fed to the presented robust tracking algorithm. This identification procedure is inspired by Hazan
et al.| (2020]).

Robust tracking (Algorithm RobTrack): Upon identification of the system, the domain set ) is ini-
tialized and a loop starts. In Line 7, the reference signal 7 is recorded. wuf in equation |§| is calculated
and applied to the system. Next, in Line 8, the next state xy41 is observed, and the disturbance wy is
estimated by equation Selection of Wy according to equation [I8] ensures that the state, action, and cost
produced by Algorithm [1| coincide with those of the actual system. In Line 9, the algorithm suffers the cost
ck(ek, ur). Then Line 10, the truncated state and inputs are computed from equation |14tequation [15| using
the latest values of M, P, and the truncated cost fi(MO, ... Mlme=11 plOl plm-=1)is calculated from
equation In Line 11, the weights M, P are adjusted with projected gradient descent on the truncated
cost fr(MO) .. Mmw=11 plOl - plmr=1l) based on equation

It should be noted that during each iteration k£ of the algorithm outlined in Algorithm [I} the values of
Wy, +1:5—1 and r7,41.% are already known and accessible. Additionally, for all k < T}, @, and r are defined
to be equal to the zero vector. Thus, it is possible to compute the expressions in equation [[4}equation [I6] for
any given iteration of the algorithm. The projection operator IIy; and IIp are matrix projection operators
with Ly norm of kyx3(1 — 7).

The properties related to Algorithms SysId and [] are given in Appendices [B}[C]
4.3 Regret Analysis
The standard measure for online control based on the gradient descent is the policy regret (Agarwal et al.,

2019)), which is defined here as the difference between cumulative cost of the designed parameterized control
policy 7 learned by Algorithm [I]and that of the optimal linear control policy in the form of equation [f]

Definition 4 Consider the system in equation [l Let the control policy be designed to generate the control
action uy, in equation[9 at time k. Let Algorithm[]] be used to update the parameters of uy. Then, its regret
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is defined as
T
Regret = kz_l ck(Tp, ug) — Igrfner’lc Jr(Ky), (17)

where Jr(Ky) is the total cost in equatz’on[}] of the linear feedback controller in equation EJ]

The regret compares the performance of Algorithm [[|generating controllers from the class of feasible memory-
augmented control policies with the best linear control policy in hindsight.

Algorithm 1 Online state tracking algorithm

1: Initialize: Set a stabilizing controller gain K, perturbation horizon m,,, reference horizon m,,, rounds of
system identification Ty, number of iterations after system identification 7', and horizon of identification
A

2: Stage 1: System Identification

(A, B) = SysId(Tp, \).

Stage 2: Robust Tracking (Algorithm RobTrack)
Initialize Y = {Y = [M0 ... Mlme=1]"pOl  plee=10)| | ME)|, | P < ke (1 — )t} .
Set Wy = 0 for all k < Ty and Wy =z, -
for k=Ty+1,..,To+ T do
Record 7y and execute uf, in equation [9}
Observe x4 and record an estimate

Wy = Thg1 — flxk — éuk. (18)

9: Suffer ¢ (e, ug). o
10: Compute fk(M[O], oy MIme=1] plol - plme=11) in equation equation for A, B, and .
11: Update M, P.

M = HJW(M_nvak(M[O]v"'7M[mW71]7P[0]7"'7P[mr71]))7

19
P =Mp(P —nVpfi(MO, . pime=t plol  plme=ily) (19)

Algorithm SyslId System identification by inducing random inputs

1: Inputs: Tg, .
2: for k=1,...,Ty do
3: Induce the control

up = Koy + e, me ~iia {£1}7. (20)

Observe and record the resulting state xy.
To—A—1 :
: Calculate Q; = ﬁ vl whejnd, Vi€ {AL

: Form Go = (Qo; .., @x-1), G1 = (Q1, ..., Q).
: Outputs: A and B

~ A

B=Qo, A =CGT(G1Go) ™Y, A= A’ — BK.
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Theorem 2 Suppose Algorithm [1] is executed under Assumptions [IHf} Let H = m,, = m,. Select the
2
learning rate n and the memory size H to satisfy n = O(;ﬁ), H = O(log %), and Ty = T?/3. Then,

Gekw
Regret = O(T*?). (21)
Proof: See Appendix
5 Simulation results

In this section, the simulation results are given.

5.1 The dynamical system, reference, and cost function

Consider the following tracking problem where the dynamics of the system is considered as

1 1 1 0
Tpt1 = {0 1] T + [O J U + Wi, (22)

and the reference signal is generated by

0 1 0
Zepr= |—1 1.5 0|z, 20 = [1,-2,0.5]T,
0 0 1 (23)

100
Tk—OOIZk.

where
T1k W1k Tk €1k Tik —T1ik
= W = T = e = = .
k L?k] ok LUQJ ok |:7"2k:| Pk [6%] L% - 7“216}
A quadratic cost with @Q = 2015, R = I5 is considered; that is

T T
cr = ey, Qer + up, Ruy.

Note that the presented algorithm is designed to handle any convex cost function, but a quadratic cost
is chosen for comparison with classical control approaches such as Linear Quadratic Regulator (LQR) and
H-controllers.

5.2 Disturbances

We consider 6 different cases of disturbance. In each case, the disturbance was introduced at the start of the
simulation as a result the sequence of disturbances is consistent across all algorithms. The first three cases
involve randomly generated disturbances, while the remaining cases involve continuous disturbances, which
allows us to study how the algorithms perform when the disturbances are not stochastic.

e Uniformly sampled disturbance It is considered the disturbance to be uniformly sampled from
the interval [0, 1].

e Constant disturbance The constant disturbance is considered as wi, = wor, = 1.

e Amplitude modulation disturbance The disturbance is considered as wix = wop =
sin(67k/500) sin(87k/500).

« Sinusoidal disturbance A sinusoidal disturbance is considered as wi = woy = sin(87k/100).
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¢ Gaussian disturbance Gaussian disturbances is utilized where wi; ~ N(0,0.01) and wor ~
N(0,0.01) in this study. If the system’s dynamic is known, the optimal controller for an LQR cost is
a linear one (Bertsekas| [2012). The support for the Gaussian noise is not finite for the LQR method.
That said, the theoretical results require the disturbance to be bounded. However, the actual bound
does not necessarily need to be known and could be large, in contrast to robust control methods
such as Hy,. In this paper’s simulation, the Gaussian noise generator (numpy.random.normal) was
utilized which is provided by Numpy in Python that generates bounded samples.

e Random walk disturbance It is assumed that the disturbance follows a random walk and is
generated by wg = 0.999wg_1 + nmk_1, where nx_1 ~ N(0,0.01). The internal dynamics of the
random walk is chosen to be 0.999 instead of 1 in order to ensure the boundedness of the disturbance.
When the noise follows a random walk, the optimal LQR controller is linear. To illustrate this, the
random walk disturbance in equation [1|is replaced with

Tpt1 = Axk + BUk —+ 0.9QQWk—1 + MNk—1-

Here, in each time step k, the state xj, is measured, and according to Assumption m wy_1 is known.
A new state variable 7k = [2],w} ] is introduced, then one can obtain

] A 09991 [B] [T 0
Tt = [0 0.9991] Tt {0] vt {0 1} M1 (24)

Thus, equation [l with a random walk disturbance can be viewed as an extended system described
by equation where the noise 7,1 is Gaussian. Consequently, the optimal controller for this
extended system is the LQR.

5.3 The compared control approaches

The effectiveness of the presented online tracking algorithm is shown by comparing it to other linear control
methods, including the LQ R and H, approaches. These approaches optimize a quadratic performance index
and are considered optimal for Gaussian and worst-case disturbances, making them the best performers in
scenarios where these types of disturbances are present.

In the LQR approach, we consider two cases where the actual model of the system is known as well as when
an estimated model is used for the design. We set Ty = 464, A = 5 when we identify the dynamics of the
system in an approach. The details are given in the description of each algorithm.

e Online state tracking in Algorithm During the execution of the algorithm, the value of
K is maintained unchanged, which can be obtained based on a priori knowledge of the systems’
dynamics. Note that this K can be any stabilizing controller that the algorithm is assumed to have
access to. The other parameters are chosen as H = 5, m, = 5, m,, = 5, and n = 0.0001, and M
and P are initialized as zero matrices. In this algorithm, no information about the dynamics of the
reference signal is needed. This algorithm only relies on the measured outputs of the reference signal
rk. Similarly, no information about the disturbance is Incorporated into this algorithm.

« LQR: The feedback controller gain K f;, is chosen as —(R+ BT P, B) 1 BT P, A, where P, is calculated
using ARE(A, B, @, R), assuming knowledge of the dynamics of the reference signal. Subsequently,
Ky is calculated using the approach mentioned in Theorem |1} The control law uy, = K pxp + Ky pzs
requires knowledge of the state of the reference signal, denoted as zj, which is constructed from ry,
using the dynamics of the reference signal as described in Lemma 1 of [Yaghmaie & Modares| (2023)).

o Certainty equivalent (C.E.) LQR and LQR for random walk: The feedback controller gain
Ky is chosen as —(R + BTPTE)_IBTPTA, where P, is calculated using ARE(A,E,Q,R), with
(A,E) being the identified system. Subsequently, K;; is computed with the method mentioned
in Theorem Also, the control law u, = Kz, + K2y, requires knowledge of the state of the
reference signal, denoted as zj, which is constructed from r; using the dynamics of the reference
signal as described in Lemma 1 of |[Yaghmaie & Modares| (2023).

10
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Table 1: The final maximum and normal difference between the identified dynamics of the system (A, B)
and the actual one (A, B). "Maximum difference" refers to the maximum difference in the identification of
entries of matrices A and B

Disturbance ‘ Max Difference for A ‘ Norm of Difference for A ‘ Max Difference for B ‘ Norm of Difference for B

Constant 0.14 0.27 0.03 0.04
Amplitude mod. 0.11 0.17 0.06 0.08
Sinusoidal 0.16 0.27 0.03 0.04
Gaussian 0.07 0.07 0.03 0.03
Random walk 0.22 0.28 0.07 0.10
Uniformly sam. 0.06 0.08 0.02 0.03

It was observed in Subsection[5.2] that when the disturbance is a random walk, the system dynamics
can be extended according to equation The extended dynamics involve a Gaussian disturbance,
and consequently, LQR for the extended dynamics is used as the optimal controller. In this case,
the algorithm is referred to as “LQR for random walk”.

o Certainty equivalent (C.E.) H.-control: The Certainty equivalent (C.E.) H.-control ap-
proach aims to design a controller, denoted as Ky, for the system described by equation [1, such
that the Lo-norm of the system’s output, scaled by /@, divided by the £2-norm of the worst-case
disturbance input, denoted as w, is less than or equal to a threshold. For the sake of comparison,
it is assumed that the dynamics of the reference input, described by equation 23] are known. This
knowledge was utilized to construct zj from 7 as described in Lemma 1 of [Yaghmaie & Modares
(2023). Then, the control input uy is calculated as uy = K ypr, + Kfp2i, where Ky is the feedfor-
ward controller computed with the method mentioned in Theorem [I} The H.-control approach is
conservative, as it ensures a finite Lo-gain for the worst-case disturbance.

5.4 Evaluation of the identification algorithm

In this subsection, the performance of the identification algorithm is discussed for the 6 cases of the distur-
bance in Subsection[5.2} In Table[l} the maximum difference between the actual system and the identified one
is summarized, as well as the norm of their difference. When the noise is non-Gaussian, system identification
using random binary inputs and the least squares method have different implications. Random binary inputs
can provide diverse frequency content for analysis, but they may be more sensitive to outliers and non-linear
distortions, resulting in potentially less accurate parameter estimates. Meanwhile, the least squares method
assumes Gaussian noise, and when this assumption is violated, the parameter estimates obtained may be
biased or less accurate due to the influence of non-Gaussian noise. Thus, the choice between these methods
should consider the specific non-Gaussian characteristics of the noise to ensure reliable system identification
results. In table [I] the results gained from the presented system identification show that even though the
disturbances were not Gaussian except for one case, the identification errors are very close to it, with a
maximum Lo norm error of 0.28 for random walk noise and a minimum Lo norm error of 0.03 for Gaussian
noise.

5.5 Evaluation of the Tracking Algorithm

In Fig. the reference signal is plotted over ¢ = [9900, 10000] for the representation purpose. The
algorithms in Subsection [5.3]are run for 7" = 10000 steps and the final average costs are brought in Table
The performance of the algorithms over ¢ = [9900, 10000] is depicted in Fig. [2]- m

When the disturbance follows a non-Gaussian or non-random walk distribution, there is no analytical ap-
proach to determine the optimal linear feedback policy. In such cases, the H,-controller is commonly
employed to design a linear feedback policy that ensures a finite L£o-gain for the worst-case disturbance, al-
beit with a conservative approach. If the actual disturbance is not the worst-case scenario, the H,,-controller
may not yield the best performance. According to Fig. [2]-[7} the presented algorithm, has an even better
performance in constant, amplitude modulation, sinusoidal, random walk, and uniformly sampling distur-

11
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Table 2: The final average cost, as introduced in equation |8 incurred by the different algorithms over a
duration of T = 10000 steps is presented. Notably, the most competitive average cost values, indicated in
bold, are reported for each respective disturbance case. It is noteworthy that the evaluation of LQR for
random walk is solely applicable to scenarios involving random walk disturbances, and thus its performance
is only assessed in such instances. C.E. refers to certainty equivalent and R.W. refers to random walk.

Disturbance ‘ Algorithm 1 ‘ C.E. LQR ‘ C.E. H ‘ C.E. | Actual LQR R.W. ‘ LQR

Constant 8.04 40.07 29.18 N.A. 57.76
Amplitude mod. 7.83 16.74 12.72 N.A. 17.58
Sinusoidal 15.21 27.71 20.08 N.A. 30.21
Gaussian 5.62 5.32 5.29 N.A. 5.25
Random walk 17.75 236.11 163.02 19.22 | 15.48 236.68
Uniformly sam. 10.09 19.51 16.09 N.A. 21.99

' —— Reference ' —— Reference

9900 9920 9940 TI me 9960 9980 9900 9920 9940 ﬂ me 9960 9980

Figure 1: The reference signals used for the evaluation and comparison of various control algorithms under
different disturbances.

bances. Additionally, the performance of the presented algorithm is comparable to the actual LQR and
certainty equivalent LQR when Gaussian noise is present.

In the case where the disturbance is Gaussian and the dynamics of the reference signal and the actual
system are known, the optimal linear feedback policy can be determined by selecting Ky = —(R +
BTP.B)™'BTP, A, where P, = ARE(A, B,Q, R), and subsequently calculating K;¢. This can be seen
in Table[2] The average cost of the presented tracking approach is considerably close to the optimal control
when the noise is Gaussian (LQR). This can be seen in Figure A similar discourse is applicable to the
scenario of a random-walk disturbance, as elucidated in Subsection [5.2] where it was demonstrated that the
optimal controller for the system in the presence of a random-walk disturbance can be obtained by solving
an LQR problem for the extended system. That said, the uncertainty that is present in the model identifica-
tion of the system resulted in poorer performance of the certainty equivalents as compared to the presented
algorithm.

6 Conclusion

In this paper, the challenge of state tracking in the presence of general disturbances is addressed, even when
the dynamics of the actual system are unknown. An algorithm that combines an identification period with
a memory-augmented robust tracking algorithm was introduced. This presented algorithm enables online
tuning of the controller parameters to achieve state tracking and disturbance rejection while minimizing
general convex costs. It is shown that the presented online algorithm achieves a policy regret of (’)(TQ/ 3). In
our future research, we plan to extend our approach to partially observable dynamical systems and eliminate
the bounded assumption on the reference signal.
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Figure 2: Tracking error for the constant disturbance for the presented Algorithm 1, versus the certainty

equivalent H..-control, the certainty equivalent LQR control, and the LQR control knowing the dynamics
of the system using the reference signals in Fig. E
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Figure 3: Tracking error for the amplitude modulation disturbance for the presented Algorithm 1, versus
the certainty equivalent H..-control, the certainty equivalent LQR control, and the LQR control knowing
the dynamics of the system using the reference signals in Fig.
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Figure 4: Tracking error for the sinusoidal disturbance for the presented Algorithm 1, versus the certainty

equivalent H..-control, the certainty equivalent LQR control, and the LQR control knowing the dynamics
of the system using the reference signals in Fig.
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Figure 5: Tracking error for the Gaussian disturbance for the presented Algorithm 1, versus the certainty
equivalent H,-control, the certainty equivalent LQR control, and the LQR control knowing the dynamics
of the system using the reference signals in Fig. E
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Figure 6: Tracking error for the random walk disturbance for the presented Algorithm 1, versus the certainty
equivalent H.-control, the certainty equivalent LQR control, certainty equivalent LQR for random walk,
LQR control, and LQR. control for random walk disturbance knowing the dynamics of the system using the
reference signals in Fig.
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Figure 7: Tracking error for the uniformly sampled disturbance for the presented Algorithm 1, versus the
certainty equivalent H,-control, the certainty equivalent LQR control, and the LQR control knowing the
dynamics of the system using the reference signals in Fig.
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Figure 8: The changes in the average cost .Jr, as given by equation |8 over varying values of T, is compared
between Algorithm 1 and other control methods, namely certainty equivalent H.,-control, certainty equiva-
lent LQR control, and LQR control with knowledge of system dynamics, for different types of disturbances
such as Gaussian, random walk, uniformly sampled, constant, amplitude modulation, and sinusoidal distur-
bances.
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A Results related to the memory augmented controller

In this section, a list of results related to the memory-augmented controllers is brought.

e Lemma [2| provides bounds for \Ilfyh and ¢;§;h~

o Lemma [3| gives bounds on the states and inputs.

o Lemma [4] provides a bound on the tracking error.

o Lemma [f| defines the Lipschitz condition on the truncated cost.

o Lemma [f] gives a bound on the gradient of the truncated cost for the tracking algorithm.

Lemmas are given in |Yaghmaie & Modares (2023) and Lemmas are inspired by [Yaghmaie &
Modares| (2023) and are essential in proving the main results in Theorem

Lemma 2 (Lemma 4 in [Yaghmaie & Modares| (2023)) Let Assumptions[1{ hold. Suppose that K is
(k,7)-strongly stable. Then,

[ < B2 (1= 7)Y Ty<n1 +muwr®sg (1= 7)1,

(25)
”1[)?’2}1“ < mTFLS/s;z(l _ ,y)zfl.
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Lemma 3 Let Assumptions hold. Define

Yo:r = [Mo:k, Po:x],
Yur = [Mi—mk, Pe—mk)-

L Kk 4+ (Krmy + Kwma) (1 — ) 7 8k2 n (K + Kpkk,)kpk®

D :=
T r— Y

Suppose that K and K73, are (k,v)-strongly stable. Define x Z”(K;b, K73;) as the system state corresponding
to an optimal linear feedback controller. Then, one has

max([|2f (Your—0) | 125 (V-0 128" (K o, Kjp)l)) < D (27)
max([luf (Yo ), |6 (Yae)) < D, (28)
27 (Yose—1) = FF (Vi —-1)[l < #*(1 =)D, (29)
[uf (Yor) — g (Yar)ll < #°(1 = )" D. (30)

Proof: Using equation one has

mae+H—1 me+H—1
K,H
ozl <UARNF-pll + w0 Do 100 (Mymgva—) + 5 D 0 (Peem—r-1) |
y=0 z=0

<1 =i gl + moy™ (57 + murs®sp (1 =) 71 + key ™ (mes®kp) (1 =) 7"

The above recursion satisfies

27 <~ Kwh? + (Krmy + Kwmay) (1 — 7)1 6P K2
=T 1—r2(1 ="
Similarly, from equation one has
Mo+ H-1 mp+H—1
12 Va0l < Y 198 (Mg D)we—ya |+ D 1 (Pem—n—1)ri—|
y=0 z=0

<y wk? + T N Ewmey + kemy) kP RE(L— )" < D.

where the last inequality is obtained because 0 < 1 — x?(1 — v)# < 1. Moreover,

k—1 k—1
||17lm(beaKff [ _HZAK* Wk—y— 1+ZAK* BEKG 2|
=0

<y~ 1n2(nw + Kkkpky) < D.

Besides, one has

me—1
[ (Foall = IKaE (o) + 3 MO+ > Pl
t=1 s=0
My m,—1
< wllaf (YVour-0) | + 5w D mr® (1= 45, Y kst (1 —9)°
t=1 s=0
1 Bk A+ (B + KM ) (1 —7) T 6%KE (K + Ky )RpKS <D
- 1= k21 =77 v -
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Similarly,
my—1
1 Vi)l = [EF Vi) + 5 My + 3 Pl
t=1 s=0
Moy m,—1
<K Ve + fw D s (1 =)D 450 Y mpr®(1—7)°
t=1 s=0
1 2 (H/w + Kfr)ﬁ‘/b"{g

<Y Rk T (KM + Kemy ) k8L — )T 4 < D.

v

To bound the difference between the actual and truncated state, from equation [14] and equation one has
|27 (You—1) = 85 (Yee-1)|| = [ AR e g (Yor—m-1)ll < £*(1 =2)" D,

which gives
luf (Yor) — @ (Yers)|| < K[ AR _ g (Yor—m—1)]| < *(1=7)"D.

This completes the proof.

Lemma 4 Let Assumptz'ons hold. Suppose that K is (k,~y)-strongly stable. Define the tracking error as

Cr = xZ(YO:k—l) — FZk.

Then,
lenll < muy™ (52 4+ mur’KE (1= 7)) + ey (1 = 7)1_1mr"€5’€12: + Ky Z Kz. (31)
Proof: Without loss of generality and for simplicity, assume that ||F|| = ||F~}|| < k. The tracking error
reads
k—1 k—1
ex = Z W (Mo —1 ) wi—y—1 + Z Yt (Pok—1)Th—z — Fz.
y=0 z=0

Using the bounds in equation [25]

lexll < Z NV Ly<rk—1 + Mok’ kG (1= 7)Y )Ry + Kk + Zmrﬁ Ry (1 —=7)* " r,

1

Sfiw’)’ Yk 4+ myr®rp(1— )~ Kk, + kpy imeRP K2

)+
which is based on the fact that ano(l )™ < = in the last inequality.

1
Bt
Lemma 5 (Lemma 7 in [Yaghmaie & Modares| (2023)) Let Assumptions |1 [44 hold. Define Ye =
Y1, .. Ye, s You| = [My—m Po—mx) and Y = Y3, ..., Yy, ..., Yap| where YH,k has all its elements the

same as Yp , ercept one element. Then, the truncated cost function in equation satisfies the following
Lipschitz condition

‘fk(ylu 5 "‘7Yrt7 -~'7Y2H) - fk(Yh 5 "'71;;57 7Y2H)| S LfH}/;f - YQ”
where

Ly = 3G.D kpk® (K + ko). (32)

Lemma 6 (Lemma 8 in [Yaghmaie & Modares| (2023)) Let Assumptions[1}[f] hold. The following gra-
dient bound is satisfied

IVyi Je(Yew)lp < 6HA®Ge (K + ku)kpk®y Gy (33)

where d = max(n,m).
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B Results related to Algorithm Sysld

In this subsection, a list of the properties related to Algorithm Sysld is brought. More specifically:

e Theorem [3] gives the bounds on the estimated dynamics.

o Lemma [7] gives bounds on the state and the input while Algorithm SysId is running.

To this end, Some additional notations will be required along the proofs. Let

J(A|A, B,{w},{r}) be representing the total cost associated with executing the algorithm A over
the T time steps. With some abuse of notations, one can say J(K|A, B, {w}, {r}) shows the total
cost associated with executing the linear controller K.

xr(AlA, B, {w}, {r}) be the state visited at time k, and

ur(AlA, B,{w}, {r}) be the control input at time k.

Also, if instead of (A, B) in the above notations, (A, B) were used, it means that they are associated with
the identified system instead of the actual one.

Theorem 3 (Theorem 19 in (Hazan et al., |2020)) If the system identification algorithm is run for Ty
steps, the output pair (A, B) satisfies, with probability 1 — 0, that |A — A|l1,, ||B — Bl|1, < €a,B, where
To = 103 Amn?k1° f log i

2

_Pw

2

V€4 B 1)

(34)

Lemma 7 Assume that Algorithm Sysld is run for Ty steps. Select the input as uxp = Kxy + ni, where
e = [Mk1, -~-,77km}T7 Nk ~ {x£1}, 5 =1,...,m. Define

Dy = f(mw + Kpv/m) + /m. (35)

Then,
k]l < Did, [ukll < Did, (36)
ZO llek (g, ug) — minc};(cem(xk,uk)H < ATyG.D?,. (37)

Proof. From the strong stability of K, for xj, one has

<

k
ekl <] Z (A + BK)* ™ (w; + Bn,)|
k
(L =2 (K + sip|l])-
=0

Based on ng; ~ {£1}", one has |||l < /m. As a result, using the fact that Zfzo(l —79)t < %

2

o] < %(nw + k). (38)
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For ||ug||, one can derive the following
)2
el < WK ze +mpll < w72 (kw + Kp/m) + vim := Dia.

Next, an upper bound for ||ci(zk, ur) — mingex cx(zk, ug)|| is computed. Based on Assumption |4} one has

lek (2, ug) — II?EH% cr(wr, u) |

< GeDuallrk — ox (KO A, B, {w}. (1] + GeDiallux — un (KA, B, {w}. {r})]
< 2G.D} +2G.DE < AG.D.

The result in equation [37|is concluded by summing the above inequality over Tj steps.
C Result related to Algorithm [I]

The following lemma provides an estimation of the upper bounds for the state, control input, and perturbation
during the tracking stage.

Lemma 8 In the tracking step of Algorithm[d] for k > To + 1 subsequently,

. K2 o K3 K2 o K3
kaH < —(Kw + “b*(’ﬁw + Ew 1, + *(’iw + “b\/%)) + ’Qb*”‘r) = Dy, (39)
Y vy v 0
K3 K2 K3
|up|| < kD, + fib7(/€w + Ewr, + 7(% + kpv/m)) + i Hir 1= D,. (40)

and

. Kb
Wy — wg|| < €a,B(Dy + (kDy + 14:37(/{“; + By + S (F»w + kpv/m)) + K 7/@7«)) = Ey, (41)

1433 2 3
€a,5(kDz T, + HbT( 5 (Fw + Kpv/m)) + HbT/’fr) = By, (42)

where D, D, and FE,, are the upper bounds to the state, control input and perturbation estimation error,
respectively. E,, 1, is the upper bound on the perturbation error at k = Tp.

Proof. We prove the result by induction. First note that for equation [I]if the input is chosen as

uf = Ko+ Y MU Hay_; + 3 Py, (43)
j=1 s=0
the state xy, | reads
k 4 My , m,
2f = (A+BE)* " (w; + BY MUiy_;+ B Pllr_,).
i=0 j=1 5=0
As a result,
k ) My ) my
l2f | < D (A+ BE) " (w; + BY MUy + By Pllr_,)| (44)
i=0 j=1 s=0
< ZH (1= 9) " (kuw +/@b||w;€||2/ibfi (1 =)t 4 k||| Zmbm (1—7)%).
Jj=1
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At time step k = Tp, one defines Wy, = a7, whose upper bound was computed in equation Thus, for
k = Tp, one has

. K>
lom | < = (rw + Kpy/m). (45)
Based on the fact that Zfzo(l —7)t < % for k = Ty, one gets
;2 L3 K2 s ;3
z7 < —(Ky + K Ky + Kb —&—n—nr =Dy 141
12741 7( by(v( ) b ) o+

Then,

My My
iyl < 1E@f |l + Y 1My + [ PFry |
j=1 s=0

Moy Mo
< KDy mypr + [kl D mprs (1 =)+ (el D ror® (1= 7)°
j=1 s=0
KJS /‘62 HS
< KDz ryy1 + Hb?(?(ﬁw + Kpv/m)) + ﬁb7“r = Du1y41-

Assuming that ||[A — A|, |B — B|| < eap, at k > Ty

lon = wiell < (A= A)zy + (B = Byup)l| < ea,pllzell + eaplluxll.

Thus,
2 K K2 S L K3
W — Wk|| < €a,B Kw + K Ky + Kpv/m) + K) — Ky ) )+
I [ (v( b,y(,)/( ) b )
K3 g2 (3
€a,B(kDy 1y + kp—(— (K + Kpv/m)) + Kib*m) = FEu1,,
v Y
and

[k || < max(Euw, 1, + K, ([0, ]])-
Then, if the upper bound for ||| is replaced with E,, 1, + kw + ||7, || in equation the bounds in
equation [39equation [40] are concluded.

D Proof of the regret bound
To prove the regret bound, a few results are need.

e Lemma[dlis a technical result to be used in Lemma [I0l

 Lemma [I0] gives an upper bound for the difference in the costs for the real and estimated systems
using a linear controller.

e Lemma [11] provides an upper bound for the difference between the cost of using the tracking algo-
rithm and the minimum cost that can be achieved by the same class of controller.

Lemma 9 For any matriz pair P, AP, such that |P||,||P + AP|| <1 —~, it holds

|AP]
¥

Yo IP+AP) - Pl < (46)

i=0
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Proof. This proof is based on an inductive argument. First,we prove that the inequality ||(P +AP)* — Pi|| <
|AP[ji(1 —~)"~! holds true. Then, the validity of this claim can be easily verified for i = 0 and ¢ = 1. Next,
it is shown that this claim is valid for the case i + 1. Observe that

I(P+ AP)™*! — P < [[(P+ AP)(P + AP)' — (P)(P)|
< ||P((P+ AP)" — PY) + AP(P + AP)'|
<||P((P+ AP)" — PY)|| + |AP(P + AP)|

It is known from the claim that ||(P+AP)"—P?|| < i||AP||(1 — )"~ ! and it is assumed that | P+AP| < 1—7,
thus,

IP((P+ AP)" = PY[| + [AP(P + AP)'| < [|P[[[((P + AP)" = P)|| + |AP(P + AP)||
< (L= illAP(1 =)™ + AP — )
< (i +1)(1-9)"AP.

Then,

Z“ (P+AP)' — P|| = Z [(P+ AP)H+D — plitD)|| <

=0 i=—1
D+ = AP = (61— HAP].
i=—1 =0

(Hazan et al.,|2020) in Lemma 17 showed that > .2 i(1 — )it < % Thus, the proof is concluded.

Lemma 10 Assuming that |A— A|| < eap, | B — B| < ea.p, where e p < 0.25k=37, and that K is (k,~)-
strongly stable with respect to the pair (A, B). Then, from Lemma@ for any perturbation sequence satisfying
lwi — || < Ey, and it is assumed that ||| < Wy, the following statement holds

|J(K|A, B, {0}, {r}) — J(K|A, B, {w}, {r})| < poly(x, % A My, K, 52) G T Ty 2. (47)

Proof. One has ||L|| < 1— for (A, B) and ||L|| < 1 -~ + 2x%e4 p from Lemma [I| Tt can be said that
L =L+AL and |AL|| < 2K3€a . Using Lemma@for L and L it can be stated that if one take €AB = 153,
one will have ||L|| and ||L|| < 1 — 2. The linear controller K is as equation l 5, and is (k,7)-strongly stable
for (A, B). It holds

k
2i(K|A, B, {w},{r}) = Z(A + Bkyy) (BKfp2p—i + wi—i). (48)

Thus, with the assumption that k;, < k without any loss of generality,

ke, K2Ry
lzk (KA, B, {w}, {r})[| < + : (49)
Y Y
Similarly it can be said that by Lemma since €45 = ﬁ, k> 1,and 0 < v < 1 one has ||/1|| <
I|A||l + a5 and | B|| < ||B|| + €4,5, hence
1
||A||<;§+4 ;< +4—<2f<
1
||B||<KJ+4 3 7:‘€+m§2/€
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Thus, K is (2#, 3 )-strongly stable for (A, B) and

(2k)4k (2K)%kK, 3264k, 8KZW,
Wy < + . 50
T aE T ¥ (50)

le (KA, B, {@}, {r})|| <
Subsequently:
IIwk+1(K\A B, {w}, {r}) — zer1 (K| A, B, {@}, {r})]

< Z I(A+ BK ) wy—i — (A+ Blpy) tb—i + (A+ BK )" BK 2 — (A+ BK ) BK ppzi |
1=0

< (I(A+ BK ) w—i — (A+ BK ) "tbe—il| + (A + BK o) tbi—s — (A + Bhpy) g ||
1=0

+ (A4 BK ) BKf2_i — (A+ BK ) BK 25 i]|).

Starting from the first term, one has

k 2
D A+ BE ) wi—; — (A + Blgs)'te—|) <
=0

L4 k21— ).

For the second term, one has || A + Bk:fbH < Q'LQ and ||A + Bkpy| < Q7'LQ. Since ||L||, ||L] <1 -7

then ||A+ Bk, ||A+ Bk < Q~'(1 - 2)Q. Additionally, [|Q||, |Q~!|| < #. Using Lemma@and knowmg
HAL” < 2H3€A,B7

k
Y (A + BE ) tdog—i — (A + Blgy)"dr—i]))
=0
k

< QT LQ) ik—; — (Q ' LQ) b))

i=0
< K2WOZ|| — (L)

S 8H5A7723W0.
v
For the third term, following the same steps from the last part,

k
> I((A+BEs)'BKgze—i — (A+ BK ) B g2 |
1=0
< 44 (263€ 4 BK2)
— 72 .

Thus,

||xk+1(K|A’ B, {w}’ {T}) - xk+1(K|Av B’ {’UAJ}, {T}) ||

K2 Ey, 8W01<;56A’B n 8&76,4,3@

< + K Wo +
v AUl v? 2
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From assumption |4} it can be shown that |[zkl[, |lux| < D and [[Vicg(z,u)|l,[|[Vuck(z,u)|| < GeD. With
abuse of the use of the notation, let D denote the bound related to the identified system. It holds:

uk-i-l(KlA’ E’ {’L@}, {T}) = bexk-i-l(K‘Av Bv {’lf)}) + Kffzk+l'
Thus,

8k3Wy  32k%k,
5 +

ks (K|A, B, {@}, {r})] < + wr; = D.

As a result, we have

|J(K|A, B, {&},{r}) = J(K|A, B,{w},{r})| < TG D|xr41(K|A, B, {w},{r}) — zp1(K|A, B, {0}, {r})|
8Kk3W, N 32k5k, ,‘{2Ew)

8K5W06A7B n 8/’676A7Bl€z

<TG ( Kkz)( 2 o + k21— )Wy +

From equation one can derive E,, < poly(k, kp, M, K,y 1, kr)eap, and Wy < E,,. Also, from Theorem
it is known that Ty = eg?Bpoly(/ﬁ, Kuw,m,n). Thus, one can write the above inequality as

~ A 1 _
J(EIA, B {0} {r}) = J(E|A B {w}, {r})] < poly(k, = Am.n, ko, :)GT Ty vz,

Lemma 11 Let Assumptions hold. Let a:g denote the state using the optimal memory-augmented
controller u’,;*. Set H = my, = my. Let Y7, = [M*, .., M* P*, ..., P*] denote the optimal weights learned
by Algorithm |1, each one of the weights repeated for H times, and 37 (Y4 ,.), U (Yy ;) denote the truncated
states and control using these optimal weights according to equation [If}equation[I5 Then

5

(@ (Yire) = oo @7 (Yirg)) — e (el —riufl )| < 26D (1 - 7)™, (51)

Proof of Lemma : Stacking optimal learned weights for k times makes Y}, = [M*, ..., M*, P*, ..., P*], and
then stacking them for H times defines Y= [M*,...,M*, P*, ..., P*]. Based on Lemma |3} one has

Jen(@F (V") =1, Gf (YY) = en (ol —raufl )| < Ge D l(g (Yopoy) = i) = (@ (Yire) — o)l
_raz

+GeD |luy (Yoo) — @f (Vi i)l < 2G.D*w%(1 — 7).
This completes the proof.

Theorem 4 Suppose A :=Algorithm RobTrack is exvecuted under Assumptions [l Let H = my,, = m,.
2
7&,{30 =), H = O(log —"‘,YT), and Ty = T?/3.

The regret of Algorithm RobTrack on the identified system (A, B) and the perturbation {0} is

Select the learning rate n and the memory size H to satisfy n = O(

J(AIA, B, {},{r}) = J(A|A, B, {@},{r}) = OVT), (52)

where J(A%|A, B, {#},{r}) denotes the total cost associated with the optimal memory-augmented policy
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Proof: To begin, one has

T T
J(AJA, B, {w}, {r}) — J(AP'|A, B, {w}, {r}) = cilex,ux) = Y cx(af —re.uf ) (5a)
k;l k=1 .
:ch(ek(yb-k 1) uk YOk 1 Z YHk
k=1 1
T T o
+ Z fe(Yer) — Z fe(Y™)
k=1 k=1
Br
T T
Jerk(Y*)—ch(:ck* Tk, U ),
k=1 k=1
(r

where Y* = [M10* M1 plols - plH-1) ¢ (Rm*7)2H denote the optimal weights learned by Algo-
rithm [I] satisfying the conditions in [3]

The regret analysis is split into three parts: ar denotes the difference between the cost of Algorithm [I] and
the truncated cost. 87 denotes the difference between the truncated and optimal truncated costs. {r denotes
the difference between the optimal truncated cost and the optimal memory-augmented control policy.

The bound of the first term a7 is given by
lex(er ur) = fe(Yerw)l < Ge D |[(of (Yosw—1) = i) = (@ (Vi) — 7))l + GeD [lugf (You—1) — @ (Vi) |
<2G.D*r3(1 — )",

where one can use Lemma [3] to get the above result. Therefore,

T T
lazll = 11D exlensur) =Y fiVaw)l < 2T G D*s*(1 = )" = O(VT), (54)

k=1
where the last equality is obtained based on H = O(logT).
The term 7 can be bounded by Theorem 4.6 of |[Agarwal et al.[(2019) and the results of Lemmas [5{and |§| as

> (Vi) ka )< Mb + TG+ LyH*nGyT, (55)

where My, := 2v/dryr®y~', d = max(n,m). By selecting n = O(
O(T).

The last term is the difference between the truncated cost of the algorithm and the cost by the optimal
memory-augmented controller. For the third term, using Lemma

Gﬁwm H = O(log (T)), then By =

T

ka Yiig) — Z w(@F —reuf ) < 2T GD* (1 — ) = O(VT), (56)

k=1

where the last equality is obtained based on H = O(log (T')). Observe that

o If eap < 755, Lemma |l| guarantees that k is (2x, 3 )-strongly stable on (A, B),
o If ea g < poly(x, 1) the iterates obtained by running Algorithm A (trajectory tracking algorithm)

satisfy ||z ||, ||[e]| < poly(, L 5,m)(1+ Ky), as guaranteed by Lemma
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Given the aforementioned observations and the proof before that, it is ensured that

J(AIA, B {@}, {r}) — J(A°P'|A, B, {@}, {r}) < O(VT). (57)

Also, for the sake of completeness and self-containment of this article, it can be mentioned that from[Yaghmaie
& Modares| (2023)), it is known that

J(A|A, B, {w}, {r}) = J(K|A, B, {w},{r}) < OWT), (58)
and following the same steps as before one can conclude

Proof of Theorem[Z: To prove this theorem let us construct the regret as below

Regret < Jy + (J(A|4, B, {@}, {r}) — J(K|A, B, {i}, {r})) (60)
+ (J(K|A, B, {0}, {r}) — J(K|A, B, {w},{r})). (61)

Select Ty = T2/3. Lemma Theorem and Lemma compute the upper bounds for Jy,
J(A|A, B, {w}, {r}) — J(K|A, B,{w},{r}), and J(K|A, B, {w},{r}) — J(K|A, B,{w}, {r}), respectively and
the regret bound is derived as O(T?%/3).
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