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Resonant scanning design 
and control for fast spatial 
sampling
Zhanghao Sun*, Ronald Quan & Olav Solgaard

Two-dimensional, resonant scanners have been utilized in a large variety of imaging modules due 
to their compact form, low power consumption, large angular range, and high speed. However, 
resonant scanners have problems with non-optimal and inflexible scanning patterns and inherent 
phase uncertainty, which limit practical applications. Here we propose methods for optimized 
design and control of the scanning trajectory of two-dimensional resonant scanners under various 
physical constraints, including high frame-rate and limited actuation amplitude. First, we propose an 
analytical design rule for uniform spatial sampling. We demonstrate theoretically and experimentally 
that by expanding the design space, the proposed designs outperform previous designs in terms of 
scanning range and fill factor. Second, we show that we can create flexible scanning patterns that 
allow focusing on user-defined Regions-of-Interest (RoI) by modulation of the scanning parameters. 
The scanning parameters are found by an optimization algorithm. In simulations, we demonstrate 
the benefits of these designs with standard metrics and higher-level computer vision tasks 
(LiDAR odometry and 3D object detection). Finally, we experimentally implement and verify both 
unmodulated and modulated scanning modes using a two-dimensional, resonant MEMS scanner. 
Central to the implementations is high bandwidth monitoring of the phase of the angular scans in 
both dimensions. This task is carried out with a position-sensitive photodetector combined with high-
bandwidth electronics, enabling fast spatial sampling at ∼ 100 Hz frame-rate.

Recent years have seen the rapid development of LiDAR systems in  robotics1, autonomous  vehicles2–4 and AR/
VR  applications5. Designing such systems require innovation in both hardware and software because real-time 
response requires fast information collection and processing. Optical scanners are commonly used in LiDAR to 
deflect laser beam(s) onto different sampling positions in space and acquire 3D data. Compared to conventional 
LiDAR scanners that operate in a raster scanning mode, redresonant scanners have a well-known  advantage4,6–8: 
the motion amplitude of a resonant scanner is ∼ Q times larger than that of a raster scanner, where Q is the qual-
ity factor of the resonant  system4,6. Resonant scanning also improve acquisition  speed9–11. Raster scanners acquire 
data in a prescribed sequential pattern that is limited by the speed of its slow axis. This results in slow spatial 
sampling that is unacceptable for many real-world applications, e.g. collision avoidance. In contrast, resonant 
scanners have high speed in both scanning axes, which is promising for high-speed information collection. To 
realize this advantage, resonant scanning patterns must be optimized such that information is acquired most 
efficiently within a short frame time, and their flexibility should be increased to allow situation-dependent, or 
“random” scanning  patterns12–14.

Multiple scanning pattern designs have been  proposed9,10,15–18. Hwang et al. proposed a frequency selection 
rule for high frame-rate ∼ 10− 100 Hz  operation15,16. Tuma et al. applied optimization-based scanning trajectory 
design in scanning probe  microscopy17, which operates at a lower frame-rate ∼ 1 Hz. Sub-frame sampling and 
updating were also proposed to boost the imaging updating  rate6,9,10,19. These designs tend to focus on actuation 
frequency selection while ignoring the phase. More recent work discussed both frequency and phase in scanning 
pattern  design18, but they are limited to patterns that repeat in each frame. Moreover, none of these designs con-
sidered physical constraints such as actuation signal amplitude, which are important in real-world systems. The 
flexibility in scanning is also critical. As shown in reports on random-access  scanning13,19,20, scanning patterns 
that “focus” on specified Regions-of-Interest (RoI) meet data post-processing requirements better than uniform 
spatial sampling. Resonant scanners cannot abruptly change direction so truly random-access scanning is not 
possible, and traditionally resonant scanning has been optimized for uniform Field-of-View (FoV) coverage. 
Therefore, there is a need for approaches that allows RoI focused sampling using resonant scanners.
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In this work, we demonstrate optimized designs for resonant scanning patterns with frame-rate ∼ 100 Hz 
and limited actuation amplitudes. We first analyze uniform spatial sampling and introduce two metrics: fill-
factor and scanning range. We show a trade-off between these two metrics in previous designs to motivate a 
better solution. An analytical design rule based on unmodulated scanning patterns (both axes have single-tone 
scanner motion) is proposed that takes various practical considerations into account, such as high frame-rate, 
bounded actuation amplitude, scanner phase, and pattern repeating period. The proposed design out-performs 
previous designs that fail to consider these factors. Furthermore, we consider RoI-focused spatial sampling with 
resonant scanners. For this purpose, we demonstrate the utility of modulated resonant scanning patterns, which 
contain multiple frequency components around resonance. We develop a task-driven optimization framework 
to integrate scanning pattern design with post-processing on sampled 3D data.

To demonstrate the applications of designed resonant scanning patterns, we evaluate them in simulated 3D 
computer vision tasks including LiDAR odometry and object  detection3,21–23 (section “Simulations”). To experi-
mentally implement the designed patterns, we built a hardware prototype based on a MEMS scanner (section 
“Experiments”). We developed a control system that stabilizes the scanner phase during operation, which is 
critical for resonant mechanical  systems8,24–28. Compared to previously designed high-accuracy, narrow band-
width phase control systems, the proposed method is wide-band and thus can operates in both unmodulated 
and modulated scanning modes.

Scanning Pattern Design
Laser beams reflected from scanners that are resonant in two orthogonal dimensions create “Lissajous patterns” 
that are described mathematically as follows:

where fx , fy are the scanning frequencies, which are assumed to be close to resonant frequencies ( f rx  , f ry  ). 
The quantities Ax(t) , Ay(t) and φx(t) , φy(t) are the amplitudes and phases for the two scanning axes. When 
amplitudes and phases are static, both x(t) and y(t) are single-tone, and we denote the corresponding scanning 
patterns as unmodulated patterns. When small modulations (or, equivalently, multiple frequency components 
within resonance bandwidth) are added, we denote the corresponding scanning patterns as modulated patterns. 
To make the problem of optimizing the scanning patterns tractable, we make the following assumptions: (1) 
The amplitude of the actuation signal is bounded to reflect limitations on practical hardware. (2) We define a 
“frame time” Tframe (Note that this “frame time” is different from that used in previous  literature9,10, we provide a 
comparison between these two concepts in Supplementary Information). Data collected within Tframe is used for 
evaluation or post-processing. We show that the bounded actuation amplitude and short frame time introduce 
a trade-off between two important metrics for spatial coverage: scanning range and fill factor, and motivates a 
better design rule. For simplicity, we choose Tframe = m , m being an integer between 6 and 9 (corresponding to 
6− 9 ms Tframe with a 1 kHz resonant scanner). (3) Without loss of generality, we assume resonant frequencies 
for the two scanning axes to be f rx = r , f ry = 1 . In all the simulations, time is scaled by the scanning cycle in 
the y-axis and is dimensionless. To model typical MEMS scanners, we set a quality factor Q = 20 . We also limit 
r ∈ [1, 3] . When r gets higher, the resonant scanning system gradually transitions to a raster-scanning system, 
with one axis scanning much slower than the other.

Unmodulated pattern design. We first analyze the spatial coverage of resonant scanning with bounded 
actuation amplitude. The goal is to achieve uniform spatial sampling in a normalized [−1, 1] × [−1, 1] Field-
of-View (FoV). We use fill-factor and scanning range to characterize the spatial coverage of scanning patterns, 
following common usage in the  literature15,18. The fill factor characterizes the spatial coverage within a normal-
ized scanning range. The range is determined by the scanning frequencies fx , fy and the transfer function of the 
resonant scanner Hx(fx) , Hy(fy) . We quantify the two metrics in Eq. (2):

We normalize the transfer function amplitudes to 1. Note that we only consider the amplitudes of the transfer 
functions because in the proposed control scheme, we directly monitor phase of the scanner motion, instead 
of the phase of the actuation signals. Without loss of generality, we assume an ideal harmonic oscillator model 
for the resonant-scanner because the following analysis is only based on the band-pass characteristic, which 
are common to all resonant scanners. We also ignore cross-talk between x and y-axis motions in this simplified 
model. More discussions on cross-talk are presented in the discussion section. Similar to previous  literature17,18, 
fill-factor is defined through the radius of the largest inscribed circle Rmax in the sampling pattern, as shown in 
Fig. 1a. To decouple the two metrics, the scanning pattern is normalized to [−1, 1] × [−1, 1] when calculating 
Rmax (See Supplementary Information for details).

With bounded actuation amplitude, there is a fundamental trade-off between fill-factor and scanning range. 
As an example, we show several scanning patterns with f rx = 1.5 , f ry = 1 , Tframe = 7 in Fig. 1a. If we actuate on-
resonance, the scanning range is at maximum ( = 1.0 ), as shown in pattern P0 . P0 repeats in t = 2 with φx = π/4 , 

(1)
{

x(t) = Ax(t)cos(2π fxt + φx(t))
y(t) = Ay(t)cos(2π fyt + φy(t))
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φy = 0 and it samples on exactly the same trajectory multiple times within Tframe . This results in a low fill-factor 
= 1.63 . On the other hand, if actuated off-resonance, with fx = 11/7 , fy = 1 , φx = π/14 , φy = 0 , the sampling 
pattern has high fill-factor = 1.89 (pattern P1 ). However, off resonance actuation leads to large reduction in scan-
ning range ( = 0.45 ). In the lower part of Fig. 1a, we show another design (pattern P2 ) with fx = 41/28 , fy = 1 , 
φx = φy = 0 . P2 has repeating period 14 = 2Tframe . In each frame, P2 has fill-factor 1.88 and scanning range 
0.74. The fill-factor is almost the same as that in P1 and the scanning range ( = 0.74 ) is 1.6× larger. Therefore, 
with respect to spatial coverage within Tframe , we regard P2 to be a better scanning pattern when compared to P1.

Previous resonant scanning pattern designs generally consider patterns that repeat in each Tframe = m , with 
fx = k/m , fy = l/m , k, l ∈ Z

15,18 and we denote these “repeating patterns”. (Note that the “repeating”/“non-
repeating” pattern definition here is different from the definition used in some previous  literature9,10, we provide 
a comparison between these two concepts in Supplementary Information) However, for a specific f rx  , f ry  , Tframe 
combination, there might not be a repeating pattern with ( fx , fy ) close enough to resonance. As in the example in 
Fig. 1a, it can be verified that P1 is the repeating pattern with ( fx , fy ) closest to resonance, but P1 still suffers from 
small scanning range. In this paper, we expand the design space by considering not only repeating patterns, but 
also patterns with repeating periods longer than Tframe , such as P2 in the above example. We propose an analytical 
design rule in design rule 1 to maximize the scanning range while still achieve comparable fill-factors to that of 
repeating patterns (derivations are provided in Supplementary Information). In the design rule, we search over 
( fx , fy ) pairs around the resonance frequencies (in a close-to-far order) until we find a pair that falls in one of 
three “good spatial coverage” cases: Case1, where the scanning pattern repeats in 2Tframe time and a criterion in 
line 4 of design rule 1 is met. Case2, where the scanning pattern repeats every Tframe with φx = φy = 0 and Case3, 
where the scanning pattern repeats in Tframe time with φx  = φy . After the frequencies ( fx , fy ) are chosen, we 
determine the phases ( φx , φy ). The three “good spatial coverage” cases and the criterion in line 4 of design rule 1 
guarantee that the scanning trajectory does not repeat within Tframe . Mathematical proofs for the three “good 
spatial coverage” cases are provided in Supplementary Information. A very recent paper presented a design rule 
|fxφy − fyφx|m = π/2 to achieve a high fill-factor for repeating  patterns18, which is similar to the phase selec-
tion rule in Case3. However, design rule 1 is more complete and performs better under the physical constraints.

Figure 1b,c quantitatively show the dependence of fill-factor and scanning range on different settings r ∈ [1, 3] 
and Tframe ∈ [6, 9] . The figures compare the metrics of our proposed designs (blue, solid) and traditional repeating 
pattern  designs18 (black, dashed), with a fixed actuation amplitude of 1 in all cases. The comparisons show that: 
(1) In most cases, the proposed designs have the same fill-factor as the repeating patterns, but larger scanning 
range. (2) When Tframe is shorter, and when m has more prime factors, the trade-off is generally less favorable. 
This is because with fx = k/4m , the greatest common divider (GCD) of k and 4m are usually larger than 4 and 
do not fall in the three “good spatial coverage” cases in design rule 1. (3) Integer frequency ratios r lead to worse 
trade-offs between fill-factor and scanning range. More discussions about this special case is provided in the 
discussion section.

Figure 1.  (a) Several scanning patterns for a resonant scanner with f rx = 1.5 , f ry = 1.0 and Tframe = 7 . Pattern 
P0 is the on-resonance actuated pattern, Although it has large scannning range 1.0, fill-factor is low (0.63), as 
indicated by the radius of its largest inscribed circle. Pattern P1 uses fx = 11/7 , fy = 1 , φx = π/14 , φy = 0 as 
parameters. The fill-factor is improved to 0.89 but scanning range is reduced to 0.45. Pattern P2 uses fx = 41/28 , 
fy = 1 , φx = 0 , φy = 0 , derived from design rule 1. It has fill-factor = 0.88 and scanning range = 0.74 . (b,c) 
Fill-factor/Scanning range with proposed design rule 1 (blue, solid) and repeating-pattern design  rule18 (black, 
dashed), with different resonant frequency ratio and Tframe settings.
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Modulated pattern design. We further consider a more challenging operation of resonant scanners: 
Regions-of-Interest (RoI) focusing. In a LiDAR system, through-put of the 3D sensor is fixed, which makes 
adaptive spatial sampling beneficial for various  applications20,29,30. More specifically, given a user-defined RoI, 
we aim at sampling the RoI as densely as possible in all frames. This type of scanning is particularly challeng-
ing for resonant scanners and is beyond the capability of the unmodulated scanning patterns, so we propose to 
use modulated scanning patterns. Such patterns contain multiple frequency components within the resonance 
bandwidth. However, due to the higher degrees-of-freedom and the complexity of user-defined RoI, analyti-
cal design rules are inadequate, so to design modulated scanning patterns, we develop an optimization-based 
approach. The framework is task-driven because different imaging tasks have different Regions-of-Interest (RoI) 
for spatial sampling. We seek to improve, by optimized modulation of the parameters, the operation of the reso-
nant scanner as characterized by Eq. (1). However, this model has continuous input parameters so we simplify 
the model through a Fourier expansion:

where Hx and Hy are transfer function amplitudes. We ignore the phases of the transfer functions because they 
are included in the coefficients of the cosine and sine terms. m specifies the frame time Tframe . n1 , n2 , k1 , k2 defines 
the number of frequency components in optimization. We find that generally, 5 frequency components give very 
good optimization results, and in most cases, 3 frequency components are enough. L is an integer that controls 
the spacing of the frequency components. Note that the amplitude constraints in Eq. (3) are equivalent to bound-
ing the root-mean-square ( RMS ) amplitudes of the actuation signals. This is a looser constraint than bounding 
the absolute actuation amplitude in unmodulated scanning, which can be expressed as 

∑

n

√

α2
n + γ 2

n <= 1 , 
∑

j

√

β2
s + δ2s <= 1.

From Eq. (3), we notice that the scanner motion is linearly determined by the parameter set {αn} , {βs} , {γn} , 
{δs} . Also, due to the band-pass characteristics of the transfer functions Hx , Hy , only frequency components close 
enough to resonant frequencies f rx  , f ry  have significant impact on scanner motion. This allows efficient optimi-
zation of the parameter set. We further discretize time in Eq. (3) to get the sampled scanning pattern x ∈ R

N , 
y ∈ R

N , where N is the number of sampling points. The resonant frequencies f rx , f ry  , frame time Tframe and N are 
chosen as hyper-parameters in the optimization.

The optimization framework is shown in Fig. 2a. First, the parameter set is converted into a sampled scan-
ning pattern x , y . For the specific task (in Fig. 2a, we use 3D object detection as an example), Regions-of-Interest 
(RoI) are proposed by a fast processing on 2D RGB image, or other heuristic rules and sensing results. The RoI 
is represented by a weight map W and its values correspond to the importance of each regions in the FoV. With 
x , y and W , we define the objective function Lpattern as:

The [−1, 1] × [−1, 1] FoV (normalized by the product of amplitudes with on-resonance actuation) is divided 
into M ×M patches. For each patch (i, j), we get the closest sampling point ( x[ni,j] , y[ni,j] ) to its center location 
( xi , yj ) and calculate the distance between these two points. W̄i,j indicates the importance of each patch and is 
defined as the average weight in patch (i, j). Patches with larger average weights have a higher priority during 
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optimization. Note that if the distance between patch (i, j) and ( x[ni,j] , y[ni,j] ) is smaller than a threshold, this 
patch is considered as occupied and W̄i,j is set to zero, regardless the weight value in this patch. From Lpattern , 
gradient decent  optimization31 is performed on the parameter set {αn} , {βs} , {γn} , {δs} . Once the optimization 
is done, spatial sampling can be conducted on a 3D scene, and a sparse point cloud is generated. The sampling 
is concentrated in the RoI, where most useful information is distributed, and the performance of down-stream 
tasks is improved. Note that this optimization need not to be done online (e.g. during scanner operation). For 
some tasks, optimized patterns for different scenes are very similar and thus the optimization process can be 
done off-line. An example is discussed in Supplementary Information.

Figure 2b shows optimization results for two randomly-selected RoI (RoI A, B) and different resonant fre-
quency ratios. We use Tframe = 7 , total sampling point number N = 500 in all optimizations. 5 frequency com-
ponents are used in the optimization, with fx = {6/7, 13/14, 1, 15/14, 8/7}f rx  , fy = {6/7, 13/14, 1, 15/14, 8/7}f ry  . 
Similar results are achieved with 3 frequency components fx = {13/14, 1, 15/14}f rx  , fy = {13/14, 1, 15/14}f ry  and 
the effect of considering more frequency components (more than 5) within the range of [6/7, 8/7]f rx  , [6/7, 8/7]f ry  
is not significant. The first and the second columns show optimization results with modulated scanning pat-
terns. The third and the fourth columns show reference unmodulated scanning patterns. The modulated scan-
ning patterns have bounded RMS actuation amplitude, as defined in Eq. (3), while the actuation amplitudes for 
unmodulated patterns are not bounded to better visualize the differences in RoI focused sampling. If the actua-
tion amplitudes of unmodulated patterns are bounded, RoI on the edges and corners can’t be reached in some 
cases. The comparisons show that: (1) With r ∼ 1 , r ∼ 2 , modulation and optimization lead to an improvement 
in sampling densities within the RoI, which are shown by the black number under each scanning pattern. (2) 
The RoI focusing improvement depends on the shape of the specified RoI. With r ∼ 1 , the RoI focusing is more 
successful for RoI A compared to RoI B, while it is the opposite with r ∼ 2 . (3) With r ∼ 1.3 , the RoI focusing 
improvement is very limited. The optimization results are only slightly improved compared to the unmodulated 
scanning patterns.

We provide a qualitative explanation for this dependence of RoI focusing improvement on resonant frequency 
ratio: A modulated scanning pattern “dithers” around a basic unmodulated scanning pattern, as shown in Fig. 2b 
at the lower-right corner of each modulated pattern. This basic pattern corresponds to one pair of ( fx , fy ) in 
Eq. (3) (it also needs to be in the resonance bandwidth). If the basic pattern has a short repeating period, it only 
traverse part of the scanning range. For example, with fx = 1, fy = 1 , the scanning trajectory is a simple ellipse. 
Shape of the basic pattern is controlled by its amplitudes and phases in x and y-axis motion. When appropriate 
modulations are added, a small shift exists between the scanning trajectories in different repeating periods, and 
this leads to a focused sampling in the regions close to the basic pattern. However, if the basic pattern has a long 
repeating period and covers the scanning range uniformly, the modulated scanning patterns can’t be focused 
onto a certain portion of FoV through optimization. For r ∼ 1 , r ∼ 2 , the repeating period is very short with 
fx = fy , fx = 2fy . However, for r ∼ 1.3 , there does not exist a ( fx , fy ) pair close enough to resonance while also 
has a short repeating period (for example, shorter than t = 2).

Simulations
We evaluate the analytical design rule  1 and the proposed optimization framework in simulated 3D 
 environments2,32. Because most 3D imaging datasets currently available are acquired with a raster-scanned or a 
flash LiDAR, we develop a point cloud generation tool that generates a point cloud corresponding to a resonant 

Figure 2.  (a) Schematic pipeline of the proposed optimization framework. It shapes the sampling pattern into 
task-specific (or even scene-specific) RoI-focused patterns through objective function Lpattern . Here 3D object 
detection is used as a target task. (b) Optimization results for different RoI and resonant frequency ratios. Red 
rectangles show the specified RoI and black numbers under each pattern show the amount of sampling points 
within the RoI. With r ∼ 1 and r ∼ 2 , the modulated scanning patterns have denser sampling in RoI, compared 
to the reference unmodulated scanning patterns. However, with r ∼ 1.3 , this RoI focusing improvement is 
not significant. At the lower-right corner of each modulated pattern, we also show the corresponding basic 
unmodulated pattern. (Figure is generated by Microsoft PowerPoint, version 16.49 and Python, version 3.6.8).



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20011  | https://doi.org/10.1038/s41598-021-99373-y

www.nature.com/scientificreports/

scanning pattern. Details of the dataset, implementation and more simulation results are provided in Supple-
mentary Information.

LiDAR odometry with unmodulated scanning. LiDAR odometry algorithms estimate the trajectory 
of a moving agent during navigation. They extract feature points from a 3D point cloud acquired in each frame. 
By comparing the spatial positions of these feature points between successive frames, the position of the agent 
in a world coordinate can be estimated.

In this work, we consider LiDAR odometry with resonant scanning patterns on the KITTI  dataset2. We adapt 
a LiDAR odometry framework, named “LOAM”3,33, into the resonant scanning scenario. For comparison, we use 
the example discussed in Fig. 1a with pattern P1 as the baseline and pattern P2 as the designed pattern. As shown 
in Fig. 3a, Field-of-View (FoV) of P2 is ∼ 1.6× larger than that of P1 . This much larger spatial region gives us 
more feature points to be observed and processed, which leads to more reliable trajectory estimation (for details 
of the extracted feature points, please refer to Supplementary Information).

3D object detection with moduated scanning. Object detection is another task that is of great interest 
in 3D computer  vision22,23. The requirement it imposes on data collection is different from that in odometry. For 
each scene, important objects (e.g., cars, pedestrians) might concentrate in specific regions in the FoV. Therefore, 
a denser sampling in these Regions-of-Interest (RoI) is required. As an example, we use hyper-parameters f rx = 1 , 
f ry = 2 , Tframe = 7 and number of sampling points N = 30000 . In Fig. 3c, we show the RoI-focused scanning 
pattern (upper row). The pattern consists of three frequency components ( fx = { 1314 , 1,

15
14 } , fy = { 2714 , 2,

29
14 } ). 

The relative phases and amplitudes of the three components are optimized to be ( φx = {86◦, 178◦, 86◦} , 
φy = {−96◦, 145◦,−96◦} , Ax = {0.22, 0.95, 0.22} , Ay = {0.28, 0.91, 0.28} ). Using more frequency components 
in this special case won’t generate significant improvements. When compared to the sampling pattern designed 
for uniform sampling (lower row), the RoI-focused pattern samples significantly more points ( ∼ 3× ) in regions 
that contain important objects (cars in this scene). This will largely facilitate the object detection  process23. We 
do not conduct quantitative comparisons on object detection, due to the imperfectness in resonant-scanned 
point cloud generation. However, because of the positive relationship between sampling density and detection 
accuracy presented in previous  literature2,23, it is reasonable to expect an increase in accuracy when the opti-
mized scanning pattern is used in real-world LiDAR system.

Note that in this task we do not follow the f rx = r , f ry = 1 setting. This is because the dataset we experiment 
on contains only road scenes. Such a scene is more likely to be symmetric in the horizontal direction compared 
to the vertical direction. For example, cars are more likely to be on the left and right sides of a road, instead of 
on the up and down sides of a road. As mentioned above, the performance of RoI focusing depends on the RoI 
shape. When the axis of symmetry of the RoI shape aligns with that of the scanning pattern, performance is 
improved. Therefore, we make the scanning pattern also symmetric in horizontal direction by choosing f rx = 1.0 , 
f ry = 2.0 instead of f rx = 2.0 , f ry = 1.0 . Optimization results with f rx = 2.0 , f ry = 1.0 are also presented in Sup-
plementary Information, where the performance is not as good as that in Fig. 3, but still beats the reference 
unmodulated scanning pattern.

Figure 3.  (a) Qualitative comparison of baseline and designed scanning patterns ( P1 and P2 in Fig. 1a). 
Scanning range of the designed pattern is 1.6× of that in baseline pattern, leading to a larger perspective field 
and more reliable feature extraction. (b) Trajectory estimations with optimized scanning pattern and baseline 
scanning pattern. (c) Object detection with optimized pattern and baseline pattern. Each red bounding box 
contains an object and the black number at bottom indicates number of sampling points contained in the 
bounding box. Due to the RoI-focusing improvement, optimized pattern contains ∼ 3× more sampling points 
in bounding boxes. The sampling patterns are shown in blue dots.
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Experiments
We implement the designed scanning patterns (Fig. 4a) using a MEMS  scanner34 with resonant frequencies 
f rx = 2660 Hz, f ry = 1100 Hz, i.e., a resonant frequency ratio r = 2.42 . The quality factors for the two axis are 
Qx ∼ 30 and Qy ∼ 50 . Because of the high Q factor and associated low bandwidth, we actuate the y-axis with 
a single frequency, and restrict modulation to the x-axis. A high-gain amplifier is used to maintain the scan-
ning range when we operate at more than FWHM (Full Width at Half Maximum) away from the resonance. 
We developed a wide-band phase detection and control system to eliminate the inherent phase uncertainty in 
MEMS scanners. This uncertainty originates from the environmental sensitivity (e.g. to temperature) of MEMS 
devices and the strong dependence of the phase on deviations of the resonant  frequency25–28. With the control 
system, we achieve ∼ 1◦ phase control accuracy, as shown in Fig. 4b. To measure the accuracy, we detect the 
scanner phase at beginning of each frame and compare it to the required phase, over 10 minutes of scanner 
operation. This calibration is conducted with a high-speed oscilloscope not shown in Fig. 4a. The accuracy can 
be improved with faster MPU or better position detection hardware. Phase stability with and without control 
are further discussed in the Supplementary Information.

Phase control in unmodulated scanning. We first demonstrate unmodulated scanning. During 
the experiments, the scanning patterns are recorded with a high-speed position sensor (PSD). We choose 
Tframe = 6.4ms , corresponding to Tframe = 7 in design rule 1. Scanning patterns with on-resonance actuation 
( fx = 2660 Hz, fy = 1100 Hz) and without phase control are shown in Fig. 4c, for two successive frames. Most 
portions of the FoV are either over-sampled or under-sampled. Using our proposed design rule, the parameters 
are changed to fx = 2672 Hz, fy = 1100 Hz, φx = π/14 and φy = 0 . The corresponding scanning patterns have 
much higher fill factor as shown in Fig. 4d.

Phase control in modulated scanning. To demonstrate modulated scanning, we drive the x-axis at three 
frequencies fx , 13/14fx , 15/14fx and drive the y-axis at a single frequency fy . Phases of the three components 
in the x-axis scanning are monitored and controlled at the beginning of every 2 frames (when all three phases 
repeat). Resonant frequencies and frame time are set to be the same as that in the unmodulated scanning experi-
ment. As discussed above, with r = 2.42 , RoI focusing improvement is limited. Therefore, we go beyond the 
x-axis resonance bandwidth and select fx actuation frequency components around 2200 Hz while fix fy = 1100 
Hz to emulate a MEMS scanner with r = 2.0 . We focus the scanning pattern to RoI B in Fig. 2b for demonstra-
tion. Due to the high quality factor in y-axis, the degrees-of-freedom in optimization is reduced by 2× . However, 
RoI sampling density in modulated scanning pattern still increases by 1.3× compared to the unmodulated scan-
ning pattern, as shown in Fig. 4e. The experimentally acquired modulated sampling pattern is resampled to 500 
sampling points per Tframe for comparison with the sampling patterns in Fig. 2.

Discussion
It is important to note how performance depends on resonant frequency ratios for unmodulated scanning design 
rule 1 and modulated scanning. Different ( fx , fy ) pairs generate unmodulated scanning patterns with different 
repeating periods. For any resonant frequency ratio r, pairs of ( fx , fy ) that correspond to long repeating period 
always exist in resonance  bandwidth15. However, a pair of ( fx , fy ) that corresponds to short repeating period 
might not exist, as in the case of r ∼ 1.3 . Also, a pair of ( fx , fy ) that corresponds to repeating period 1/2Tframe , 

Figure 4.  (a) Schematic of experimental set up for phase controlled resonant scanning. (b) Phase control 
accuracy of proposed hardware. (c) Recorded on-resonance scanning pattern, for two successive frames. (d) 
Recorded designed unmodulated sampling pattern, for two successive frames. (e) Recorded modulated sampling 
pattern with r ∼ 2.0 . Red rectangles are the Regions-of-Interest (RoI) and black numbers indicate amount of 
sampling points within RoI. Compared to the reference unmodulated scanning pattern, RoI sampling density is 
increased by 1.3× with modulated scanning.
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Tframe or 2Tframe do not always exist, as in the case of r ∼ 1 , r ∼ 2 . n the first situation, RoI focusing can’t be 
achieved while in the second situation, uniform spatial sampling is difficult. In the experiments, we noticed that 
RoI focusing performs efficiently only with r ∼ 1 or r ∼ 2 while these are the worst cases in uniform spatial sam-
pling, as shown in Fig. 1. This result suggests the special usage for resonant scanners with resonance frequency 
ratio r ∼ 1 , r ∼ 2 in RoI focused sampling.

Although the proposed scanning pattern designs outperform the baselines, they have the following limita-
tions. First, both designs are based on a moderate quality factor Q. If the quality factor is too high, neither the 
frequency selection rule in design rule 1 nor the modulated scanning pattern designs produce good results. Only 
small deviations from resonance requires large actuation amplitudes, which is inconsistent with our bounded 
actuation setting. Second, the optimization problem in modulated scanning pattern design is non-convex. There-
fore, our approach does not guarantee convergence to a global optimal. We also assume no cross-talk between x 
and y-axis scanner motions. This is consistent with the negligible cross talk we observe in our MEMS  scanners34. 
If scanners with significant cross talk are employed, then the design rule for unmodulated patterns have to be 
changed to give good results. ROI focusing, on the other hand, does not need substantial changes to work with 
scanner that have cross talk. It is straightforward to contain the cross-talk in Eq. (3) and use the optimization 
framework for both uniform and RoI-focused spatial sampling design.

Conclusion
Spatial information acquisition is at the heart of many recent advances in the imaging and display industry. 
A fast and flexible spatial sampling solution will largely improve the robustness and consumer experience. In 
this paper, we propose resonant scanning pattern design and control schemes that improve the coverage, flex-
ibility, and accuracy in fast spatial sampling. We propose an analytical design rule for uniform spatial sampling, 
and an optimization-based framework for flexible, Regions-of-Interest (RoI) focused spatial sampling. We also 
demonstrate the designed scanning patterns in an experimental prototype that applies wide-band control on 
scanner motion. The proposed methods enable resonant-scanner LiDAR with a high frame-rate ∼ 100 Hz. When 
integrated with high-speed point cloud processing algorithms, such systems can be utilized in applications across 
disciplines, including navigation, robotics, and augmented reality.

Methods
Phase control experimental setup. As shown in Fig.  4a, the MEMS scanner is actuated with signal 
generators (SIGLENT SDG2000X) controlled by external phase modulation signals. The motion of MEMS is 
detected with a high-speed position sensor (ON-TRAK OT-301). This motion signal is fed into an analog wide-
band Hilbert transformer board for 90 degrees phase shift. Both motion signals x(t), y(t) and the 90degrees phase 
shifted signals x̄(t) , ȳ(t) are sampled with an MPU chip (PJRC Teensy3.6). In practice, the Hilbert transformer 
applies a frequency dependent phase shift on both output signals while the relative phase between these two 
outputs is fixed to be π/2 . We conduct calibrations to remove the phase offset and will ignore it in the following 
sections. For more details, please refer to Supplementary Information. A fast processing algorithm is performed 
on the two signals to get the phase and a feed-back signal is generated to the external modulation port of signal 
generators. Calibrations for each components used in experiment are provided in Supplementary Information.

Phase calculation process. Phase calculations are simple for the unmodulated actuation case. After col-
lecting x(t) and x̄(t) at the beginning of each frame, a fast arctangent  calculation35 is performed to get the phase. 
The detection process takes ∼ 15 us.

For modulated actuation, phase detection and control is more complicated, because x(t), y(t) and x̄(t) , ȳ(t) 
contain multiple frequency components. In this paper, we constrain ourselves to a comparatively simple situation: 
x axis actuation contains three frequency components and y axis contains only single frequency component. 
Similar method can be extended to a more general case. We express the scanner motion in the x-axis as:

There are three phases φi
x , i = 0, 1, 2 . We detect at both beginning of each frame and at the center of each 

frame to get six equations:

Equation (6) is linear in {αicos(φi
x),αisin(φ

i
x)}, i = 1, 2, 3 , a fast matrix multiplication is used to solve them. 

Then we apply the fast arctangent calculation on each (cos, sin) pair separately to get the phases. The whole data 
acquisition and processing takes ∼ 40 us for three frequency components.

Data availability
All data used in plotting the figures (including figures in Supplementary Information) are available at https:// 
drive. google. com/ drive/ folde rs/ 1I5_ auWKR- UVEHS ugAnW Aarba phlW4 iKL? usp= shari ng.
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