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Figure 1: Our proposed ChatVLA-2 model enables generalized open-world reasoning and
reasoning following abilities. We designed two tasks—a math matching game and a toy placement
experiment—to demonstrate its generalization ability.

Abstract

Vision-language-action (VLA) models have emerged as the next generation of mod-
els in robotics. However, despite leveraging powerful pre-trained Vision-Language
Models (VLMs), existing end-to-end VLA systems often lose key capabilities
during fine-tuning as the model adapts to specific robotic tasks. We argue that a
generalizable VLA model should retain and expand upon the VLM’s core com-
petencies: 1) Open-world embodied reasoning - the VLA should inherit the
knowledge from VLM, i.e., recognize anything that the VLM can recognize, be
capable of solving math problems, and possess visual-spatial intelligence, 2) Rea-
soning following — effectively translating the open-world reasoning into actionable
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steps for the robot. In this work, we introduce ChatVLA-2, a novel mixture-of-
expert VLA model coupled with a specialized two-stage training pipeline designed
to preserve the VLM’s original strengths while enabling actionable reasoning. To
validate our approach, we design a math-matching task wherein a robot interprets
math problems written on a whiteboard and picks corresponding number cards
from a table to solve equations. Remarkably, our method exhibits exceptional math-
ematical reasoning and OCR capabilities, despite these abilities not being explicitly
trained within the VLA. Furthermore, we demonstrate that the VLA possesses
strong spatial reasoning skills, enabling it to interpret novel directional instructions
involving previously unseen objects. Overall, our method showcases reasoning and
comprehension abilities that significantly surpass state-of-the-art imitation learning
methods such as OpenVLA, DexVLA, and 7. This work represents a substantial
advancement toward developing truly generalizable robotic foundation models
endowed with robust reasoning capacities.

1 Introduction

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

Vision-language-action models (VLAs) have become a popular approach for tasks in robotics ma-
nipulation, navigation, and even full-body control. They have demonstrated remarkable capabilities
in learning dexterous manipulation, tackling long-horizon tasks [l 2], and enabling open-world
generation [3,4]. The success of VLAs, in contrast to traditional imitation learning methods, lies
in their integration of pre-trained Vision-Language Models (VLMs). By leveraging the mature
neural architectures from language models and multimodal networks, along with advanced training
techniques and pre-trained knowledge from VLMs, VLAs significantly enhance robotic learning.
This allows robots to better understand and interact with the world while improving their ability to
perform complex physical tasks.

Intuitively, pre-training a VLA model consists of a powerful, pre-trained VLMs, such as
PaliGemma [5] or Qwen-VL [6]], should equip the robot with not only stronger vision-language fea-
ture embeddings but also the comprehensive capabilities inherent to VLMs — including recognizing
everyday objects, reasoning about spatial relationships, and solving mathematical problems. Consider
a simple task: writing down the answer to the equation 10 + 11 =. Such a task is trivially easy for
humans. A conventional hierarchical model would first leverage a pre-trained VLM to produce the
answer (21), then invoke a low-level policy network to physically write it down. However, why might
a VLA model struggle with such a simple task if it has never encountered the specific equation in its
training data? In practice, fine-tuning on robotics-specific datasets often leads to the erosion of the
original pre-trained knowledge from the VLM. For example, ChatVLA [7] illustrates that adapting
a VLA model specifically for robotic control can cause previously acquired general knowledge to
degrade significantly. As a result, the VLA model may fail to accomplish tasks that seem trivial to
humans, simply because these tasks were absent from the training dataset.

Such a gap leads to a natural question: How can we build VLA models that both keep their VLM prior
intact and actively leverage it to achieve superior generalization in robotic control?

In this study, we introduce ChatVLA-2, a significant advancement toward achieving a truly general-
izable robotic foundation model. The goal of ChatVLA-2 is not to construct an omnipotent robot
model capable of executing every conceivable task. Instead, our primary objective is to demonstrate
the feasibility of leveraging the pre-trained knowledge embedded within the VLM backbone. By
doing so, we enable end-to-end robotic systems to generalize across diverse tasks, which traditionally
require explicit planning by an external agent. We argue that this generalization can be achieved by
adhering to two fundamental principles:

* Identifying overlapping feature spaces between multimodal understanding and robot
control. Image-text data and robotic control data generally reside in distinct feature spaces,
often resulting in competition for shared parameter spaces within models. ChatVLA ad-
dresses this by employing separate static experts—one dedicated to multimodal understand-
ing and another specialized for robotic control—to ensure the clear separation of these tasks



into distinct feature spaces. This separation allows VLA models to excel independently
in both domains. However, the isolated nature of these feature spaces currently limits the
transfer of pre-trained knowledge to robotic control tasks. If mutual beneficial features
could be effectively preserved and distinct task-specific features disentangled, the VLA
model would be better positioned to intuitively leverage its pre-trained knowledge, thus
significantly enhancing its generalization capability in robotic control.

* Ensuring VLA models act according to their internal reasoning. Although VLA models
demonstrate the capability for sophisticated internal reasoning, it remains uncertain whether
their generated robotic actions accurately reflect this internal thought process. Previous
research indicates that even large language models frequently produce outputs inconsistent
with their thinking process [8}9]. By ensuring that the action outputs through VLA models
reliably follow their reasoning processes, we can substantially enhance their ability to
generalize effectively across diverse and previously unseen tasks.

To achieve this, we propose a novel VLA model architecture employing a dynamic mixture-of-
experts within the VLM backbone. This design explicitly disentangles the feature spaces related
to multimodal understanding and robotic action while adaptively identifying and preserving their
shared representations. Additionally, we introduce a straightforward reasoning-enhancement module
designed to align the action expert’s output more closely with the model’s internal reasoning process.
Furthermore, we implement a two-stage training strategy: The initial stage aims to preserve pre-
trained multimodal knowledge, simultaneously training robotic actions and establishing connections
between these components. During the second stage, the VLM backbone is frozen, and only the
action expert remains trainable, explicitly enabling it to learn to generate actions consistent with the
internal reasoning derived from the upper levels of the model.

To demonstrate the open-world reasoning and understanding capabilities of ChatVLA-2, we designed
two tasks: a math matching game and a toy placement experiment. In the math matching game,
we placed a whiteboard in front of the robot and wrote down a mathematical equation for the
robot to solve. Several potential answers were placed before the robot, from which it had to select
the correct solution and place it on the whiteboard. Importantly, we evaluated the robot entirely
on out-of-distribution scenarios, meaning the presented equations never appeared in the training
dataset. For evaluating spatial reasoning, we conducted a toy placement experiment. In this task, the
robot was instructed to pick up a toy and place it at specific positions relative to various reference
objects (e.g., to the right, left, front, behind, top, or bottom of objects). Many of the objects and
directional instructions were entirely unseen during training. Therefore, this task required the model to
accurately interpret the visual scene, reason about novel spatial instructions, and execute appropriate
actions. Our experiments clearly illustrate the superior generalization capabilities of ChatVLA-2,
particularly in reasoning and understanding tasks, surpassing existing imitation-learning approaches
such as OpenVLA [10], DexVLA [2]], and 7 [lL]. This work represents a significant step toward
the development of truly generalizable robotic foundation models that transcend the limitations of
fine-tuning data by effectively leveraging pre-trained VLM knowledge.

2 Related Work

Vision-language-action models in robot learning. Vision-language-action models (VLAs) form a
growing body of research within imitation learning [[L1} [12} |13} 14} 15 [164 (17, 18|19} 120} 21}, |22} 23]
24] that leverages pre-trained vision-language models (VLMs) as a backbone to enable both language
comprehension and observational understanding. These methods typically fine-tune large pre-trained
VLMs to predict robot actions [25} 26} 27, 28] 291 [30% 31} 32} 331 34} 351 136} 137, 138,139, 140, 41}, 42}
43| 144, 1451 146, 47, 148, 1491 150, 1511 152 1531 139} 154, 155]]. These methods have demonstrated strong
performance across various simulated and real-world tasks, covering diverse robotic embodiments
such as bimanual robots, mobile manipulators, legged robots, and humanoids. They also exhibit
generalization capabilities across different environments and various objects. However, existing
VLA models still lack the ability to generalize beyond the scope of their training data. Despite
incorporating pretrained vision-language models (VLMs) as their backbone, current VLA approaches
fail to effectively utilize the pretrained knowledge from these VLMs, limiting robots’ capabilities
for open-world manipulation. Consequently, this significantly undermines the rationale behind
employing pretrained VLMs within large-scale models. In this paper, we introduce ChatVLA-2, a
novel model designed specifically to retain and leverage pretrained VLM knowledge, thus enabling
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Figure 2: Model architecture. Left: A reasoning-following enhancement module is incorporated to
ensure that the VLA model adheres to logical reasoning when performing actions. Right: Our method
leverages a dynamic mixture-of-experts architecture to disentangle conflicting features between
multimodal understanding and robotic control, while effectively integrating mutually beneficial
features.

robots to perform open-world tasks effectively through pretrained reasoning and extensive general
knowledge.

Embodied Reasoning in VLA models. A substantial amount of research has been dedicated to
enhancing vision-language-action (VLA) models by incorporating the chain-of-thought (CoT) [56]]
methodology, inspired by the recent successes of large language models (LLMs) in various cognitive
and reasoning tasks. The primary motivation behind adopting CoT is to replicate the sophisticated
reasoning and decision-making capabilities of LLMs within robotic systems, enabling robots to
perform more complex, context-aware actions in dynamic, real-world environments. For instance,
Embodied-CoT [57] and CoA-VLA [58] utilize structured textual instructions enriched with spatial
localization information, CoT-VLA [59]/VPP [60] integrates reasoning via generated visual imagery,
DiffusionVLA [61]], DexVLA [2], and 7 5 [3] rely on plain language instructions. However, in these
models, reasoning—whether represented through textual instructions or visual cues—is explicitly
trained and consequently limited to knowledge contained within the training datasets, restricting
their capacity for broader generalization. In this work, we significantly advance this line of research
by leveraging pretrained knowledge from VLMs, thereby empowering VLA models with enhanced
open-world reasoning and generalization capabilities.

3 Methodology

This section introduces our proposed ChatVLA-2 and is organized into three parts. Section [3.1]
provides preliminary background on vision-language-action (VLA) models. Section [3.2] details
the neural architecture, and Section [3.3] presents the two-stage training strategy. Together, these
components empower the VLA model with open-world reasoning and understanding capabilities.

3.1 Preliminary: Vision-Language-Action Model

VLA models, leveraging pre-trained VLM perception, are becoming a dominant approach in robotic
control. Benefiting from large-scale multi-modal pre-training, VLAs demonstrate significant advan-
tages in bimanual manipulation [1}2]], long-horizon task planning [1}161]], and mobile manipulation [3]].
We adopt DexVLA [2] as our foundational model architecture. Specifically, we employ the Qwen2-
VL [62} 6] model as its core VLM. The image encoders project the robot’s visual observations into
the same embedding space as the language tokens. When handling multiple camera views, the
visual embeddings from each view are concatenated. The VLM component produces two types of



outputs: reasoning tokens and action tokens. The action tokens undergo further processing through a
projection module composed of two linear layers and a LayerNorm layer. Additionally, we employ
the pre-trained 1B ScaleDP[63]] module as our action expert. We chose DexVLA because it is among
the few open-source VLA models that output unstructured textual reasoning, allowing our approach
to effectively harness the VLM’s pre-trained knowledge and enabling the VLA model to generalize
across diverse scenes.

3.2 Model Architecture

Dynamic mixture-of-expert. Typically, VLA models utilize a dense vision-language backbone
as their foundational architecture. Prior research [7] indicates that multi-modal understanding and
robotic manipulation tasks often compete within the parameter space, causing dense VLA models
to exhibit erosion of multi-modal comprehension capabilities. To this end, we integrate a Dynamic
Mixture-of-Experts (MoE) [[64]] architecture to effectively handle diverse and complex multi-modal
inputs encountered in different tasks. Specifically, our approach utilizes an adaptive routing strategy
where expert modules are dynamically selected based on the characteristics of the visual and textual
inputs. Ideally, we anticipate that some experts will specialize in task-specific features, such as multi-
modal understanding and robot control. These experts focus exclusively on particular tasks, enabling
them to learn specialized feature representations through dedicated sets of weights. Conversely,
other experts may capture mutually beneficial features shared across multiple tasks, such as spatial
reasoning, which is critical for both scene understanding and manipulation. We also expect the gating
network to utilize learned criteria to intelligently evaluate input data, selecting the most appropriate
subset of experts for activation. This adaptive strategy ensures efficient allocation of computational
resources and reduces unnecessary computations. We use the pre-trained MLP weights to initialize
the MLP layers for the experts.

Why static/shared experts are not used? The key to enabling VLA models to generalize in open-world
robotic manipulation lies in preserving the pre-trained knowledge. For architectures like Qwen2-VL
— whose LLM component lacks native MoE support — introducing static or shared experts would
disrupt the original model structure. Such architectural alterations risk rapidly degrading the VLM’s
pre-trained knowledge, compromising its reasoning capabilities. Dynamic MoE circumvents this
issue by preserving the LLM’s intact architecture while selectively activating expert modules. This
approach ensures the foundational knowledge remains undisturbed while enabling task-specific
adaptation. Our empirical studies in Tabld3] confirm that dynamic MoE is critical for maintaining the
open-world reasoning necessary for generalizable manipulation, as it balances knowledge retention
with adaptive learning. In practice, we utilize a total of eight experts and dynamically select two
experts during inference.

Reasoning following enhancement module. A distinctive feature of our method is that the model not
only follows given instructions but also aligns robotic actions closely with the generated reasoning.
Prior approaches, such as DiffusionVLA [61] and DexVLA [2]], utilize FiLM layers to incorpo-
rate reasoning tokens. These methods primarily handle in-domain reasoning scenarios typically
encountered during training, making FiLM layers sufficient for reasoning alignment. In contrast, our
approach deals with diverse, novel reasoning types not encountered in the training data. Therefore,
our method requires a more robust and flexible VLA model capable of effectively following complex,
out-of-distribution reasoning.

We introduce an enhanced reasoning-following module designed to improve reasoning capabilities in
action models. Specifically, we replace the original observation embedding with reasoning tokens
projected through MLP. This reasoning representation is then combined with the current timestep
embeddings and used to condition the generation of scale and shift parameters, effectively injecting
reasoning context into the model. Importantly, we incorporate this mechanism exclusively into the
latter half layers, rather than uniformly across all layers. This design choice aligns with findings from
prior studies, such as PointVLA [65] and GROOT N1 [66], which suggest that modifications to the
deeper layers of action experts have a smaller impact on robot control. Our results demonstrate that
this selective integration allows the model to robustly handle open-world reasoning scenarios without
sacrificing in-domain accuracy.
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Figure 3: Training Strategy. We leverage a two-stage training strategy. In the first stage, we
perform co-training on image-text data and robot data to empower VLA with open-world reasoning
capabilities. In the second stage, we freeze the entire VLM and train only the action expert, thereby
preserving open-world reasoning while enhancing instruction-following abilities in VLA.

3.3 Training Strategy

Our previous section introduced the neural architecture of ChatVLA-2, which primarily focuses on
enabling the VLA model to more effectively extract common knowledge from pre-trained data and
robot actions, guiding the robot to adhere more closely to the generated reasoning. However, we
argue that this alone is insufficient for effectively training a general-purpose VLA model. Specifically,
mixing image-text data and robot data during training makes it challenging to control the learning
process effectively. To address this, we propose a dual-stage training strategy designed to enhance
the smoothness of robotic control and increase the success rate of task completion.

Empowering VLA with open-world embodied reasoning and understanding. Co-training on
image-text and robot data is essential for enabling the robot foundation model to reason and understand
scenes in the wild. During this stage, we train the model on both tasks, specifically using datasets
COCO [67], TextVQA [68], and GQA [69]. We also construct a dataset of image-text pairs involving
robotics scenarios for fine-tuning purposes. Additional details are provided in the Appendix. We apply
text augmentation techniques to increase query diversity across all training data. We deliberately avoid
selecting training data to bias the VLA toward specific skills such as OCR, mathematical reasoning,
or spatial reasoning, as our goal is to utilize pre-trained knowledge for open-world manipulation.

For robot data, we collect 600 trajectories from a math-matching game and 300 trajectories from a
toy placement experiment. Similar to DexVLA and 7 5, all robot data are annotated with reasoning
phrases. We maintain an image-text data to robot data ratio of 1:3. This setup follows previous
methods. The model undergoes training for 50k steps, beginning with an initial learning rate of 2e-5
and a warm-up phase for the first 3k steps. Subsequently, we apply a cosine learning rate scheduler,
scaling down the learning rate to 2e-6.

Enhancing reasoning-following in VLA. By jointly training the model on both image-text data
and robot data, it learns to reason, recognize, and effectively act within open-world scenarios. The
initial stage preserves a significant portion of the pretrained knowledge. However, since our method
aims for robots to perform tasks in open-world environments, the reasoning required may not be
presented in the training data. Thus, it becomes particularly crucial to strengthen the connection
between reasoning and action, ensuring that actions accurately follow and execute the reasoning
outcomes for generalizable robot control.

Specifically, we freeze the pretrained VLM and only train the action expert. By keeping the VLM fixed,
we effectively preserve the pretrained knowledge acquired in the initial training stage. Consequently,
the robot’s actions are guided not just by the initial language instructions and image observations but
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Figure 4: Experimental setup for math matching game and toy placement. We use a Franka
Emika robot equipped with a Robotiq gripper to pick and place items at specified target locations.
We utilize the ARX R5 bimanual robots with a top camera of RealSense L515. Our experiments
demonstrate that the proposed method successfully completes tasks involving previously unseen
spatial instructions and novel objects.

also significantly by the reasoning outputs generated by the upper layers of the model. We found
this strategy particularly beneficial in enhancing the model’s understanding and responsiveness to
previously unseen reasoning scenarios.

4 Experiments

In this section, we conduct extensive real-robot experiments to demonstrate that the end-to-end model
is capable of open-world reasoning and understanding and can effectively transfer this knowledge to
interactions with the physical world. We do not evaluate using simulation benchmarks, as the VLA
capabilities demonstrated by our approach exceed what current simulation benchmarks can assess.

We specifically select two scenarios—math matching games and toy placement task to compre-
hensively evaluate our proposed method. These experiments examine the model’s proficiency in
mathematical reasoning, spatial reasoning, optical character recognition (OCR), and object recogni-
tion and localization, most within an open-world context involving scenarios that were not part of the
training dataset.

4.1 Mathematical Reasoning: Math Matching Game

Evaluation metrics. We report three types of metrics to evaluate the ability of ChatVLA-2 in
manipulation, reasoning, and understanding in both in-domain and open-world. 1) Manipulation
success rate: We report the average success rate to measure whether the model completes the task or
not. 2) OCR: For OCR, we assign 1 point for correctly recognizing hand-written numbers, 1 point
for identifying card values and their positions and 2 points for correctly recognizing the sign. 3)
Mathematical reasoning: For mathematical reasoning, we assign 1 point for a correct answer and 1
point for correctly selecting the card.

Experimental setup. We consider both in-domain and open-world settings. Specifically, for the in-
domain evaluation, all numbers and mathematical symbols exactly match those in the training dataset.
However, since numbers and symbols are handwritten, variations in calligraphic style inevitably
occur. For the open-vocabulary setting, the mathematical equations tested are entirely absent from
the training data.

Robot setup. We utilize the bimanual, ALOHA-style robot arm system, ARX-RS, featuring two
arms, each with 6 degrees of freedom (6-DoF) and equipped with a top RealSense L515 camera.



This configuration results in a 14-dimensional combined state and action space. Data collection is
performed through teleoperation equipment at a frequency of 50 Hz.

Experimental results. The experimental results are presented in Table|l} We compare our method
against several state-of-the-art models, including Octo [70]], Diffusion Policy [32], OpenVLA [10],
GROOT N1 [66], DexVLA [2], ChatVLA [7], and g [1]. We first examine the in-domain performance.
For mathematical reasoning and OCR tasks, only a few models such as DexVLA and ChatVLA can
output language-based responses. They demonstrate reasonable accuracy in reasoning and OCR tasks,
achieving performance comparable to ChatVLA-2. Similarly, in manipulation tasks, ChatVLA-2
does not significantly outperform models like o and DexVLA, which already exhibit near-perfect
performance.

However, substantial differences emerge in open-world scenarios. Even ChatVLA, despite its
multimodal understanding capability, fails these tasks when the robot control expert is activated.
Consequently, none of the compared methods successfully completed any manipulation tasks in
open-world conditions. In contrast, ChatVLA-2 achieves meaningful performance: 3.58 in OCR
accuracy, 1.73 in mathematical reasoning accuracy, and 82.7% manipulation success rate.
These experiments highlight the core contribution of our approach: although it may not significantly
outperform others in well-trained (in-domain) manipulation tasks, ChatVLA-2 demonstrates substan-
tial superiority in open-world scenarios, successfully handling novel mathematical equations and
unfamiliar typography. This represents a significant advancement from zero to effective generalization
capability.

4.2 Spatial Reasoning: Toy Placement

Evaluation metrics. We measure the model with three metrics. First of all, similar to the previous
experiment, we report the average success rate of robot action success. Additionally, we provide the
open-world object recognition performance in the reasoning process. In the output reasoning, the
model needs to output the bounding boxes for the objects that are targeted.

Experimental setup. We consider both in-domain and open-world settings. For in-domain evaluation,
all objects appear in the training set. For open-world evaluation, the target and reference objects
are entirely unseen during training. The model must recognize all objects in an open-world setting,
identify the reference objects mentioned in the instruction, understand spatial relations, and execute
the placement accordingly.

Robot setup. We utilize a 7-Degree-of-Freedom Franka Emika robot equipped with a Robotiq
gripper. We use one ZED 2 camera positioned on the right side. Data collection is performed using
teleoperation equipment at a frequency of 15 Hz.

Experimental results. The experimental results are presented in Table[2] In the in-domain setting,
our proposed method performing comparably to DexVLA and 7y. While ChatVLA was capable of
recognizing novel objects in the open-world setting, its performance remained much lower than our
method’s 0.94. For action execution, models other than our method and 7 exhibited near-random
success rates in this setting. Even ChatVLA, despite demonstrating some reasoning ability, showed
limited open-world robot manipulation ability. In contrast, our method achieved an average success
rate of 81.4%, representing a 3.52-times improvement over DexVLA. This result highlights strong
spatial reasoning capabilities and reasoning-following capabilities of our method in open-world
scenarios.

4.3 Ablation Study

How important is mixture-of-expert in VLA? This section investigates whether the mixture-of-
experts (MoE) mechanism in VLA is crucial for enabling VLA models to generalize for reasoning
and understanding in an open-world setting. Specifically, using the exact same training configuration,
we compare the baseline models that do not incorporate MoE. Since MoE introduces additional com-
putational overhead during inference, we further compare the model with a larger VLA configuration,
specifically the 7B VLM, which has a significantly higher number of parameters at test time.

The experimental results are presented in Table|3] We conducted experiments on the math matching
game and observed a significant drop in the average success rate. We hypothesize that this decline
is due to conflicts in the parameter space between robotic actions and reasoning/understanding.



Table 1: Results on the math matching game. We evaluate multiple models on both in-domain
settings, where the data is presented in the training data, and open-world setups. We evaluate average
score of OCR (4 scores in total) and mathematical reasoning (2 scores in total), and average
success rate of task execution at both setups.

Method In Domain Open-World
Reasoning Score  Success Rate | OCR Score  Math Reasoning Score  Success Rate

Octo [[70] / 2/13 / / 0/52
Diffusion Policy [32] / 7/13 / / 3/52
OpenVLA [31] / 2/13 / / 0/52
GROOT N1 [66] / 4/13 / / 3/52
DexVLA [2] 5.2/6 12/13 0.21/4 0.06/2 10/52
ChatVLA [7] 5.8/6 10/13 1.08/4 0.42/2 4/52

mo (1] / 12/13 / / 8/52
ChatVLA-2 (Ours) 6.0/6 11/13 3.58/4 1.73/2 43/52

Table 2: Results on the toy placement task. We evaluate multiple models on both in-domain settings,
where the data is presented in the training data, and open-world setups. We evaluate average object
recognition score, spatial affordance score and task success rate at both setups.

Method In Domain Open-World
Manipulation Object recognition ~ Spatial Affordance ~ Avg. Success Rate | Object recognition ~ Spatial Affordance ~ Avg. Success Rate
Octo [70] / / 19/67 / / 13/156
Diffusion Policy [32 / / 52/67 / / 17/156
OpenVLA [10] / / 23/67 / / 10/156
GROOT N1 [66 / / 31/67 / / 12/156
DexVLA [2] 1 0.97 63/67 0.23 0.12 36/156
ChatVLA [7 1 0.97 60/67 0.71 0.35 22/156
mo [ / / 61/67 / / 25/156
ChatVLA-2 (Ours) 1 0.99 61/67 0.94 0.88 127/156

The mixture-of-experts approach effectively disentangles the feature spaces associated with these
conflicting features. Furthermore, we find that increasing the number of parameters to 7B does
not alleviate these conflicts. Upon investigating the cause of the failure, we discovered that for
unseen mathematical equations, both dense models fail completely. By examining the mathematical
reasoning and OCR scores, we find that when the dense models encounter unseen equations, they
often fail to arrive at the correct answer and, in most cases, recognize the wrong answer instead.

Ablation study on two-stage training. Our paper proposes a two-stage training strategy designed
explicitly to enable VLA models to act effectively in open-world scenarios and consistently follow
generated reasoning. Table ] presents the ablation study isolating the effects of Stage 1 and Stage
2 on model performance in the math matching game. When Stage 2 was excluded, the model’s
robotic control performance in open-world scenarios dropped to 23% under the same number of
training steps. This suggests that while open-world reasoning is generated in Stage 1, it has not been
effectively injected in action execution. In contrast, removing Stage 1 resulted in a near-zero score of
open-world reasoning capabilities, including both OCR and mathematical tasks, which highlights the
critical role of co-training with image-text data.

4.4 Results on Multimodal Understanding and Visual-Question Answering

We have conducted extensive evaluations across 12 diverse multi-modal understanding benchmarks,
covering tasks such as document understanding (DocVQA), chart and scientific reasoning (ChartQA,
AI2D), OCR-based question answering (TextVQA, OCRBench), and real-world fine-grained recogni-
tion (InfoVQA, RealWorldQA, MMStar). We also present the results of baseline model ChatVLA, as
is shown in Table[3

Table 3: Ablation on mixture-of-expert. Table 4: Ablation on training strategy.
Method | OCR  Math  Avg. Stage 1 | Stage 2 | Math Matching Game
Dynamic MoE 3.58 173 43/52 | | OCR Math Avg.
Static MoE + Dynamic MoE | 2.38/4 0.92/2 11/52
Shared MoE + Dynamic MoE | 3.07/4 1.12/2  25/52 v ‘ v ‘ 8%(5) (1)?)431 132/2.522
3B Dense Model 0.04 0.00 2/52 . .
7B Dense Model 0.08 0.00 8/52 v | v | 358 173 43/52




Table 5: Understanding task: Evaluation of VLAs on 7 VQA benchmarks and 5 Multimodal
Understanding benchmarks. Boldface denotes top-ranked methods.

Method ‘ # Params VQA Benchmarks Multimodal Understanding Benchmarks
TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA | MMMU MMStar MME  OCRBench HallBench
OpenVLA 7B 0 0 0 0 0 0 0 0 0 0 0 0
ECoT 7B 0 0 0 0 0 1.7 0 54 0 0 12 0.9
DiVLA 2B 7.5 15.2 14.7 43.1 17.2 6.2 25.2 17.2 21.1 186.5 294 9.0
ChatVLA 2B 71.2 83.3 53.3 67.6 59.9 11.5 57.0 37.4 47.2 1435.2 729 39.9
ChatVLA-2(Ours) 4B 78.2 87.6 59.7 69.9 71.6 203 61.7 388 423 1464.5 792 439

The results demonstrate consistent improvements on 11 out of 12 benchmarks, with particularly
notable gains in tasks requiring strong multi-modal understanding capabilities—such as +7.0 on
TextVQA, +11.7 on ChartQA, and +6.4 on InfoVQA. These results indicate that key understanding
abilities, including fine-grained recognition, OCR, and multimodal reasoning, are retained from the
pre-trained VLM.

5 Conclusion

Imitation learning typically requires extensive data to master specialized skills for particular tasks.
Developing models capable of reasoning and general understanding within open-world scenarios
remains a frontier research topic that has yet to be thoroughly explored. In this work, we introduce
ChatVLA-2, which endows vision-language-action (VLA) models with the capability to perform
diverse tasks by leveraging innate reasoning and understanding abilities derived from pretrained
vision-language models in an end-to-end manner. Our core contribution is the introduction of a
dynamic Mixture-of-Experts (MoE) module integrated atop a pretrained vision-language backbone.
This module efficiently manages different task requirements, where certain experts share common
multimodal features, while others are dedicated to task-specific representations. Additionally, we
propose a two-stage training strategy: initially, we guide the VLA model to establish connec-
tions between pretrained multimodal knowledge and robotic actions; subsequently, we introduce
a reasoning-following stage, enabling the model to comprehend reasoning outputs and effectively
translate them into corresponding actions.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We are unable to release the robot data we collected due to policy restrictions.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are clearly written in section Experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: These details are clearly written in section Experiment.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: They are discussed in the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform with the NeurIPS Code of
Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The image-text data we used has been cited and the name of license are
included in Appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 6: Ablation study on number of experts. Table 7: Ablation study on reasoning-following
enhancement module.

Expert numbers ~ Top-k numbers | OCR ~ Math Method | Avg. success rate
8 2 3.58 1.73 Latter-half-layer injection 43/52
6 3 242 1.26 Full-layer injection 36/52
4 2 1.87 094 Former-half-layer injection 22/52

A Limitation

Our work investigate to retain the pre-trained knowledge from the vision-language model in vision-
language-action model. As such, the VLA are able to reasoning over the image observation and
language instruction, and enforce the action model to follows such reasoning. Currently, we are
unable to fully retain the pre-trained knowledge from VLM. We observe that it is inevitable that
many capacity disappear during the fine-tuning with robot data. This is the most challenging part,
and current approach cannot fully resolve this problem. We leave this to the future work. Also, our
current method is mainly conducted on table top tasks. We aim to expand the embodiment to mobile
manipulator to perform more long-horizon and complex real world tasks in the future.

B Implementation Details

B.1 Training details.

We utilize 8 NVIDIA H800 GPUs (80GB each) for training. We adopt mixed-precision training
(FP16) and use the AdamW optimizer. For training stage 1, we co-train on image-text data and robot
data, setting the initial learning rate to 2e-5 and training for 15k steps. For training stage 2, we freeze
the VLM backbone. The model is trained for 50k steps, starting with a learning rate of 2e-5 and
a warm-up phase over the first 3k steps. In both stages, we apply a cosine learning rate scheduler,
scaling down the learning rate to 2e-6. The total training cost is 340 GPU hours.

B.2 Data details.

Image-text data composition. The image-text dataset used in our experiments integrates samples
from multiple established benchmarks, including COCO, TextVQA, and GQA, alongside additional
data specifically constructed to align with our task formulation. To ensure balanced representation,
we incorporate approximately 32k samples from COCO, 20k from TextVQA, and 54k from GQA.
These robotics-related image-text pairs employ the reasoning template used in the toy placement task,
as illustrated in[B.2] Furthermore, we utilize data from RoboPoint, comprising approximately 2k
samples collected within a simulated environment. Although the RoboPoint data exhibits lower visual
quality due to visual discrepancies and camera viewpoints, our experiments indicate that including
this data enhances the visual-language alignment (VLA) model’s spatial understanding capabilities.
Additionally, we gathered 5k samples from real-world environments, covering both tabletop setups
and broader scenes. These samples follow a similar annotation format to the LLaVA dataset, utilizing
a question-answering structure. All collected data is combined and utilized collectively during
training in our method.

Data pre-processing. For the image-text data, we limit each example to a maximum of 5 dialogue
turns. If an instance originally contains more than 5 turns, we retain the first turn and randomly
sample four additional turns from the remainder. For the TextVQA dataset, we specifically select
samples that do not contain numeric OCR tokens or mathematical operators, as our goal is to utilize
pre-trained knowledge for open-world manipulation. We use the image resolution of 320 x 240.

Reasoning templates of robot data. All our robot data are annotated with sub-reasoning, similar
to the approach used in 7y 5 and DexVLA. We initialize these reasoning annotations with fixed
templates and then augment them using GPT-40, following a pipeline analogous to the one employed
in training large language models. This method allows us to keep our reasoning phrase flexible, such
that the action expert would not dominate by certain template.
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C More Ablation Studies

We have discussed the importance of some key components in our ChatVLA-2 in the main text,
including the choice of mixture-of-experts and the two-stage training strategy. In this section, we will
further discuss the following questions:

C.1 Ablation study on number of experts.

We conduct experiments to check how many experts we should use to better obtain pretrained
knowledge from VLM while maintaining appropriate resource consumption. As is shown in Table
[l experimental results indicate that increasing both the total number of experts and the number of
experts selected during inference can enhance the model’s generalization ability in robotic scenarios.

A possible explanation for this phenomenon is that, a limited number of experts tend to develop
selection biases toward visually similar task images in such scenarios. This can lead to overfitting
on robot data and result in the neglect of the pretrained VLM knowledge, ultimately degrading
performance.

C.2 Ablation Study on Layers for Injecting Reasoning-Following Enhancement Module.

As shown in the main text, we replace the original observation embedding with reasoning tokens
and use them to condition the generation of scale and shift parameters in the latter half layers of the
action expert. This mechanism effectively injected reasoning context into the model. In this section,
we conduct experiments on the place of injecting reasoning. The results are shown in Table [7}

Experiments show that the former half layers of action expert significantly impacts action generation
stability. Introducing reasoning information into the former half layers actually increases instability
in the generated actions, which in turn significantly reduces task success rates. We hypothesize
that this effect may due to our design choice of replacing the original observation embedding with
reasoning information. One possible explanation is that the observations themselves may carry critical
information for action generation, and their removal could negatively affect performance.
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