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Abstract

Communication is one of the effective means to improve the learning of coopera-
tive policy in multi-agent systems. However, in most real-world scenarios, lossy
communication is a prevalent issue. Existing multi-agent reinforcement learning
with communication, due to their limited scalability and robustness, struggles to
apply to complex and dynamic real-world environments. To address these chal-
lenges, we propose a generalized communication-constrained model to uniformly
characterize communication conditions across different scenarios. Based on this,
we utilize it as a learning prior to distinguish between lossy and lossless messages
for specific scenarios. Additionally, we decouple the impact of lossy and lossless
messages on distributed decision-making, drawing on a dual mutual information
estimatior, and introduce a communication-constrained multi-agent reinforcement
learning framework, quantifying the impact of communication messages into the
global reward. Finally, we validate the effectiveness of our approach across several
communication-constrained benchmarks.

1 Introduction

In multi-agent reinforcement learning (MARL) with partial observations, collaboration poses a
significant challenge [19]. Communication is one of the effective measures to improve the learning
of cooperative policy in MARL [31]], widely applied in scenarios such as autonomous driving [4} [24]
and cooperative drones [3}|12]]. However, real-world scenarios are far from ideal and communication
between agents often faces various constraints, specifically: (1) limited communication bandwidth,
meaning only a limited amount of message can be transmitted, and (2) lossy communication, where
transmitted message may be subject to interference, delay, loss, and other issues.

Much of the research on communication-constrained multi-agent reinforcement learning (MARL)
focuses on the limited bandwidth issue [22, 14, 10, 30]. In this setting, it is assumed that the
communication channel is ideal, which means that transmission is real-time and lossless. Therefore,
these methods typically only need to focus on how to effectively allocate communication resources
(e.g., communication bandwidth, communication medium) to promote cooperation among agents.
For example, compressing the communication information to extract and transmit parts beneficial
to cooperation [16]], and systematically allocating communication mediums to avoid competition,
among other problems [L1].
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However, in most real-world scenarios, communication links are uncertain, and lossy communication
is more prevalent. In this setting, existing work typically addresses two types of issue: noise
interference and communication delay. Approaches to addressing noise interference typically involve
modeling the unknown noise distribution and constructing learnable processes to adaptively optimize
cooperative policy [7]]. Another more common issue is communication delay, which frequently occurs
in wireless network environments, which refers to the non-real-time transmission of message, It has
been shown to impact the performance of multi-agent behaviors [29] 27]]. Approaches to addressing
communication delay focus primarily on how to remove the impact of delayed message on cooperative
policy, such as constructing communication buffer [29] and determining when to communicate [27]].
Nevertheless, the above methods are all based on ideal assumptions about communication delay, and
may not be applicable to more complex and unknown real-world scenarios such as underwater and
caves. The reasons are as follows: (1) These methods lack scalability due to the lack of consideration
of the common characteristics of lossy communication in different unknown scenarios. (2) These
methods lack robustness due to the lack of consideration of the dilemma of promoting the relevance of
effective communication messages and suppressing the relevance of lossy communication information.

In order to overcome the above challenges, we first propose a generalized model of lossy com-
munication to uniformly characterize the communication conditions in different scenarios, such as
underwater, caves, and wireless networks. Based on this model, for specific scenarios, we use the lossy
communication model as a learning prior to differentiate between lossy and lossless messages. Fur-
thermore, for the second issue, we decouple the impact of different types of messages on distributed
decision-making, borrowed from dual mutual information estimatior. On one hand, we enhance the
positive impact of lossless messages on decision-making by maximizing the lower bound of mutual in-
formation. On the other hand, we reduce the negative impact of lossy messages on decision-making by
minimizing the upper bound of mutual information. Finally, we propose a communication-constrained
MARL framework and validate its robust performance in two communication-constrained scenarios
serving as benchmarks: Markov Model-Based and Distance-Based communication constraints.

2 Related Work

The challenge of multi-agent collaboration within communication-constrained environments has
undergone extensive scholarly investigation. Existing research predominantly addresses two key
dimensions: one concerns the optimization of interactions in bandwidth-constrained scenarios, and
the other focuses on enhancing system robustness under conditions of message loss.

2.1 MARL with Communication Bandwidth Constraints

Research on communication bandwidth constraints has primarily focused on how to achieve efficient
interaction among multiple agents under limited bandwidth resources. Zhang et al. [28] proposed the
VBC method, which reduces communication overhead by constraining the variance of information
exchanged between agents during the training phase, thereby eliminating noise from the messages.
Kim et al. [[11]] addressed the issue of medium contention in the information transmission process,
proposing the SchedNet framework. By incorporating a MAC protocol from the wireless commu-
nication field, this framework alleviates bandwidth pressure and addresses the scheduling problem
of constrained agents. Mao et al. [[18] introduced the Gated-ACML algorithm, which uses a gating
mechanism to filter messages. It adaptively prunes unnecessary information by determining whether
a message is beneficial using a threshold, thus reducing the number of messages exchanged. Hu et al.
[9]] proposed the ETCNet framework, which converts limited bandwidth into a penalty threshold for
event-triggered strategies, improving communication efficiency in multi-agent systems by sending
messages only when necessary.

These methods essentially perform effective compression on messages, which aligns closely with
the information bottleneck [21]] principle—eliminating task-irrelevant redundant information and
extracting task-relevant refined information. Such compression approaches have been validated to
exhibit a certain degree of generalization capability in similar tasks [25]. However, compression is
not equivalent to robustness [6,23]]. In environments with unstable or lossy communication, these
compressed methods may not be effective. For instance, unstable communication is highly prone to
losing critical messages, leading to a significant degradation in the quality of policies.



2.2 MARL with Lossy Communication

Research on lossy communication has primarily focused on the robustness of multi-agent systems
under non-ideal communication conditions, such as environmental noise, transmission delays, and
packet loss. Freed et al. [[7] proposed a novel differentiable communication method using a random-
ized message encoding scheme, where it mathematically equates discrete communication channels to
simulated channels with additive noise, enabling gradient backpropagation through these channels.
Kim et al. [[13]] proposed the Message-Dropout training method, based on the concept of Dropout,
which randomly drops communication messages from other agents during training to improve robust-
ness against communication errors during execution. Zhang et al. [29]] introduced the TMC method,
which leverages temporal locality to reduce redundant messages and incorporates a message buffering
mechanism to enhance robustness against packet loss, making it suitable for bandwidth-constrained
and packet-loss-prone network environments. Yuan et al. [27]] proposed DACOM, an adaptive delay-
aware multi-agent communication model in which agents can learn to schedule waiting times for
messages from other agents, which is suitable for delay-sensitive tasks and high-latency scenarios.

Nevertheless, the aforementioned studies predominantly remain confined to communication-
constrained problems in specific scenarios. While these research approaches help to analyze particular
issues in depth, its conclusions may not fully apply to other more complex and dynamic real-world
application scenarios. To better align with real-world scenarios, in the next section, we have further
refined the formalization of MARL with communication constraints.

3 Problem Formulation

Considering a fully collaborative multi-agent task where each agent is in a partially observable
and communicative environment, it can be modeled as a decentralized partially observable Markov
decision process (Dec-POMDP) [[1] with communication, which is defined by the following 9-tuple,
G=WN,80,AT,R,ZMIL~. N ={1,...,N} is denoted by the set of N agents. S is
denoted by the set of environmental states. O = {0'}}¥; is observation set of all agents, and o’ is an
observation set for agent i, which is determined by observation function Z(s,). A = A x--- x AV
is the set of agents’ joint action space, where A’ is denoted by the action space of agenti. r = R(s, a)
is the global reward signal shared by the agents. 7 : § X A X S — [0, 1] is denoted by the transition
probability. v € [0, 1) is the discount factor.

Furthermore, M is denoted by the message space, and m* € M is denoted by the message sent by
agent ¢ to agent j. To uniformly characterize the communication conditions in different environments,
we further introduce a notation I = {¢”/},;, where .*/ € {0, 1} is denoted by the communication
link status when agent ¢ sends message to agent j, where 1 indicates effective communication, while
0 indicates lossy communication. The set of message received by the agent 7 can be defined by
M= {L”mﬂ}gfl In this case where the communication link is dynamic, the information received
by each agent is different.

Then, given observation o} and message M at the time step ¢, each agent i uses a stochastic policy
7 (-|o*, M*) to choose actions. We denote the joint policy as 7 = {n!, 7%, --- |7V} € II, where II
is the joint policy space. In cooperative MARL, the collaborative team aims to find a joint policy to
maximize the total expected discounted return J(m) = Er [>,° ) ')

4 Robust Learning with Communication-Constrained Priors

To overcome two challenges of multi-agent collaborative policy learning with lossy communication,
this section will introduce our algorithmic framework, which specifically includes: (1) modeling
communication-constrained priors to capture the dynamics of communication links; (2) estimating
messages’ behavioral impacts to characterize the correlation between different communication
messages and agent behaviors; and (3) proposing a communication-constrained MARL approach to
optimize and enhance the robustness of policy learning across diverse communication environments.



4.1 Communication-Constrained Priors Modeling

In communication-constrained MARL, modeling constrainted communication in unknown scenarios
is crucial and challenging. It is necessary not only to abstract the common problems that affect
multi-agent policy learning as much as possible, but also to generalize them in different real-world
scenarios. Therefore, we first propose a binary communication link parameter ¢ to characterize
message reliability. In addition, for different scenarios, the communication link can be further
formalized as follows, 3 3

09 = fo (s, 1

where 6, is the parameter determined by the environment, and s% is the part of the state most relevant
to agents ¢ and j. For different environments, fy_ can be defined manually or obtained through pre-
training of binary classification tasks. In the context of specific learning, there are several approaches:
(1) When addressing specific and stable communication-constrained environments, one can estimate
the priors of communication links through sampling or empirical data, enabling policy learning to
adapt as closely as possible to these specific conditions. (2) In the face of diverse and non-stable
communication-constrained environments, designing more diverse priors for communication links
can allow policy learning to cover multiple exceptional scenarios. Specifically, message-dropout
[L3] is considered a case of this prior modeling, where messages are randomly masked with a
certain probability to adapt to communication constraints. Therefore, incorporating such priors helps
distinguish more effectively between lossy and lossless messages.

4.2 Messages’ Behavioral Impacts Estimating

Building on the previous section, a natural goal is to maximize the utilization of lossless messages
while minimizing the adverse effects of lossy messages. It is critical to measure the correlation be-
tween messages and agent behaviors, where we will specifically characterize via mutual information.

4.2.1 MI between Messages and Behaviors

MI is often used to improve multi-agent collaboration in MARL [22| [15]]. It is a theory that measures
the correlation between different variables. When extended to communication-constrained MARL, a
basic requirement is to measure the correlation between messages and agent behaviors. So we have

I(m’,a") = H(a') — H(a'|m’), j # i 2
where H(-) and H(-|-) denote the entropy and conditional entropy respectively, and m?* denote
the message transmissed from agent j to agent . H(a") describes the ability to explore various
behaviors of agent i, which could help generate diverse trajectories and avoid policy collapse when

maximized. H (a’|m’?) measures the behavioral uncertainty of agent ¢, which encourages agent 7 to
behave deterministically given message m’* when minimized.

4.2.2 Du-MIE for Constrained Communication

Note that the basic definitions of communication-constrained prior and MI, we thus formulate a
natural objective propose for communication-constrained MARL: maximize the MI between lossless
messages and agent behaviors (to enhance their positive correlations) while minimizing the MI
between lossy messages and agent behaviors (to mitigate their negative correlations). However, exact
computation of MI is highly challenging, as it necessitates simultaneously determining both the joint
probability distribution and the marginal distributions of the variables involved [2]. Inspired by the
Dual Mutual Information Estimatior (Du-MIE) [15]], we construct a Du-MIE for constrained commu-
nication to estimate the above objective. The Jensen-Shannon MI estimator based on Jensen-Shannon
divergence (JSD) [8] estimates the lower bound of I(m’*; a’) for maximization and the Contrastive
Log-ratio Upper Bound (CLUB) [5]] estimates the upper bound of I(m7%; a*) for minimization, based
on replay buffer D with lossless messages M™ and lossy messages M ~ respectively. Specifically,
JSD can be defined as

Iisp(m’';a') =Ep [—SP (—T91 (mi’, ai))} —Ep, ;0P [SP (T91 (mi", CLZ))L

—L3%(61)

3

where P, 4: is message-action joint distribution for agent ¢, P ® P 4: is the product of the
marginals. sp(z) = log(1 + ) is the softplus function. Ty, is a discriminator function modeled by a
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Figure 1: The overall framework for communication-constrained MARL. It can be divided into three
main steps: @ Distinguishing between lossy and lossless messages by constructing communication
link priors; @ Shaping the global reward through learning Du-MIE for constrained communication;
@ Stably optimizing multi-agent policies based on MARL algorithms.

neural network with parameters ; € ©. m?" and a! are obtained by joint sampling from the replay
buffer D with lossless messages M ™, while a, is sampled independently from the same buffer. By
minimizing the loss £7¢(6;), we can make Ijsp(m??; a’) closely approximate the lower bound of
I(m7%; a?) [8]. On the contrary, CLUB can be defined as

ICLUB(mji;ai) :EIF’MAi long2(ai|m{i) _EPMi®PAi [IOgTHQ(ailmgi) ’

“

—L3%(62)

where T}, is a variational approximation modeled by a neural network with parameters 6, € ©.
The samples are sampled in the same way as JSD, but are based on the replay buffer D with lossy
messages M. Similarly, by minimizing the loss £7¢(6,), we can make Icpyg(m’?;a®) closely
approximate the upper bound of I(m?%; a*).

Note that the training losses of the JSD and CLUB estimators are £7%(6;) and £7%(62) respectively,
then, the overall training loss of Du-MIE for constrained communication is defined as

Lec(01,02) =D D W L(01) + (1= ") L7 (6,). )
i g
The architecture of Du-MIE for constrained communication are illustrated inm After training, the

JSD and CLUB can be used as learning signals to guide the behavior of the agent towards lossless
communication and away from lossy communication, which will be introduced in the next subsection.

4.3 Communication-Constrained MARL

In order to characterize the impact of the upper and lower bounds of mutual information on multi-agent
policy learning, inspired by reward shaping [15]], we reshape the global reward as follows:

Tt =17+ Z Zaajiljs])(mﬁ; a’) — B(1 — ) IcLys(m?; at) (6)
i g
where a, 5 are weight coefficients. Then, a new goal in the communication-constrained MALR is to
maximize the expected discounted return J () = E. [>,2 ) 7'7].
This reward shaping can be combined with different MARL algorithms. Taking CTDE-based MARL

algorithms as an example, the results of the combination are presented in Algorithm[I] Both policy-
based [17] and value-based [20] methods can derive a global temporal difference (TD) loss, which is



presented as follows:

2
Lyvare(0Q) = Es, ayr4,5041~D [(QGQ(St,at) - ('Ft + VQ% (St+15 at+1))) } , @)

where (g, is the parameters of the global Q-value network and Q{95 is the parameters of the
corresponding target network. For value-based MARL, the joint actions a;y; are obtained via
greedy policies ;41 = argmax,, , Qe(5 (St+1,at4+1). For policy-based MARL, the joint actions
ait1 = {aj 4}, are obtained via target policies aj  , ~ m,- (|0, ;, M/ ), and an additional
policy loss (in actor network) must be incorporated, as follows:ﬂ

ﬁMARL(Qﬂ) = Est,atND [*QOQ(St,at)] . 8)

Lines 5-13 present the sampling process of trajectories. Compared to traditional MARL, the samples
here not only include additional communication messages and the communication links but also
reshape the global reward. Line 14 shows the Du-MIE training according to the equation (3. Finally,
in line 15, to adapt to different MARL algorithms, the loss function should be correspondingly
adjusted, as described in equations (7) and (8).

Algorithm 1 Communication-Constrained MARL

1: Input: maximum episode length 7', hyperparameters « and J to balance the effects of MI, update
frequency & for Du-MIE, communication-constrained priors fy, .
2: Initialize: main network parameters in MARL 0, 0, corresponding target networks 95 and

0., JSD parameters 6,, CLUB parameters 6.
3: Initialize: experience replay buffer D.
4: repeat
5: fort=1toT do

6: Get patial observation o; = {0l } ¥ ;.

7: Get message M; = {M}} N,

8: Predict communication link status I; = {si}Y, i = {177},

9: Execute joint actions a; = {a?}}¥ | via sampling ai ~ 7'(-|o}, M}).
10: Receive 0y41 = {0} 1} 1, My = {M{,,}Y, and team reward ry.
11: Calculate the shaping reward 7, according to the equation (6).

12:  end for

13: Store v = {Ot, Mt, ]It, Ot+1, Mt+17 ag, ft};:l to D.

14:  Update Du-MIE with replay buffer D every k steps, according to the equation (3)).

15:  Update network parameters in MARL, 6, 0, according to the equations (7)) and .
16: until reaching maximum training steps

5 Experiments

In this section, we evaluate the algorithm’s effectiveness from three aspects: overall performance,
the impact of communication-constrained priors (CCPs), and the role of Du-MIE for messages. The
specific evaluation contents are as follows:

(1) Overall Performance: This aims to validate the proposed algorithm’s performance under different
communication-constrained scenarios.

(2) Impact of Communication Priors: This focuses on verifying the performance and properties of
the proposed method when using different communication priors.

(3) Role of Du-MIE for Messages: Through ablation experiments, this evaluation seeks to determine
how this module impacts the learning of multi-agent policies under communication constraints.

5.1 Experimental Setup

In the experimental setup, we integrate the proposed algorithm framework with MADDPG [17] to
form Communication-Constrained MADDPG (CC-MADDPG) as the primary validation target. It is



then compared with four baselines: MAIC [26]], Full-Communication MADDPG (FC-MADDPG),
Dropout-MADDPG, and the standard MADDPG, operating without inter-agent communication. We
adopt the Multi-Agent Particle Environments (MPEs) [[17] as benchmarks. To simulate communica-
tion constraints, we employ the following two distinct models,

Markov-Based Communication (MBC): The Markov model [29] assumes that the state of a system
at any time is determined by a state transition probability matrix, which includes one noiseless state
and multiple lossy states—the more the number of lossy states, the higher the loss probability. In this
experiment, the transition probability matrices are set with dimensions of 3, 6 and 8, corresponding
to loss levels of light, medium, and heavy, respectively.

Distance-Based Communication (DBC): This approach [27] simulates signal attenuation in real-
world environments (e.g., underwater or cave-like) based on inter-agent distances. Specifically, it sets
a distance threshold to determine the degree of communication constraint, where smaller distances
lead to higher message loss rates. In this experiment, the distance threshold are set with 5,3 and 1,
corresponding to loss levels of light, medium and heavy, respectively.

5.2 Results and Analysis
5.2.1 Performance Evaluation

This section systematically evaluates the overall performance and robustness of the CC-MADDPG
algorithm by analyzing average episode cumulative rewards across different MPE task scenarios and
communication-constrained testing environments.

Table[I]compares the performance (mean and standard deviation) of our algorithm with baseline meth-
ods across various task scenarios and communication constraints.Experimental results demonstrate
that while MADDPG with communication achieves satisfactory performance in ideal communication
environments, it exhibits high sensitivity to communication quality. Any form of communication
constraint leads to significant performance degradation. MADDPG shows the lowest performance
across all testing environments, with its average rewards substantially inferior to other communication-
based algorithms, emphasizing the critical role of effective inter-agent communication for efficient
collaboration in MPE tasks. For the Dropout-MADDPG algorithm, performance varies with different
packet loss rates: the dropout-0.2 configuration generally achieves relatively better results, while
higher dropout rates (e.g., 0.8) sometimes cause performance deterioration, as evidenced by its mere
36 average reward in Simple_Reference scenarios and consistent underperformance compared to
FC-MADDPG in most environments, suggesting that excessive message dropout during training
undermines agents’ ability to learn effective collaborative policies.

In contrast, CC-MADDPG consistently achieves average rewards comparable to or exceeding other
algorithms across both ideal and constrained communication environments. Notably, it maintains
superior performance even under extreme communication conditions like heavy distance-based
constraint (approaching non-communication scenarios), exemplified by its 138.0 performance in
Simple_Tag when FC-MADDPG deteriorates to 1.5, demonstrating remarkable robustness. Compared
with multiple communication-based baselines, MAIC attains the lowest average performance across
all four tasks and is largely insensitive to the strength of communication constraints, indicating that
the incentive messages it produces fail to effectively guide cooperation in these tasks.

An interesting observation emerges from our time-varying packet loss environments: performance
variations across different network fluctuation levels (light, medium, and heavy) remain relatively
insignificant. It may stem from two factors: (1) The predefined Markov-based packet loss patterns,
while simulating bursty and correlated wireless channel characteristics, might generate insufficient
average loss rates or inadequate durations of "bad states" to persistently disrupt critical collaboration
moments, potentially mitigated by inherent robustness in agent policies; (2) The fixed 25-step episode
length in MPE tasks may limit full manifestation of time-varying channel impacts.

5.2.2 Impact of Communication Constraint Priors

This section investigates the effectiveness of incorporating communication constraint priors during
the multi-agent reinforcement learning training phase, and analyzes how different prior strategies
specifically influence model performance in communication-constrained environments.



Table 1: Performance Comparison of Multi-Agent Algorithms Under Communication Constraints

Task Scenario Testing Environment Algorithms
MAIC  FC-MADDPG Dropout-MADDPG MADDPG CC-MADDPG
0.2 0.5 0.8
Unrestricted 1.5+4.9 7594653  70.3£65.9 65.9+62.0 72.1+66.1 52+12.8  134.7+89.9
Light MBC (3) 1.8£6.0 7294653  70.9£65.9 65.9+62.1 72.54+66.1 52+12.8  133.6+89.9
Medium MBC (6) 1.6+8.6 6724537  71.0+£65.7 67.1462.3 72.14+66.1  5.5+15.6  134.94£90.9
Simple_Tag Heavy MBC (8) 1.7+£6.2 5444438  69.8+66.5 67.94+63.2 72.74+66.0 6.0+142  131.4+86.2
- Light DBC (5) 2.3+7.8 19.5+£38.2  69.0+£65.8 67.3+62.4 70.84+64.2 23.5+41.5 136.9+89.7
Medium DBC (3) 2.446.5 10.94£26.5  70.1+65.8 67.8£62.4 70.7£63.8 44.84+58.4 135.3+£85.1
Heavy DBC (1) 2.749.1 1.5£5.2 68.7464.3  66.3+£60.5 71.4+657 7124709 138.0+88.1
Unrestricted -298.0£75.1 -138.7426.0 -145.4423.5 -137.5427.6 -138.14£22.8 -194.94£26.7 -129.4420.1
Light MBC (3) -293.3£63.8 -138.8+25.5 -145.1423.2 -138.1£27.6 -136.1£22.7 -193.54£26.7 -129.24+19.9
Medium MBC (6)  -295.9+78.4 -138.74£25.4 -145.4422.5 -138.04£27.6 -136.04£22.5 -192.94+27.1 -129.04+20.2
Simple_Spread Heavy MBC (8) -283.74+51.8 -142.0426.9 -144.3+24.2 -138.1427.4 -135.8422.5 -190.9+27.7 -128.7+19.2
- Light DBC (5) -301.2465.5 -138.7424.4 -138.8+23.4 -145.6427.6 -138.14£22.0 -190.5+£24.7 -128.7+20.3
Medium DBC (3)  -282.4+63.8 -156.3+24.9 -139.7421.2 -143.4+27.0 -138.0£22.9 -177.4£25.6 -127.6+19.2
Heavy DBC (1) -289.5£63.1 -191.9426.8 -140.9420.8 -144.5+27.6 -138.0£23.5 -169.6+27.1 -128.04+20.6
Unrestricted 0.2+1.4 51.0+62.6  54.4+783 51.64+69.0 38.0+57.9  2.4+4.1 76.9+76.8
Light MBC (3) 0.3+1.7 4724626  543%783 51.6+66.4 3734585  2.4+44.1 76.5£76.8
Medium MBC (6) 0.2+1.4 4234532 5444780 5184679 3854583  2.7+4.0 75.5£75.8
Simple_Reference Heavy MBC (8) 0.2+1.3 2794355 5434782 5494673 3634583  2.7+43 76.2+77.9
- Light DBC (5) 0.4+2.0 49.3+623  53.3+774 53.04£70.3 36.0+58.3  23.5+4.1 75.5+76.6
Medium DBC (3) 0.3+1.4 39.14£56.5 5334764 5334719 3724594  32.0+4.2 73.8+74.5
Heavy DBC (1) 0.1£1.0 4.0+129  52.8+76.5 5324707 34.6+£60.3  41.0+4.1 62.1£70.1
Unrestricted -29.5+26.4  -6.7£5.1 -6.8£5.0 -6.6+4.8 -6.7+4.8 7554485  -5.84+5.0
Light MBC (3) -33.9426.7  -6.74£5.1 -6.8£5.0 -6.6+4.8 -6.7£4.8 7554485  -5.945.0
Medium MBC (6)  -35.44+29.5  -7.145.0 -7.245.1 -6.61+4.9 -6.7+4.8  -62.9+41.6  -6.1£5.0
Simple_Adversary Heavy MBC (8) -33.1428.7  -7.5+£5.0 -6.8£5.0 -6.8+4.9 -6.7£4.7  -51.5+345  -6.1+5.1
— Light DBC (5) -349+31.0 -26.6+£15.1 -10.8%£13.3 -6.3+£5.0  -6.7447  -14.0+8.0 -6.4+5.8
Medium DBC (3) -29.3+254  -38.6+£21.3 -22.4419.0 -6.9+52  -6.7+4.7 -8.8+5.8 S77+£7.2
Heavy DBC (1) -35.0429.3  -45.3+21.8 -27.3£19.5 -7.74£53 -6.8+4.7 -7.8£5.5 -8.8+7.4

Table 2: Performance Comparison of CC-MADDPG with Different Priors

Task Scenario Testing Environment Priors Type
dropout-0.2  Test-Matched
Light DBC -128.7£20.3  -119.0+29.4
Simple_Spread Medium DBC -127.6£19.2  -98.0+£30.5
Heavy DBC -128.0£20.6  -107.0+33.3
Light DBC 75.5+76.6 84.2+84.1
Simple_Reference Medium DBC 73.8£74.5  107.5£109.1
Heavy DBC 62.14+70.1 80.2+86.7

As evidenced by comparative results in Table[I] algorithms introducing communication constraint
priors during training demonstrate significant advantages. Using FC-MADDPG as a baseline refer-
ence, although it achieves high performance under ideal testing conditions, its performance suffers
catastrophic degradation when encountering any form of communication constraints. For instance, in
the Simple_Tag scenario under distance-based constraints, FC-MADDPG’s average episode cumula-
tive reward plummets from 75.9 in ideal conditions to 19.5, 10.9, and 1.5 respectively. This drastic
performance deterioration highlights the vulnerability of models trained under ideal conditions when
facing communication constraints.

In stark contrast, algorithms incorporating communication constraint priors during training, such
as Dropout-MADDPG and CC-MADDPG, exhibit superior robustness. Specifically, Dropout-
MADDPG with dropout-0.2 prior achieves an average reward of 68.7 in the heavy distance-based
constraint environment of Simple_Tag, vastly outperforming FC-MADDPG’s 1.5. Remarkably, CC-
MADDPG utilizing the same dropout-0.2 prior even surpasses its ideal communication environment
performance with a score of 138. These results conclusively demonstrate that introducing commu-
nication constraint priors during training enables better adaptation to constrained communication
environments during testing, yielding enhanced performance stability.

To ensure satisfactory generalization in unknown and variable testing environments, CC-MADDPG
in this study adopts dropout-0.2 as the standard communication constraint prior by default. This



generalized random message dropout prior covers multiple potential communication constraint
patterns, endowing the model with fundamental robustness. Building on this foundation, we further
investigate whether employing training priors that precisely match the actual test environment
constraints could yield additional performance improvements. Verification experiments reveal in
Table 2] that models trained with "test-environment-matched" priors (where training constraints
exactly match testing constraints) consistently outperform those using generic dropout-0.2 priors. For
example, in Simple_Spread’s medium distance-based constraint environment, the generic prior model
achieves -127.6 average reward versus -98 for the matched prior model. These findings indicate that
while generic message dropout priors provide baseline robustness, precisely tailored priors reflecting
target deployment environments can substantially optimize model performance.

5.2.3 Impact of Dual Mutual Information Optimization Module

This section investigates the effectiveness of the proposed dual mutual information optimization
module through ablation studies. To ensure fairness in comparisons, all algorithm variants in this
ablation study employ identical communication constraint priors (dropout-0.2). We designed four
algorithm variants for systematic comparison:

Baseline Model: Excludes all mutual information optimizations, equivalent to the MADDPG with
dropout-0.2 communication constraint prior during training.

Variant 1: Activates only the lossless messages utilization component in Du-MIE module, which
employs a JSD-based MIE to maximize the lower bound of mutual information between agent
decisions and valid messages.

Variant 2: Activates only the lossy messages suppression component in the Du-MIE module, which
only utilizes a CLUB-based MIE to minimize the upper bound of mutual information between agent
decisions and invalid messages.

Full Model: Represents our complete proposed algorithm with both optimization directions activated
in Du-MIE for messages.

Table [3] summarizes the average episode cumulative rewards of these four variants across vari-
ous communication-constrained testing environments in Simple_Tag and Simple_Spread scenarios.
Between the baseline and single-component variants, both mutual information optimizations inde-
pendently enhance performance. In Simple_Tag, the baseline achieves 70 average rewards across
environments. Variant 1 (maximization-only) elevates rewards to 81, while Variant 2 (minimization-
only) significantly boosts performance to 120. This confirms the intrinsic value of mutual information
optimization beyond prior knowledge utilization.

The full model consistently outperforms all variants, demonstrating synergistic complementarity
between the two optimization components. For instance, in Simple_Tag’s most constrained short-
distance environment, the full model achieves 138.0 rewards versus 68.7 (baseline), 81.7 (Variant
1), and 120.4 (Variant 2). Similar patterns emerge in Simple_Spread, where the full model (-127.6
to -128.0) substantially surpasses the baseline (-143.4 to -145.6). These results validate that dual-
directional mutual information optimization synergistically enhances multi-agent collaboration and
system robustness under communication constraints.

Table 3: Ablation Study on Dual Mutual Information Module

Scenario MI Coefficients Average Episode Cumulative Reward
min  max  Unrestricted Light MBC Medium MBC Heavy MBC Light DBC Medium DBC Heavy DBC
0 0 70.3£65.9 70.9+659  71.0£65.7  69.8+£66.5 69.0+65.8  70.1£65.8  68.71+64.3
Simple_Tag 0 0.01 81.3+752 81.3+752 81.74£77.0  81.6+£74.0 81.84+745 81.7+£75.6 81.7£73.3

0.001 0 120.5+82.1 119.84+81.0 120.3+81.8 119.3+£78.3 121.54+84.5 119.54£80.5 120.4+78.7
0.001 0.01 134.7+89.9 133.6+89.9 134.9£90.9 131.4+86.2 136.9+£89.7 135.3+85.1 138.0+88.1

0 0 -145.4423.5 -145.1£23.2 -145.4422.5 -144.34+24.2 -145.6+£23.4 -143.44+21.2 -144.5£20.8
0 0.01  -139.14+24.8 -139.1£24.8 -138.74£24.6 -138.74+25.2 -138.84£24.4 -139.7+23.9 -140.0£24.0
0.01 0 -143.04+24.8 -142.5£24.8 -142.04£27.1 -141.9425.4 -142.44£24.8 -141.7+26.8 -139.8£24.6
0.01  0.01 -129.4+20.1 -129.24+19.9 -129.0+20.2 -128.7+19.2 -128.7+20.3 -127.6+£19.2 -128.0+20.6

Simple_Spread




6 Conclusion

Lossy communication remains a critical barrier hindering the practical deployment of MARL in
real-world scenarios. To address this challenge, we propose a novel communication-constrained
MARL framework that first establishes a unified prior over communication constraints via system-
atic modeling of lossy communication patterns, enabling agents to adapt strategies across diverse
communication-constrained scenarios. Second, by distinguishing between lossy and lossless mes-
sages, we develop the Du-MIE to quantify the impact of messages on agent behavior, integrating
this into the reward function to enhance the positive influence of reliable messages and mitigate the
negative effects of corrupted messages. Finally, when integrated with the MADDPG algorithm, our
approach demonstrates superior performance in both overall tasks and ablation studies across bench-
mark environments, validating its effectiveness in maintaining robust cooperative decision-making
under varying communication constraints.

In the future, several directions warrant further investigation: (1) Algorithmic Scalability: Whether
the framework can be extended to Value-based learning frameworks; (2) Adaptability to Dynamic
Environments: Whether it can adaptively learn robust policies in highly dynamic communication-
constrained environments?
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A Appendices

A.1 Details on Experiement
A.1.1 Environmental Description

The experimental evaluation of this study was conducted in a widely used multi-agent particle
environment(MPE). Specifically, the following three representative MPE scenarios were selected:

Simple_Tag: This scenario simulates the classic predator-prey pursuit game. N predators with
limited field of view radius (V is set to 3 in this experiment, and the evaluation results of 6 and 9
agents are supplemented in the appendix) need to collaborate to capture a prey. The predators are
controlled by independent reinforcement learning strategies, with larger body size, lower movement
speed and smaller acceleration. The behavior strategy of the prey is predefined (randomly sampling
100 candidate positions, selecting the optimal movement direction within its perception range through
the distance evaluation function). When any predator contacts the prey, all predators will receive
a positive reward. In addition, 2 immovable obstacles are set in the environment to increase the
complexity of the pursuit task.

Simple_Spread: This scenario requires N agents (fixed to 3 in this experiment) to cover N pre-set
fixed landmarks through collaboration. Similar to Simple_Tag, each agent has a limited field of view.
The reward for the agent is the negative of the sum of the minimum distances of all agents to their
nearest uncovered landmarks. In addition, when there is a collision between agents, they will be
penalized. Therefore, the agents must move quickly to cover their respective target landmarks, avoid
collisions with each other, and ensure that all landmarks are uniquely covered.

Simple_Reference: This scenario is a unique collaborative navigation task, which includes 2 agents
and 3 fixed landmarks of different colors. Unlike the previous two scenarios, each agent has global
observation capabilities. The challenge is that the target landmark of each agent can only be known
through the communication messages of another agent. The collective reward depends on the number
of agents that reach the target landmark.

A.1.2 Parameters Setting

In this experiment, an NVIDIA RTXA5000 24GB GPU was used. The actor network of each agent is
a neural network with two hidden layers, each with 64 neurons, activated with ReLU, and the output
layer with tanh activation function to output actions. All agents share a centralized critic network,
whose hidden layer structure is similar to the actor network. In the JSD network, communication
messages and actions are passed through a single-layer encoder with 32 neurons, respectively, and
the mutual information lower bound is estimated using Jensen-Shannon divergence. In the CLUB
network, the middle layer has 32 neurons, activated with ReLU, and the output layer uses tanh
activation to model the conditional distribution of lossy messages and actions.

Adam optimizer is used for all networks. The learning rate of actor network, JSD network and CLUB
network is 1 x 104, the learning rate of critic network is 1 x 103, the discount factor is set to
0.95, and the target network update rate is set to 0.01. The replay buffer size is 1 x 10°, the message
buffer size is 1 x 103, and the batch size is usually 1024 (in the Simple_Tag task, when the number
of agents is 6 and 9, the batch size is adjusted to 512 to avoid the problem of CC-MADDPG training
process exceeding GPU memory). The random seed is set to 1. The time step of each round is fixed
to 25 steps. The total time step of training for all models is 4.0 x 105. When the total time steps
exceed 1024, the model parameters are updated every 100 total time steps. For more effective action
exploration, Ornstein-Uhlenbeck noise is added to the output actions of the actor network at the
beginning of training with parameters # = 0.15 and o = 0.2. At the beginning of training, the noise
scale decays linearly with the number of training rounds.

During the evaluation, the trained model is loaded and run for 100 episodes in various test environ-
ments. The training process of each episode is fixed to 25 time steps. The average episode cumulative
reward and standard deviation of each algorithm are mainly recorded and compared.
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A.2 More Experiemental Analysis

This study further explored the scalability of each algorithm when the number of agents increases.
In the Simple_Tag scenario, theoretically, since there is no collision penalty between predators,
increasing the number of predators should be able to directly increase the probability of capture and
obtain higher cumulative rewards. However, the experimental results (see table [4) show that the
increase in the number of agents also significantly increases the collaborative complexity of the task,
which poses a challenge to all tested algorithms.

Table 4: Performance of Multi-Agent Algorithms under Varying Number of Agents and Communica-
tion Constraints

Task Scenario Testing Environment Algorithms
FC-MADDPG Dropout-MADDPG MADDPG CC-MADDPG
0.2 0.5 0.8
Unrestricted 75.9+65.3  70.3+£65.9 65.9+62.0 72.1+£66.1 5.2+12.8 134.7+89.9
Light MBC (3) 72.9+65.3  70.9£65.9 65.9+62.1 72.5+66.1 5.2+12.8 133.6+89.9
Medium MBC (6) 67.24+53.7 71.0+65.7 67.1£62.3 72.1£66.1 5.5+15.6 134.94+90.9
Simple_Tag Heavy MBC (8) 54.4443.8 69.8466.5 67.9+63.2 72.7£66.0 6.0+14.2 131.44+86.2
(3 agents)  Light DBC (5) 19.5£38.2  69.0+65.8 67.3+62.4 70.8+£64.2 23.5+41.5 136.9+89.7
Medium DBC (3) 10.9£26.5 70.1+65.8 67.84+62.4 70.7£63.8 44.8+58.4 135.3£85.1
Heavy DBC (1) 15452  68.7+£64.3 66.3+60.5 71.4£65.7 71.2+£70.9 138.0+88.1
Unrestricted 138.5+88.0 84.24+70.3 78.5+£68.1 73.1+61.6 6.2+12.8 131.84+89.9
Light MBC (3) 123.94+77.0 83.54+70.3 78.1+£67.3 72.9+61.3 6.2+13.1 131.9490.3
Simple_Tag Medium MBC (6) 78.5+£63.1 82.1£70.9 79.6+67.9 72.0+64.3 6.4+12.8 133.2+84.3
© agel_lts) Heavy MBC (8) 69.84+59.5 81.3+69.0 78.6+65.4 75.2+£61.8 7.0+15.3 131.8+85.8
Light DBC (5) 14.7431.0  83.0+71.0 80.1+68.6 75.7£62.5 6.6+11.8 135.3+89.4
Medium DBC (3) 544134  75.5+66.3 79.3+64.4 77.2+63.5 8.0£14.5 127.4+89.1
Heavy DBC (1) 3.8+10.0 79.1+£65.3 72.2+69.3 76.54+63.7 11.1+£20.9 122.1+77.8
Unrestricted 83.4+72.5 77.7+71.5 68.0+61.0 19.8+£27.7 7.24+154  78.2+78.1
Light MBC (3) 77.9469.5 77.8471.9 68.1+61.1 19.5£304 7.3+154  77.7+72.6
Simple_Tag Medium MBC (6) 50.3£64.5 77.0+71.7 66.3£60.9 19.0+£25.5 83+12.7 78.9+72.5
© age;lts) Heavy MBC (8) 38.9435.3 7744725 67.3£61.9 16.5£28.0 8.1£17.0 77.6+£73.4
Light DBC (5) 9.7+18.6  42.9£53.2 68.9+£64.6 19.9+36.7 13.9+£22.5 82.7+74.4
Medium DBC (3) 8.0+16.5 27.1+41.6 56.3+60.5 20.4+33.7 18.1£32.5 83.7+71.0
Heavy DBC (1) 5.8+10.7  21.0£33.4 49.0+£52.7 21.1+£34.9 17.5+£30.8 83.24+70.6

Specifically, although FC-MADDPG achieved an average reward of up to 138.5 in an ideal environ-
ment with 6 agents, its performance dropped significantly after the introduction of constraints or
when the number of agents increased, once again proving its dependence on ideal communication
and its limitations under complex coordination. For the Dropout-MADDPG series of algorithms,
its robustness advantage weakens when the number of agents increases, and it is difficult to cope
with environments with high collaborative complexity and strong communication constraints. For
example, in the scenario of 9 agents, the average rewards of dropout-0.2 in distance-based constraint
are reduced to 42.9, 27.1 and 21.0 respectively.

In contrast, CC-MADDPG exhibits stronger robustness and scalability. In the scenarios of 6 and
9 agents, its performance in an ideal environment is close to that of FC-MADDPG, and it always
maintains a leading performance level after the introduction of communication constraints. Secondly,
when the number of agents increases, its robustness advantage over the simple message dropout
method is more obvious in a constrained environment. For example, in the scenario of 9 agents, under
the heavy distance-based constraint, CC-MADDPG can achieve an average reward of 8§3.2, while
dropout-0.5 is only 49.0. This shows that CC-MADDPG is more robust and effective than the simple
message dropout method when dealing with more complex communication-constrained problems.
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