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Abstract

Causal event extraction (CEE) aims to identify and extract cause-effect event pairs from

texts, which is a fundamental task in natural language processing. Recent research treat

CEE as a sequence labeling problem. However, the linguistic complexity and ambiguity

of textual description results in the low accuracy of extractors. To address the above

issues, considering the prior knowledge like the causal network constructed based on

the causal indicators, which can represent information transition between cause and

effect, may helpful for CEE. In this article, we propose causality-associated graph neu-

ral network to incorporate in-domain knowledge by taking important causal words into

account. External causal knowledge is modeled as causal associated graph (CAG). Then

we use graph neural networks (GNN) to capture the complex relationship of intraevent

mentions and interevent causality in a sentence based on the relationship obtained

from CAG. Finally, sentence sequence and prior causal knowledge of GNN embedding

are fed into multiscaled convolution and bidirectional long short-term memory net-

works. Experimental results on two datasets show that our method outperforms the

state-of-the-art baseline.

K E Y W O R D S

causal event extraction, causality-associated graph neural network, cause-effect event pairs,

sequence labeling

1 INTRODUCTION

Causal event extraction (CEE) is a joint extraction task of events and causality. It is a fundamental task for event logic graph construction that

automatically extracts cause/effect events from plain text, and determines whether there exists a causal relationship between the cause event

and the effect event. CEE is of great value for various intelligent applications, such as event prediction, recommendation system and question

answering.

As shown in Table 1, there are mainly two types of causal relations in CEE, including explicit relation and implicit relation. Explicit relation usually

contains causal indicators such as lead to, due to, because of, and so forth, while implicit causality does not. For example, “The price of raw material rises

sharply, leading to a sharp increase in feed cost.” In this sentence, the cause is “the price of raw material rises,” the effect is “a sharp increase in feed cost.”

Understanding the event causality in a sentence is essential to many artificial intelligence applications. However, there are still exist two problems

in previous CEE methods: (1) The accuracy of phrase-level event extraction is relatively low due to the ambiguous description of events; (2) The

long-distance dependence make it difficult to determine implicit causality. These difficulties prevent conventional methods to accurately extract

causal events just rely on limited training data. The main reason is the lack of necessary background knowledge. For example, “John killed someone,

and was sent to prison” and “As Hudson murdered Andrew, he was sent to prison.” The news text contains a large number of similar causal patterns, which

can assist the model to improve the accuracy of CEE.
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TA B L E 1 Example of causal event extraction

Forms Sentence Causal-effect

Explicit causal sentences The price of raw materials rise sharply, leading to a

sharp rise in feed cost.

“the price of raw materials rise” → “sharp rise in feed cost”

Implicit causal sentence The Country adopts macro-control, and the price of

pork begin to fall.

“macro-control” → “the price of pork begin to fall”

Existing methods can be roughly divided into rule-based methods, statistical methods and deep learning methods. Rule-based methods1-4

extract causal events from text using template matching approach, requiring extensive manual efforts to construct patterns such as lexical pat-

terns, syntactic patterns, and semantic patterns. However, it is impossible to enumerate all templates due to the complexity of natural language.

Moreover, pattern matching has relatively poor ability of generalization, resulting in low recall of CEE. Although machine learning methods5-8

partially solve above problems based on rich features, it relies on sophisticated feature engineering and consumes external time and manual

efforts.

In recent years, deep learning methods relying on neural network models have achieved great success in natural language processing. These

methods extract high-dimensional features from data in a popular end-to-end manner. Fu et al.9 transform CEE into sequence labeling. Convolu-

tional neural network (CNN)10,11 models that emphasized n-gram features have proved to be suitable for relation extraction. Besides, Dasgupta

and Dunietz et al.12,13 apply long short-term memory (LSTM) to CEE to capture the long-term dependence of sentences. Furthermore, Ma and Jin

et al.14,15 combine CNN and LSTM to take advantage of both architectures. Though neural networks have achieved state-of-the-art performance,

CEE is still remains a hard problem due to its complexity and ambiguity. Besides, insufficient training data make the deep model easy to overfit and

drastic fluctuations.

To overcome the above limitations, considering that we can find a large number of sentences containing causal relations based on

causal indicators, which can be used to construct causal graph, may benefit both event and causality extraction. We propose a novel neu-

ral method for CEE with the associated graph, the model incorporate causality-associated graph (CAG) as prior knowledge into the graph

neural network (GNN) model to assist CEE. GNN16,17 are designed to represent the graph. They have been widely used in natural language

processing.18,19 For CEE, we first construct an undirected graph of CAG from large-scale domain text. Compared with conventional sequen-

tial methods, our model is more sensitive to event phrases and their causal relationships, which is difficult to be captured by previous

methods.

Figure 1 illustrates the workflow of the proposed causality-associated graph neural network (CA-GNN) method. First, we construct CAG using

external knowledge, such as causal trigger tables. Second, we use GNN to model both the intraevent mentions and interevent causality in a sentence.

Finally, we fed the encoded input sentence sequence and the prior knowledge of CAG into a multiple convolution layer and a single BiLSTM+CRF

layer sequently. The main contributions of this work are summarized as follows:

F I G U R E 1 Overview of the causality-associated graph neural network framework

 15320634, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6572 by Shanghai U

niversity, W
iley O

nline L
ibrary on [06/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GAO ET AL. 3 of 13

• This work enhances event causality by integrating the prior knowledge of event causality using a CAG, capturing intraelement transitions inside

events and intercausality across events.

• We use GNN to learn the semantic information of the nodes and their rich connections in CAG, and integrate the learned graph embedding into

CA-GNN to generate global semantic representations.

• Experiments conducted on the real-world Chinese datasets show that CA-GNN significantly outperforms state-of-the-art methods.

2 RELATED WORK

In this section, we give a brief review of some related works on CEE in different perspectives, including template matching, statistical learning, neural

networks and graph model.

2.1 Template matching

Kontos and Sidiropoulou3 use hand-crafted causal patterns to discover causal relationships. Garcia and Daniela et al.4 develop a system, called

COATIS that use the contextual information and heuristic rules to extract event causality. Furthermore, Girju et al.1 suggest to divide the CEE into two

steps: The first step is to mine lexicon-syntactic patterns that can express causality such as the most frequent pattern like NP1 causal − verb NP2,

where NP1 and NP2 can be found in the lexical knowledge base like WordNet. The second step is to validate and rank the obtained patterns according

to some semantic constraints on NP1, NP2, and causal − verb through a WordNet-based course-grained process. To reduce human participation,

Ittoo and Bouma2 present a minimally supervised algorithm that extract both explicit and implicit causal relations from domain-specific sparse texts

without relying on hand-coded knowledge. However, template matching requires much manual efforts, and the generalization of template matching

is far from satisfied.

2.2 Statistical learning

Unlike template matching, statistical learning turns CEE into a classification problem. Girju5 prove that statistical learning is a very effec-

tive method to discover causality by using C4.5 decision tree. Blanco et al.6 improve it by constructing seven types of features. However, this

model can only handles explicit causal patterns, for example, < VerbPhrase Relator Cause >. Rink and Harabagiu7 use support vector machines

as the classifier based on lexical, syntactic and semantic features. Although this model achieves promising results, it cannot extract more

complex implicit causality. To solve this challenge, Yang and Mao8 propose a multilevel relation extraction algorithm to recognize all poten-

tial causal relations on the basis of dependency/constituency grammar trees. However, huge efforts in feature engineering still limit the use of

those models.

2.3 Neural networks

In recent years, deep learning methods have been widely used in the field of natural language processing. Fu et al.9 convert CEE into a

sequence labeling problems. Nguyen and Grishman10 prove that convolutional neural networks can significantly improve the performance of

relation extraction, which can automatically learn features from sentences with multiple window sizes for filters and pretrained word embed-

dings. To reduce the impact of artificial classes, Santos et al.11 propose the ranking CNN algorithm to minimize novel pairwise ranking loss

function. Unlike convolutional neural networks, LSTM can obtain sequence information and long-term dependencies of text. Dasgupta et al.12

propose linguistically informed recursive neural network, using word-level embeddings and other linguistic features to detect causality. Duni-

etz et al.13 developed the DeepCx system, which effectively incorporates causal expression patterns by using LSTM to enhance causal rela-

tionship extraction. Jin et al.15 combine the advantage of CNN and LSTM, and propose cascaded multistructure neural network to extract

intersentence or implicit causal relations. However, it is difficult for conventional neural networks to capture the more complex causality in

a sentence, and the lack of training data makes the deep model easy to overfit. To tackle this problem, some researchers try to incorporate

prior knowledge into neural networks. Li et al.20 propose use transfer contextual string embeddings to solve the problem of insufficient train-

ing data. Moreover, Li and Mao21 propose a knowledge-oriented convolutional neural network for causal relation extraction, which consists a

knowledge-oriented channel that incorporates human prior knowledge and a data-oriented channel that learns important features of causality from

the data.
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2.4 Neural network on graph

GNN has achieved great success in natural language processing, and is designed to represent the graph, for example, social network and knowledge

graph, which can improve the performance of deep model. Gori et al.22 and Scarselli et al.16 propose a GNN to process a variety of graph data struc-

tures such as acyclic graph, cyclic graph, directed graph, and undirected graph. Li et al.17 add gated recurrent units and modern back-propagation

optimization techniques to compute gradients. Recently, GNN is widely used in natural language processing. Li et al.18 construct an event graph

to utilize the event network information, and apply scaled graph neural network to script event prediction. Zhang et al.19 propose a novel text

classification TextING by using GNN with inductive word representations based on their local structures, which can also effectively produce embed-

dings for unseen words in the new document, the performance of TextING is better than mainstream text classification tools such as TextCNN,23

TextRNN,24 FastText,25 and graph-based methods for text classification TextGCN.26 Furthermore, Xu et al.27 proposes a sequence labeling method

to extract causal relations incorporating graph attention network based on syntactic dependency graph, and achieve desirable results. Therefore,

with its powerful representation ability, GNN can learn rich semantic information of various graph data, which is very suitable for various tasks

of NLP.

3 OUR MODEL

In this section, we will introduce our proposed CA-GNN, we formulate the problem of CEE at first, then show how to apply domain prior knowledge

and GNN into CEE, and give the details how to construct CA-GNN.

3.1 Notations

CEE is a joint extraction task of events and causality, it aims to extract causal event pairs from texts as shown in Figure 2. Here, we give a formulation

of this problem.

In CEE, let l = (w1,w2,w3, ...,wn) denote a sentence consisting of word sequence, where wi ∈ l is a word. Label set y can be represented as y =
(O,B − C, I − C,B − E, I − E), where each element in y means wi is nontarget word, the beginning of cause, continuation of cause, the beginning of

effect, continuation of effect. Under a CEE model, for each word wi, we output the probabilities for all labels in label set y.

3.2 Constructing CAG

Figure 3 shows a high-level overview of the approach. We crawled a large number of domain news reports from the Internet, and split them into

sentences, then CAG is constructed through three steps: domain causal sentence recognition, event nuggets detection, and association calculation

between words.

3.2.1 Domain causal sentence recognition

The goal of domain causal sentence recognition is to generate high-quality domain causal corpus automatically from unannotated text. We construct

causal indicator lexicon at first. To improve the accuracy and recall of causal sentence recognition, we expand the causal indicator words (CIW), and

disambiguate the CIW in the sentence.

F I G U R E 2 An example of CEE from raw emergency corpus, the cause and effect event pairs are extracted at once
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GAO ET AL. 5 of 13

F I G U R E 3 An overview of causal associated graph construction

F I G U R E 4 Examples of causal indicator lexicon and their corresponding causal sentences

Construction of CIW According to the composition of CIW, it can be divided into unary CIW and Dual CIW. According to the part of speech,

CIW can be divided into conjunctions, adverbs, and verbs. Besides, the indicator word also contains some irregular causal indicator phrases, which

are called irregular CIW. In order to ensure the objectivity of screening CIW, the voting method is adopted to review each CIW. The lexicon of CIW

is organized as shown in Figure 4.

The expansion of causal indicator lexicon Based on the basic CIW, the recall of the identified causal sentence is relatively low. Through the

analysis of unrecognized sentences, we find that the CIW in some causal sentences are mostly synonyms of unary causal indicator verbs. Therefore,

HowNet*and word2vec28 are applied to synonym expansion.

Disambiguation of causal indicator lexicon As Chinese words often has multiple meanings, recognizing causal sentences through template

matching will cause errors. We analyze the identified causal sentences and find that the cause of the recognition error usually has the following two

characteristics: (1) The CIW becomes part of a certain word; (2) The part of speech of the CIW has changed. Therefore, we use language technology

platform (LTP)29 to segment sentences, and identify the part of speech for each word. Some wrong causal sentences can be identified by matching

words and parts of speech.

3.2.2 Event Nuggets detection

Event Nuggets is defined as a semantically meaningful unit that expresses an event, it can be either a single word (verb, noun, or adjective) or a

phrase (multiword).30,31 For single-word event nuggets, it meet the definitions of event types/subtypes. Below are some examples of single-word

event nuggets. The words in bold face are event nuggets.

* http://www.yuzhinlp.com
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• The attack by insurgents occurred on Saturday.

• Wenchuan was severely affected by the earthquake.

• There was a fire in this place last year.

Multiword event nuggets represent single events of a complete semantic unit. Below are some examples of multiword event nuggets. The words

in bold face are event nuggets.

• The company was punished by the China Securities Regulatory Commission for inflating profits.

• The news describes the shipping accident.

• His death sentence was carried out.

We can see that the event mainly has the following two properties: (1) An event nugget can be either a single word or a continuous or discontinu-

ous multiword phrase. (2) Most verbs can be seen as event, which represent physical actions, followed by nouns, adjectives, and adverbs. Multiword

event nuggets take various forms such as verb+noun, verb+particle/adverb, noun+noun, and so forth.

Based on the above two characteristics, we extract the main part of event in a sentence through the following two steps. First, LTP29 is used to

do word segmentation, part-of-speech (POS)-tagging and named entity recognition including person, location, and organization. Second, we pick

out verbs, nouns, adjectives, and adverbs, and removed stop words and specific named entity (e.g., name of person, organization, and place). The rest

of the sentence can be considered as the main part of the event nuggets.

3.2.3 Association calculation between words

To discover the causal relationship between words, we construct CAG by using association link network (ALN).32,33 ALN is a kind of semantic link

network used to establish associations between different resources.33 Liu et al.32 propose an ALN-based event detection algorithm, which is used

to timely discover newly occurring hot events.

The relationship between words in the text can be modeled as ALN g = (w, e), each node wi represents a word, each edge (wi,wj) means there is

an association between word wi and word wj. Given a set of preprocessed sentences, we construct CAG as follows:

Awi−wj =
co(wi,wj)√

DF(wi) ∗ DF(wj)
, (1)

where co(wi,wj) is the cooccurrence frequency of word wi and wj, DF(wi) means the number of sentences containing the word wi.

3.3 Embedding integration

Then we present how to obtain latent vectors of nodes using GNN. Scarselli et al.16 propose GNN model, and apply it to supervised classifica-

tion which can directly process most of the practically useful types of graphs. Li et al.17 further introduce gated recurrent units to GNN. GNN are

well-suited for discovering relationship between words, as it can extract features both nodes and their rich connections.

For each sentence l, we can get event nuggets lm. For (wi,wj) ∈ lm, the association Aw of (wi,wj) in lm can be obtained from CAG, and the recursive

update procedure of GNN is as follows:

at
w,i = Aw,i∶[wt−1

1 ,wt−1
2 , ...,wt−1

n ]T + b, (2)

zt
w,i = 𝜎(Wzat

w,i + Uzwt−1
i ), (3)

rt
w,i = 𝜎(Wrat

w,i + Urwt−1
i ), (4)

w̃t
i
= tanh(Wat

w,i + U(rt
w,i ⊙ wt−1

i )), (5)

wt
i = (1 − zt

w,i)⊙ wt−1
i + zt

w,i ⊙ w̃t
i
, (6)

where matrix A ∈ Rn×n is defined as association weight between words in CAG. The construction of matrix Aw is shown in Figure 5.

[wt−1
1

,wt−1
2

, ...,wt−1
n ] is the list of word embedding in sentence l, Equation (2) is the step that passes information between different words and their
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F I G U R E 5 Example of constructing Association matrix between words in a sentence. (A) Examples of processed sentences, color denotes
causal event mentions. (B) Association weight of processed sentences obtained from causal associated graph. (C) Association matrix between

words in a sentence

association weight edges. The remaining is GRU-like updates that use the information of other nodes and the previous moment to update the hidden

state of each node in the next moment. zw,i and rw,i are the rest and update gates, 𝜎 = 1

1+e−x is the sigmoid function and ⊙ is the elementwise multipli-

cation operator. After updating all parameters until convergence, we can get the final word vector of GNN encoding which integrate the association

information between words obtained from CAG.

After obtaining word vector of GNN encoding, we combine it with the original word-level word embedding, which keeps the original word

sequence in the sentence.

To sum up, our embedding integration including two parts: (1) GNN encoding that combine intraphrase event mentions and interphrase causal

relationship on CAG; (2) Original pretrained word embedding.

3.4 Multiconvolution and BiLSTM+CRF layer

CEE can be seen as two steps. First, we need to extract a complete event mentions. Then it need to determine which is the cause or effect. Due

to the ambiguous event mentions, we extract important features from embedding integration by using parallel convolution kernels with varying

windows.34 Through the following process, the causal event semantic characteristics are encoded into the filters.

cn
i = f(W ⋅ hi∶i+n−1 + b) (7)

ci = [cn0

i
⊕ cn1

i
⊕ cn2

i
], (8)

where W is the weights of initialized filter, b is a bias term, and f is a nonlinear function such as sigmoid, ReLU,35 and so forth. We use three convolution

layers with different convolution windows n = 3,4,5 for the convolution operation. Finally, the overall feature maps of a window can be included in

a single vector, and we concatenate all the vectors generated by different convolution operations.

LSTM is a variant of recurrent neural network, which is used to solve the problem of gradient vanishing.36 The LSTM used in bidirectional long

short-term memory (BiLSTM)37 mainly consists of three parts, including an input gate it , an output gate ot and a cell activation vectors vt . BiLSTM

uses two LSTM layers to learn the valid characteristics of each token in the sequence based on the past and future context information. One LSTM

layer processes left-to-right information, and the other from right to left. Given an input sequence ft generated by multiple convolution operations,

the context features can be captured as follows:

−→
ht =

−−−−→
LSTM(

−→
ft ,

−−→
ht−1) (9)

←−
ht =

←−−−−
LSTM(

←−
ft ,

←−−
ht+1) (10)

H = [
−→
ht,

←−
ht]. (11)

Then we can get a probability matrix P with dimensions m × n, where n is the number of words and m is the number of tags.

3.5 Object function

Conditional random field38 can obtain the label of a given sequence in the global optimal chain, and take the interaction between adjacent labels

into consideration. Given sentence l and its prediction sequence y = y1, y2, ..., yn, CRF score can be obtained by using the following formula:
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score(l, y) =
n+1∑

i=1

Ayi−1 ,yi
+

n∑

i=1

Pi,yi
, (12)

where Pi,yi
is the prediction probability of the ith word in the sentence with label yi, and the transition probability from label yi−1 to yi is Ayi−1 ,yi

. The

final convergence condition is to minimize the loss function which can be expressed by the following formula:

E = log
∑

y∈Y

exps(y) − score(s, y), (13)

where Y is the set of all possible label sequences in a sentence.

4 EXPERIMENT AND EVALUATION

In this section, we describe the datasets across different domains and the baseline methods applied for comparison.

4.1 Datasets

In order to verify our model, we conduct our experiments on two benchmark datasets. The first dataset is Chinese emergency corpus (CEC), which

is an event ontology corpus publicly available†. It contains six categories: outbreaks, earthquakes, fires, traffic accidents, terrorist attacks, and food

poisonings. The second is financial dataset, we crawled a large scale of Chinese financial news reports from the internet, such as Jinrongjie‡and

Hexun§. This dataset contains a large number of financial articles involving causal relations.

The articles are splited into sentences by full point, semicolon and exclamation point. We invite three annotators to annotate the data. Each

annotator needs to determine whether it is a causal event description. If it does, they need to annotate which part are the cause or effect. The

annotated data such as < Cause >Decreased sales< Cause > of company X products led to a < Effect >decline in performance< Effect >. Then BIO is

used to mark the sentences (“B-X” is the beginning of the cause or effect, “I-X” represents the remaining part of the cause or effect, “O” means a

part that neither a cause nor an effect). Finally, we annotate 1026 causal sentences from CEC corpus, and 2270 causal sentences from financial

corpus.

4.2 Experimental setting

For the fairness of the experiment, all data preprocessing is done by LTP. Based on two large domain data (financial data and disaster data), we use

the word2vec28 to generate 100-dimensional word embedding vectors, which are used in parameter initialization of the model rather than random

initialization. For all the two datasets, we set the number of training epochs to 100, the learning number of words in a sentence to 25, the size of the

batch to 16, the learning rate for adam to 5 × 10−5. To prevent overfitting, the dropout rate of training process is 0.5.

We use 8/10 of the data as the training set, 1/10 as the validation set, and 1/10 as the test set. Both CEC and financial data is shuffled with

different random seeds before the cross-validation, and the evaluation metric is macro-averaged F1 score calculated from 10-fold cross-validation.

We take the average value of the 10 macro-averaged F1 scores as the final result.

4.3 Baseline methods

To prove the effective of our method, we compare it with the following baselines.

• BiLSTM+CRF39 proposes a basic model for sequence tagging, which uses BiLSTM to mine past and future input features and capture sentence

level tag information with CRF.

• CNN+BiLSTM+CRF14 is used for POS tagging. They first use CNN to encode a word into character-level representation, and feed them into

BiLSTM to capture context information of each word. Finally, a sequential CRF is used to jointly decode labels for the whole sentence.

†https://github.com/shijiebei2009/CEC-Corpus
‡http://www.jrj.com.cn/
§ http://www.hexun.com/
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• CSNN15 uses CNN and self-attention to capture features relationship, and the higher-level phrase representations are feed into BiLSTM and

CRF layer for CEE.

• BERT+CSNN is a very effective baseline language model for CEE, which uses pretrained BERT40 trained from large-scale unlabeled corpus

as input.

4.4 Comparison with baseline methods

To demonstrate the overall performance of our method, we compare it with other state-of-the-art baselines including BiLSTM+CRF,

CNN+BiLSTM+CRF, CSNN, and BERT+CSNN. The overall performance in terms of precision P, recall R, and F1 scores F1 is shown in Table 2.

CA-GNN integrates CAG as prior knowledge into CEE. In this model, we jointly consider the complex intraphrase event mentions as well

as interphrase causal relationship. According to the experiment, the best performance on two datasets verify the effectiveness of the proposed

method.

The performance of traditional sequence labeling algorithm BiLSTM+CRF is relatively poor. Although LSTM-based methods can capture both

past and future contextual information, and are very effective in sequence labeling such as named entity recognition. However, unlike named entity

recognition, phrase-level event mentions often contain several consecutive words and their expressions are relatively ambiguous, resulting in poor

performance of BiLSTM+CRF. Even so, CNN+BiLSTM+CRF and CSNN achieve better performance than BiLSTM+CRF, demonstrating the impor-

tance of introducing CNN for CEE. These two methods use CNN to extract phrase-level features of several adjacent words, which is crucial for

phrase-level event extraction, then BiLSTM is used to capture the sequence and long-term dependency information of convolution features.

CEE is more complicated than conventional event extraction, and the accuracy of CEE by combining convolution and LSTM still needs to be

improved. We can see that the results of BERT+CSNN have been greatly improved compared with CSNN. BERT is a pretrained transformer network

with multihead attention over 12 (base-model) or 24 layers (large-model) that can be set for various downstream NLP tasks, and achieves promis-

ing results, including question answering, sentence classification. It learns a good representation for each word by using self-supervised learning

method on a large amount of corpus, which means pretrained transformer network contains a large amount of nondomain prior knowledge such

as causal events, named entities, and so forth. Compared with the state-of-the-art methods like BERT+CSNN, CA-GNN further considers complex

phrase-level causal transitions between words in a sentence, which can capture more long-term dependence and implicit connections between

words. Therefore, though BERT+CSNN uses a pretrained model with a deeper neural network, we can see the performance of our method is still

higher than BERT+CSNN. CA-GNN integrates domain causal knowledge and phrase-level event mentions into undirected graph CAG, and uses

GNN to encode the semantic information of nodes and edges in CAG. Besides, CA-GNN adopts multiple convolution to get features of graph encod-

ing and original word vector, and apply BiLSTM to further discover the sequence and causal relationship among features. On the contrary, BERT is

trained on large-scale nondomain data, which may not be sufficient for domain CEE. Other sequence labeling models, such as CNN+BiLSTM+CRF

and CSNN, they usually learn more obvious causal events, when the description of the event is ambiguous, or the causal relationship is more obscure,

conventional models are ineffective to cope with this situation.

4.5 Ablation experiments

To study the contribution of each component in CA-GNN, we conducted ablation experiments on the two dataset and display the results on Table 3,

the comparison methods are -MultCNN and -GNN. -MultCNN is the CA-GNN model without Multiple convolution, -GNN is the CA-GNN model

TA B L E 2 Comparison experiment of causal event extraction with other baselines over two datasets

Financial CEC

Method P R F1 P R F1

BiLSTM+CRF 68.26 70.83 69.51 73.26 73.52 73.39

CNN+BiLSTM+CRF 75.25 73.73 74.47 74.44 73.29 73.86

CSNN 75.87 73.55 74.67 74.32 73.52 73.91

BERT+CSNN 74.95 77.58 76.23 74.22 75.00 74.61

CA-GNN 78.86 77.60 78.23 76.30 73.05 74.64

Note: Bold values are the best results in the comparison method.

Abbreviation: CA-GNN, causality-associated graph neural network.
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10 of 13 GAO ET AL.

TA B L E 3 Ablation experiments of causal event extraction on two datasets

Financial CEC

Method P R F1 P R F1

CA-GNN 78.86 77.60 78.23 76.30 73.05 74.64

-MultCNN 73.25 72.37 72.80 74.51 72.52 73.49

-GNN 78.83 75.54 77.15 74.73 72.70 73.70

Note: -MultCNN is the CA-GNN model without multiple convolution, -GNN is the CA-GNN model

without graph neural network. Bold values are the best results in the comparison method.

Abbreviations: CA-GNN, causality-associated graph neural network; GNN, graph neural network.

F I G U R E 6 F1-Score of different methods on the financial test dataset under multiple training epoch

without GNN. The results show that both the multilayer convolution layer and the GNN coding layer play a positive role in CEE compared with the

conventional method BiLSTM+CRF.

It can be seen that the F1 score of -MultCNN (only GNN and BiLSTM +CRF) increased by 1.7% on average on the two datasets compared with

BiLSTM+CRF. The F1 score of -GNN (only MultCNN and BiLSTM+CRF) increased by 3.98% on average on the two datasets. By contrast, CA-GNN

achieves the state-of-the-art performance by combining GNN and MultCNN, and the average F1 score on the two datasets increased by 4.99%.

This is probably that the CEE is a pipeline process, multiconvolution can extract more complete event representation, GNN can give more guidance

information to determine the cause and effect of the event.

4.6 Comparison w.r.t. epoch

We further compare the convergence speed and performance of our model and other baseline models on finical dataset. As shown in Figure 6, our

model begin to converge after 10 iterations. However, the NON-BERT model starts with a low F1 score at the beginning of the iteration, whose

performance dramatically decreases when epoch < 10.

Due to the lack of prior knowledge and the limitation of dataset size, the performance of NON-BERT model is inferior to BERT+CSNN. We

can see that although our model lacks BERT, the performance of CA-GNN iteration is still slightly better than BERT+CSNN, demonstrating the

effectiveness of combining domain prior knowledge and GNN to extract causal event.

4.7 Comparison w.r.t. sentence length

Figure 7 shows the performance of several baseline models with different sentence length on the finical dataset. We split the test dataset into six

parts according to the sentence length, the proportions of each sentence length are 3%, 21.5%, 20.5%, 16.5%, 13.5%, and 25%. The BERT+CSNN is
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GAO ET AL. 11 of 13

F I G U R E 7 F1-score of our method compared with other methods on the financial dataset under different sentence length intervals

a strong baseline that outperforms BiLSTM+CRF, CNN+BiLSTM+CRF, and CSNN when the sentence length is more than 48 characters. However,

BERT+CSNN has no obvious advantage when the sentence length is less than 48 characters. By contrast, CA-GNN not only gives higher results over

short sentences, but also shows its effectiveness and robustness when the sentence length is more than 48 characters. It gives a higher F1 score in

most cases compared with the NON-BERT baselines, which indicates that global sentence semantics and long-range dependency can be captured

under the combination of domain prior knowledge and the graph structure.

4.8 Case study

Figure 8 illustrates an example that demonstrates the effectiveness of CA-GNN. We can easily find that BiLSTM+CRF method is inferior to

CNN+BiLSTM+CRF and CSNN, and it even misses the effect event in the implicit causality extraction. CEE is a phrase-level event relationship extrac-

tion task, CNN can extract phrase-level features of several adjacent words, and BiLSTM is used to capture the sequence and long-term dependency

F I G U R E 8 Examples of different baseline methods for implicit causality and explicit causality extraction
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12 of 13 GAO ET AL.

information of convolution features. However, due to the ambiguity of the event mentions, it is difficult to fully learn these complex information by

the model itself. Knowledge-driven CA-GNN and pretrained BERT+CSNN strengthen the ability of model to extract causal events by introducing

external knowledge, yielding better results for CEE.

5 CONCLUSION

In this article, we present a novel approach CA-GNN for CEE. Our method can effectively integrate domain knowledge into the model and improve

the accuracy of CEE. The whole model can be divided into three parts. First, we use CAG to represent domain causal knowledge. Then we apply GNN

to learn accurate embedding from CAG, the generated word vector can capture the complex relationship of intraphrase event mentions and inter-

phrase causality in a sentence. Besides, we apply multiconvolution to extract phrase-level text features, and further use BiLSTM to learn long-term

causal sequence information. The performance of our approach has been experimentally verified on two datasets for CEE.

Although CA-GNN can improve the performance of the model, there are still some shortcomings. CEE can be seen as a pipeline task. First, it

needs to extract the complete event mentions, then determine which is the cause or effect. It may be more appropriate to model intraelement events

and intercausality across events separately. In future work, we will try to build a pipeline model to further improve the accuracy of CEE based on

existing research.

ACKNOWLEDGMENTS

The research reported in this article was supported in part by the Natural Science Foundation of China under the grant No. 91746203, Ministry of

Industry and Information Technology project of the Intelligent Ship Situation Awareness System under the grant No. MC-201920-X01, and National

Natural Science Foundation of China under the grant No. 61991415.

DATA AVAILABILITY STATEMENT

This article mainly uses two datasets, including CEC dataset and financial dataset. For CEC dataset, the data that support the findings of this study

are openly available in https://github.com/shijiebei2009/CEC-Corpus. For financial dataset, the raw data is obtained from http://www.jrj.com.cn/ and

http://www.hexun.com/. We reannotate the two datasets, and the data that support the findings of this study are available from the corresponding

author upon reasonable request.

REFERENCES

1. Girju R, Moldovan DI. Text mining for causal relations. Proceedings of the FLAIRS Conference; 2002:360-364.

2. Ittoo A, Bouma G. Extracting explicit and implicit causal relations from sparse, domain-specific texts. Proceedings of the International Conference on

Application of Natural Language to Information Systems; 2011:52-63.

3. Kontos J, Sidiropoulou M. On the acquisition of causal knowledge from scientific texts with attribute grammars. Int J Appl Expert Syst. 1991;4(1):31-48.

4. Garcia D COATIS, an NLP system to locate expressions of actions connected by causality links. Proceedings of the International Conference on

Knowledge Engineering and Knowledge Management; 1997:347-352.

5. Girju R. Automatic detection of causal relations for question answering. Proceedings of the ACL 2003 Workshop on Multilingual Summarization and

Question Answering; 2003:76-83.

6. Blanco E, Castell N, Moldovan DI. Causal relation extraction. Lrec. European Language Resources Association; 2008;66:74.

7. Rink B, Harabagiu S. Utd: classifying semantic relations by combining lexical and semantic resources. Proceedings of the 5th International Workshop on

Semantic Evaluation; 2010:256-259.

8. Yang X, Mao K. Multi level causal relation identification using extended features. Expert Syst Appl. 2014;41(16):7171-7181.

9. Fu J, Liu Z, Liu W, Zhou W. Event causal relation extraction based on cascaded conditional random fields. Pattern Recogn Artif Intell. 2011;24(4):567-573.

10. Nguyen TH, Grishman R. Relation extraction: perspective from convolutional neural networks. Proceedings of the 1st Workshop on Vector Space

Modeling for Natural Language Processing; 2015:39-48.

11. Santos CND, Xiang B, Zhou B. Classifying relations by ranking with convolutional neural networks; 2015. arXiv preprint arXiv:1504.06580.

12. Dasgupta T, Saha R, Dey L, Naskar A. Automatic extraction of causal relations from text using linguistically informed deep neural networks. Proceedings

of the 19th Annual SIGdial Meeting on Discourse and Dialogue; 2018:306-316.

13. Dunietz J, Carbonell JG, Levin L. DeepCx: a transition-based approach for shallow semantic parsing with complex constructional triggers. Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing; 2018:1691-1701.

14. Ma X, Hovy E. End-to-end sequence labeling via bi-directional lstm-cnns-crf; 2016. arXiv preprint arXiv:1603.01354.

15. Jin X, Wang X, Luo X, Huang S, Gu S. Inter-sentence and implicit causality extraction from Chinese corpus. Proceedings of the Pacific-Asia Conference on

Knowledge Discovery and Data Mining; 2020:739-751.

16. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw. 2008;20(1):61-80.

17. Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural networks; 2015. arXiv preprint arXiv:1511.05493.

18. Li Z, Ding X, Liu T. Constructing narrative event evolutionary graph for script event prediction; 2018. arXiv preprint arXiv:1805.05081.

19. Zhang Y, Yu X, Cui Z, Wu S, Wen Z, Wang L. Every document owns its structure: inductive text classification via graph neural networks; 2020. arXiv

preprint arXiv:2004.13826.

20. Li Z, Li Q, Zou X, Ren J. Causality extraction based on self-attentive BiLSTM-CRF with transferred embeddings. Neurocomputing. 2021;423:207-219.

 15320634, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6572 by Shanghai U

niversity, W
iley O

nline L
ibrary on [06/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GAO ET AL. 13 of 13

21. Li P, Mao K. Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts. Expert Syst Appl.
2019;115:512-523.

22. Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. Proceedings. 2005 IEEE International Joint Conference on Neural

Networks; Vol. 2, 2005:729-734.

23. Kim Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing, EMNLP; 2014:1746-1751.

24. Liu P, Qiu X, Huang X. Recurrent neural network for text classification with multi-task learning; 2016. arXiv preprint arXiv:1605.05101.

25. Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient text classification; 2016. arXiv preprint arXiv:1607.01759.

26. Yao L, Mao C, Luo Y. Graph convolutional networks for text classification. Proceedings of the AAAI Conference on Artificial Intelligence; Vol. 33,

2019:7370-7377.

27. Jinghang X, Wanli Z, Shining L, Ying W. Causal relation extraction based on graph attention networks. J Comput Res Develop. 2020;57(1):159.

28. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality; 2013. arXiv preprint

arXiv:1310.4546.

29. Che W, Li Z, Liu T. Ltp: a Chinese language technology platform. Coling 2010; Demonstrations Volume; 2010:13-16.

30. Araki J, Mitamura T. Open-domain event detection using distant supervision. Proceedings of the 27th International Conference on Computational

Linguistics; 2018:878-891.

31. Mitamura T, Yamakawa Y, Holm S, et al. Event nugget annotation: processes and issues. Proceedings of the 3rd Workshop on EVENTS: Definition,

Detection, Coreference, and Representation; 2015:66-76.

32. Liu Y, Luo X, Xuan J. Online hot event discovery based on association link network. Concurr Comput Pract Exper. 2015;27(15):4001-4014.

33. Luo X, Xu Z, Yu J, Chen X. Building association link network for semantic link on web resources. IEEE Trans Autom Sci Eng. 2011;8(3):482-494.

34. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. J Mach Learn Res.

2011;12(ARTICLE):2493-2537.

35. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. Icml; Omnipress; 2010.

36. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-1780.

37. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural architectures for named entity recognition; 2016. arXiv preprint

arXiv:1603.01360.

38. Lafferty J, McCallum A, Pereira FC. Conditional random fields: Probabilistic models for segmenting and labeling sequence data; 2001.

39. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging; 2015. arXiv preprint arXiv:1508.01991.

40. Devlin J, Chang MW, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding; 2018. arXiv preprint

arXiv:1810.04805.

How to cite this article: Gao J, Luo X, Wang H. Chinese causal event extraction using causality-associated graph neural network.

Concurrency Computat Pract Exper. 2022;34(3):e6572. https://doi.org/10.1002/cpe.6572

 15320634, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6572 by Shanghai U

niversity, W
iley O

nline L
ibrary on [06/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/cpe.6572
https://doi.org/10.1002/cpe.6572
https://doi.org/10.1002/cpe.6572
https://doi.org/10.1002/cpe.6572
https://doi.org/10.1002/cpe.6572

