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Abstract

Agent-based modelling (ABM) for Economic
Allocation (EA) analyzes interactions between
economic agents and indicators over time, aid-
ing policymakers and decision analysts in sce-
nario analysis for complex systems like govern-
ment spending or financial market contagion.
These EA-ABMs, when graphed, often have
limited datasets (timesteps) but a large number
of nodes (agents or indicators) and edges (rela-
tionships), which hinders statistical network es-
timation methods. Additionally, statistical rela-
tionship estimation methods lack interpretabil-
ity for non-technical users. To address these is-
sues, we introduce the CPUQ framework, com-
patible with any Language Model (LM) and uti-
lizing a LM’s reasoning to generate predictive
hurdle distributions that quantify relationship
strength between agents/indicators, coupled
with textual explanations for each prediction to
enhance interpretability for non-technical au-
diences. CPUQ also includes a novel post-hoc
calibration approach for network estimation.
Evaluation on a real EA dataset demonstrates
CPUQ’s alignment with expert opinions and
its superior forecasting capability over existing
statistical and LM methods in assessing rela-
tionships in EA-ABMs.

1 Introduction

EA-ABM Economic Allocation (EA) Agent-
based modelling (ABM) is utilized by policymak-
ers and decision analysts to simulate interactions
among economic agents and indicators, aiding in
scenario analysis and forecasting in complex sys-
tems like government spending and financial mar-
ket stress tests. These systems, characterized by a
vast number of agents, indicators, and interactions,
often face data limitations. Consequently, the ef-
fectiveness of EA-ABM is restricted by challenges
inherent in statistical network estimation methods
(§ 6) in settings with limited time-series data but
numerous nodes and edges.
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Figure 1: Figure a) shows an Economic Allocation
Network representing the interactions between eco-
nomic agents (a(1,2y) and indicators (I{1,2)) in a sys-
tem modelling the effect of Government Spending on
socio-health indicators. Figure b) shows the LM agnos-
tic CPUQ framework which performs network estima-
tion, determining predictive hurdle distributions w(+)
for edge weights. CPUQp  produces a Bernoulli or
Categorical Distribution determining edge existence and
conditional edge weight respectively. We perform Net-
work pruning by thresholding our measure of predictive
certainty PC(-), as opposed to the magnitude of the
weight.

CPUQ Our approach, Categorical Perplexity
based Uncertainty Quantification (CPUQ), esti-
mates edge weights in Text Attribute Graphs (TAG)
(Figure 1, Table 1). It outputs a hurdle mixture dis-
tribution, combining a Bernoulli distribution for
modeling the possibility of no edge, and a Cate-
gorical distribution for the edge weight if present.
Relative to statistical network estimation methods



CPUQ Stage Prompt Template

Write a thorough, detailed and conclusive four-sentence answer to the following

To what extent, if any, is the level of {indicator 1} influential to the state of {indicator

1) The level of {indicator 1} is {effect type} influential to the state of {indicator2}.
2) The level of {indicator 1} is not {effect type} influential to the state of {indicator2}.

On a scale of 1 to 5, how strong is the influence of changes in {indicator 1} on

Question
& Reason question.
2}?
* Write only the number of the category that fits the following statement.
"Statement: [Model’s response to Q&R Stage]"
Categories:
CPUQp
Prompt
CPUQ~,  Onascale of 1 to 5, how stror
Prompt changes in {indicator 2}?

Table 1: Example Prompt Templates: Examples of prompts for predicting indicator to indicator relationships in
our Economic Allocation experiments. The {indicator} placeholders represent textual representations of indicators.
{effect_type} can be "direct’, "indirect’, or blank. CPUQp ¢ denote the CPUQ methods yielding Bernoulli and
Hurdle Categorical Distributions based on model perplexity. The sequential prompts (Prompt 1-3) illustrate the
conversational context approach, used by the CPUQ method.

the use of text attributes better reflects causation
modelling. CPUQ also provides interpretable tex-
tual explanations, promotes network sparsity with
predictive hurdle distributions and allows for net-
work pruning based on predictive certainty.

We validate CPUQ on a UK regional govern-
ment’s Economic Allocation system, aiming to al-
locate budgets effectively over a 9-year horizon.
We address conceptual and practical challenges
with uncertainty quantification in language models
and check for biases by comparing edge distribu-
tion predictions to existing methods. CPUQ’s ad-
vantages include alignment with expert-annotated
datasets, interpretability, cost-effectiveness, and ro-
bust uncertainty quantification.

The essence of our contributions lies in:

* Develop CPUQ, a LM agnostic framework
using categorical question prompts to output
predictive hurdle categorical distributions cou-
pled with interpretable textual explanations.

¢ Motivate CPUQ to solve conflation of seman-
tics and syntax when performing quantitative
question answering.

* Show that CPUQ improves EA-ABM fore-
casting performance relative to existing statis-
tical and LM based methods while attaining
strong alignment with expert annotations.

* Validate our proposed method of network
pruning with thresholds on predictive cer-
tainty.

2 Uncertainty Quantification Challenges

Previous works have experimented with using vari-
ous forms of sampling based approaches to Uncer-
tainty Quantification which we discuss below.

Prompt Variation Methods: Prompt varia-
tion uses semantically similar prompts to induce
stochasticity in output. A large body of works
(Arora et al., 2022; Wei et al., 2022) have demon-
strated strong performance increases on QA tasks
by designing methods that search for an optimal
prompt within a semantically similar set of prompts.
This line of research suggests prompt variation does
not test a model’s predictive uncertainty but mostly
the quality of the prompts or language model. Fur-
ther supporting this, Jiang et al. (2021) showed that
prompt specification becomes less important as the
foundational models become better calibrated.

Sequence Perplexity Based Measures:  Text se-
quence probability, s, is derived from the product of
conditional probabilities of new tokens given past
tokens, leading to a log-probability log p(s | z) =
> ;logp (s; | s<;) where s; is the ’th output token
and s; denotes the set of previous tokens. Previ-
ous works (Jiang et al., 2021; Kuhn et al., 2023)
utilized predictive entropy H(s | z) = — [ p(s |
x)Inp(s | z)dx as an uncertainty measure, while
others (Malinin and Gales, 2018; Murray and Chi-
ang, 2018) employed the average log-probability
% Ei\;l logp (si | s<i)-

Prior studies (Kuhn et al., 2023) noted the lack of



theoretical backing for these methods. We build on
this by introducing a formal condition applicable
when tokenized sequences s exceed length 1.

When considering sequences over length 1, the
conditional probability p (s; | concat(x,s;)) has
theoretically (Mann and Thompson, 1987) and
practically (Adewoyin et al., 2022; Banarescu et al.,
2013) been decomposed into composite distribu-
tions over syntax and semantics, where syntax is
the arrangement of words and phrases to create
well-formed text and semantics is the underlying
meaning of the text. With this understanding, se-
quence perplexity can be seen to incorrectly mea-
sure uncertainty over syntax and semantics as op-
posed to solely uncertainty over semantics.

We affirm that prior research (Murray and Chi-
ang, 2018) illustrated instances of this issue, like
’label bias’ impacting response lengths, and others
(Jiang et al., 2021; Kuhn et al., 2023) demonstrated
biases towards varying expression styles with ‘se-
mantic equivalence’.

Overcoming Stylistic Bias When language
model responses are limited to one-token se-
quences, stylistic syntax has minimal impact on
output. Typically, in Yes/No questions, the re-
sponse (‘Yes.” or ‘No.) is unaffected by syn-
tactic style. This concept is illustrated by de-
composing the output sequence s conditional
probability, given prompt x, p(s | z) =
>;logp(s; | concat(z,s<;)), into a joint proba-
bility with a latent semantic meaning m € M as
shown below:

logp(s | z) = Z logp(s,m | x) (1)

meM

= Z Z logp (s; | concat(z,s;), m)
— 2
+logp(m | x)

=Y logp(so|x,m)+logp(m |z) (3

m

~logp(so=s"|z,m)+logp(m|z) (4

Equation 2 explains the surface realization s as
a two-step process: first modeling semantic mean-
ing m, then conditionally modeling s over a bi-
variate distribution of prompt = and latent semantic
meaning m. Equation 3 simplifies this due to one-
token response limits. Equation 4 then restricts our
prompt z to a set of Prompts X, such that for each
semantic meaning m our language model’s output
range is effectively constrained to a single token
s™ p(sp = s™ | z,m).

As p(sp = s™ | x,m) nears 1 for m € M,
output variability p(s | z) mainly stems from
log p(m | =), highlighting that in single-token re-
sponses to certain prompts z € X', uncertainty
is largely due to latent semantics, not stylistic re-
sponse variations.

We address this with categorical question style
prompts.

3 Categorical Perplexity based
Uncertainty Quantification

Section 2 introduced Categorical Prompts for Un-
certainty Quantification (CPUQ) as a more effec-
tive alternative to sequence sampling methods, fo-
cusing on uncertainty over distinct semantic rather
than syntactic outputs.

We remind the reader that our downstream task
is network estimation for the systems modelled by
EA-ABMs, for which we determine a probabilistic
distribution over edge existence and edge weight.
Table 1 provides prompt templates and Figure 1
provides an illustration for the following four steps:

1. Prompting the LM for a Reasoned Answer
2. Edge Existence Prediction CPUQpg

3. Edge Weight Prediction CPUQ«~

4. Entropy based Network Pruning

1. Prompt the LM for a Reasoned Answer
Building on previous research (Wei et al., 2022;
Zhang et al., 2022; Wang et al., 2023), which
showed improved QA performance when the de-
ductive process is broken into intermediary steps,
we tested CPUQ with prompts for intermediary
explanations before the final answer, as shown in
Figure 1.

2. Edge Existence Prediction CPUQp For edge
existence, we create a categorical question style
prompt that requires the model’s response to be
one number corresponding to the correct category
number. We then use the perplexity over a one-
token output space ('1’,2’) to create a Bernoulli
distribution, which models the probability of the
edge existing or not existing.

3. Edge Weight Prediction CPUQ,- Upon
reaching a threshold 0.5, a categorical prompt asks
for a single-digit number reflecting relationship
strength between two agents / indicators. The cat-
egorical mean weight is calculated using normal-
ized likelihoods over the output space as ppopm (s° |
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4. Entropy based Network Pruning A preva-
lent post-hoc calibration method is edge pruning
through placing a minimum threshold on edge
weight. In contrast, we propose edge pruning on
the entropy of our predictive distributions, which
achieves pruning on the basis of prediction cer-
tainty rather than the magnitude of the prediction.

We threshold Predictive Certainty PC = 1 —
H(p), where H(p) is a base-scaled entropy mea-
sure. PC inverts values to indicate maximum cer-
tainty/uncertainty for 1/0. For the CPUQgp, the
scaled entropy Hp(p) is Hg(p) = —(plogyp +
(1 — p)logy(1 — p)). For CPUQg, it’s He(p) =
1+ Zle pilogs pi, where p; is the i-th value’s
probability.

3.1 Post-hoc Calibration Methods

Unbiasing Categorical Label Order We ob-
served stylistic biases in initial CPUQp experi-
ments, favoring either the first or second categorical
response, e.g. consistently inflating probability of
1. To counteract this, we implemented a method
where the same question is posed twice with re-
versed categorical response order, and then aver-
aged the two response distributions. We noticed
that the significance of this form of label bias was
negatively related to the strength of the underlying
language model.

Finetuning Following prior research (Jiang et al.,
2021), we finetuned models on domain-specific
knowledge. Models up to 17bn parameters were
fine-tuned due to hardware constraints. We used
an instruction dataset and a Social Policy-focused
text dataset, in equal proportions. This enhances
the model’s Social Policy expertise while maintain-
ing instruction-following proficiency, ensuring the
conditional distribution p(s | x) favors relevant
response tokens over text continuation. Details on
these datasets are in Appendices D.1 & D.2.

Preventing Hallucination To reduce hallucina-
tion in LM responses during Question & Reason
(Q&R), we designed prompts that implicitly lim-
ited response length to 4 sentences (Table 1), as
current leading LMs typically don’t hallucinate
at this length. This strikes a balance between in-
formation retrieval and hallucination prevention.
CPUQ, adaptable to any language model, should
improve alongside language model advancements,

potentially allowing for longer responses without
increased hallucination risk.

Model Prompt Style F1 Prec. Rec.
GPT3.5 verb_closed 0.795 0.722 0.883
GPT3.5 verb_open 0.830 0.779 0.888

30bn verb_closed 0.767 0.715 0.826
30bn  verb_open 0.778 0.681 0.908
30bn  CPUQpg closed 0.698 0.757 0.647
30bn  CPUQp Q&R 0.760 0.644 0.928

Table 2: Expert Annotation Alignment: This study
compares the effectiveness of prompting methods in
predicting the impact of local government budget items
on socio-economic indicators. It contrasts determinis-
tic Yes/No answers from verb_closed and verb_open
strategies with CPUQ’s probabilistic outputs. Refer to
Table 1 for Prompt Styles examples. We use GPT3.5
and the 30bn llama model. Q&R signifies Question &
Reason. CPUQ., shows competitive performance with
verbalize and notably higher recall.

4 Validation: Alignment To Expert
Annotation

We validate the degree to which CPUQ g predic-
tions align with a dataset produced by the UK
government which links government spending on
broad budget items to the specific socio-economic
indicators they affect.

Data We use a labelled network dataset from
open-access UK government resources. It links
spending on 15 broad budget items to 258 socio-
economic indicators (Figure 1a). Details on dataset
construction are in Appendix F. We supplement the
dataset with negative samples, i.e., pairs of (budget
item, indicator) with no relationship.

Model Our experiments use the llama language
models with 7bn, 13bn, and 30bn parameters.

Baselines We compare our method to two base-
line approaches (verb_open) and (verb_closed)
based on methods from previous studies (Tian et al.,
2023; Zhou et al., 2023; Lin et al., 2022), which
simply prompt the model to verbalize its answer
with an open-ended or close-ended response. We
also compare to gpt3.5-turbo, providing insight
into the effect of foundational model strength. Un-
like the open-source LMs used for CPUQ, gpt3.5-
turbo requires a paid API, and does not reveal log-
probabilities preventing the use of CPUQ.



Results In this binary classification task, we
present F1, Precision, and Recall scores (Table 2).
All CPUQ methods perform competitively with the
verbalize approaches which do not produce prob-
abilistic outputs. The CPUQ Question & Reason
outperforms the CPUQ Closed Ended Question,
highlighting the benefit of intermediary reasoning.
GPT3.5 shows the highest performance, emphasiz-
ing foundational model strength.

4.1 Ablation Experiments

We investigate the sensitivity of our approach to
model size and our post-hoc calibration methods.
For ablation, we include the Expected Calibration
Error (ECE) metric (Guo et al., 2017). It quantifies
the calibration quality of probabilistic predictions
by computing a weighted average of the differences
between observed accuracy and the predicted con-
fidences across distinct intervals.

When mitigating stylistic bias in the CPUQpg
method’s label order, we observed significant recall
degradation in foundational models smaller than
13bn parameters, while the 30bn model showed
modest improvements in recall and Expected Cali-
bration Error. Smaller models struggle with uncon-
ventional responses orderings such as 1) Negative
Response 2) Affirmative Response.

For the 7bn and 13bn models, introducing ’indi-
rectly’ in prompts decreased precision, indicating
these models consider broader relationships com-
pared to expert annotators. However, this also led
to increased recall in both models, suggesting a
greater likelihood of identifying potential relation-
ships.

5 Evaluation: EA-ABM Forecasting

We compare the forecasting performance of an EA-
ABM algorithm called Policy Priority Inference
(PPI) when the underlying network is estimated
using our CPUQ methods and other baseline meth-
ods. For each method/network, we train the PPI
system on the first 5 years of data, then evaluate pre-
dictions for the level of the socio-economic/health
indicators for over the next two years.

The PPI algorithm models interactions between
government spending budget item on indicator
(b2i) and the second order spillover effects of indi-
cator to indicator (i2i) interactions (Figure 1a). In
the PPI algorithm the b2i edges are binary, while
the i2i edges are variable weights, appropriate for
our CPUQpg and CPUQ,~ methodologies respec-
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Figure 2: Ablation Experiments: These figures show
predictive performance in classifying edge existence in
a Textual Attribute Network for an EA dataset related to
UK government spending and socio-economic indica-
tors. Figure a) illustrates the impact on predictive scores
of applying our unbiasing method for categorical Label
order (detailed in Section 3). Figure b) compares perfor-
mance variations when specifying the prompt templates’
"effect type" as ’directly’, “indirectly’ or non-specified.
This prompt template is detailed in Table 1.

tively. For a detailed explanation of the PPI algo-
rithm please refer to Appendix B.

Data  Our dataset spans 7 years of annual
data on UK government spending for 32 fine-
grained health-related government spending budget
items, sourced from the Spend and Outcomes Tool
(SPOT), and 258 socioeconomic-health indicators
from various public entities, including Fingertips
and the UK Office for National Statistics. The first
5 years constitute the training set, while the last two
years serve as forecasting test set. This includes
8256 potential b2i edges and 66564 i2i edges for es-
timation. More detailed information is available in
Appendix F, which also outlines the connection be-



tween broad government budget items and specific
indicators.

Baseline Methods Each experimental result con-
sists of methods for predicting both b2i and i2i
edges independently. For determining the b2i
edges, baseline methods include verbalize with
close-ended questions as detailed in Table 1 and
naive expert annotation (n.e.a.). The latter ex-
tends the expert annotation—which provides re-
lated pairs of broad budget items b, and indicators
i by assuming every fine-grained budget item by
that’s part of the broad budgetitem (b € by) relates
to all the indicators the broad budget item is noted
to connect with: if byeby, and (by, 7)—(by, 7).

For determining i2i edges, baseline methods en-
compass zero (representing no spillover effects be-
tween indicators), verbalize as shown in Table 1, en-
tropy of the CPUQ g output bernoulli distribution
for all edges with a probability over 0.5 of exist-
ing, and the Concave penalized Coordinate Descent
with reparameterization (CCDr) algorithm. CCDr
estimates Bayesian network structures using pe-
nalized maximum likelihood estimation combined
with coordinate descent optimization on reparame-
terized Gaussian likelihoods. By inducing convex-
ity in the likelihood and applying sparsity-inducing
MCEP (Li et al., 2022) regularization, it efficiently
learns graphs, especially in p >> n scenarios. De-
tails on the CCDr methodology can be found in
Appendix C.

For the CPUQ and verbalize methods, we em-
ploy a model from a 30bn parameter set of the
Ilama family, finetuned on our curated datasets as
described in Appendices D.1 & D.2.

5.1 Results

For the set of experiments where the b2i method-
ology is fixed to naive expert annotation (n.a.e.)
and 121 method varies, in Table 3 we observe
that CPUQ. method achieves the lowest mse/mae
score, performing competitively with the entropy
approach.

For the set of experiments where we addition-
ally predict the b2i edges, we immediately notice a
degradation in performance of the verbalize method
and CPUQ method, indicating relative difficulty in
predicting b2i relative to i2i edges. We posit this is
due to binary output space of the b2i edges mean-
ing that mis-specification of an edge weight has a
larger negative effect on performance. Within this
category we notice the CPUQ approach outperform

the verbalize approach.

b2i i2i mse mae

n.e.a Zero 0.01208 0.04835
n.e.a CCDr 0.01209 0.04832
n.e.a entropy  0.01196 0.04822
n.e.a verbalize 0.01200 0.04814
n.e.a CPUQ,- 0.01195 0.04820

“verbalize verbalize 0.01211 0.04830

CPUQp CPUQ, 0.01202 0.04825

Table 3: PPI Forecasting Performance: Prompting
methodologies are varied for prediction of binary bud-
get item to indicator (b2i) and non-binary indicator to
indicator (i2i) relationships. For b2i edges, methods
include naive expert annotation (n.e.a) and verbalize.
Float i2i methods include zero (no spillover), verbalize,
entropy from CPUQ g with > 0.5 probability, the CCDr
algorithm and CPUQ(Section 3). Results highlight
the competitive performance of CPUQ and the rela-
tive difficulty of labelling binary valued edges.

The second set of experiments focus on also
predicting the binary b2i edges in the network as
well as the non-binary i2i edges in the network.
We notice that CPUQ outperforms the verbalize
method.

5.2 Inspecting Edges Distribution

In Figure 3a we show the distribution of values for
the predicted values for the i2i edges in our Eco-
nomic Allocation network. The verbalize method
exhibits an output limited to two values of 2.0 and
3.0. Conversely, we notice that the CPUQ~ method
produces a unimodal distribution centered around
3.0 with tails extending to 2.6 and 4.0.

5.3 Entropy Thresholding

In Figure 4 we evaluate the effect on forecasting
performance when applying different thresholding
strategies for the weights predicted by CPUQ.,
CCDir and Verbalize. For the network edge weights
predicted by CPUQ_, thresholding is applied to the
scaled entropy of the predictive categorical distribu-
tion. For the network weights predicted by CCDr
and Verbalize, thresholding is based on the abso-
lute value of the point predictions for the weights.
For each method we use fifteen linearly spaced
thresholds over an appropriate range. For CPUQ,
the fifteen ordered thresholds are the values at 0.05
intervals starting from 0.0 and ending at 0.7. For
Verbalize, the fifteen ordered thresholds are values
at 0.5 intervals starting from 0.0 and ending at 7.0.
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Figure 3: Distribution of Predicted Edge Weights:
We compare the distribution of non-zero predicted edge
weights from our CPUQ prompting strategy to the dis-
tribution of edges from verbalize strategy when using
the same underlying language model. We notice the ver-
balize exhibits a limited distribution with values falling
on the values of 2 and 3. Our CPUQ., approach values
in the range of 2.6 and 4.0.

With tuned thresholding, CPUQ. achieves an
MSE of 0.1184, which is an improvement from
the non tuned result of 0.1195 reported in Table 3.
We notice that our entropy thresholding method
produces a convex optimisation path with respect
to threshold value, while threshold tuning CCDr
and Verbalize do not exhibit a clear minima. We
believe this is attributable to the fact that threshold-
ing on the absolute value filters for point predicted
weights with a high value, whereas thresholding
on the predictive entropy filters for categorical pre-
dictions that exhibit high certainty over any value.
Intuitively, this can be interpreted as absolute value
thresholding using absolute weight value as a proxy
for certainty, while entropy thresholding more cor-
rectly uses predictive entropy to model certainty.
The ability to threshold on predictive entropy is a
unique benefit of our CPUQ. approach that pro-
duces a categorical distribution.

6 Related Work

Network Estimation Approaches Statistical net-
work estimation methods such as those based on
Bayesian networks (BN) (Pearl, 1988; Massara
et al., 2015; Aragam and Zhou, 2015) assume
acyclic graphs and do not describe causal rela-
tionships, while Granger-causality networks based
on Granger (1969); Kang et al. (2017) assume
underlying linear relationships between variables
(Castagneto-Gissey et al., 2014) and are inappro-
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Figure 4: Entropy Thresholding: We evaluate the
effect on forecasting performance when applying differ-
ent thresholding strategies for the weights predicted by
CPUQ(, CCDr and Verbalize. For the network weights
predicted by CPUQ, thresholding is applied to the
scaled entropy of the predictive categorical distribu-
tion. For the network edge weights predicted by CCDr
and Verbalize, thresholding is based on the absolute
value of the point predictions for the weights. For each
method we use fifteen linearly spaced thresholds over
an appropriate range. We notice that our entropy thresh-
olding method produces a convex optimisation path
with respect to threshold value, while threshold tun-
ing CCDr and Verbalize do not exhibit a clear minima.
The CPUQ outperforms the other methods at the 10th
threshold which corresponds to a minimum entropy of
0.5.

priate for test of predictability involving more than
two variables. Further, these methods often require
a sufficient observations-to-variables ratio, a com-
mon limitation for Economic Allocation Systems
even with matrix factorization methods. This issue
is addressed by Aragam and Zhou (2015) who pro-
pose Concave penalized Coordinate Descent with
reparametrization (CCDr), a non-convex optimiza-
tion approach that uses sparse regularization and
block-cyclic coordinate descent.

Language Models (LM) present an alternative
network estimataion method (Yamasaki et al., 2023;
Bansal et al., 2019; Saxena et al., 2022) by build-
ing prompts from the textual attributes associated
with nodes in the network (see Figure 1). Kici-
man et al. (2023) show that this LM approach can
capture both associative and non complex causal
relationships, in contrast to the BN methods which
only model associative relationships. However, the
ability to model complex causal relationships is
limited, as Jin et al. (2023) found that performance
suffers in out-of-distribution settings when variable
names and textual expressions used in the prompts



are dissimilar to those in the LM’s training set.

Uncertainty Quantification Recent work have
explored various approaches for quantifying uncer-
tainty in predictions from large language models
(LMs). Some methods have focused on eliciting
and evaluating verbalized confidence scores pro-
duced by the LM itself (Tian et al., 2023; Zhou
et al., 2023). Others have proposed using consis-
tency among multiple candidate answers as a proxy
for the model’s uncertainty (Xiong et al., 2023; Ngu
et al., 2023). While promising, these approaches
don’t rely on the standard measure of perplexity.

For example, Ngu et al. (2023) present domain-
independent uncertainty measures based on the di-
versity of responses to a prompt, including entropy,
Gini impurity, and centroid distance. They demon-
strate these sample-based diversity measures cor-
relate with failure probability without using per-
plexity. Similarly, Xiong et al. (2023) introduce
consistency-based confidence scores by generating
multiple candidate answers and assessing their con-
sistency. They also propose hybrid methods com-
bining consistency with verbalized scores. How-
ever, these methods require drawing multiple sam-
ples from already large Language Models leading
to a large computational expense.

Other studies have focused on eliciting cali-
brated confidence estimates directly from language
models fine-tuned with human feedback (Tian et al.,
2023; Zhou et al., 2023; Lin et al., 2022). These
methods produce probability scores or phrases rep-
resenting the model’s certainty, showing strong per-
formance in calibration metrics. While promising,
they rely less directly on perplexity itself. Both
Lin et al. (2022) and Kadavath et al. (2022) also
propose ways to predict models uncertainty by fine-
tuning predictors on the embeddings of generat-
ing models. However, these approaches need task-
specific labels, additional training, and are unreli-
able out-of-distribution (Kadavath et al., 2022).

Some prior work has addressed the important
concern of grouping semantic similar terms when
distributing probabilities over candidate answers.
Jiang et al. (2021) study the case of one word an-
swers by summing the probability over groups of
synonyms, while Kuhn et al. (2023) extend this idea
to phrases by grouping phrases which are deemed
to have semantic equivalence. Although, both meth-
ods incur a large additional computational cost, as
they require a secondary model which is used to
evaluate similarity of different candidate answers

and also utilize a sampling methodology. In con-
trast, CPUQ evaluates likelihood of categorical
predictions from language models avoiding time-
ineffeciency of sample-based techniques and incon-
sistencies of open-ended verbalized scoring.

7 Conclusion

We introduced CPUQ, a novel method for un-
certainty quantification using Language Models.
This method utilizes categorical-style questions to
generate hurdle categorical distributions for edges
in a Text Attribute Graph associated with Agent-
based modelling for Economic Allocation. Vali-
dated against a UK dataset on government spend-
ing and socio-economic indicators, CPUQ aligns
effectively with expert annotations, outperforms
prominent alternative LM and statistical methods,
and provides non-technical end-users with inter-
pretable textual explanations.

Further Work Post-hoc methods to increase
calibration of output distributions are important.
Within this, we place specific relevance on meth-
ods that increase the variability of distributions
produced when models are prompted for a scaled
answer. Figure 3a showed that the CPUQ. method
for predicting edges produces a set of distributions
that may not span the entire range. Future work
could also investigate the performance of meth-
ods that can extend this methodology to scenarios
where the set of answers are not know ex-ante.

An alternative direction is to develop a network
estimation approach that uses the textual attribute
information of the nodes and as well as the limited
time-series data available for them.

8 Ethics Statement

We acknowledge that our proposed model may be
susceptible to having learnt harmful biases present
in the pre-training and finetuning datasets. In and
of itself, this has the potential to produce harmful
suggestion for policymakers and decision makers.
Therefore, we advocate for morally correct and re-
sponsible practices in the case of real-world appli-
cations. When creating our Social Policy Dataset,
we aimed to choose a dataset with equal focus
across different social policy topics and with re-
striction to articles published, in order to prevent
the biased/harmful learning. Finally, as CPUQ is a
framework wrapping any language model, it inher-
its the benefit of any safety measures implemented
in the foundational model.



References

Rilwan Adewoyin, Ritabrata Dutta, and Yulan He. 2022.
Rstgen: Imbuing fine-grained interpretable control
into long-formtext generators. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1822—1835.

Bryon Aragam and Qing Zhou. 2015. Concave penal-
ized estimation of sparse gaussian bayesian networks.
Journal of Machine Learning Research, 16(69):2273—
2328.

Simran Arora, Avanika Narayan, Mayee F. Chen, Laurel
Orr, Neel Guha, Kush Bhatia, Ines Chami, Frederic
Sala, and Christopher Ré. 2022. Ask me anything: A
simple strategy for prompting language models.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178-186.

Trapit Bansal, Da-Cheng Juan, Sujith Ravi, and Andrew
McCallum. 2019. A2N: Attending to neighbors for
knowledge graph inference. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4387—4392, Florence, Italy.
Association for Computational Linguistics.

G. Castagneto-Gissey, M. Chavez, and F. De Vico Fal-
lani. 2014. Dynamic granger-causal networks of
electricity spot prices: A novel approach to market
integration. Energy Economics, 44:422—432.

Office for Health Improvement & Disparities (OHID).
2023. Public health profiles.

Office for National Statistics (ONS). 2023. Gross do-
mestic product at market prices:implied deflator:sa.

C. W. J. Granger. 1969. Investigating causal relations
by econometric models and cross-spectral methods.
Econometrica, 37(3):424-438.

Omar A. Guerrero and Gonzalo Castafieda. 2020. Policy
priority inference: A computational framework to
analyze the allocation of resources for the sustainable
development goals. Data amp; Policy, 2:el7.

Omar A. Guerrero and Gonzalo Castaieda. 2021. Quan-
tifying the coherence of development policy priorities.
Development Policy Review, 39(2):155-180.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962-977.

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrin-
maya Sachan, Rada Mihalcea, Mona Diab, and Bern-
hard Scholkopf. 2023. Can large language models
infer causation from correlation?

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know.

Dongyeop Kang, Varun Gangal, Ang Lu, Zheng Chen,
and Eduard Hovy. 2017. Detecting and explaining
causes from text for a time series event. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2758-2767,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.

Emre Kiciman, Robert Ness, Amit Sharma, and Chen-
hao Tan. 2023. Causal reasoning and large language
models: Opening a new frontier for causality.

Bowen Li, Suya Wu, Erin E. Tripp, Ali Pezeshki, and
Vahid Tarokh. 2022. Minimax concave penalty regu-
larized adaptive system identification.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Teaching models to express their uncertainty in
words.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct.

Andrey Malinin and Mark Gales. 2018. Predictive un-
certainty estimation via prior networks.

William C Mann and Sandra A Thompson. 1987.
Rhetorical structure theory: A theory of text organiza-
tion. University of Southern California, Information
Sciences Institute Los Angeles.

Guido Previde Massara, T. Di Matteo, and Tomaso Aste.
2015. Network filtering for big data: Triangulated
maximally filtered graph.


http://jmlr.org/papers/v16/aragam15a.html
http://jmlr.org/papers/v16/aragam15a.html
http://jmlr.org/papers/v16/aragam15a.html
http://arxiv.org/abs/2210.02441
http://arxiv.org/abs/2210.02441
http://arxiv.org/abs/2210.02441
https://doi.org/10.18653/v1/P19-1431
https://doi.org/10.18653/v1/P19-1431
https://doi.org/10.18653/v1/P19-1431
https://doi.org/https://doi.org/10.1016/j.eneco.2014.05.008
https://doi.org/https://doi.org/10.1016/j.eneco.2014.05.008
https://doi.org/https://doi.org/10.1016/j.eneco.2014.05.008
https://doi.org/https://doi.org/10.1016/j.eneco.2014.05.008
https://doi.org/https://doi.org/10.1016/j.eneco.2014.05.008
https://fingertips.phe.org.uk
http://website-url.com
http://website-url.com
http://website-url.com
http://www.jstor.org/stable/1912791
http://www.jstor.org/stable/1912791
http://www.jstor.org/stable/1912791
https://doi.org/10.1017/dap.2020.18
https://doi.org/10.1017/dap.2020.18
https://doi.org/10.1017/dap.2020.18
https://doi.org/10.1017/dap.2020.18
https://doi.org/10.1017/dap.2020.18
https://doi.org/10.1017/dap.2020.18
https://doi.org/10.1017/dap.2020.18
https://doi.org/https://doi.org/10.1111/dpr.12498
https://doi.org/https://doi.org/10.1111/dpr.12498
https://doi.org/https://doi.org/10.1111/dpr.12498
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1706.04599
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
http://arxiv.org/abs/2306.05836
http://arxiv.org/abs/2306.05836
http://arxiv.org/abs/2306.05836
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
https://doi.org/10.18653/v1/D17-1292
https://doi.org/10.18653/v1/D17-1292
https://doi.org/10.18653/v1/D17-1292
http://arxiv.org/abs/2302.09664
http://arxiv.org/abs/2302.09664
http://arxiv.org/abs/2302.09664
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2211.03903
http://arxiv.org/abs/2211.03903
http://arxiv.org/abs/2211.03903
http://arxiv.org/abs/2205.14334
http://arxiv.org/abs/2205.14334
http://arxiv.org/abs/2205.14334
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/1802.10501
http://arxiv.org/abs/1802.10501
http://arxiv.org/abs/1802.10501
http://arxiv.org/abs/1505.02445
http://arxiv.org/abs/1505.02445
http://arxiv.org/abs/1505.02445

Kenton Murray and David Chiang. 2018. Correcting
length bias in neural machine translation. In Proceed-
ings of the Third Conference on Machine Translation:
Research Papers, pages 212-223, Brussels, Belgium.
Association for Computational Linguistics.

Noel Ngu, Nathaniel Lee, and Paulo Shakarian. 2023.
Diversity measures: Domain-independent proxies for
failure in language model queries.

Office for Health Improvement & Disparities. 2023.
Spend and outcomes tool.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D. Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting elic-
its reasoning in large language models.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2023. Can llms
express their uncertainty? an empirical evaluation of
confidence elicitation in llms.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Shohei Yamasaki, Yuya Sasaki, Panagiotis Karras, and
Makoto Onizuka. 2023. Holistic prediction on a time-
evolving attributed graph. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13676—
13694, Toronto, Canada. Association for Computa-
tional Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompting
in large language models.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment.

10

A Economic Allocation Agent-based
Modelling Systems

Agent-based Modelling (ABM) serves as an in-
strumental framework for depicting complex eco-
nomic allocation games that involve interdepen-
dent agents. The delineation of the political econ-
omy game from the accompanying research can be
broadened into three primary aspects: environment,
agents, and dynamics.

Environment: The configuration presents a
graph which elucidates the interdependencies
among N agents, potentially characterized by
general graph structures such as Erd6s-Rényi or
Barabési-Albert models. Every agent, denoted by
1, encompasses a state variable S; to manifest its
prevailing state, which could span across either con-
tinuous or discrete realms. Furthermore, a global
state S amalgamates the states of all agents.

Agents: In the context of agents, each ¢ is driven
to amplify a reward function R;(S), contingent on
the global state, epitomizing the economic incen-
tives intrinsic to every agent. An inherent limitation
faced by the agents is the absence of comprehen-
sive knowledge about the specific states or actions
of their counterparts. Their observations remain
confined to the local data discernible within their
graph neighborhood.

Dynamics:  With the progression of each time
step t, every agent ¢ institutes an action A;()
rooted in their localized observations, culminat-
ing in the evolution of their individual state .S;.
Owing to the intricate web of interdependencies
embedded in the graph, modifications in the local
state permeate, influencing the overarching global
state S. Subsequently, the environment recipro-
cates by dispensing a reward R;(t) to each agent,
in line with the recalibrated global state. The over-
arching goal for agents is to unravel behaviours
that potentiate the maximization of long-term re-
wards through their actions. Potential learning algo-
rithms might encompass model-free reinforcement
learning, model-based planning, or heuristic adjust-
ments analogous to the research.

This expansive framework offers the latitude
to emulate diverse economic allocation scenarios
within the ambit of multi-agent games. The in-
tricate graph structure translates the dependencies,
while the local observations of agents stand as prox-
ies for the imperfect information. Meanwhile, the
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learned policies illuminate the underlying incen-
tives and adaptations. In tandem, the platform fa-
cilitates a comparative study of different learning
algorithms, focusing on global efficiency and eq-
uity outcomes, rendering it an ideal bedrock for
delving deep into decentralized economic systems.

B Policy Priority Inference

In this section we provide a formulaic interpreta-
tion of the Policy Priority Inference algorithm de-
veloped in Guerrero and Castafieda (2020, 2021).

B.1 Formulaic Interpretation

Agent and State Definitions: Consider N
agents, where each agent corresponds to a policy
issue i.
The state S; of agent ¢ is given by:
S; = 1I;

where I; denotes the development level for policy
issue ¢. The global state is then defined as:

S:(Ila"'le)

Reward and Action Function:
function R;(S) is expressed as:

Ri(S) =F;

The reward

with
Fi=(L+P—-C)(1—0;fr)
where:

* P; is the resource allocation to agent .
» (; denotes the contribution of agent i.

* §; indicates the event of agent ¢ diverting
funds.

¢ fris a function mapping the state of the rule
of law agent to a probability.

The action A; of agent i is defined as:
A =G,

Environment Dynamics: The environment ad-
justs the indicator levels based on agent contribu-
tions as:

Ii < Ii +y(T; — L;)(Cs + ZAjiCj)
J
Where:

* T; is the target level for indicator <.

 Aj; signifies the interdependency graph.
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Objective:  Agents aim to devise contribution
policies C;(t) in order to maximize their long-term
rewards Fj. Concurrently, the central authority’s
responsibility is to allocate resources P; to guide
indicators towards their respective targets.

This encapsulates the primary components of
the model in the cited paper using standardized
terminology.

B.2 Policy Formulation and Development
Strategies

Policy Priority Inference (PPI) is a powerful tool
rooted in the interplay of complexity economics
and computational social science. As we grap-
ple with interconnected socio-economic landscapes
and strive for strategic development planning, PPI

offers precision, depth, and adaptability. Let’s
delve into its multifaceted utility:
Strategic Allocation & Planning: At the core

of PPI is its prowess in guiding resource alloca-
tion. It allows policymakers to effectively navigate
intricate policy networks, ensuring transformative
resources are channeled towards areas that promise
the highest impact. Furthermore, with its capability
to model and reproduce stylized facts, PPI strength-
ens the foundation of "what-if" analyses, fostering
a deeper understanding of fiscal planning and its
repercussions.

Evaluative Metrics & Feasibility:  PPI is not
just prescriptive but also evaluative. It aids in gaug-
ing the coherence of a government’s priorities rel-
ative to its overarching goals. Moreover, it pro-
vides a clear lens to assess the feasibility of a set
of targets, projecting timeframes and requirements,
thereby allowing for informed adjustments.

Optimization & Efficiency:  The framework
stands out in its ability to identify both acceler-
ators and bottlenecks in development pathways.
This dual capability facilitates the search for do-
mains that amplify improvements across various
indicators while simultaneously highlighting areas
where structural constraints might impede progress.
Complementing this is PPI’s inherent knack for un-
covering inefficiencies, ensuring that resources are
utilized optimally and wastages are minimized.

Adaptability & Goal Setting:  PPI’s versatility
is exemplified in its adaptability to diverse national
contexts. Whether it’s exploring a broad spectrum
of developmental goals or assessing the fluidity of



resource reallocation, PPI is instrumental in tailor-
ing strategies that resonate with a nation’s unique
developmental narrative.

C CCDr

The CCDr algorithm introduced in this paper esti-
mates Bayesian network structures using penalized
maximum likelihood estimation and coordinate de-
scent optimization. Here is a detailed mathematical
explanation of how it works:

Let X = (Xy,...,X;) be a p-dimensional ran-
dom vector that follows a multivariate Gaussian
distribution with mean O and covariance matrix
Y. The goal is to estimate the structure of the
underlying directed acyclic graph (DAG) B that en-
codes the conditional independence relationships
between the variables.

We start with the structural equation model
(SEM) representation of X:

Xj = Zﬂz]Xl + €5 for j=1,..,p
i#j

where the ¢; are independent Gaussian noise
terms with variances w?-. The weighted adjacency
matrix B = (3;;) along with the diagonal matrix
Q = diag(w?, ...,w?) define the DAG structure
and noise variances.

The negative log-likelihood function based on n
i.i.d. observations is:

L(B,QX) =

n 2 1 2
3 [ng(wj) + 5l — X
j J
This function is nonconvex, so a reparameteriza-
tion is done:
1

and p; = o
J

Bij

Wi

Gij =

leading to the convex loss function:

L(®,R|X) =
1
> [=nlog(p)) + 5llpjz; — X5l (5)
:

where ® = (¢;;) and R = diag(p1, ..., pp). The
penalized loss function is then:
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Q(®,R) = L(®,R|X) + > _pal|6i;])
i#]

where py(-) is a penalty function like MCP or
lasso.

The CCDr algorithm minimizes () by perform-
ing cyclic coordinate descent. Each ¢;; is updated
by minimizing Q1(¢;;) = argmin Q(®,R) and
each p; by minimizing QQ2(p;). After convergence,
the estimates qgij and p; are transformed back to
Bij and @]2 The estimated DAG B is the one cor-
responding to b. By using a sparsity-inducing
penalty, the algorithm produces sparse DAG esti-
mates. Theoretical results show this procedure can
congistently estimate the true graph structure under
certain conditions.

In summary, the CCDr algorithm is able to learn
sparse Bayesian network structures by exploiting
a convex reparameterization of the Gaussian likeli-
hood and using cyclic coordinate descent with con-
cave regularization to produce penalized maximum
likelihood estimates. The sparsity helps estimate
high-dimensional graphs efficiently.

D Finetuning

D.1 Social Policy Dataset

We curated a dataset derived from high-quality re-
search papers that provide a comprehensive view
of government policy across its 14 broad budgetary
categories as defined in the SPOT dataset. Utiliz-
ing the SemanticScholar API, we downloaded up
to 250 research papers for each category, applying
filters for language and citation count. Our final
dataset, after removing duplicates, comprises 1450
research papers. During preprocessing, the text was
segmented into spans ranging from 128 to 256 char-
acters, with a 35% overlap. Only English-language
papers were retained. Any textual inconsistencies
arising from PDF to text conversion were rectified
using ’stabilityai/StableBeluga-7B’. The dataset is
open-sourced and available at this repository.

D.2 Instruction Tuning Dataset

The inherent methodology of our CPUQ approach
necessitates a response style typical of instruction-
tuned language models. This specific response
mechanism aids in understanding and generating
appropriate answers for Prompt + Answer scenar-
ios. The Social Policy Dataset contains continuous



prose, from which a language model learns con-
tinuation, as opposed to instruction following. To
ensure our model retains a strong ability to respond,
we integrated the WizardLM dataset (Luo et al.,
2023b; Xu et al., 2023; Luo et al., 2023a). This
dataset bridges the instructional response gap, for-
tifying our model’s ability to handle the nuances of
our CPUQ prompting approach.

D.3 Finetuning Setup

Our finetuning setup employed QLORA with dou-
ble quantization and an Adam optimizer (Ir=1e-3,
b1=0.9, b2=0.95). We applied a constant schedule
with a 200-step warm-up and distributed over 6
RTX3090s. For the 7bn models, we used a batch
size of 30, while for the 13bn models, the batch
size was 18, with gradients accumulated over 3
steps, resulting in an effective batch size of 54. An
innovative paired early stopping rule was designed,
halting the process if no improvements are detected
on validation sets for either instruction or next to-
ken prediction tasks.

E CPUQ: Further Considerations

Constraints:  One important constraint of this
framework is that, when using the categorisation
methodology, the user must specify that the cate-
gorical ouputs chosen be numbers and not letters.
An intuitive explanation for this is based on the
idea of ensuring that the probability of the next to-
ken is only focused on the probability of selecting a
correct categorical number and not also predicting
a general continuation. For example, suppose we
ask a LM to answer the Question: "Choose the cat-
egory letter that best answers the question: Which
is the most environmentally friendly form of trans-
port for people in a large city: A) SUV, B) Bus or
C) Bike. The ideal set of responses would be ["A.",
"B.", "C."]. However, due to the unconstrained na-
ture of Language Models the set of responses also
includes sentences such as ["A likely answer to this
question would be C", "Based on Bikes having no
emissions "C" would be the correct category."]. Ini-
tial experiments indicated that the extent to which
this is a problem is more tied to the language model
strength than the phrasing used in the prompt.

Excluding an NA from Categorical Answer
Space:  In our work, we use a binary catego-
rization for our ‘Yes’, ‘No’ prediction and exclude
a third option which could reflect a non-committal
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or uncertain prediction. Specifically, the two alter-
natives for this category are ‘I don’t know’ and ‘I
am not sure’. The difference between these phrases
can have implications both in interpretation and in
practical implementation. If we were to extend the
categorical answer space to include a third category,
our set of answers would look like [Yes’, ‘No’, ‘I
don’t know’ / ‘I am not sure’].

We begin by discussing the category ‘I am not
sure’. The category ‘I am not sure’” implies a more
comprehensive form of uncertainty compared to
‘I don’t know’. Not only does it suggest a lack of
knowledge, but it can also technically include a dis-
tribution over ‘Yes’ and ‘No’. For instance, stating
‘I am not sure’ might imply that one is 20% certain
of “Yes’ and 80% certain of ‘No’. This makes the
categories not strictly mutually exclusive. How-
ever, this comprehensive interpretation presents its
own problems. When a probability is assigned to
a category like ‘I am not sure’, we are essentially
quantifying uncertainty about uncertainty.

Now, considering the simpler ‘I don’t know’ op-
tion, from a theoretical standpoint, it represents
an acknowledgment of one’s epistemic boundaries
on a topic, without necessarily implying any spe-
cific probability distribution over ‘Yes” and ‘No’.
This does not pose a logical problem. However, in
practice, we encountered an issue: for cases where
the correct answer to a categorical question was
‘No’, language models were inclined to allocate a
high probability to ‘I don’t Know’. This tendency
meant that ‘No’ and ‘I don’t know’ cannibalized
each other’s assigned probability, complicating the
mapping of probabilities to categories.

The nuanced difference between the two cate-
gories and the inherent difficulties they bring to
the table resonate with the Knightian distinction
between risk and uncertainty, where some events
inherently defy easy probabilistic characterization
(Knight, 1921). Arrow’s critique on the limits of
decision-making under uncertainty complements
this, indicating potential shortcomings of standard
decision models in scenarios with intertwined un-
certainty levels (Arrow, 1971).

To conclude, while ‘I don’t know’ is a straight-
forward acknowledgment of lack of knowledge,
adding a probabilistic layer to it leads to contradic-
tions, especially when the boundaries between the
categories blur.



F Economic Allocation Dataset

The dataset can be composed into three parts

1. Dataset mapping broad government budget
items and indicators, annotated by experts

2. Timeseries of United Kingdom’s spending
across 32 fine-grained government budget
items

3. Timeseries of 258 population health and socio-
economic indicator levels in the UK

1. Government Spending Timeseries: We cre-
ate a dataset showing local authority expenditure
over 32 fine-grained UK budget items. After pre-
processing, we keep data between 2013 and 2019.
To retrieve this data, we draw upon the Spend and
Outcomes Tool (SPOT) (Office for Health Improve-
ment & Disparities, 2023), created by the Office
for Health Improvement and Disparities (OHID,
Department of Health and Social Care, England).
In terms of expenditure, SPOT includes net current
local authority revenue expenditure and financing.
We focus on this fraction of the total Public Health
Funding as local authorities have a relative leeway
to allocate resources to fund Public Health Ser-
vices, as opposed to the expenditure earmarked
to cover National Health Service (NHS), primary
care, prescribing, and other staff costs. It is also
smaller than other types of expenditure available to
local authorities, such as Education, which is much
larger but more rigid in the services to allocate.

2. Population Health and Socio-economic Indi-
cator Timeseries:  In terms of health service pro-
vision and population level health outcomes, we ob-
tain data from Fingertips (for Health Improvement
& Disparities , OHID), which is a large dashboard
of health-related information reported by different
public entities and organised into themed health
profiles. The Consumer Price Inflation timeseries
(for National Statistics , ONS) and the mid-year
estimates of resident population are obtained from
the UK Office for National Statistics. Rule of law
and Quality of Monitoring parameters to be em-
ployed in the PPI algorithm were obtained from the
World Development Indicators.

3. Related Broad Budget Item and Indicators
Dataset In total there are 258 unique indica-
tors and 15 broad budget items. SPOT provides
a dataset indicating which broad government bud-
get items are intended to effect which indicators.
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G Scaled Entropy For Categorical
Distribution

In this section, we discuss the scaled entropy for
Categorical Distributions, emphasizing its similari-
ties with the traditional normalization method.

The key properties of the scaled entropy for Cat-
egorical Distributions are:

1. The entropy is scaled to the range [0, 1], mak-
ing it comparable across distributions with
different numbers of categories.

2. The surprisal is consistent across different dis-

tributions.

For a uniform distribution over n categories,

the scaled entropy is always 1, providing an

intuitive measure of maximum uncertainty.

4. The method is specifically tailored to categori-
cal distributions, offering a direct and intuitive
comparison between distributions.

3.

To draw parallels between the two normalization
methods, consider the entropy formula with base

n:
n

-2

=1

1 1

— logn f—

H(X) - -

Given that log,, n = 1, the entropy for a uniform
distribution simplifies to:

H(X)=1

This is analogous to the traditional method of di-
viding by logs(n), where the entropy of a uniform
distribution is also normalized to 1. The primary
similarity is that both methods aim to scale the
entropy value to a range of [0, 1], ensuring compa-
rability across different distributions.

Benefits of using the number of categories n as
the base for normalization include:

* Direct and intuitive comparison between dis-
tributions with different numbers of cate-
gories.

* The entropy value provides a clear indication
of the distribution’s nature, with 1 indicating
a uniform distribution and values close to 0
indicating deterministic distributions.

Another advantage of this normalization method
is its simplicity and ease of interpretation, espe-
cially for audiences not deeply familiar with tradi-
tional information theory concepts. This is crucial
since our focus is on Economic Allocation systems,



which could include policymakers. In this context,
this measure of uncertainty offers an easily inter-
pretable value between 0 and 1.

H Reproducibility Statement

Code: The code and data used in this study can
be found at this repository [Redacted for Review].
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