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ABSTRACT

Scaling up model parameters and training data consistently improves the perfor-
mance of large language models (LLMs), but at the cost of rapidly growing memory
and compute requirements, which makes deployment on resource-limited hardware
infeasible. Model pruning, a widely used compression technique, reduces inference
costs by removing redundant parameters. However, its impact on downstream
performance remains unpredictable and is typically assessed only through costly
empirical sweeps. To address this gap, we introduce pruning laws – simple and in-
terpretable scaling relations that connect a pruned LLM’s post-pruning performance
to its unpruned performance and pruning ratio. Across five LLMs (2.7B–13B pa-
rameters), three pruning strategies (unstructured, width, and depth), and eight
diverse tasks, we show that pruning laws achieve strong predictive accuracy (av-
erage extrapolation error < 7%), reliably quantify performance degradation, and
identify critical pruning thresholds beyond which recovery is infeasible. Moreover,
we demonstrate that the same laws transfer universally across architectures, pruning
methods, and even unseen models in zero-shot and one-shot setups. These results
provide both researchers and practitioners with a principled framework to select
pruning strategies, estimate safe pruning ratios without exhaustive tuning, and
deploy LLMs efficiently under real-world compute and latency constraints.

1 INTRODUCTION

In recent years, there has been growing interest in understanding how the size of pre-training models
and datasets impacts the downstream performance of large language models (LLMs). Neural scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022; Muennighoff et al., 2023) formalize the relationships
between model performance, size, data, and compute, showing that performance improves predictably
as these factors scale. However, recent studies (Faiz et al., 2024; Diaz & Madaio, 2024; Villalobos
et al., 2024) also show that scaling leads to nearly linear growth in computational costs, highlighting
the need for more efficient LLMs that retain accuracy under limited resources.

Model pruning has emerged as a widely used approach to compress LLMs into smaller and more
efficient counterparts. Both unstructured pruning (Frantar & Alistarh, 2023) and structured pruning
methods such as depth pruning (Yang et al., 2024), width pruning (Ashkboos et al., 2024), and
calibration-free pruning (Sengupta et al., 2025) have attracted significant attention. These methods
remove redundant components from pre-trained LLMs, often with minimal loss in performance.
Yet, despite their adoption, there has been no systematic framework for understanding how pruning
impacts downstream performance across models, tasks, and strategies. To address this gap, we
introduce scaling laws for parameter pruning in LLMs (henceforth pruning laws), providing an
analytical framework for evaluating the scalability and effectiveness of pruning.

RQ1. How does pruning affect downstream performance across task categories?
RQ2. How do pruning strategies trade off between efficiency and accuracy?
RQ3. Can pruning laws accurately predict performance, even for unseen models and methods?
RQ4. How can pruning laws guide principled pruning decisions for practitioners?

Model and method coverage. Our analysis spans five off-the-shelf LLMs – OPT-2.7B, OPT-
6.7B, OPT-13B, LLaMA-7B, and LLaMA-13B, widely used as pruning baselines. These cover
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Figure 1: Average downstream performance of different LLMs at varying pruning ratios. The shaded
region shows the variance across pruning strategies, emphasizing the need for systematic evaluation
of pruning effects. Detailed results are available in Tables 4 and 5 (Appendix D).

two model families and multiple parameter scales, enabling systematic study of pruning effects.
To test generalization, we further apply pruning laws to newer architectures including LLaMA-
3.1 (Dubey et al., 2024) and Phi-3 (Abdin et al., 2024), and to pruning methods not seen during
training (e.g., SlimGPT (Ling et al., 2024), SVD-LLM (Wang et al., 2024)). Each model is pruned
using unstructured, width, and depth pruning across retention ratios (defined as ‘1 - pruning ratio’)
from 10%–90%. Evaluation covers eight downstream tasks: five commonsense reasoning, two
language modeling, and one QA. Unlike prior work, we do not apply recovery fine-tuning; instead,
we directly fit pruned model performance L as a function of base accuracy L0 and retention ratio
(1− r) via a power law (Section 3). Below we highlight the key empirical observations:

RQ1. Impact on downstream performance. Across all eight tasks (Figure 1), models retain at least
80% of baseline accuracy with up to 50% pruning, beyond which, performance decays following a
power law. At a task level, reasoning tasks are highly resilient, with performance decaying slowly,
retaining strong accuracy even at 50% pruning. QA tasks are most fragile, showing sharp drops with
only ∼70% accuracy preserved at moderate pruning. Language modeling lies in between, degrading
more gradually.
RQ2. Computational benefits. Depth pruning yields the largest inference gains, up to 5× speedup
at 90% pruning for OPT-13B, but suffers poor fit and high test error (∼0.1). Unstructured pruning
preserves accuracy best (test error ≈ 0.02–0.06) but offers only ∼1.2× speedups without specialized
hardware. Width pruning provides a balanced trade-off, achieving moderate accuracy retention and
speedups of ∼1.3–1.4×. (c.f. Figure 2).
RQ3. Generalization to newer models and pruning methods. Across five base LLMs (2.7B–13B)
and multiple pruning strategies, pruning laws achieve average extrapolation errors < 7%. Zero-shot
transfer to unseen architectures (e.g., LLaMA-3.1, Phi-3) yields errors of 0.04–0.08, while one-shot
calibration refines them further (e.g., SlimGPT error on LLaMA-1-7B drops from 0.13 → 0.05).
This universality highlights that pruning laws are simple, portable, and robust for real-world planning.
RQ4. Practical implications of pruning laws. Pruning laws enable forward planning of pruning
ratios and strategies. For instance, at 50% pruning, OPT-2.7B loses ∼15% accuracy versus ∼18% for
OPT-6.7B. Reasoning tasks tolerate aggressive pruning (up to 60–70%) before collapse, whereas QA
and language modeling require conservative ratios (< 40%). Practitioners can rely on zero-shot reuse
of coefficients for immediate predictions, or one-shot calibration when limited evaluation budget
exists, avoiding costly trial-and-error.

The pruning laws introduced here offer the first systematic framework for understanding how pruning
impacts LLMs across models, tasks, and methods. They provide interpretable and practical guidelines
for compressing LLMs under real-world compute and latency constraints1. We have reported a list of
FAQs regarding pruning laws and their responses in Appendix A.

2 RELATED WORK

Model pruning for parameter efficiency. Despite the impressive capabilities of LLMs such as
LLaMA (Dubey et al., 2024) and DeepSeek (DeepSeek-AI et al., 2024) across diverse tasks, including
natural language inference, complex reasoning, summarization, translation, and code generation, their
large-scale deployment remains hindered by substantial computational resource demands. Model

1Source code, datasets, and pruned model checkpoints will be released publicly upon acceptance. Supple-
mentary material contains the datasets used for fitting pruning laws.
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Figure 2: Inference speedup of different models at varying pruning ratios on an autoregressive
language modeling benchmark. Detailed results are available in Table 6 (Appendix D).

pruning is a common technique to reduce the parameter count in pre-trained models, improving
their computational efficiency and speed. It generally falls into two main categories: unstructured
and structured pruning. Unstructured pruning focuses on removing individual weights (Frantar &
Alistarh, 2023; Sun et al., 2023) from pre-trained models. Despite their ability to retain performance
post-pruning, unstructured pruning often demands hardware-specific optimizations and may not
always lead to substantial computational benefits. Conversely, structured pruning eliminates entire
channels or components, making it more suitable for a broader range of hardware configurations.
Contemporary structure pruning methods like SliceGPT (Ashkboos et al., 2024), layer collapse (Yang
et al., 2024) use a small calibration dataset to assess the importance of different components of a
pre-trained model and removes them subsequently, if found unimportant. Sengupta et al. (2025)
proposed a policy-driven calibration-free model pruning method and argued that LLMs can withstand
even when pruned by a random subset of the pre-trained components.

Neural scaling laws for LLMs and parameter-efficient models. The study of scaling laws
dates back to Cortes et al. (1993), who analyzed generalization error as a function of training steps
and dataset size. Subsequent studies such as Hestness et al. (2017) and Rosenfeld et al. (2019)
examined the scaling of deep neural networks across models and data regimes. Kaplan et al. (2020)
proposed the functional form L ∼ N−α +D−β (Kaplan scaling law), linking test loss to parameter
count N and dataset size D, while Hoffmann et al. (2022) introduced Chinchilla scaling laws,
emphasizing compute-optimal trade-offs C ∼ N · D and showing that smaller models trained
on more tokens can outperform larger ones. Later, Caballero et al. (2023) argued that Kaplan’s
formulation, being monotonic, fails to capture emergent behaviors and phase transitions in pre-trained
Transformers (Vaswani, 2017).

Recent works extend scaling laws to parameter-efficient settings. Busbridge et al. (2025) proposed
distillation scaling laws, modeling student performance distilled from larger teachers under varying
compute budgets, and highlighting when distillation is preferable to supervised pretraining. Kumar
et al. (2024) introduced precision-aware scaling laws, showing that training in reduced precision
lowers effective parameter counts and improves scaling efficiency. Chen et al. (2024) further analyzed
recovery fine-tuning for LLMs pruned with structured methods, focusing on the extent of recovery
needed to mitigate pruning-induced degradation. While these works capture important trends, they
do not yet provide a unified framework for understanding scaling under pruning, which is the focus
of our study.

Pruning law in broader literature. To contextualize pruning within the broader family of model
compression techniques, we compare our proposed pruning laws with two recently introduced
frameworks: distillation scaling laws (Busbridge et al., 2025) and quantization scaling laws (Kumar
et al., 2024). Both approaches attempt to predict post-compression performance using analytical
functions of compute, precision, or student-teacher capacity gaps. However, our empirical results
demonstrate that pruning scaling laws not only yield tighter empirical fits but also exhibit greater
generalizability across model families, tasks, and compression regimes. Distillation scaling laws
model performance as a function of compute allocation between teacher and student models. While
informative, their predictive utility is limited by sensitivity to student-teacher pairings and reliance
on retraining, often from scratch. Furthermore, the effectiveness of distillation scaling is contingent
on access to a high-quality teacher, which may not always be feasible in deployment-constrained
settings. Quantization scaling laws (Cao et al., 2024; Kumar et al., 2024), on the other hand, typically
assume fixed architectures and specific quantization backends. While these approaches offer valuable
characterizations, they are often tightly coupled to hardware and require extensive calibration.

3
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In contrast, our pruning laws offer an architecture-agnostic, task-aware framework that models
performance degradation as a function of pruning ratio. They are directly applicable to both structured
and unstructured pruning, across varying model sizes and families. Pruning laws further support
the definition of critical pruning thresholds, providing actionable guidance for practitioners on how
much pruning can be applied before recovery becomes infeasible. These properties make pruning
laws not only more interpretable but also more readily deployable in real-world scenarios where
compression needs to be adaptive, fast, and data-efficient.

3 METHODOLOGY

3.1 PARAMETRIZATION OF THE LLM PRUNING LAW

With pruning laws, we propose a series of analytical methods for estimating the performance of
LLM post-pruning on a variety of downstream tasks. For all downstream tasks, we assume that the
performance of a model on a task is captured by a metric, which is bounded (e.g., model accuracy);
in other words, higher the performance of a model, the better it is. Building on prior studies (Kaplan
et al., 2020; Hoffmann et al., 2022) that establish scaling laws for LLM pre-training, we formulate a
relationship between the performance of a pruned model and its corresponding base model through a
law defined by two key parameters: the performance of the base model on a task (denoted by L0)
and the pruning ratio used to prune the model (denoted by r ∈ (0, 1)); we denote the relationship by
L := L(L0, r), where L represents the performance of the pruned model. Our proposed pruning law
can be used to determine the optimal value of r needed to obtain a well-performing pruned model,
maximizing the performance retainment post-pruning.

The functional form of our parametrization is described by the following equation:

L(L0, r) = L0 P0 (1− r)α (1)

where α and P0 are real numbers. The exponent α controls how quickly performance decays as the
pruning ratio r increases. The coefficient P0 is a bias term that encodes the boundary conditions
of the law: although (1− r) tends to 1 as r approaches 0, the performance of the pruned model at
extremely small pruning ratios may not exactly match the base model’s performance. Factors such as
evaluation noise, subtle architecture-dependent effects and differences among pruning methods can
introduce a systematic offset at r → 0. Consequently, P0 captures these offsets and depends on the
particular model, pruning method and task being considered.

Levels of fit. In our analysis, we fit the pruning law at several levels of aggregation:

1. Task level: we fit a single (α, P0) pair for each task, pooling data across all models and
pruning methods. In this case, P0 reflects the average boundary-condition bias for that task.

2. Method–task level: we fit the law separately for each pruning method and task across all
models. Here P0 absorbs both task-specific and method-specific biases (e.g., unstructured
vs. structured pruning may yield different offsets near r = 0).

3. Model–task level: we fit the law for each model and task, pooling across methods. P0 then
captures architecture-specific bias for that task, indicating how resilient a given model is on
that task when lightly pruned.

4. Method–model–task level: we fit the law for each combination of model, pruning method
and task. This most granular fit yields a distinct P0 for every configuration, which serves as
the local intercept for that specific pruning setup.

This choice of functional form is motivated by the following feasibility conditions for a pruning law:

• We formulate the pruning law as a power law with respect to the retention ratio. Unlike some
pre-training scaling laws, we require the law to be scale invariant with respect to (1 − r), i.e.,
L(L0, r) must be a homogeneous function of (1 − r). Such a form allows us to derive optimal
decision regions for choosing r given a target performance drop.

• The post-pruning performance should decrease as the pruning ratio r increases, i.e., ∂L
∂r < 0. In

Equation 1, this behaviour is captured by requiring α > 0.
• The functional form should capture the iterative nature of many pruning methods: pruning a model

by r1 followed by further pruning by r2 should yield a performance proportional to a single pruning
with overall pruning ratio 1− (1− r1)(1− r2) (Sengupta et al., 2025; Yang et al., 2024).
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Through extensive experiments (see Section 5), we find that the proposed form in Equation 1 satisfies
these feasibility conditions.2

3.2 FITTING THE PRUNING LAW: ORDINARY LEAST SQUARES FOR LINEAR REGRESSION

Taking logarithms on both sides of Equation 1 gives:

logL = logL0 + α log(1− r) + logP0, (2)

Therefore, fitting the pruning law reduces to a linear regression in log space. In this formulation, α is
the slope (multiplying log(1− r)) and logP0 is the intercept, capturing the boundary-condition bias
discussed above. The regression is performed on the transformed variables r′ := 1− r with logP0 as
the intercept. To learn α and P0, we use the standard ordinary least squares (OLS) method (Zdaniuk,
2014), assuming additive Gaussian noise. The regression model can thus be stated as:

logL = logL0 + α log(1− r) + logP0 + ϵnoise, (3)

where ϵnoise ∼ N (0, 1).3

4 EXPERIMENTAL SETUP

To develop the proposed pruning laws, we compress and evaluate a range of LLMs, including
OPT (Zhang et al., 2022) at 2.7B, 6.7B, and 13B parameter scales, and LLaMA-2 (Touvron et al.,
2023) at 7B and 13B. Moreover, for evaluating the universality of the pruning laws on more recent
architectures, we consider LLaMA-3.1-8B (Dubey et al., 2024) and Phi-3-mini-4K-Instruct (Abdin
et al., 2024) models. All pre-trained model checkpoints are obtained from Hugging Face 4. We
experiment with three pruning methods: (1) SparseGPT (Frantar & Alistarh, 2023) for unstructured
weight pruning, (2) LaCo (Yang et al., 2024) for structured depth pruning (layer collapse), and (3)
SliceGPT (Ashkboos et al., 2024) for structured width pruning. Additional testing is conducted with
two further depth pruning methods – SlimGPT (Ling et al., 2024) and LLM Pruner (Ma et al., 2023)
and two width pruning methods including SVD-LLM (Wang et al., 2024) and PruneNet (Sengupta
et al., 2025). For each method, we apply a comprehensive range of sparsity levels with pruning ratios
of {10%, 20%, . . . , 90%}. We evaluate the pruned models on eight downstream tasks using the LM
Evaluation Harness (Gao et al., 2024) 5, performing all evaluations in a zero-shot setting.6 The tasks
span three categories:

• Reasoning: PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), Hel-
laSwag (Zellers et al., 2019), ARC-e and ARC-c (Clark et al., 2018).

• Question-answering: CoQA (Reddy et al., 2019)
• Language modeling: WikiText (Merity et al., 2016) and LAMBADA (Paperno et al., 2016).

For classification-style tasks, including reasoning and QA, we report accuracy. For language modeling
tasks, we compute perplexity, which is unbounded (1,∞); thus, we report the inverse log-perplexity
(i.e., 1/ log(ppl)) to map the metric to a (0, 1) range for consistency with other evaluations. In
addition to these individual tasks, we calculate the average task performance, highlighted by Average.

Evaluating pruning laws. For evaluating the fitted pruning laws on in-distribution data points (e.g.,
same model/pruning method used in training and testing), we use rolling-style test data, where for
each pruning ratio r ∈ [20%, 90%], we train the pruning laws on pruning ratios {10%, · · · , r%} and
test the pruning laws on {r%+ 10%, · · · 90%}. Finally, we calculate the average root mean square
error (RMSE) between the predicted and ground truth over all the test datasets. For evaluating the
extrapolation capability of the pruning laws in out-of-distribution setup, we adopt two extrapolation
evaluation strategies – zero-shot extrapolation, where we use the fitted parametric functions to test on
unseen data, and one-shot extrapolation, where we use the α coefficient from the fitted parametric

2Refer to Section B.1 of the Appendix for a proof that equation 1 satisfies the iterative pruning condition.
3A similar implementation with robust estimation Huber loss (Huber, 1992) is also performed, but due to

very marginal differences omitted from this paper.
4https://huggingface.co/models
5Task descriptions are provided in Appendix C.
6We categorically ingore knowledge-extraction tasks like MMLU (Hendrycks et al., 2020) in our study,

highlighting the reason in a detailed section in Appendix E.

5
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Figure 3: Fitted pruning laws for downstream performance of pruned LLMs. Black and orange
points highlight the training and testing data points, respectively, with blue line indicating the scores
predicted by our fitted pruning laws.

function, but the bias term P0 is re-estimated from pruning the model on a single pruning ratio.
Precisely, let α and P0 denote the fitted coefficients. For a given pruning ratio r, we prune the
LLM, obtain its performance Lr, and re-estimate the bias term P̂0 = Lr

L0×(1−r)α . While zero-shot
extrapolation setup is intended to verify the universality of the pruning laws, one-shot extrapolation is
particularly useful for verifying the flexibility of pruning laws for testing out-of-distribution models
or pruning strategies, when a single point enumeration is practically possible.

5 EXPERIMENTAL RESULTS

5.1 MAIN RESULTS
Task α P0 Adj R2 F Statistic Test Error
QA 2.42 ± 0.13 1.45 ± 0.14 0.89 348.48 0.04
Reasoning 0.22 ± 0.02 0.95 ± 0.02 0.79 170.83 0.06
Language 0.73 ± 0.02 0.76 ± 0.03 0.96 947.9 0.03
Average 0.35 ± 0.02 0.85 ± 0.02 0.88 316.37 0.05

(a) Task-level

Task Model α P0 Adj R2 F Statistic Test Error

Average

OPT-2.7B 0.28 ± 0.03 0.85 ± 0.03 0.93 109.53 0.03
OPT-6.7B 0.34 ± 0.05 0.87 ± 0.06 0.83 39.88 0.10
LLaMA-7B 0.38 ± 0.04 0.86 ± 0.05 0.90 74.55 0.07
OPT-13B 0.34 ± 0.02 0.87 ± 0.02 0.98 375.15 0.02
LLaMA-13B 0.4 ± 0.04 0.83 ± 0.04 0.94 126.08 0.05

(b) Model-task level

Task Method α P0 Adj R2 F Statistic Test Error

Average
Unstructured 0.47 ± 0.03 1.22 ± 0.03 0.90 370.20 0.15
DepthPruning 0.13 ± 0.04 0.54 ± 0.04 0.20 12.21 0.10
WidthPruning 0.39 ± 0.04 0.83 ± 0.04 0.70 103.11 0.10

(c) Method-task level

Table 1: Coefficients of the task-level (a), model-task level
(b) and method-task-level (c) pruning laws of the form L =
L0P0(1 − r)α. We report the coefficients estimated with
ordinary least square (OLS) fits, along with the standard errors.
To evaluate the goodness-of-fit, we calculate adjusted R2, F
statistic score. We calculate the test error as the average root
mean square error on the test data. All task coefficients are
reported in Table 9 of Appendix D.

Impact of pruning on model per-
formance. Pruning has a clear and
systematic effect on the performance
of LLMs, with its impact varying
across model sizes, architectures, and
task categories. As highlighted in Ta-
bles 4 and 5 of Appendix D, larger
models such as LLaMA-13B and
OPT-13B exhibit higher resilience
at lower pruning ratios, maintain-
ing competitive accuracy up to 30-
40% pruning, whereas smaller mod-
els like OPT-2.7B and OPT-6.7B de-
grade much more rapidly, showing
steep declines in QA and language
tasks even at moderate pruning levels.
Among task types, reasoning tends to
be more robust to pruning than QA or
language modeling, with models like
LLaMA-7B and LLaMA-13B retain-
ing relatively strong reasoning scores
at 50% pruning, despite significant
losses in QA and language model-
ing.However, when pruning ratios ex-
ceed 70-80%, performance consis-
tently collapses across all models,
with average scores approaching ran-
dom baselines. These results highlight two consistent trends: (i) larger models offer greater tolerance
to pruning due to redundancy in their parameterization (behaviors acknowledged in the prior literature
like Frantar & Alistarh (2023)), and (ii) reasoning-oriented tasks degrade more gracefully under
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compression compared to language-modeling tasks, suggesting that pruning disproportionately affects
linguistic knowledge over logical problem-solving abilities.

Pruning laws for downstream performance. Table 1 demonstrates pruning laws that characterize
how downstream performance scales with pruning ratios. Across tasks (cf. Table 1a), the exponent
α, which controls the sensitivity to pruning, tends to be highest for QA (α ≈ 2.4-2.7) and smallest
for reasoning (α ≈ 0.2). This indicates that the QA accuracy decays sharply with pruning, whereas
reasoning remains relatively stable even under high compression. Language tasks fall in between (α ≈
0.7-0.9), showing gradual degradation. The bias term P0, which modulates retained performance, is
typically close to one for reasoning tasks (P0 ≈ 0.9-0.95), reflecting their robustness. In contrast,
it is substantially larger for QA (P0 ≈ 1.4-1.7), indicating that pruning induces disproportionately
large performance drops. Importantly, these fits achieve high adjusted R2 scores (0.88-0.99) and
significant F -statistics, indicating that the pruning law explains a large fraction of the variance in
performance with minimal error. The standard errors on the coefficients are small (typically ±0.02
-0.1), reinforcing robustness in parameter estimation, while the test errors remain low (0.02-0.06).

Dependence of model architecture on effectiveness of pruning. Across model families (c.f.
Table 1b and detailed results reported in Table 7 of Appendix D), the pruning law maintains strong
predictive accuracy, though the sensitivity to pruning varies with architecture and scale. Larger models
such as LLaMA-13B and OPT-13B exhibit higher α values for average performance (α ≈ 0.34-
0.40) compared to smaller OPT-2.7B (α ≈ 0.28), indicating smoother degradation due to greater
redundancy. Bias terms remain stable around (P0 ≈ 0.85− 0.9) across larger models, while smaller
ones (OPT-6.7B, OPT-2.7B) show greater variability and higher test errors (0.07− 0.1), implying
reduced resilience. The high adjusted scores R2 (0.83 − 0.98) and large F statistics (ranging up
to 375 for OPT-13B) confirm that the pruning law reliably captures architecture-specific behaviors
(also validated in the fitted pruning laws in Figure 3), with deviations arising mainly in smaller
models where compression stress is more acute. This suggests that larger models both empirically
and analytically offer stronger buffers against pruning-induced degradation. The analytical behaviors
confirmed by the pruning laws also affirm the empirical evidence found in the existing literature on
model pruning.

Model Method α P0 Adj R2 F Statistic Test Error
OPT-13B

Unstructured

0.01 ± 0.0 0.82 ± 0.0 0.94 118.19 0.01
LLaMA-13B 0.02 ± 0.0 0.87 ± 0.0 0.97 294.22 0.00
LLaMA-7B 0.01 ± 0.0 0.81 ± 0.0 0.95 167.97 0.00
OPT-6.7B 0.01 ± 0.0 0.84 ± 0.0 0.96 176.74 0.00
OPT-2.7B 0.01 ± 0.0 0.78 ± 0.0 0.50 9.15 0.01
OPT-13B

DepthPruning

0.72 ± 0.03 0.94 ± 0.03 0.99 589.92 0.04
LLaMA-13B 0.1 ± 0.04 0.64 ± 0.04 0.48 8.35 0.15
LLaMA-7B 0.17 ± 0.1 0.81 ± 0.11 0.21 3.14 0.26
OPT-6.7B 0.72 ± 0.03 0.96 ± 0.03 0.99 677.70 0.03
OPT-2.7B 0.14 ± 0.05 0.73 ± 0.05 0.51 9.27 0.20
OPT-13B

WidthPruning

0.14 ± 0.04 1.02 ± 0.05 0.55 10.58 0.19
LLaMA-13B 0.15 ± 0.04 0.95 ± 0.04 0.69 18.91 0.18
LLaMA-7B 0.02 ± 0.02 1.02 ± 0.02 -0.06 0.56 0.09
OPT-6.7B 0.08 ± 0.02 1.08 ± 0.03 0.57 11.44 0.11
OPT-2.7B 0.0 ± 0.02 1.15 ± 0.02 -0.14 0.01 0.08

Table 2: Coefficients of pruning law for inference speedup of
the form L = L0P0(1− r)α.

Does the pruning method matter?
Method-level coefficients reported in
Table 1c (with detailed results in Ta-
ble 8, Appendix D) reveal clear dif-
ferences among pruning strategies
– not only in their α and P0 val-
ues, but also in overall goodness of
fit. Unstructured pruning exhibits the
strongest adherence to the pruning
law, with consistently high adjusted
R2 (≈ 0.9), and large F -statistics
(183-418). Depth pruning, by con-
trast, performs poorly, with very low
adjusted R2 (0.18-0.23), weak F -
statistics (10-14), and unstable bias terms (P0 ≈ 0.25-0.7), indicating that it introduces noise
and fails to follow the law reliably. Width pruning falls in between: it yields moderate α values
(≈ 0.3-0.8), relatively stable P0 (≈ 0.8-0.9), and adjusted R2 ranging from 0.62-0.86, with test
errors around 0.1, suggesting reasonable but less consistent predictability compared to unstructured
pruning. These results indicate that our pruning law not only generalizes well across tasks and models
but also effectively discriminates between pruning strategies, providing quantitative justification for
favoring unstructured or width pruning over depth pruning. Moreover, because depth pruning is
highly architecture-dependent, its behavior remains more volatile across model families and pruning
ratios, leading to especially erratic post-pruning performance.

Influence of model pruning on inference speed. Pruning substantially improves inference speedup,
but the extent depends both on pruning ratio and pruning method. Depth pruning delivers the largest
benefits, with speedups rising super-linearly at higher pruning ratios, e.g., OPT-13B and OPT-
6.7B achieve over 5× faster inference at 90% pruning. This effect is reflected in the scaling law
coefficients, where depth pruning shows relatively high α values (e.g., 0.72± 0.03 for OPT-13B) that
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amplify speedup with retention ratio. In contrast, unstructured pruning yields more modest but stable
improvements, typically around 1.2× across pruning levels, consistent with its very low α ≈ 0.01,
indicating nearly flat scaling. Width pruning falls in between, with gradual increases up to 1.3-1.4×
at high pruning ratios. The goodness-of-fit metrics further validate these trends: unstructured pruning
shows strong adjusted R2 values (0.94-0.97) and near-zero test error (c.f. Figure 4), capturing its
predictable linear speedup, while depth pruning exhibits both high variance in P0 and weaker fits for
smaller models, explaining the less consistent gains. Overall, pruning laws confirm that depth pruning
can yield dramatic inference acceleration, though at the cost of stability, whereas unstructured and
width pruning provide steadier, more predictable improvements.

5.2 UNIVERSALITY OF PRUNING LAWS
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Figure 4: Fitted pruning laws for inference speedup
of pruned LLMs for different pruning methods.

Our results indicate that the same functional
form L1 = L0 (1− r)αP0 transfers across mod-
els, architectures, and pruning methods with
moderate testing error. Figure 5 clearly illus-
trates the consistently low in-distribution (ID)
(when a model from same family is used in fit-
ting the functions) test errors, as compared to
out-of-distribution (OOD) (when none of the
same-family models used in fitting) test errors.
Particularly, for reasoning and language model-
ing tasks with larger models (13B sized), hav-
ing same family models in the training data (in-
distribution) reduces the test error by 50%.

To further assess the universality of our fitted
pruning laws, we evaluate their reliability on
completely out-of-distribution models and prun-
ing methods. We prune LLaMA-3.1-8B and
Phi-3-Mini-4K-Instruct models using unstruc-
tured and width pruning methods, respectively,
with pruning ratios {10%, · · · , 90%} and cal-
culate the test RMSE between the ground truth
and performance predicted by pruning laws with
α and P0 coefficients obtained from Table 8 of
Appendix D. In the one-shot extrapolation setup, we re-estimate the bias term P̂0 as described in
Section 4 and predict the performance with coefficients α and P̂0. As highlighted in Table 3a,
LLaMA-3.1-8B achieves an average zero-shot error of 0.04, while Phi-3-Mini-4K-Instruct shows
a slightly higher average error of 0.08. Interestingly, the one-shot setup, where only the bias term
P̂0 is recalibrated from a single data point, does not always reduce errors; instead, the average error
increases to 0.06 for LLaMA-3.1-8B and 0.10 for Phi-3-Mini-4K-Instruct. This counterintuitive
trend arises because α already captures the retention elasticity robustly across architectures, and
introducing a single-point re-estimation of P0 can inject noise rather than improve generalization,
especially when the calibration point is not representative. These results reinforce that pruning laws
are inherently universal: even without any recalibration, the fitted coefficients transfer effectively
across unseen models and pruning methods, while one-shot calibration remains optional and may
only be beneficial when calibration data are carefully chosen.

We further test universality by applying our fitted pruning laws to completely new pruning methods
not used during training (Table 3b). We obtain the performances of LLaMA-1-7B model on reasoning
tasks for depth pruning methods LLM Pruner (Ma et al., 2023) and SlimGPT (Ling et al., 2024) and
two width pruning methods – SVD-LLM (Wang et al., 2024) and PruneNet (Sengupta et al., 2025), all
numbers obtained from the corresponding papers. In the zero-shot setup, extrapolation errors remain
small, ranging from 0.04 for PruneNet to 0.13 for SlimGPT and SVD-LLM. In the one-shot setup,
where only P̂0 is recalibrated, errors decrease for most methods (e.g., LLM Pruner: 0.10 → 0.06,
SlimGPT: 0.13 → 0.05, PruneNet: 0.04 → 0.03). Overall, these results reinforce the universality
of pruning laws: they transfer across unseen pruning algorithms in zero-shot mode, while one-shot
calibration may improve performance when the method aligns well with the retained elasticity.
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Figure 5: In-distribution (ID) and out-of-distribution (OOD) test error for different pruned LLMs. In
the ID setup a model (e.g., LLaMA-7B) is tested while a different model from the same family (e.g.,
LLaMA-13B) is used in training. In the OOD setup, training and testing are performed on completely
different model families.

Model Zero-shot error One-shot error
QA Reasoning Language Average QA Reasoning Language Average

LLaMA-3.1-8B 0.17 0.05 0.04 0.04 0.32 0.05 0.1 0.06
Phi-3-Mini-4K-Instruct 0.04 0.13 0.03 0.08 0.02 0.12 0.05 0.1

(a) Out-of-distribution Models

Method Type Pruning Method Zero-shot error One-shot error

DepthPruning LLM Pruner 0.1 0.06
SlimGPT 0.13 0.05

WidthPruning SVD-LLM 0.13 0.16
PruneNet 0.04 0.03

(b) Out-of-distribution Methods

Table 3: Extrapolation errors with (a) different out-of-distribution LLMs and (b) pruning strategies.

Practically, this means practitioners can predict pruned performance for new model families and
pruning strategies with zero data, and, if desired, achieve better estimation with a single-point
calibration of P0, supporting the claim that our pruning law is simple, portable, and universal.

5.3 PRACTICAL IMPLICATIONS OF PRUNING LAWS

Rather than relying on ad-hoc trial and error, our pruning laws provide a principled roadmap for model
compression. Practitioners seeking speed can turn to depth pruning, those prioritizing accuracy
to unstructured pruning, and those balancing both to width pruning. When shifting to new models
or pruning methods, zero-shot reuse of our coefficients enables immediate deployment, while one-
shot calibration offers sharper estimates if a single evaluation is possible. By aligning pruning
choices with task sensitivity, aggressive ratios for reasoning, conservative ones for QA and language
modeling, practitioners can achieve reliable efficiency gains without sacrificing performance. We
provide more detailed practical guidelines in Appendix F for the readers to better synthesize our
results for practical real-life deployment situations.

6 CONCLUSION

In this paper, we introduced pruning laws for LLMs that explore the impact of model pruning, offering
new insights into the relationships between pruning ratios, performance metrics, and recovery fine-
tuning. We provided practical guidelines for implementing model pruning in real-world applications,
where both performance stability and scalability are crucial. This work lays the foundation for
future research into adaptive, task-aware pruning methods, and the effects of pruning on long-
context reasoning and generative capabilities. We also suggest investigating hybrid pruning strategies
that combine structured and unstructured pruning to achieve a more balanced trade-off between
computational savings and performance retention.
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REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our findings. The experimental setup,
including model selection and pruning strategies, is described in Section 4. All pre-trained model
checkpoints (OPT-2.7B, OPT-6.7B, OPT-13B, LLaMA-7B, LLaMA-13B, and additional evaluation
models) are publicly available through Hugging Face. Details of the pruning methods – SparseGPT
(unstructured), LaCo (depth), and SliceGPT (width), and their implementation are provided in
Section 3 and are already open-sourced in their respective code repositories. Comprehensive results,
including fitted pruning coefficients, error statistics, and aggregation across models, methods, and
tasks, are reported in Tables 4–6 and Appendix D. We evaluate using the LM Evaluation Harness with
standardized metrics across eight downstream tasks, as detailed in Section 5. Upon acceptance, we will
release source code, scripts for pruning and evaluation, configuration files, and pruned checkpoints,
enabling full replication of both experiments and pruning law fitting (Section 3, Appendix D).
Together, these resources ensure that our results can be reproduced, verified, and extended by the
community.
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A FREQUENTLY ASKED QUESTIONS (FAQS)

1. Why propose pruning laws when empirical benchmarks already exist?
Empirical results alone do not generalize across models or pruning methods. Our pruning laws
(Section 3) provide a compact analytical form with average extrapolation error < 7%, enabling
practitioners to predict outcomes without exhaustive sweeps.

2. Are the laws overfitting to specific models or datasets?
No. The law is a simple two-parameter form (α, P0) fitted across five LLMs, three pruning
strategies, and eight tasks. High adjusted R2 values (0.83–0.98) confirm that it captures general
scaling behavior rather than overfitting.

3. Why does depth pruning show weaker R2 fits?
Depth pruning produces flatter degradation curves with limited dynamic range, which reduces
regression sensitivity. Nonetheless, predictive errors remain modest (≤ 0.1), and depth pruning
delivers the strongest efficiency gains (up to 5× speedup, Section D).

4. Can the pruning laws transfer to unseen models?
Yes. On LLaMA-3.1 and Phi-3 models, zero-shot reuse of coefficients yields RMSE between 0.04–
0.08. One-shot calibration further improves accuracy (e.g., SlimGPT error drops 0.13 → 0.05,
Section 5).

5. How universal are the laws across pruning methods?
Coefficients transfer across unstructured, width, and depth pruning. Even for unseen methods like
SlimGPT and SVD-LLM, zero-shot predictions remain within 8% error, and one-shot calibration
tightens the fit further.

6. Why exclude recovery fine-tuning in experiments?
Our goal is to isolate the direct effect of pruning. Fine-tuning can mask pruning dynamics by
recovering accuracy. Our laws are therefore conservative and can be extended in future work to
model recovery separately.

7. Are the fits statistically significant?
Yes. F-statistics are significant across most tasks (p < 0.01), and standard errors remain small
(< 0.05 in many cases). Test errors are consistently low, supporting both robustness and repro-
ducibility (Appendix D).

8. Are results specific to OPT and LLaMA models?
While our main experiments use OPT and LLaMA, transfer tests with LLaMA-3.1 and Phi-3
confirm broader applicability. The functional form is architecture-agnostic.

9. How do tasks differ in pruning sensitivity?
Reasoning tasks are robust (α < 0.3, P0 ≈ 0.95), QA is brittle (α > 2, P0 ≈ 1.5), and language
modeling shows intermediate behavior (α ≈ 0.7).

10. Why is α important?
α governs sensitivity to retention ratio. Large α values (QA) imply rapid collapse, while small α
values (reasoning) imply gradual decay. This distinction explains task-level robustness.

11. What does P0 represent?
P0 is a bias term reflecting baseline offset. High P0 (e.g., QA tasks) indicates initial overestimation
of performance before steep decline, while P0 ≈ 1 implies more linear decay.

12. Do smaller models prune differently than larger ones?
Yes. Smaller OPT models lose accuracy faster (e.g., OPT-2.7B drops ∼15% at 50% pruning vs.
∼18% for OPT-6.7B). Larger models degrade more smoothly, making pruning more predictable.

13. How accurate are the predictions?
Across models and tasks, extrapolation error is below 7%. For unstructured pruning, errors drop
to 2–4%, demonstrating strong predictive fidelity.

14. Why does unstructured pruning preserve accuracy but not speedup?
Sparse patterns require specialized kernels. Without them, FLOPs are not reduced efficiently,
explaining why unstructured pruning shows negligible runtime gains despite low test error.
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15. How do width and depth pruning compare?
Width pruning balances accuracy and speed (moderate α, P0), while depth pruning maximizes
speedup (5×) but collapses accuracy faster at high pruning.

16. Why not explore quantization or distillation alongside pruning?
Our focus is on pruning-specific dynamics. Distillation and quantization scaling laws exist
separately (Busbridge et al., 2025; Kumar et al., 2024). Our pruning laws complement, rather than
replace, these frameworks.

17. Can pruning laws help practitioners in deployment?
Yes. Zero-shot reuse of coefficients gives immediate predictions for unseen models; one-shot
calibration refines accuracy with a single evaluation. This reduces costly sweeps and guides safe
pruning ratios (Appendix F).

18. How reproducible are the results?
All experiments use public checkpoints, LM Evaluation Harness, and standard pruning methods.
Detailed results, fitted coefficients, and scripts will be released upon acceptance (see Reproducibil-
ity Statement).

B THEORETICAL RESULTS

B.1 FUNCTIONAL FORM LEADS TO PROPORTIONAL PERFORMANCE FOR ITERATIVE PRUNING

Here, we show that our proposed functional form in Equation 1 satisfies the last feasibility condition
for iterative pruning methods. So, let r1 ∈ (0, 1) and r2 ∈ (0, 1) be two pruning ratios. Suppose a
model is first pruned at ratio r1, followed by a pruning by the same method at ratio r2. It is easy
to see that the overall pruning ratio (i.e., a pruning ratio achieving the total pruning in one step) is
r1 + r2 − r1r2. Then, the performance obtained by the multi-step pruning is

Lmutlistep = L(L(L0, r1), r2)

= L(P0L0(1− r1)
α, r2)

= P 2
0L0(1− r1)

α(1− r2)
α

= P0L(L0, r1 + r2 − r1r2)

= P0Lsinglestep

Hence, our functional form attains proportional performance between single-step and multi-step
pruning for iterative methods.

C DATASET DESCRIPTIONS

The WikiText corpus (Merity et al., 2016) is a standard benchmark for language modeling, consisting
of human-curated articles that are stylistically polished, factually reliable, and written from a neutral
perspective. Two variants exist – WikiText-2 and WikiText-103,with our experiments making use
of WikiText-2. The LAMBADA dataset (Language Modeling Broadened to Account for Discourse
Aspects) (Paperno et al., 2016) contains narrative passages designed to test a model’s ability to predict
the final word, a task that requires integrating broad context and maintaining discourse-level coherence.
PiQA (Bisk et al., 2020) evaluates physical common-sense reasoning in everyday situations, often
with unconventional but practical solutions. Each instance poses an instruction-based problem (e.g.,
how to construct, bake, or manipulate objects) and provides two candidate solutions, of which exactly
one is correct, framing the task as multiple-choice QA. WinoGrande (Sakaguchi et al., 2021), derived
from the Winograd Schema Challenge (Levesque et al., 2012), is a large-scale benchmark for pronoun
resolution, a task trivial for humans yet challenging for AI systems. HellaSwag (Zellers et al., 2019)
focuses on common-sense natural language inference: given a context, models must select the most
plausible continuation. The AI2 Reasoning Challenge (Clark et al., 2018) provides grade-school
science exam questions that require both knowledge and reasoning to solve. Finally, CoQA (Reddy
et al., 2019) is a conversational QA dataset containing 127k question-answer pairs across 8k dialogues
spanning seven domains. Its questions are conversational in style, and answers are free-form text
supported by highlighted evidence in the passage, making it a benchmark for building dialogue-based
reading comprehension systems.
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D RESULTS

D.1 POST-PRUNING PERFORMANCE OF LLMS

Model Reasoning QA Language Average
OPT-2.7B 0.52 0.51 0.49 0.51
OPT-6.7B 0.57 0.55 0.54 0.56
OPT-13B 0.58 0.56 0.56 0.57
LLaMA-7B 0.64 0.64 0.64 0.64
LLaMA-13B 0.67 0.66 0.69 0.68
Llama-3.1-8B† 0.69 0.68 0.69 0.69
Phi-3-mini-4k-instruct† 0.74 0.68 0.53 0.68

Table 4: Results obtained by the unpruned models on different tasks. Models highlighted with † are
not used to fit the pruning laws, but to test them in an out-of-distribution setup.

In this section, we present the detailed task-level results for both unpruned and pruned LLMs. These
results complement the main paper by offering a fine-grained view of performance degradation under
pruning, highlighting differences across architectures, pruning ratios, and downstream tasks.

Table 4 reports the accuracy of seven unpruned models across reasoning, QA, and language modeling
tasks. As expected, performance generally improves with scale: OPT-2.7B achieves an average of
0.51, whereas OPT-13B and LLaMA-13B improve to 0.57 and 0.68, respectively. The LLaMA series
consistently outperforms OPT at similar parameter scales, underscoring architectural and training
advantages. Notably, Phi-3-Mini-4K-Instruct matches the average of LLaMA-13B (0.68) despite
being smaller in size, and LLaMA-3.1-8B surpasses both (0.69). These results confirm that newer
families, even at comparable or smaller parameter counts, can rival or outperform older architectures.
These baseline numbers provide the L0 values against which pruning performance is evaluated.

Performance under pruning. Table 5 reports accuracy across pruning ratios from 0.1 to 0.9.
Several consistent patterns emerge:

• Early pruning robustness. At pruning ratios up to 0.3, most models retain a majority of
their baseline accuracy. For example, LLaMA-13B maintains an average of 0.49± 0.19 at
pruning ratio 0.3, compared to its baseline 0.68, suggesting a gradual initial degradation.
Similar behavior is observed for LLaMA-7B (0.52± 0.12 at ratio 0.3 vs. 0.64 baseline).

• Critical threshold around 0.5. Across all models, pruning ratios around 0.5 mark a sharp
turning point. For instance, OPT-2.7B drops from 0.41± 0.11 at ratio 0.3 to 0.35± 0.13 at
ratio 0.5, and LLaMA-13B falls to 0.41± 0.22. This regime represents the “critical pruning
threshold”, beyond which accuracy begins to collapse.

• Collapse at extreme pruning. At pruning ratios of 0.8 and higher, models largely fail
across tasks, with QA accuracies dropping close to zero. OPT-13B at 0.9 achieves 0.0± 0.0
in QA, while LLaMA-7B maintains only 0.26± 0.03 on average. These near-zero values
highlight the infeasibility of aggressive pruning without recovery fine-tuning.

Task-level differences. Task sensitivity to pruning is heterogeneous. Reasoning tasks are consis-
tently more robust than QA or language modeling. For example, at pruning ratio 0.5, LLaMA-13B
retains 0.49 ± 0.16 in reasoning, compared to 0.26 ± 0.36 in QA and 0.30 ± 0.28 in language
modeling. This robustness of reasoning tasks aligns with earlier findings that such benchmarks rely
on distributed knowledge across layers, making them less vulnerable to pruning entire components.
By contrast, QA tasks exhibit high variance and rapid collapse, with standard deviations reaching 0.31
(LLaMA-7B at ratio 0.4). Language modeling sits in between: degradation is faster than reasoning
but less volatile than QA.

Variance analysis. A notable observation is the increase in standard deviation as pruning ratio
increases, particularly for QA tasks. For instance, OPT-13B exhibits a deviation of 0.28 at pruning
ratio 0.4 for QA, compared to just 0.16 at ratio 0.2. This indicates that pruning disproportionately
destabilizes QA performance, making it harder to predict with certainty. Conversely, reasoning
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accuracies exhibit smaller standard errors (often ≤ 0.1), suggesting greater consistency. This variance
structure reinforces the importance of task-aware pruning strategies.

Model family comparisons. Across families, LLaMA models consistently outperform OPT at the
same pruning ratios, retaining higher averages and showing smoother degradation curves. At pruning
ratio 0.5, LLaMA-7B maintains 0.41± 0.19, while OPT-6.7B drops to 0.35± 0.14. Larger models in
both families show slightly better resilience than smaller ones, but the advantage diminishes beyond
0.5, where both collapse rapidly. This suggests that scaling provides robustness only up to moderate
pruning ratios.

Model Pruning Ratio QA Reasoning Language Average

LLaMA-13B

0.1 0.51 ± 0.22 0.64 ± 0.12 0.46 ± 0.25 0.58 ± 0.16
0.2 0.41 ± 0.31 0.59 ± 0.14 0.4 ± 0.27 0.52 ± 0.2
0.3 0.38 ± 0.31 0.6 ± 0.1 0.39 ± 0.24 0.49 ± 0.19
0.4 0.34 ± 0.31 0.57 ± 0.12 0.36 ± 0.25 0.46 ± 0.2
0.5 0.26 ± 0.36 0.49 ± 0.16 0.3 ± 0.28 0.41 ± 0.22
0.6 0.21 ± 0.34 0.46 ± 0.14 0.27 ± 0.24 0.38 ± 0.19
0.7 0.15 ± 0.25 0.41 ± 0.07 0.18 ± 0.12 0.32 ± 0.1
0.8 0.01 ± 0.02 0.37 ± 0.01 0.13 ± 0.04 0.27 ± 0.01
0.9 0.0 ± 0.0 0.37 ± 0.01 0.09 ± 0.01 0.25 ± 0.01

LLaMA-7B

0.1 0.49 ± 0.15 0.61 ± 0.08 0.43 ± 0.22 0.55 ± 0.13
0.2 0.49 ± 0.14 0.6 ± 0.08 0.41 ± 0.2 0.54 ± 0.12
0.3 0.48 ± 0.16 0.59 ± 0.09 0.38 ± 0.19 0.52 ± 0.12
0.4 0.29 ± 0.31 0.51 ± 0.14 0.31 ± 0.24 0.43 ± 0.19
0.5 0.24 ± 0.32 0.48 ± 0.14 0.29 ± 0.23 0.41 ± 0.19
0.6 0.21 ± 0.33 0.46 ± 0.12 0.25 ± 0.18 0.37 ± 0.16
0.7 0.11 ± 0.15 0.4 ± 0.04 0.18 ± 0.08 0.31 ± 0.06
0.8 0.03 ± 0.03 0.38 ± 0.03 0.13 ± 0.03 0.27 ± 0.02
0.9 0.01 ± 0.02 0.38 ± 0.03 0.1 ± 0.03 0.26 ± 0.03

OPT-13B

0.1 0.37 ± 0.32 0.54 ± 0.14 0.39 ± 0.26 0.48 ± 0.19
0.2 0.35 ± 0.3 0.53 ± 0.14 0.36 ± 0.25 0.46 ± 0.19
0.3 0.32 ± 0.28 0.51 ± 0.14 0.33 ± 0.24 0.44 ± 0.18
0.4 0.28 ± 0.27 0.5 ± 0.13 0.31 ± 0.23 0.42 ± 0.17
0.5 0.22 ± 0.25 0.47 ± 0.12 0.28 ± 0.22 0.39 ± 0.16
0.6 0.17 ± 0.26 0.45 ± 0.11 0.24 ± 0.21 0.36 ± 0.15
0.7 0.13 ± 0.21 0.41 ± 0.08 0.2 ± 0.15 0.32 ± 0.11
0.8 0.01 ± 0.02 0.37 ± 0.03 0.13 ± 0.07 0.27 ± 0.04
0.9 0.0 ± 0.0 0.36 ± 0.0 0.07 ± 0.01 0.24 ± 0.0

OPT-2.7B

0.1 0.31 ± 0.26 0.51 ± 0.08 0.34 ± 0.19 0.44 ± 0.13
0.2 0.27 ± 0.23 0.5 ± 0.07 0.32 ± 0.17 0.43 ± 0.11
0.3 0.2 ± 0.25 0.49 ± 0.06 0.3 ± 0.16 0.41 ± 0.11
0.4 0.16 ± 0.25 0.46 ± 0.08 0.27 ± 0.17 0.37 ± 0.13
0.5 0.14 ± 0.23 0.43 ± 0.09 0.24 ± 0.18 0.35 ± 0.13
0.6 0.12 ± 0.19 0.42 ± 0.08 0.21 ± 0.15 0.33 ± 0.11
0.7 0.05 ± 0.09 0.39 ± 0.05 0.16 ± 0.1 0.29 ± 0.07
0.8 0.02 ± 0.03 0.37 ± 0.01 0.12 ± 0.05 0.26 ± 0.02
0.9 0.0 ± 0.0 0.36 ± 0.01 0.09 ± 0.01 0.25 ± 0.01

OPT-6.7B

0.1 0.52 ± 0.04 0.6 ± 0.01 0.49 ± 0.05 0.56 ± 0.02
0.2 0.35 ± 0.26 0.54 ± 0.08 0.38 ± 0.17 0.48 ± 0.12
0.3 0.13 ± 0.18 0.45 ± 0.11 0.22 ± 0.17 0.36 ± 0.13
0.4 0.21 ± 0.27 0.48 ± 0.11 0.31 ± 0.21 0.41 ± 0.15
0.5 0.17 ± 0.28 0.46 ± 0.11 0.28 ± 0.22 0.38 ± 0.16
0.6 0.15 ± 0.25 0.43 ± 0.1 0.24 ± 0.2 0.35 ± 0.14
0.7 0.1 ± 0.18 0.4 ± 0.07 0.19 ± 0.14 0.31 ± 0.1
0.8 0.01 ± 0.02 0.37 ± 0.02 0.12 ± 0.06 0.26 ± 0.03
0.9 0.0 ± 0.0 0.36 ± 0.0 0.08 ± 0.01 0.24 ± 0.0

Table 5: Average performance of different pruned LLMs for different pruning strategies.

D.2 IMPACT OF PRUNING ON INFERENCE EFFICIENCY OF LLMS

We now report detailed results on inference efficiency of pruned LLMs, measured as relative speedup
over the unpruned baseline (Table 6). These values complement the performance numbers in Table 5,
offering a comprehensive view of the accuracy-efficiency trade-offs introduced by pruning.

Overall trends. Inference speedup increases consistently with higher pruning ratios, but the extent
of improvement is highly dependent on the pruning method. Depth pruning yields the largest runtime
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Model Pruning Ratio DepthPruning Unstructured WidthPruning

LLaMA-13B

0.1 1.42 1.15 0.98
0.2 1.52 1.15 1.04
0.3 1.60 1.15 1.15
0.4 1.72 1.16 1.19
0.5 1.84 1.16 1.15
0.6 1.84 1.17 1.28
0.7 1.84 1.18 1.36
0.8 1.84 1.18 1.44
0.9 1.84 1.19 1.36

LLaMA-7B

0.1 1.34 1.24 1.00
0.2 0.85 1.24 0.94
0.3 1.28 1.24 1.00
0.4 1.63 1.24 0.94
0.5 1.63 1.25 1.02
0.6 1.63 1.25 1.05
0.7 1.63 1.25 1.01
0.8 1.63 1.25 1.05
0.9 1.63 1.26 0.98

OPT-13B

0.1 1.07 1.22 0.90
0.2 1.20 1.22 0.98
0.3 1.35 1.22 0.98
0.4 1.54 1.23 1.11
0.5 1.80 1.24 1.10
0.6 2.13 1.24 1.17
0.7 2.74 1.24 1.26
0.8 3.51 1.25 1.37
0.9 5.05 1.26 1.18

OPT-2.7B

0.1 1.40 1.29 0.90
0.2 1.30 1.30 0.82
0.3 1.29 1.29 0.86
0.4 1.43 1.29 0.88
0.5 1.75 1.29 0.91
0.6 1.75 1.30 0.84
0.7 1.75 1.31 0.90
0.8 1.75 1.30 0.87
0.9 1.75 1.31 0.86

OPT-6.7B

0.1 1.07 1.19 0.94
0.2 1.17 1.20 0.88
0.3 1.32 1.19 0.93
0.4 1.49 1.20 0.98
0.5 1.79 1.20 1.02
0.6 2.13 1.20 1.01
0.7 2.63 1.21 1.08
0.8 3.44 1.21 1.08
0.9 5.01 1.22 1.04

Table 6: Inference speedup over unpruned LLMs for different pruning ratios.
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benefits, with speedups ranging from 1.4× at 10% pruning to more than 5× at 90% pruning for
OPT-13B and OPT-6.7B. In contrast, unstructured pruning offers little to no improvement (typically
between 1.15× and 1.30×) because current hardware and software stacks do not efficiently exploit
sparsity without specialized kernels. Width pruning provides a balanced trade-off: modest but
consistent gains between 1.0× and 1.4×, reflecting the structured nature of the removed components.

Model-level differences. Model scale strongly affects achievable speedup. Larger models such as
OPT-13B and OPT-6.7B benefit disproportionately from depth pruning: OPT-13B achieves 2.13×
at 60% pruning and 5.05× at 90%, while OPT-6.7B follows a nearly identical trend with a peak of
5.01× at 90%. By contrast, smaller models saturate earlier. For example, OPT-2.7B reaches only
1.75× even at pruning ratios ≥ 0.5, and LLaMA-7B plateaus at 1.63× beyond 40% pruning. This
indicates diminishing efficiency returns when pruning models below ∼ 7B parameters. LLaMA-
13B lies between these extremes, achieving 1.84× at 50-90% pruning, reflecting both its scale and
architecture.

Method-level differences. The method comparison further clarifies trade-offs.

• Depth pruning is the most effective for runtime efficiency, as entire Transformer blocks are
removed, reducing both FLOPs and memory. Its benefits scale super-linearly with pruning
ratio, particularly in OPT models.

• Unstructured pruning achieves minimal speedup (e.g., 1.17× for LLaMA-13B at 60%),
since irregular sparsity patterns hinder hardware acceleration. These results suggest unstruc-
tured pruning should be preferred only when accuracy preservation is prioritized.

• Width pruning provides moderate efficiency gains (up to 1.44× for LLaMA-13B and
1.37× for OPT-13B), balancing performance preservation with practical acceleration.

D.3 DETAILED ANALYSIS OF FITTED PRUNING LAWS

Task Model α P0 Adj R2 F Statistic Test Error
QA OPT-2.7B 2.47 ± 0.24 1.19 ± 0.27 0.93 106.36 0.02
Reasoning OPT-2.7B 0.17 ± 0.02 0.96 ± 0.02 0.89 65.37 0.04
Language OPT-2.7B 0.65 ± 0.02 0.75 ± 0.02 0.99 1268.91 0.01
Average OPT-2.7B 0.28 ± 0.03 0.85 ± 0.03 0.93 109.53 0.03
QA OPT-6.7B 2.6 ± 0.33 1.44 ± 0.37 0.88 61.1 0.05
Reasoning OPT-6.7B 0.21 ± 0.04 0.96 ± 0.04 0.82 36.48 0.11
Language OPT-6.7B 0.74 ± 0.09 0.8 ± 0.1 0.9 73.67 0.06
Average OPT-6.7B 0.34 ± 0.05 0.87 ± 0.06 0.83 39.88 0.1
QA LLaMA-7B 1.84 ± 0.12 1.24 ± 0.13 0.97 243.24 0.1
Reasoning LLaMA-7B 0.25 ± 0.04 0.93 ± 0.04 0.85 47.06 0.08
Language LLaMA-7B 0.71 ± 0.04 0.72 ± 0.04 0.98 383.52 0.03
Average LLaMA-7B 0.38 ± 0.04 0.86 ± 0.05 0.9 74.55 0.07
QA OPT-13B 2.62 ± 0.33 1.76 ± 0.37 0.88 61.79 0.06
Reasoning OPT-13B 0.21 ± 0.01 0.94 ± 0.02 0.96 212.27 0.02
Language OPT-13B 0.75 ± 0.03 0.8 ± 0.03 0.99 696.71 0.02
Average OPT-13B 0.34 ± 0.02 0.87 ± 0.02 0.98 375.15 0.02
QA LLaMA-13B 2.57 ± 0.31 1.74 ± 0.34 0.9 70.56 0.05
Reasoning LLaMA-13B 0.28 ± 0.04 0.93 ± 0.04 0.88 61.4 0.07
Language LLaMA-13B 0.78 ± 0.04 0.73 ± 0.04 0.98 492.22 0.03
Average LLaMA-13B 0.4 ± 0.04 0.83 ± 0.04 0.94 126.08 0.05

Table 7: Coefficients of the model-task-level pruning laws.

We now analyze the coefficients of the pruning laws fitted across different levels of aggregation:
model-task (Table 7), method-task (Table 8), and method-model-tasks (Table 9). Recall that our
pruning law takes the form:

L1 = L0(1− r)αP0,
where L0 is the unpruned model performance, r is the pruning ratio, α governs the sensitivity to the
retention ratio (1− r), and P0 captures the bias term reflecting the expected loss offset after pruning.
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Task Method α P0 Adj R2 F Statistic Test Error
QA Unstructured 2.71 ± 0.2 3.56 ± 0.22 0.81 183.76 0.25
Reasoning Unstructured 0.31 ± 0.02 1.17 ± 0.02 0.85 252.22 0.12
Language Unstructured 0.91 ± 0.04 1.39 ± 0.05 0.91 418.66 0.18
Average Unstructured 0.47 ± 0.03 1.22 ± 0.03 0.90 370.20 0.15
QA DepthPruning 1.42 ± 0.43 0.03 ± 0.48 0.18 10.70 0.02
Reasoning DepthPruning 0.1 ± 0.03 0.74 ± 0.03 0.22 13.11 0.09
Language DepthPruning 0.28 ± 0.07 0.25 ± 0.08 0.23 14.10 0.05
Average DepthPruning 0.13 ± 0.04 0.54 ± 0.04 0.20 12.21 0.10
QA WidthPruning 3.25 ± 0.21 0.99 ± 0.23 0.84 237.08 0.03
Reasoning WidthPruning 0.26 ± 0.03 0.93 ± 0.03 0.62 72.91 0.11
Language WidthPruning 0.82 ± 0.05 0.7 ± 0.06 0.86 262.08 0.05
Average WidthPruning 0.39 ± 0.04 0.83 ± 0.04 0.70 103.11 0.10

Table 8: Coefficients of the method-task-level pruning laws.

Model-task level coefficients. Table 7 highlights consistent differences across tasks and model
scales. For QA, α values are notably large (e.g., OPT-2.7B: α = 2.47 ± 0.24, OPT-13B: α =
2.62± 0.33), indicating steep degradation as pruning increases. In contrast, reasoning tasks show
very small α values across all models (ranging from 0.17-0.28), reflecting robustness to pruning.
Language modeling tasks fall in between (α ≈ 0.65-0.78), consistent with their moderate sensitivity.

Bias terms P0 also exhibit systematic variation: reasoning tasks have P0 ≈ 0.93-0.96, meaning their
baseline is well preserved even at moderate pruning. QA tasks have much higher P0 (e.g., 1.74±0.34
for LLaMA-13B), amplifying their initial performance before the steep decline governed by α. High
P0 coupled with large α values suggests QA tasks are brittle: they initially retain performance but
collapse quickly beyond the critical pruning ratio. These findings corroborate the raw results in
Table 5, where reasoning tasks degraded more gracefully than QA or language modeling.

Method-task level coefficients. Table 8 reports coefficients averaged over models, disaggregated
by pruning method. Unstructured pruning exhibits the largest α across tasks (α = 2.71 ± 0.20
for QA, 0.91 ± 0.04 for language), reflecting higher sensitivity to pruning, but it also shows very
high P0 values (e.g., 3.56 ± 0.22 for QA). This indicates that while unstructured pruning begins
with inflated performance retention, it rapidly declines with higher ratios. Depth pruning has very
small α values across all tasks (α = 0.1-0.28), and P0 values near or below 1.0, confirming that it
delivers consistent but more linear degradation patterns. Width pruning shows the most aggressive
α for QA (3.25 ± 0.21) but more moderate values for reasoning and language, combined with
P0 ≈ 0.7-0.99. This suggests width pruning offers a middle ground, its degradation is task-sensitive
but more balanced than unstructured pruning.

Method-model-task level coefficients. The finest-grained analysis (Table 9) reveals interactions
between model scale, pruning method, and task. Several patterns are evident:

• Small models are more brittle. For OPT-2.7B under unstructured pruning, QA α values
exceed 2.6, with P0 ≈ 3.08, while reasoning remains near α = 0.23. This implies extreme
instability in QA, contrasting with stable reasoning.

• Large models degrade more smoothly. For LLaMA-13B under width pruning, QA has
α = 3.06± 0.46 but P0 = 1.22± 0.51, while reasoning is closer to α = 0.29± 0.07. The
gap between QA and reasoning persists, but higher P0 ensures smoother average degradation
relative to smaller OPT models.

• Depth pruning produces flatter curves. Across all models, α remains small (< 0.3), and
P0 tends to be < 1.0, producing slow, near-linear degradation with pruning ratio. This
validates the efficiency advantages of depth pruning discussed in the previous section.

Goodness of fit. Adjusted R2 values are consistently high for unstructured and width pruning (0.7-
0.99), demonstrating excellent explanatory power. Depth pruning fits are weaker (often R2 < 0.3),
reflecting the flatter degradation curves and smaller dynamic range. F-statistics confirm statistical
significance across most settings, and test errors remain small (typically 0.02-0.15), indicating strong
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Task Model Method α P0 Adj R2 F Statistic Test Error
QA

OPT-2.7B

Unstructured

2.63 ± 0.42 3.08 ± 0.46 0.83 39.87 0.15
Reasoning 0.23 ± 0.02 1.15 ± 0.03 0.92 95.53 0.07
Language 0.8 ± 0.07 1.32 ± 0.08 0.93 114.16 0.13
Average 0.39 ± 0.03 1.17 ± 0.04 0.95 139.41 0.09
QA

OPT-6.7B

2.77 ± 0.53 3.82 ± 0.62 0.79 27.24 0.23
Reasoning 0.27 ± 0.03 1.17 ± 0.03 0.94 103.33 0.08
Language 0.87 ± 0.12 1.44 ± 0.14 0.88 51.50 0.19
Average 0.44 ± 0.05 1.22 ± 0.06 0.91 76.15 0.13
QA

LLaMA-7B

2.71 ± 0.49 3.65 ± 0.55 0.78 30.05 0.31
Reasoning 0.37 ± 0.05 1.18 ± 0.05 0.88 59.14 0.14
Language 0.95 ± 0.08 1.34 ± 0.09 0.95 139.71 0.16
Average 0.53 ± 0.06 1.22 ± 0.07 0.91 77.53 0.17
QA

OPT-13B

2.65 ± 0.51 3.5 ± 0.56 0.77 27.53 0.24
Reasoning 0.28 ± 0.03 1.18 ± 0.03 0.93 114.94 0.10
Language 0.94 ± 0.13 1.47 ± 0.14 0.86 52.26 0.19
Average 0.45 ± 0.05 1.23 ± 0.05 0.92 94.66 0.14
QA

LLaMA-13B

2.77 ± 0.53 3.87 ± 0.58 0.77 27.73 0.36
Reasoning 0.38 ± 0.05 1.19 ± 0.05 0.89 66.52 0.15
Language 0.98 ± 0.1 1.4 ± 0.11 0.93 102.91 0.20
Average 0.55 ± 0.06 1.25 ± 0.07 0.90 73.61 0.19
QA

OPT-2.7B

DepthPruning

1.51 ± 0.62 0.02 ± 0.69 0.38 5.85 0.06
Reasoning 0.06 ± 0.02 0.79 ± 0.02 0.43 7.03 0.06
Language 0.19 ± 0.07 0.27 ± 0.08 0.46 7.95 0.08
Average 0.07 ± 0.03 0.57 ± 0.03 0.45 7.42 0.07
QA

OPT-6.7B

1.8 ± 1.01 0.03 ± 1.12 0.21 3.18 0.00
Reasoning 0.14 ± 0.07 0.78 ± 0.08 0.24 3.51 0.18
Language 0.58 ± 0.23 0.35 ± 0.26 0.40 6.33 0.06
Average 0.22 ± 0.12 0.61 ± 0.13 0.24 3.58 0.15
QA

LLaMA-7B
1.2 ± 0.5 0.33 ± 0.55 0.37 5.78 0.18

Reasoning 0.13 ± 0.06 0.78 ± 0.06 0.35 5.40 0.15
Language 0.23 ± 0.11 0.31 ± 0.12 0.31 4.61 0.16
Average 0.2 ± 0.09 0.62 ± 0.09 0.35 5.32 0.17
Reasoning 0.01 ± 0.01 0.63 ± 0.01 0.15 2.37 0.04
Language 0.1 ± 0.06 0.15 ± 0.06 0.23 3.35 0.02
Average 0.02 ± 0.01 0.43 ± 0.01 0.22 3.22 0.03
QA

LLaMA-13B

2.59 ± 0.8 0.11 ± 0.89 0.54 10.45 0.01
Reasoning 0.15 ± 0.06 0.73 ± 0.07 0.37 5.72 0.15
Language 0.29 ± 0.12 0.25 ± 0.13 0.40 6.37 0.07
Average 0.14 ± 0.05 0.49 ± 0.06 0.44 7.37 0.10
QA

OPT-2.7B

WidthPruning

3.0 ± 0.53 0.42 ± 0.59 0.80 32.30 0.01
Reasoning 0.2 ± 0.05 0.95 ± 0.06 0.64 15.03 0.11
Language 0.76 ± 0.1 0.71 ± 0.11 0.87 56.24 0.04
Average 0.32 ± 0.08 0.81 ± 0.09 0.67 17.56 0.10
QA

OPT-6.7B

3.37 ± 0.56 0.85 ± 0.62 0.82 36.58 0.03
Reasoning 0.26 ± 0.05 0.99 ± 0.06 0.77 27.21 0.08
Language 0.83 ± 0.08 0.8 ± 0.08 0.94 118.73 0.03
Average 0.4 ± 0.07 0.88 ± 0.08 0.78 30.19 0.09
QA

LLaMA-7B

3.33 ± 0.37 1.1 ± 0.41 0.91 79.60 0.03
Reasoning 0.25 ± 0.07 0.84 ± 0.07 0.63 14.34 0.14
Language 0.82 ± 0.09 0.59 ± 0.1 0.91 80.98 0.04
Average 0.38 ± 0.09 0.73 ± 0.1 0.70 19.61 0.11
QA

OPT-13B

3.48 ± 0.39 1.91 ± 0.43 0.91 81.04 0.06
Reasoning 0.28 ± 0.04 1.04 ± 0.05 0.85 45.94 0.07
Language 0.84 ± 0.07 0.87 ± 0.08 0.95 151.76 0.03
Average 0.43 ± 0.06 0.97 ± 0.07 0.85 48.01 0.07
QA

LLaMA-13B

3.06 ± 0.46 1.22 ± 0.51 0.84 43.97 0.04
Reasoning 0.29 ± 0.07 0.87 ± 0.08 0.65 16.09 0.15
Language 0.83 ± 0.1 0.59 ± 0.11 0.89 66.53 0.05
Average 0.43 ± 0.09 0.77 ± 0.1 0.72 21.24 0.11

Table 9: Coefficients of method-model-task level pruning laws.
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Figure 6: Fitted pruning laws for downstream performance of pruned LLMs with unstructured
pruning.

predictive fidelity of the pruning laws. Importantly, even with task and model heterogeneity, the
pruning law retains goodness-of-fit across all aggregation levels, supporting its universality.

Implications. The fitted coefficients highlight several actionable takeaways:

• Task dependence. QA is highly sensitive to pruning (α > 2), while reasoning is robust
(α < 0.3). Practitioners deploying pruned models on QA-heavy benchmarks should adopt
conservative pruning ratios or fine-tuning.
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Figure 7: Fitted pruning laws for downstream performance of pruned LLMs with depth pruning.

• Method choice. Depth pruning produces the smoothest degradation (α small, P0 near
1), while unstructured pruning exaggerates performance retention (P0 ≫ 1) but collapses
quickly. Width pruning balances these extremes.

• Model scale. Larger models (e.g., LLaMA-13B) show smaller α and smoother degradation
compared to smaller OPT models, highlighting that pruning is more reliable for larger
LLMs.

• Universality. Despite variance across methods and tasks, the pruning law consistently
explains observed degradation with low test errors and high R2, confirming its applicability
as a general predictive framework.
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Figure 8: Fitted pruning laws for downstream performance of pruned LLMs with width pruning.

Overall, the fitted coefficients reveal how α and P0 jointly govern pruning dynamics: α determines
the slope of decay, while P0 modulates the starting point and task bias. Their complementary roles
allow pruning laws to capture a wide variety of behaviors across models, methods, and tasks with a
single functional form.

E CURIOUS CASE OF KNOWLEDGE EXTRACTION TASKS

In contrast to reasoning, QA, and language modeling, pruning laws fail to capture systematic patterns
in knowledge-extraction tasks. We evaluate the pruned LLMs on subsets of MMLU (Hendrycks et al.,
2020) knowledge-extraction dataset, including college mathematics, conceptual physics, and global
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Figure 9: Fitted pruning laws for pruned LLMs on knowledge-extraction tasks. Poor R2 of 0.02 and
F-statistic of 1.92, indicate a poor goodness of fit. Similar erratic behavior observed by Sengupta
et al. (2025).

facts. As shown in Figure 9, the fitted curves yield extremely poor goodness-of-fit (R2 = 0.02, F-
statistic = 1.92), with performance points scattering erratically across pruning ratios. This irregularity
likely stems from structural properties of the benchmarks: (i) answers are often revealed directly in
the context, allowing even heavily pruned models to rely on surface cues; (ii) the multiple-choice
format enables correct guesses from statistical biases unrelated to retained capacity; and (iii) the
smooth power-law decay assumed by pruning laws is misaligned with threshold-like behavior in
factual recall. Consequently, knowledge tasks do not degrade in a principled manner under pruning
and thus offer limited diagnostic value for evaluating universality. While suitable for unpruned
models, they should not be used to study compression dynamics; more robust alternatives, such as
multi-hop fact retrieval or open-ended factual generation, are needed to probe knowledge retention in
pruned LLMs.

F PRACTITIONER GUIDELINES FOR SELECTING PRUNING STRATEGIES

To make our findings actionable, we summarize them as practical rules of thumb for real-world
adoption of pruning strategies. These guidelines allow practitioners to quickly decide which pruning
strategy best matches their constraints and to use the pruning laws for principled planning rather than
ad hoc trial-and-error:

1. Selecting the pruning method:
• Use depth pruning when runtime speedup is the primary objective, as it yields the

largest accelerations (up to 5×), though with higher variance in accuracy.
• Use unstructured pruning when performance preservation is critical, since it provides

the lowest test errors and the most stable predictions, albeit with modest speedups.
• Use width pruning for a balanced trade-off between accuracy and speed, offering

moderate but consistent improvements.
2. When facing unseen models:

• Start with zero-shot mode by directly reusing fitted coefficients (α, P0), which achieves
low extrapolation error even across families.

• If limited resources are available to probe the new model, perform one-shot calibration:
keep α fixed and re-estimate only P0 from a single pruning experiment. This is
beneficial when accuracy at specific pruning ratios is critical.

3. When using new pruning methods:
• Begin with zero-shot predictions using coefficients from similar pruning categories.
• Apply one-shot calibration of P0 if the method is highly different (e.g., algorithmic

pruning heuristics not studied in our experiments) and one evaluation run is feasible.
4. When targeting different tasks:

• For reasoning tasks, higher pruning ratios can be tolerated, as they are more robust
(smaller α).

• For QA and language modeling, adopt more conservative pruning ratios, since these
tasks degrade faster with pruning.
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5. Compression planning:
• If multiple evaluations are possible, test at a few pruning ratios (preferably < 50%)

and fit the pruning law locally to refine estimates.
• If evaluations are infeasible (e.g., resource-constrained scenarios), reuse our published

coefficients (model-wise or task-wise) to approximate trade-offs with reasonable accu-
racy.

In summary, practitioners should use zero-shot pruning laws for fast deployment across new models,
tasks, or methods, and fall back to one-shot calibration of P0 when some evaluation budget is
available. This ensures a principled, universal, and resource-aware approach to model pruning.
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