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Abstract
The goal of voice conversion is to convert the input voice to
match the target speaker’s voice while keeping text and prosody
intact. Voice conversion is usually used in entertainment and
speaking-aid systems, as well as applied for speech data gener-
ation and augmentation. The development of any-to-any voice
conversion systems, which are capable of generating voices un-
seen during training, is of particular interest to both researchers
and the industry. Despite recent progress, any-to-any conver-
sion quality is still inferior to natural speech.

In this work, we propose a new any-to-any voice conversion
pipeline. To the best of our knowledge, it is the first use of an
ASR encoder with a GAN training objective in the voice con-
version system. We also implement a joint conditional decoder-
vocoder model, which simplifies training and improves perfor-
mance. According to multiple subjective and objective eval-
uations, our method outperforms modern systems in terms of
voice quality, similarity, and consistency.
Index Terms: any-to-any voice conversion, speech synthesis

1. Introduction
Speech synthesis aims at generating waveforms containing
voices with desired properties [1, 2]. The two main approaches
to speech synthesis are text-to-speech (TTS) and voice conver-
sion (VC). In TTS, an algorithm predicts a voice waveform
based on the provided text. Sometimes extra information is
available, such as emotion, tempo, or the desired target voice
sample [3]. In voice conversion, an algorithm converts the voice
of one speaker to the voice of another speaker without affect-
ing textual content and prosody. A simple VC algorithm can
be implemented by combining an automatic speech recognition
(ASR) system with TTS. However, the textual bottleneck of this
approach leads to losing important information about prosody.
To tackle this problem, special VC algorithms were proposed by
several authors for use in entertainment [4], speaking-aid sys-
tems [5], data augmentation [6] and anonymization [7]. Despite
recent improvements, the quality of converted speech is still in-
ferior to natural speech, and future development is required.

Voice conversion methods can be characterized by their
level of complexity. Basic approaches convert the voice of one
or multiple predefined speakers to the voice of a single target
speaker [8]. There are also many-to-many methods, that are ca-
pable of converting voices in a closed set of speakers, provided
during training [9, 10]. Finally, the most general approach to
VC aims at converting arbitrary voices either seen or unseen
during training [11, 12]. This approach is usually called any-to-
any or zero-shot voice conversion. In this work, we address the
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Figure 1: HiFi-VC inference pipeline. We use pretrained ASR
bottleneck features and a pitch tracker for encoding. Decoder
and vocoder are joined into a single model with an additional
condition on the output of a speaker encoder.

most general form of voice conversion, namely any-to-any VC,
where we show superior quality compared to popular methods.

Most recent works perform voice conversion in three steps
[13, 12]. First, they extract content and speaker features from
an input sample, then they generate a spectrogram and finally
convert it to a waveform using a vocoder. In contrast to these
works, we simplify architecture by joining the decoder and
vocoder into a single model. Several works use neural wave-
form encoders, including ASR, and decoders [9, 11, 14]. Some
approaches exploit ideas from generative-adversarial networks
(GAN) [11, 15]. While both ASR and GAN improve conver-
sion quality, there were no attempts to join these methods in a
single pipeline.

In this work, we propose a new high-quality any-to-any
voice conversion system. The proposed model structure is pre-
sented in Figure 1. Contributions of this paper can be summa-
rized as follows:

1. We for the first time combine ideas from ASR-based con-
tent encoding with a GAN training objective to achieve
high-quality any-to-any voice conversion. Ablation studies
demonstrate the importance of each component for output
speech quality.

2. The proposed conditional HiFi-GAN architecture is capable
of directly predicting a waveform from intermediate features.
In particular, we adapt HiFi-GAN [16] vocoder for a general
decoding task.

3. We compare the proposed method with modern approaches
using subjective and objective evaluations. According to our
experiments, the proposed method improves voice quality,
similarity, and consistency. The inference code and voice
samples are publicly released1.

1https://github.com/tinkoff-ai/hifi_vc
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Figure 2: HiFi-VC training pipeline. Output waveform combines linguistic information and prosody from the source sample with
reference timbre. The ASR model encodes the linguistic content, while the pitch encoder provides prosody information. The pretrained
ASR model used in the content encoder is frozen during training.

2. Related Work
Given a source speech sample, VC methods try to extract
speaker-agnostic content information. Some methods imple-
ment a bottleneck layer for information decoupling [13]. Ad-
ditional normalization layers can be applied to further improve
speaker and content features disentanglement [17]. Some works
explicitly force disentanglement by either minimizing mutual
information [12], by matching representations of the original
and converted speech samples [11] or by using discriminators
[18]. The corresponding encoders have little knowledge about
the language and thus miss important content information.

Several works apply an ASR model for content encoding
[10, 19]. Some methods use phonemes probabilities on the out-
put of ASR [19], while others utilize bottleneck features [10, 9].
When it comes to the latter, it was empirically observed that bot-
tleneck ASR features contain little information about the source
speaker. Another use of ASR is to design a training objective
that minimizes the loss of linguistic information during conver-
sion [15]. One drawback of ASR-based coding is ASR’s prac-
tical inability to encode prosody features. To handle this prob-
lem, most methods directly extract fundamental frequency (F0)
from the source sample [10, 15]. Speaker information is usu-
ally eliminated from F0 by applying normalization [12]. The
encoder part of our method includes ASR and F0 extractor sim-
ilar to TTS Skins [10]. F0 is additionally preprocessed by a
trainable network similar to that in BNE-Seq2seqMoL [20].

Given content and speaker features, most methods decom-
pose prediction into two steps: decoding and vocoding [13, 12].
The goal of the decoder is to predict the Mel spectrogram of
the output signal. The vocoder, on the other hand, converts
the predicted spectrogram into an output waveform. The de-
coder can be implemented via RNN [13], Transformer [19], or
a fully convolutional architecture [18]. Popular vocoders in-
clude Griffin-Lim [21], WORLD [22] and neural network mod-
els such as WaveGlow [23] and HiFi-GAN [16]. To handle Mel
spectrogram prediction errors, an extra vocoder fine-tuning step
is required after decoder training.

In this work, we propose a joint decoder-vocoder HiFi-
GAN module with additional speaker conditioning as shown
in Figure 1. Unlike previous works based on ASR and GAN
[9], we avoid the intermediate Mel spectrogram prediction step

and directly produce a waveform from encoded features. Some
previous works, such as VCRSS [9] and NVC-Net [11], also
avoid using a separate vocoder. Unlike VCRSS, we use a GAN
decoder for better waveform prediction. Our approach is also
different from NVC-Net, as we use the ASR encoder and a dif-
ferent GAN architecture.

3. Proposed Method
Our model is based on an encoder-decoder architecture with
an additional speaker encoder, as shown in Figure 2. During
training, the reference record equals the source record, and the
model learns to separate content information from the voice. In
inference time, we can use an arbitrary reference sample for en-
coding the target voice. The architecture and training details are
described below.

3.1. Model Architecture

ASR encoder. The goal of ASR encoder is to extract speaker-
agnostic content information from the source voice sample. We
do this by using bottleneck features from an automatic speech
recognition (ASR) model. In particular, we apply the Con-
former ASR [24] pretrained by NVIDIA and available on the
official website2. The usage of the pretrained ASR allows us
to largely speed up training and improve generalization as ASR
representations are independent of the particular VC dataset.

F0 encoder. As ASR is trained to extract linguistic infor-
mation, it is not very accurate at capturing prosody. To over-
come this limitation, we add a fundamental frequency (F0) pre-
dictor similar to the BNE-Seq2seqMoL approach [20]. We also
extract the boolean vocalization feature, which indicates regions
where F0 can’t be estimated. Our F0 predictor consists of the
WORLD extractor [22] and a fully-convolutional network with
3 layers and instance normalization [25], which produces 256-
dimensional vectors and downsamples input signal four times
to match the ASR frequency. The goal of instance normaliza-
tion is to exclude speaker information from F0, while a trainable
subnetwork provides more flexibility in F0 coding.

2https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_large_ls



Table 1: Many-to-many voice quality and similarity mean opinion scores (MOS) along with objective metrics for the proposed method
and baselines. ”F” and ”M” correspond to different gender combinations of source and reference voices. Word error rate (WER) and
character error rate (CER) are reported in percentages. Standard deviation (STD) of the voice quality in all studies is less than 0.19.
STD of similarity is less than 0.27. Ground truth score is obtained using original records from the dataset.

Model Voice Quality ↑ Similarity ↑ Objective Metrics
F2F F2M M2M M2F Mean F2F F2M M2M M2F Mean WER ↓ CER ↓ PCC ↑

Ground Truth 4.30 N/A 4.35 N/A 4.33 4.37 N/A 4.44 N/A 4.40 0 0 1

AutoVC[13] 2.22 2.14 2.27 2.15 2.20 2.26 2.42 2.09 2.49 2.32 85.1 58.1 0.22
VQMIVC[12] 3.93 3.69 3.74 3.78 3.78 2.97 3.10 3.19 2.97 3.06 32.5 16.9 0.51
NVC-Net[11] 3.73 3.17 3.71 3.35 3.49 3.91 3.79 3.83 3.71 3.81 37.9 21.4 0.42
PPG-VC[20] 3.64 3.72 3.84 3.72 3.73 1.60 2.38 2.32 1.51 1.95 16.7 8.0 0.38

HiFi-VC-no-ASR 2.02 2.01 2.04 1.95 2.00 3.90 4.01 3.62 4.03 3.89 92.8 64.2 0.55
HiFi-VC-no-F0 4.33 4.37 4.36 4.29 4.34 4.33 4.23 4.23 4.26 4.26 12.3 5.3 0.33
HiFi-VC 4.20 4.19 4.17 4.18 4.18 4.22 4.31 4.31 4.13 4.26 13.1 5.4 0.61

Speaker encoder. We implement any-to-any voice con-
version by using a speaker encoder network. The speaker en-
coder predicts the distribution of speaker feature vectors from
an audio sample using a 5-layer residual fully-connected net-
work. The multivariate normal distribution is defined by the
mean vector and the diagonal covariance matrix. During train-
ing, speaker features are obtained via sampling, while in testing
mean is used. The speaker encoder is similar to the encoder part
of VAE [26] and is trained along with other modules in a single
pipeline.

Decoder. The goal of the vocoder is to convert a Mel spec-
trogram into a waveform. Some previous works utilize HiFi-
GAN [16] as a vocoder model. Our novel decoding approach
extends previous GAN-based methods, as shown in Figure 3.
While previous HiFi GAN-based approaches use different net-
works for the decoder and vocoder, we combine both into a sin-
gle model. We implement a conditional HiFi-GAN, with con-
ditions obtained from the speaker encoder. In particular, ASR
bottleneck and F0 features are directly served as generator in-
put. Speaker embeddings are linearly projected to match the
dimensions of HiFi-GAN upsampling blocks and then added to
their inputs. In general, our approach simplifies the prediction
pipeline and doesn’t need a vocoder fine-tuning step after de-
coder training. Furthermore, speaker embedding controls gen-
eration at all levels, including the waveform prediction step.

Discriminator. We use the same discriminator architecture
as in HiFi-GAN [16].

3.2. Training Objectives

During training, we freeze the ASR model and simultaneously
optimize the parameters of the F0 encoder, speaker encoder, de-
coder network, and GAN discriminator. We do this by combin-
ing modified HiFi-GAN losses [16] with speaker encoder regu-
larization loss from NVC-Net [11].

In our method, we do not use intermediate Mel-spectrogram
representation. In contrast to the original HiFi-GAN approach,
we compute reconstruction loss between spectrograms of the
source and predicted voice samples. Suppose s is the predicted
waveform, x is the natural one and M is a Mel-spectrogram
transform. Here, reconstruction loss is defined as

LRec(s, x) = ||M(s)−M(x)||1. (1)

HiFi-GAN applies adversarial loss to make the predicted
waveform similar to the natural one. Suppose D is a discrimi-
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Figure 3: The conditional HiFi-GAN decoder architecture.
Speaker embedding is projected using linear layers, repeated
along time dimension, and then added to generator layers in-
puts.

nator network. Then, the loss used for predictor optimization is
defined as

LAdvP (s) = (D(s)− 1)2, (2)
and the loss for discriminator optimization is defined as

LAdvD(s, x) = (D(x)− 1)2 + (D(s))2. (3)

GAN training is stabilized using feature matching loss. Suppose
an output of the i-th discriminator layer is an Ni-dimensional
vector Di. In this case, feature matching loss is computed as

LFM (s, x) =
T∑

i=1

1

Ni
||Di(x)−Di(s)||1. (4)

In addition to the above, there is also speaker embedding
regularization loss, which prevents a distribution collapse. Sup-
pose, there is a reference record r. If we define the mean and
diagonal covariance matrix predicted by the speaker encoder as
µ(r) and Σ(r), then regularization loss would be defined as

LSpk(r) = DKL(N (x;µ(r),Σ(r))||N (x; 0, I)). (5)

The final loss for predictor is a weighted sum of the losses
described above:

LP (s, r, x) = λRecLRec(s, x) + λAdvPLAdvP (s)+

λFMLFM (s, x) + λSpkLSpk(r). (6)



Table 2: Any-to-any voice quality and similarity mean opinion scores (MOS) along with objective metrics for the proposed method
and baselines. ”F” and ”M” correspond to different gender combinations of source and reference voices. Word error rate (WER) and
character error rate (CER) are reported in percentages. The standard deviation (STD) of the voice quality in all studies is less than
0.23. STD of similarity is less than 0.29. The ground truth score is obtained using original records from the dataset.

Model Voice Quality ↑ Similarity ↑ Objective Metrics
F2F F2M M2M M2F Mean F2F F2M M2M M2F Mean WER ↓ CER ↓ PCC ↑

Ground Truth 4.27 N/A 4.47 N/A 4.37 4.39 N/A 4.17 N/A 4.28 0 0 1

AutoVC[13] 2.08 1.61 1.64 2.03 1.84 1.59 1.66 1.73 1.47 1.61 95.4 67.6 0.12
VQMIVC[12] 3.64 3.73 3.67 3.70 3.69 1.96 2.23 2.22 1.95 2.09 32.2 16.7 0.55
NVC-Net[11] 3.68 3.41 3.64 3.42 3.54 2.22 1.82 1.82 2.06 1.98 32.5 16.5 0.12
PPG-VC[20] 3.43 3.74 3.82 3.71 3.68 1.88 2.43 2.40 1.82 2.13 13.1 4.7 0.38

HiFi-VC-no-ASR 2.36 2.25 2.32 2.40 2.33 3.27 3.03 2.89 3.29 3.12 91.4 62.0 0.55
HiFi-VC-no-F0 4.37 4.43 4.45 4.46 4.43 3.55 2.83 2.77 3.36 3.13 9.2 3.7 0.33
HiFi-VC 4.06 4.22 4.37 4.23 4.22 3.27 2.91 2.93 3.04 3.04 9.7 3.6 0.63

We use λRec = 45, λAdvP = 1, λFM = 1, λSpk = 0.01.
As in traditional GAN optimization, each training step updates
the discriminator using the LAdvD(s, x) loss and other modules
with the LP (s, r, x) loss.

3.3. Implementation Details

During training, all voice samples are converted to 24kHz. ASR
produces features with a 40ms period and the F0 predictor gen-
erates features every 10ms. The F0 prediction network is de-
signed to downsample F0 features to match those of ASR.

To match the ASR feature frequency, we increase HiFi-
GAN upsampling level from 256 to 960. We also remove a bias
parameter from the final convolutional layer to stabilize mixed-
precision training [27]. We train our network for 120 epochs
using Adam optimizer. We set the initial learning rate to 0.0002
and use an exponential scheduler with γ = 0.995. Each epoch
takes 85 minutes on a single NVIDIA V100 GPU.

4. Experiments
In this section, we describe the experimental setup and our re-
sults, produced by subjective and objective evaluations.

4.1. Experimental Setup

We use the VCTK dataset [28] for training baselines and our
model. The dataset includes 44242 voice samples from 110
speakers, among which are 47 male, 61 female, and 2 speak-
ers of unknown gender. The distribution of sample lengths is
presented in Figure 4. We keep 6 speakers for any-to-any evalu-
ation and use the other speakers during training. Voice samples
do not overlap between training and testing.

We compare our method to previous works with publicly
available implementations. In particular, we use AutoVC [13],
VQMIVC [12] and NVC-Net [11]. The original AutoVC imple-
mentation failed to train in our setup, which is why we used an
official pretrained AutoVC model for all comparisons. We ap-
plied the same AutoVC model to many-to-many and any-to-any
tasks. We tried to include StarGANv2-VC [15] in our compar-
ison but encountered several problems. There is a discussion in
the original GitHub repository, which highlights the difficulties
of training StarGANv2-VC with more than 30 speakers3. An-

3https://github.com/yl4579/StarGANv2-VC/
issues/6#issuecomment-920777258
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Figure 4: The distribution of voice sample lengths (seconds) in
the VCTK dataset for male and female speakers.

other difficulty with StarGANv2-VC is that it can’t be used for
any-to-any conversion. We thus decided to exclude this method
from the comparison.

Voice conversion evaluation usually involves the estima-
tion of the output voice quality, voice similarity, linguistic and
prosody consistency. We evaluate voice quality using subjec-
tive mean opinion score (MOS) [29]. Each predicted record is
estimated with a grade ranging from 1 (completely unnatural)
to 5 (completely natural).

We use a crowd-sourcing platform for markup. During the
markup, we place 11 entries on each page of tasks, including
one honeypot, two examples for each possible combination of
source and target speaker genders (M2M, F2M, M2F, F2F), as
well as two original female and male voice samples. Each al-
gorithm was evaluated by 400 samples in many-to-many setup
and by 144 samples in any-to-any. Grades were obtained from
900 assessors with an overlap 10 for many-to-many and 20 for
any-to-any.

For voice similarity evaluation, we construct pairs of voice
samples. Assessors are required to measure voice similarity be-
tween samples with grades between 1 (different) and 5 (same).
We report the final MOS for different source and reference gen-
der combinations.

Linguistic consistency is measured as word error rate
(WER) and character error rate (CER) between source and out-
put speech samples. As our method involves ASR features,
WER and CER can be biased. To solve this problem, we use a
different ASR model for evaluation[30]. We also report prosody
consistency measured as Pearson correlation coefficient (PCC)
between F0 tracks from source and predicted samples.



4.2. Conversion Quality

We perform separate evaluations for many-to-many and any-
to-any setups. Voice quality and similarity MOS metrics for
these two tasks are reported in Table 1 and Table 2 respectively.
Among baselines, VQMIVC generally performs better in terms
of voice quality, and NVC-Net achieves higher similarity. At
the same time, the proposed HiFi-VC method outperforms all
considered baselines both in terms of voice quality and similar-
ity.

We also perform a set of objective evaluations aimed at lin-
guistic and prosody consistency. Evaluation results for many-
to-many and any-to-any tasks are reported in Table 1 and Ta-
ble 2 respectively. Among baselines, NVC-Net achieves lower
WER and CER in the many-to-many task while being on par
with VQMIVC in the any-to-any task. On the other hand,
VQMIVC achieves higher pitch consistency compared to other
baselines. The proposed HiFi-VC method achieves the low-
est WER and CER among all methods. At the same time, the
prosody predicted by HiFi-VC better correlates with the source
speech sample.

In general, the proposed method achieves high voice quality
and similarity. Sometimes it even slightly outperforms ground
truth, but the difference isn’t significant according to Welch’s
t-test with a significance level of 5%. At the same time, the
superiority to the baselines is significant at the same level.

4.3. Ablation Studies

We performed ablation studies for the proposed method. First,
we replaced ASR with a neural content encoder, similar to
NVC-Net[11]. We also implemented HiFi-VC-no-F0 architec-
ture without an F0 encoder. Evaluation results for these meth-
ods are presented in Table 1 and 2. According to these results,
the ASR encoder is important for both MOS and objective eval-
uation metrics. An interesting behavior is observed for the no-
F0 method. This method improves most metrics in both many-
to-many and any-to-any setups at the cost of F0 quality (PCC).
We thus suggest using the method without an F0 encoder in ap-
plications, where exact prosody transfer is not required.

4.4. Discussion

Experimental results suggest that HiFi-GAN can be used ei-
ther as a vocoder or as a joint decoder-vocoder module. The
proposed HiFi-VC method achieves better conversion results
than the baselines in both many-to-many and any-to-any setups.
HiFi-VC also reduces the computation cost by excluding sepa-
rate decoder module from the pipeline. The proposed speaker
conditioning scheme increases speaker similarity and the usage
of ASR bottleneck and F0 features leads to high linguistic and
prosody consistency.

5. Conclusion
In this work, we presented a novel voice conversion system,
which combines the ASR model with direct waveform pre-
diction using a conditioned HiFi-GAN. A robust ASR feature
extractor along with a speaker encoder allows this method to
solve general any-to-any conversion tasks. According to mul-
tiple experiments involving subjective and objective evaluation,
our method achieves better voice conversion than the baselines
in terms of voice quality, similarity, and consistency.
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