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Abstract

Graph Neural Networks (GNNs) often perform better for high-degree nodes than
low-degree nodes on node classification tasks. This degree bias can reinforce
social marginalization by, e.g., privileging celebrities and other high-degree ac-
tors in social networks during social and content recommendation. While re-
searchers have proposed numerous hypotheses for why GNN degree bias occurs,
we find via a survey of 38 degree bias papers that these hypotheses are often
not rigorously validated, and can even be contradictory. Thus, we provide an
analysis of the origins of degree bias in message-passing GNNs with different
graph filters. We prove that high-degree test nodes tend to have a lower prob-
ability of misclassification regardless of how GNNs are trained. Moreover, we
show that degree bias arises from a variety of factors that are associated with
a node’s degree (e.g., homophily of neighbors, diversity of neighbors). Fur-
thermore, we show that during training, some GNNs may adjust their loss on
low-degree nodes more slowly than on high-degree nodes; however, with suffi-
ciently many epochs of training, message-passing GNNs can achieve their max-
imum possible training accuracy, which is not significantly limited by their ex-
pressive power. Throughout our analysis, we connect our findings to previously-
proposed hypotheses for the origins of degree bias, supporting and unifying
some while drawing doubt to others. We validate our theoretical findings on
8 common real-world networks, and based on our theoretical and empirical in-
sights, describe a roadmap to alleviate degree bias. Our code can be found at:
github.com/ArjunSubramonian/degree-bias-exploration.

1 Introduction

Graph neural networks (GNNs) have been applied to node classification tasks such as document
topic prediction [4] and content moderation [41]. However, in recent years, researchers have shown
that GNNs exhibit better performance for high-degree nodes on node classification tasks. This
has significant social implications, such as the marginalization of: (1) authors of less-cited papers
when predicting the topic of papers in citation networks; (2) junior researchers when predicting the
suitability of prospective collaborators in academic collaboration networks; (3) creators of newer or
niche products when predicting the category of products in online product networks; and (4) authors
of short or standalone websites when predicting the topic of websites in hyperlink networks.

To illustrate this phenomenon, Figure 1 shows that across different message-passing GNNs (see §D
for details about architectures) applied to the CiteSeer dataset (where nodes represent documents
and the classification task is to predict their topic), high-degree nodes generally incur a lower test
loss than low-degree nodes. In practice, if such GNNs are applied to predict the topic of documents
in social scientific studies, less-cited documents will be misclassified, which can lead to the con-
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Figure 1: Test loss vs. degree of nodes in CiteSeer for RW, SYM, and ATT GNNs. High-degree
nodes generally incur a lower test loss than low-degree nodes do. Error bars are reported over 10
random seeds; all error bars are 1-sigma and represent the standard deviation about the mean.

tributions of their authors not being appropriately recognized and erroneous scientific results. We
present additional evidence of degree bias across different GNNs and datasets in §E.

Researchers have proposed various hypotheses for why GNN degree bias occurs in node classifica-
tion tasks. However, we find via a survey of 38 degree bias papers that these hypotheses are often
not rigorously validated, and can even be contradictory (§2). Furthermore, almost no prior works on
degree bias provide a comprehensive theoretical analysis of the origins of degree bias that explicitly
links a node’s degree to its test and training error in the semi-supervised learning setting (§2).

Hence, we theoretically analyze the origins of degree bias in node classification during test and
training time for general message-passing GNNs, with separate parameters for source and target
nodes and residual connections. Our analysis spans different graph filter choices: RW (random
walk-normalized filter), SYM (symmetric-normalized filter), and ATT (attention-based filter) (see
§D for formal definitions). In particular, we prove that high-degree test nodes tend to have a lower
probability of misclassification regardless of how GNNs are trained. Moreover, we show that de-
gree bias arises from a variety of factors that are associated with a node’s degree (e.g., homophily
of neighbors, diversity of neighbors). Furthermore, we show that during training, SYM (compared
to RW) may adjust its loss on low-degree nodes more slowly than on high-degree nodes; however,
with sufficiently many epochs of training, message-passing GNNs can achieve their maximum pos-
sible training accuracy, which is only trivially curtailed by their expressive power. Throughout our
analysis, we connect our findings to previously-proposed hypotheses for the origins of degree bias,
supporting and unifying some while drawing doubt to others. We validate our theoretical findings
on 8 real-world datasets (see §C)that are commonly used in degree bias papers (see Figure 2, §F).
Based on our theoretical and empirical insights, we describe a principled roadmap to alleviate degree
bias.

2 Background and Related Work

Numerous prior works have proposed hypotheses for why GNN degree bias occurs in node classifi-
cation tasks. We summarize these hypotheses in Table 2 based on a survey of 38 non-review papers
about degree bias in node classification that cite [45], a seminal work on degree bias.

While many of these papers have contributed solutions to degree bias (see §A for a thorough
overview), we find that their hypotheses for the origins of degree bias are often not rigorously val-
idated, and can even be contradictory. For example, some hypotheses locate the source of degree
bias in the training stage, while others cite interactions between training and test-time factors or
purely test-time issues. Moreover, hypothesis (H5) in Table 2, which posits that high-degree node
representations cluster more strongly, conflicts with and (H10), which argues that high-degree node
representations have a larger variance. In our theoretical analysis of the origins of degree bias, we
connect our findings to these hypotheses.

We further find that almost no prior works on degree bias provide a comprehensive theoretical anal-
ysis of the origins of GNN degree bias that explicitly links a node’s degree to its test and training
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Table 1: Five most popular hypotheses for the origins of degree bias proposed by papers. The
remaining hypotheses can be found in Table 2.

Hypothesis Papers
(H1) Neighborhoods of low-degree nodes con-
tain insufficient or overly noisy information for
effective representations.

[34], [52], [54], [14], [65], [31], [32], [35],
[33], [21], [29], [19], [28], [55], [67], [47],
[11], [8], [20], [66], [56]

(H2) High-degree nodes have a larger influence
on GNN training because they have a greater
number of links with other nodes, thereby
dominating message passing.

[45], [52], [65], [22], [63], [28], [62]

(H3) High-degree nodes exert more influence
on the representations of and predictions for
nodes as the number of GNN layers increases.

[65], [6], [27], [11], [64]

(H4) In semi-supervised learning, if training
nodes are picked randomly, test predictions for
high-degree nodes are more likely to be in-
fluenced by these training nodes because they
have a greater number of links with other
nodes.

[45], [63], [18]

(H5) Representations of high-degree nodes
cluster more strongly around their correspond-
ing class centers, or are more likely to be lin-
early separable.

[39], [49], [26]

error in the semi-supervised learning setting (see Table 3). For example, most works prove that:
(a) high-degree nodes have a larger influence on GNN node representations or parameter gradients,
or (b) high-degree nodes cluster more strongly around their class centers or are more likely to be
linearly separable; however, these works do not directly bound the probability of misclassifying a
node during training vs. test time in terms of its degree.

The few works that do provide a theoretical analysis of degree bias: (A1) perform this analysis with
overly strong assumptions, e.g., that graphs are sampled from a Contextual Stochastic Block Model
(CSBM) [10], or (A2) posit that GNNs do not have sufficient expressive power to map nodes with
different degrees to distinct representations. However, in the case of (1), for CSBM graphs, as the
number of nodes n → ∞, the degrees of nodes in each class concentrate around a constant value,
which is contradictory to real-world graphs, making CSBM an inappropriate model to theoretically
analyze degree bias. Moreover, many real-world social networks exhibit a power-law degree distri-
bution [3], which is not captured by a CSBM. In the case of (2), §I shows that the accuracy of GNNs
on real-world networks is not significantly limited by the Weisfeiler-Leman (WL) test, which draws
doubt to hypothesis (H7).

Ultimately, previously-proposed hypotheses for why GNN degree bias occurs lack rigorous valida-
tion, and can even be contradictory. To unify and distill these hypotheses, we provide an analysis of
the origins of degree bias in message-passing GNNs with different graph filters.

3 Preliminaries

Throughout our theoretical analysis, we connect our findings to previously-proposed hypotheses for
the origins of degree bias, supporting and unifying some while drawing doubt to others. We further
validate our findings on 8 real-world datasets (see §C) that are commonly used in degree bias papers
(see Figure 2, §F). In all figures (except the PCA plots), error bars are reported over 10 random
seeds. The factors of variability include model parameter initialization and training dynamics. All
error bars are 1-sigma and represent the standard deviation (not standard error) of the mean. We
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implicitly assume that errors are normally-distributed. Error bars are computed using PyTorch’s
std function [40]. We relegate all proofs to §B.

We first introduce relevant notation and assumptions. Suppose we have a C-class node classifica-
tion problem defined over an undirected connected graph G = (V, E) with N = |V| nodes. We
assume that our graph structure A ∈ {0, 1}N×N and node labels Y ∈ NN

≤C are fixed, but our

node features X ∈ RN×d(0)

are independently sampled from class-specific feature distributions,
i.e., ∀i ∈ V,Xi ∼ DYi

. We further have a modelM that maps X,A to predictions Ŷ ∈ RN×C .
We use a cross-entropy loss function ℓ(M|i, c) = − log Ŷi,c that computes the loss for node i ∈ V
with respect to class c forM. Per the semi-supervised learning paradigm [24], we trainM with the
full graph X,A but only a labeled subset of nodes S ⊂ V .

4 Test-Time Degree Bias

The test-time degree bias of models is important to study, as it can yield disparate performance
for low-degree nodes when models are deployed in the real world. We prove that high-degree test
nodes tend to have a lower probability of misclassification. Moreover, we show that GNN degree
bias arises from a variety of factors that are associated with a node’s degree (e.g., homophily of
neighbors, diversity of neighbors). We first present a theorem that bounds the probability of a test
node i ∈ V \ S being misclassified. We supposeM is a neural network that has L layers. It takes
as input X,A and generates node representations Z(L) ∈ RN×C ; these representations are then
passed through a softmax activation function to get Ŷ = H(L) = softmax

(
Z(L)

)
. At this point,

we make few assumptions about the architecture ofM;M could be a graph neural network (GNN),
or even an MLP or logistic regression model.

Theorem 1. Consider a test node i ∈ V \S, with Yi = c. Furthermore, consider a label c′ ̸= c. Let

P (ℓ(M|i, c) > ℓ(M|i, c′)) be the probability of misclassifying i. Then, if E
[
Z

(L)
i,c′ −Z

(L)
i,c

]
< 0

(i.e.,M generalizes in expectation):

P (ℓ(M|i, c) > ℓ(M|i, c′)) ≤ 1

1 +Ri,c′
, (1)

where the squared inverse coefficient of variation Ri,c′ =

(
E
[
Z

(L)

i,c′−Z
(L)
i,c

])2

Var
[
Z

(L)

i,c′−Z
(L)
i,c

] .

The assumption that M generalizes in expectation is required for the application of Cantelli’s in-
equality in the proof. Notably, it is not possible to prove a similar lower bound without mak-
ing assumptions about the higher-order moments of Z

(L)
i,c′ − Z

(L)
i,c . The coefficient of variation

Std
[
Z

(L)

i,c′−Z
(L)
i,c

]
E
[
Z

(L)

i,c′−Z
(L)
i,c

] is a normalized measure of dispersion that is often used in economics to quantify

inequality [13]. Thus, Ri,c′ captures how little Zi varies relative to its expected value. In sum-
mary, the probability of misclassification P (ℓ(M|i, c) > ℓ(M|i, c′)) can be minimized when Ri,c′

is maximized. Intuitively, the probability of misclassification is reduced when Zi is farther away, in
expectation, from the decision boundary that separates classes c and c′, and has low dispersion. The
following subsections reveal why Ri,c′ is large when i is high-degree.

4.1 Random Walk Graph Filter

So far, we have made few assumptions aboutM. Now, we supposeM is a general message-passing
GNN [16]. In particular, for layer l:

H(l) = σ(l)
(
Z(l)

)
= σ(l)

(
H(l−1)W

(l)
1 + P (l)H(l−1)W

(l)
2 +XW

(l)
3

)
, (2)

where H(l) ∈ RN×d(l)

are the l-th layer node representations (with H(0) = X and d(L) = C),
σ(l) is an instance-wise non-linearity (with σ(L) being softmax), P (l) ∈ RN×N is a graph filter, and
W

(l)
1 ,W

(l)
2 ,W

(l)
3 ∈ Rd(l−1)×d(l)

are the l-th layer model parameters.
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Figure 2: Visual summary of the geometry of representations, variance of representations, and train-
ing dynamics of RW, SYM, and ATT GNNs on CiteSeer. We consider low-degree nodes to be the
100 nodes with the smallest degrees and high-degree nodes to be the 100 nodes with the largest
degrees. Each point in the plots in the left column corresponds to a test node representation and
its color represents the node’s class. (In this particular dataset, low-degree nodes are more heavily
concentrated in a few classes.) The plots in the left column are based on a single random seed, while
the plots in the middle and right columns are based on 10 random seeds. RW representations of
low-degree nodes often have a larger variance than high-degree node representations, while SYM
representations of low-degree nodes often have a smaller variance. Furthermore, SYM generally
adjusts its training loss on low-degree nodes less rapidly.

We first consider the special case that ∀l ∈ N≤L,P
(l) = Prw = D−1A (i.e., the uniform random

walk transition matrix), where D is the diagonal degree matrix with entries Dii =
∑

j∈V Aij . We
further simplify the model by choosing all σ(l) (l < L) to be the identity function (e.g., as in [51]).
By doing so, we get the following linear jumping knowledge model RW [58]:

H(L) = softmax
(
Z(L)

)
= softmax

(
L∑

l=0

P l
rwXW (l)

)
, (3)

where ∀l ∈ N≤L,W
(l) ∈ Rd(0)×C . W (l) is the sum of all the weight terms that correspond to P l

rw
in Eqn. 2; for simplicity, we collapse each sum of weight terms into a single weight matrix. It is still
reasonable to have a different weight matrix W (l) for each term P l

rwX , as we may need to extract
different information from features aggregated from neighborhoods at different hops. For each
modelM,M denotes the linearized version of the model that we theoretically analyze. Linearizing
GNNs is a common practice in the literature [51, 7, 39].

We now prove a lower bound for Ri,c′ . By identifying nodes for which this lower bound is larger,
we can indirectly figure out which nodes have a lower probability of misclassification. In particular,
we find that the bound is generally larger for high-degree nodes, which sheds light on the origins
of degree bias. For simplicity of notation, we denote the weights corresponding to the decision
boundary of the l-th term that separates classes c and c′ by w

(l)
c′−c = W

(l)
.,c′ −W

(l)
.,c , and N (l)(i) to

5



be the distribution over the terminal nodes of length-l uniform random walks starting from node i.
We further define:

β
(l)
i,c′ = Ej∼N (l)(i)

[
Ex∼DYj

[
xTw

(l)
c′−c

]]
(4)

as the l-hop prediction homogeneity of i with respect to c′ when Yi = c. In essence,
Ex∼DYj

[
xTw

(l)
c′−c

]
captures the expected prediction score of w(l)

c′−c for a node j whose features

Xj ∼ DYj
; when Ex∼DYj

[
xTw

(l)
c′−c

]
is more negative on average, w(l)

c′−c predicts j to belong

to class c with higher likelihood. Thus, β(l)
i,c′ measures the expected prediction score for nodes j,

weighted by their probability of being reached by a length-l random walk starting from i.

From a topological perspective, because β
(l)
i,c′ depends on the distribution of random walks from i,

it is intimately related to local graph structure. Indeed, β(l)
i,c′ can be interpreted as a “local subgraph

difference” and is highly influenced by the local homophily of i. However, β(l)
i,c′ is also influenced by

the presence of l-hop neighbors contained in the training set, as the model is more likely to correctly
classify these nodes by a large margin; hence, β(l)

i,c′ does not only boil down to local homophily. We
discuss other connections between prediction homogeneity, homophily, and separability in §A.4.

In addition to the l-hop prediction homogeneity, we denote the l-hop collision probability by:

α
(l)
i =

∑
j∈V

[(
P l

rw

)
ij

]2
, (5)

which quantifies the probability of two length-l random walks starting from i colliding at the same
end node j. When the collision probability is lower, random walks starting from i have a higher
likelihood of ending at distinct nodes; in effect, the random walks can be considered to be more
diverse.

Theorem 2. Assume that ∀l ∈ N≤L,∀j ∈ V,Varx∼DYj

[
xTw

(l)
c′−c

]
≤M . Then:

Ri,c′ ≥

(∑L
l=0 β

(l)
i,c′

)2
M(L+ 1)

∑L
l=0 α

(l)
i

. (6)

We observe that to make Ri,c′ larger, and thus minimize the probability of misclassification, it is
sufficient (although not necessary) that the inverse collision probability 1∑L

l=0 α
(l)
i

is larger. When

L = 1, 1∑L
l=0 α

(l)
i

= 1
1

Dii
+1

, which is larger for high-degree nodes. We find empirically that the

inverse collision probability is positively associated with node degree (see Figures 3, 13, 14). (We
elaborate on connections between the inverse collision probability and node degree in §K.) Further-
more, disparities in the inverse collision probability across nodes with different degrees is reduced
by residual connections and increased by self-loops. Intuitively, random walks starting from high-
degree nodes diffuse more quickly, maximizing the probability of any two random walks not collid-
ing at the same end node; in this way, a higher inverse collision probability indicates a more diverse
and possibly informative L-hop neighborhood. This finding supports hypothesis (H1) (see Table 2).

Additionally, to make Ri,c′ larger, it is sufficient that for all l ∈ N≤L, β(l)
i,c′ is more negative, e.g.,

when most nodes in the l-hop neighborhood of i are predicted to belong to class c. Thus, β(l)
i,c′ can

be more negative when nodes in the l-hop neighborhood of i also are in class c (i.e., node i has high
local homophily) and were part of the training set S, leading to them being correctly classified. This
finding supports hypotheses (H4) and (H6). Notably, we cannot make

∑L
l=0 β

l)
i,c′ more positive

to increase Ri,c′ ; this would violate the assumption of Theorem 2 that the model generalizes in
expectation, which is necessary to make a mathematically rigorous statement about degree bias via
tail bounds. Intuitively, it also would not make sense that RW and SYM reduce the misclassification
error for a node by predicting its neighbors to be of a different class, since message passing smooths
the representations of adjacent nodes. Moreover, distribution shifts in local homophily from train to
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Figure 3: Inverse collision probability vs. degree of nodes in CiteSeer for RW, SYM, and ATT
GNNs. Node degrees generally have a strong association with inverse collision probabilities.

test time can reduce test-time prediction performance, bringing β
(l)
i,c′ closer to 0; this can increase

Ri,c′ , thereby not inducing as much degree bias at the expense of overall test performance.

Furthermore, our proof of Theorem 2 (Eqn. 21) reveals that in expectation, the linearized model RW
produces similar representations for low and high-degree nodes with similar L-hop neighborhood
homophily levels. However, low-degree nodes (specifically nodes with a lower inverse collision
probability) tend to have a higher variance in RW’s representation space than high-degree nodes do
(Eqn. 24). This entails that factors beyond homophily (e.g., diversity of neighbors) induce degree
bias. We validate these findings empirically in Figure 2 and §F. In Figure 2, we see in the left plot in
the RW row (first row) that low-degree test nodes have representations that are similarly centered but
more spread out in the first two principal components of all the test representations than high-degree
nodes; we confirm that low-degree node representations have a larger variance in the middle plot in
the RW row. Thus, regardless of how RW is trained, low-degree nodes have a higher probability of
being on the wrong side of RW’s decision boundaries. Indeed, the left plot in the RW row shows
that low-degree nodes of a certain class end up closer to nodes of a different class at a higher rate.
Notably, this occurs even when RW is relatively shallow (i.e., 3 layers). Thus, this finding supports
hypothesis (H5), as well as draws doubt to hypotheses (H3) and (H10). Our results for RW may
also hold for ATT when low-degree nodes are generally less attended to since like random walk
transition matrices, attention matrices are row-stochastic.

4.2 Symmetric Graph Filter

We now consider the special case that ∀l ∈ N≤L,P
(l) = Psym = D− 1

2AD− 1
2 . We once again

simplifyM by making all σ(l) the identity function, getting SYM:

H(L) = softmax
(
Z(L)

)
= softmax

(
L∑

l=0

P l
symXW (l)

)
. (7)

We define:

β̃
(l)
i,c′ = Ej∼N (l)(i)

[
1√
Djj

Ex∼DYj

[
xTw

(l)
c′−c

]]
(8)

as the degree-discounted l-hop prediction homogeneity. Similar to β
(l)
i,c′ , β̃

(l)
i,c′ measures the expected

prediction score for nodes j, but weighted by the inverse square root of their degree in addition to
their probability of being reached by a length-l random walk starting from i. In effect, β̃(l)

i,c′ more
heavily discounts the prediction scores for high-degree nodes. We also denote the degree-discounted
sum of collision probabilities by:

α̃
(l)
i =

∑
j∈V

1

Djj

[(
P l

rw

)
ij

]2
, (9)
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where each summation term
[(
P l

rw

)
ij

]2
quantifies the probability of two length-l random walks

starting from i ending at j and is discounted by the degree of j. Compared to the random walk
setting, the degree-discounted prediction homogeneity and sum of collision probabilities suppress
the contributions of high-degree nodes. We now prove a lower bound for Ri,c′ for SYM.

Theorem 3. Assume that ∀l ∈ N≤L,∀j ∈ V,Varx∼DYj

[
xTw

(l)
c′−c

]
≤M . Then:

Ri,c′ ≥

(∑L
l=0 β̃

(l)
i,c′

)2
M(L+ 1)

∑L
l=0 α̃

(l)
i

. (10)

Once again, we observe that Ri,c′ is larger, and thus the probability of misclassification is minimized,
when the inverse (degree-discounted) sum of collision probabilities 1∑L

l=0 α̃
(l)
i

is larger and for all

l ∈ N≤L, the (degree-discounted) l-hop prediction homogeneity β̃
(l)
i,c′ is more negative. Like for

RW, these findings support hypotheses (H1), (H4), and (H6) (see Table 2).

Furthermore, our proof of Theorem 3 (Eqn. 33) reveals that in expectation, SYM often produces
representations for low-degree nodes that lie closer to SYM’s decision boundary than representations
of high-degree nodes with similar L-hop neighborhood homophily levels. This is because SYM
produces node representations that are approximately scaled by the square root of the node’s degree.
However, for the same reason, unlike for RW, low-degree nodes tend to have a lower variance in
SYM’s representation space than high-degree nodes do (Eqn. 36); this corroborates the findings of
[12]. We validate this empirically in Figure 2 and §F on the homophilic datasets (i.e., all datasets
except chameleon and squirrel). In Figure 2, we see in the left plot in the SYM row (second row)
that low-degree test nodes (particularly low-degree nodes with many high-degree nodes in their
L-hop neighborhood) have representations that are closer to SYM’s decision boundaries but less
spread out in the first two principal components of all the test representations than high-degree
nodes; we confirm that low-degree node representations have a smaller or comparable variance in the
middle plot in the SYM row. We emphasize that while SYM representations of high-degree nodes
have a higher variance, this itself is not the cause of degree bias; since the standard deviation and
expectation of SYM node representations are approximately scaled by the same factor, by Theorem
1, the variance of SYM representations of high-degree nodes does not enlarge Ri,c′ noticeably more
than in the RW case.

Notably, our theoretical findings do extend to heterophilic graphs. In particular, high-degree nodes
in heterophilic networks (e.g., chameleon and squirrel) do not have higher negative L-hop prediction
homogeneity levels due to higher local heterophily (see §F), and hence we do not necessarily observe
better test performance for them (see Figure 5). None of our theoretical analysis assumes homophilic
networks.

Ultimately, like for RW, low-degree nodes (specifically nodes with a lower inverse collision proba-
bility) have a larger probability of being on the wrong side of SYM’s decision boundaries (regardless
of how SYM is trained). Indeed, low-degree nodes of a certain class end up closer to nodes of a dif-
ferent class at a higher rate. Notably, this occurs even when SYM is relatively shallow (i.e., 3 layers).
Thus, this finding supports hypothesis (H5), and draws doubt to hypotheses (H3), (H7), and (H10).

5 Training-Time Degree Bias

We show that during training, SYM (compared to RW) may adjust its loss on low-degree nodes
more slowly than on high-degree nodes. This finding is important because as GNNs are applied to
increasingly large networks, only a few epochs of training may be possible due to limited compute;
as such, we must ask: which nodes receive superior utility from limited training? Even though we
know the labels for training nodes, GNNs may serve as an efficient lookup mechanism for training
nodes in deployed systems; thus, if partially-trained, GNNs can perform poorly for low-degree
training nodes. We also empirically demonstrate that despite learning at different rates for low
vs. high-degree nodes, message-passing GNNs (even those with static filters) can achieve their
maximum possible training accuracy, which is not significantly curtailed by their expressive power.
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We first demonstrate that during each step of training of SYM with gradient descent, the loss of
low-degree nodes is adjusted more slowly than high-degree nodes. We consider the setting that, for
all l ∈ N≤L, at each training step t:

W (l)[t+ 1]←W (l)[t]− η
∂ℓ[t]

∂W (l)[t]
(B[t]), (11)

where W (l)[t] is W (l) at training step t, η is the learning rate, ℓ[t] is the model’s loss at t, and
B[t] ⊆ S (where S ⊆ V is the labeled subset of nodes) is the batch used at step t.

Consider a node i ∈ V , with Yi = c. We define Z
(L)
i [t] to be Z

(L)
i at timestep t. We begin

by proving the following lemma, which states that for any model M, ℓ[t](M|i, c) (for all t) is
λ-Lipschitz continuous with respect to Z

(L)
i [t].

Lemma 1. For all t, ℓ[t](M|i, c) is λ-Lipschitz continuous with respect to Z
(L)
i [t] with constant

λ =
√
2, that is:

|ℓ[t+ 1](M|i, c)− ℓ[t](M|i, c)| ≤
∥∥∥Z(L)

i [t+ 1]−Z
(L)
i [t]

∥∥∥
2

(12)

Now, we move to the main theorem where we bound the change in loss i after an arbitrary
training step t (regardless of batching paradigm) in terms of its degree. We denote the resid-
ual of the predictions of SYM at step t by ϵ[t] = H(L)[t] − onehot (Y [t]), where H(L)[t] and
onehot (Y [t]) are the submatrices formed from the rows of H(L) and onehot (Y ), respectively,
that correspond to the nodes in B[t]. Furthermore, we denote ∀l ∈ N≤L, the expected similar-

ity of the neighborhoods of i and B[t] by χ̃
(l)
i ∈ R|B[t]|, where for m ∈ B[t],

(
χ̃
(l)
i [t]

)
m

=

√
DmmEj∼N (l)(i),k∼N (l)(m)

[
1√

DjjDkk

XjX
T
k

]
. Specifically,

(
χ̃
(l)
i [t]

)
m

captures the degree-

discounted expected similarity between the raw features of nodes j and k with respect to the l-hop
random walk distributions of i ∈ V and m ∈ B[t]. Notably, our matrix is pre-feature aggregation
(e.g., unlike [37]).
Theorem 4. The change in loss for i after an arbitrary training step t obeys:

∣∣ℓ[t+ 1](SYM|i, c)− ℓ[t](SYM|i, c)
∣∣ ≤√Dii ·

√
2η ∥ϵ[t]∥F

L∑
l=0

∥∥∥χ̃(l)
i [t]

∥∥∥
2
. (13)

As observed, the change (either increase or decrease) in loss for i after an arbitrary training step has
a smaller magnitude if i is low-degree. Thus, when ℓ[t + 1](SYM|i, c) < ℓ[t](SYM|i, c) (e.g., if
i ∈ B[t]), the loss for i decreases more slowly when i is low-degree. In effect, because the magnitude
of SYM node representations is positively associated with node degree while the magnitude of each
gradient descent step is the same across nodes, the representations of low-degree nodes experience
a smaller change during each step. We additionally notice that the loss for i changes more slowly
when the features of nodes in its L-hop neighborhood are not similar to the features in the L-hop
neighborhoods of the nodes in each training batch (i.e.,

∑L
l=0

∥∥∥χ̃(l)
i [t]

∥∥∥
2

is small). Because the L-
hop neighborhoods of low-degree nodes tend to be smaller than those of high-degree nodes, their
neighborhoods often have less overlap with the neighborhoods of training nodes, which can further
constrain the rate at which the loss for i changes. Notably, while node degree highly affects the rate
of learning, differences in χ̃ across nodes due to factors other than degree are also influential.

We confirm these findings empirically in Figure 2 and §F. For all the datasets, when training SYM,
the blue curve (i.e., the loss for low-degree nodes) has a less steep rate of decrease than the orange
curve (i.e., the loss for high-degree nodes) as the number of epochs increases. For example, in Figure
2, in the case of RW and ATT, the training loss curves for low and high-degree nodes (including error
bars) overlap during the first ∼ 20 epochs of training. However, for SYM, the loss curve for high-
degree nodes descends more rapidly than the curve for low-degree nodes. These findings support
hypothesis (H2) (c.f. Table 2).

In §H, we demonstrate that during each step of training RW with gradient descent, compared to
SYM, the loss of low-degree nodes in S is not necessarily adjusted more slowly. Furthermore,
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in §I, we empirically show that SYM (despite learning at different rates for low vs. high-degree
nodes), RW, and ATT can achieve their maximum possible training accuracy, which is often close to
100%; this indicates that expressive power does not significantly limit the accuracy of these models
in practice and draws doubt to hypothesis (H7).

6 Principled Roadmap to Address Degree Bias

The primary aim of this work is to explore and explain the origins of GNN degree bias, which lacks
a principled understanding. Future research can build on the strong theoretical and empirical foun-
dation laid by this paper to propose alleviation strategies for degree bias. In particular, our findings
reveal that any alleviation strategies should target the following theoretically-justified criteria, which
we have empirically validated on 8 real-world datasets:

• Maximizing the inverse collision probability of low-degree nodes (e.g., via edge augmenta-
tion for low-degree nodes). Figure 3 and the plots in Section G show strong positive associations
between inverse collision probability and degree for the RW, SYM, and ATT filters, and Figure 1
and the plots in Section E show strong negative associations between degree and test loss for the
homophilic datasets. Hence, we validate that a higher inverse collision probability is associated
with lower test loss, as our theory predicts.

• Increasing the L-hop prediction homogeneity of low-degree nodes (e.g., by ensuring similar
label densities in the neighborhoods of low and high-degree nodes). The lack of degree bias
observed in Figure 5 for chameleon and squirrel (which are heterophilic networks), compared
to Figure 1 and the plots in Section E, confirms our theoretical finding that under heterophily,
the prediction homogeneity for high-degree nodes is closer to 0, so high-degree nodes do not
necessarily experience better performance.

• Minimizing distributional differences (e.g., differences in expectation, variance) in the rep-
resentations of low and high-degree nodes. Figures 2 and 6–10 empirically confirm our the-
oretical finding that disparities in the expectation and variance of node representations are re-
sponsible for performance disparities. Figures 11 and 12 suggest that smaller distributional dif-
ferences among representations (due to heterophily) can alleviate degree bias.

• Reducing training discrepancies with regards to the rate at which GNNs learn for low vs.
high-degree nodes. Figure 2 and the plots in Section F validate our theoretical finding that SYM
adjusts its loss on low-degree nodes more slowly than on high-degree nodes (see 5).

These criteria are important because they reflect (to a large extent) inherent fairness issues with the
graph filters that are popular in graph learning. For instance, the random walk and symmetric filters
disadvantage low-degree nodes by yielding representations with high variance and low magnitude,
respectively. It is valuable for graph learning practitioners to investigate filters that are adaptive or
not restricted to the graph topology in a way that ensures that low-degree nodes are not marginalized
through disparate representational distributions or poor neighborhood diversity.

7 Conclusion

Our theoretical analysis aims to unify and distill previously-proposed hypotheses for the origins
of GNN degree bias. We prove that high-degree test nodes tend to have a lower probability of
misclassification and that degree bias arises from a variety of factors associated with a node’s degree
(e.g., homophily of neighbors, diversity of neighbors). Furthermore, we show that during training,
some GNNs may adjust their loss on low-degree nodes more slowly; however, GNNs often achieve
their maximum possible training accuracy and are trivially limited by their expressive power. We
validate our theoretical findings on 8 real-world networks. Finally, based on our theoretical and
empirical insights, we describe a roadmap to alleviate degree bias. More broadly, we encourage
research efforts that unveil forms of inequality reinforced by GNNs. We detail the limitations and
possible future directions of our work in §L, including our survey, theoretical analysis (e.g., focusing
on linearized GNNs, node classification), empirical validation (e.g., exploring degree bias in the
inductive learning setting and heterogeneous and directed networks), and roadmap. We additionally
discuss broader impacts in §M.
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A Overview of Hypotheses for, Theoretical Analyses of, and Proposed
Solutions to Degree Bias

A.1 Hypotheses for Degree Bias

Table 2: Full taxonomy of the hypotheses for the origins of GNN degree bias proposed by papers.

Hypothesis Papers
(H1) Neighborhoods of low-degree nodes con-
tain insufficient or overly noisy information for
effective representations.

[34], [52], [54], [14], [65], [31], [32], [35],
[33], [21], [29], [19], [28], [55], [67], [47],
[11], [8], [20], [66], [56]

(H2) High-degree nodes have a larger influence
on GNN training because they have a greater
number of links with other nodes, thereby
dominating message passing.

[45], [52], [65], [22], [63], [28], [62]

(H3) High-degree nodes exert more influence
on the representations of and predictions for
nodes as the number of GNN layers increases.

[65], [6], [27], [11], [64]

(H4) In semi-supervised learning, if training
nodes are picked randomly, test predictions for
high-degree nodes are more likely to be in-
fluenced by these training nodes because they
have a greater number of links with other
nodes.

[45], [63], [18]

(H5) Representations of high-degree nodes
cluster more strongly around their correspond-
ing class centers, or are more likely to be lin-
early separable.

[39], [49], [26]

(H6) Neighborhoods of high-degree nodes
contain more homophilic links, enhancing their
representations.

[29], [55]

(H7) Nodes with different degrees are not nec-
essarily mapped to distinct representations.

[53]

(H8) Low-degree nodes have class-imbalanced
training samples, yielding worse generaliza-
tion.

[60]

(H9) High-degree nodes are more likely to be
labeled during training and thus GNNs gener-
alize better for them.

[9]

(H10) Representations of high-degree nodes
have higher variance.

[28]

(H11) Low-degree nodes are more likely to be
sampled during training/inference.

[47]
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A.2 Theoretical Analyses of Degree Bias

Table 3: A taxonomy of GNN degree bias papers based on whether they theoretically analyze the
origins of degree bias, explicitly linking a node’s degree to its test and training error.

Explicit theoretical
analysis of origins of
degree bias?

Papers

Yes [53], [39], [26]

No [45], [34], [52], [54], [14], [65], [49], [31], [22], [60], [61], [9], [5],
[32], [28], [43], [35], [33], [21], [29], [18], [6], [19], [55], [50], [27],
[67], [47], [8], [11], [20], [62], [66], [56], [64]

A.3 Proposed Solutions to Degree Bias

One line of research has produced neighborhood augmentation strategies. For example, [34] per-
form feature-adaptive neighborhood translation from high-degree nodes to structurally-limited low-
degree nodes to enhance their representations. [52] generate multiple views of node neighborhoods
(e.g., via node and edge dropping) and learn to maximize the similarity of representations of dif-
ferent views, towards improving the robustness of low-degree node representations. [21] patch the
ego-graphs of low-degree nodes by generating virtual neighbors. [55] self-distill graphs and com-
plete the neighborhoods of low-degree nodes with more homophilic links. Other methods include:

• [67] and [66] generate multiple views of node neighborhoods (e.g., via node and edge dropping)
and learn to maximize the similarity of representations of different views, towards improving the
robustness of low-degree node representations.

• [49] interpolate additional links for low-degree nodes and purify links for high-degree nodes to
balance neighborhood information across nodes with different degrees.

• [31] generate more samples in the local neighborhoods of low-degree nodes, to augment the
information in these neighborhoods.

• [63] leverage a Transformer architecture and contrastive learning with augmentations (e.g., via
node and edge dropping) to bolster the influence of low-degree nodes during training.

• [43] augment the neighborhoods of low-degree nodes in knowledge graphs with synthetic triples.
• [29] augment the local structure of low-degree nodes by adding homophilic edges.
• [47] generate contextually-dependent neighborhoods based on a node’s degree.
• [50] contribute a meta-learning strategy to generate additional edges for low-degree nodes.
• [11] introduce dummy nodes connected to all the nodes in the graph to improve message passing

to low-degree nodes.
• [20] introduce a learnable graph augmentation strategy to connect low-degree nodes via more

within-community edges, as well as an improved self-attention mechanism.

Another line of research has produced algorithms that normalize graph filters or node representations
to minimize distributional differences between the representations of nodes with different degrees.
[22] propose pre-processing and in-processing approaches that re-normalize the graph filter to be
doubly stochastic. [56] calculate node representation statistics via a hybrid strategy and use these
statistics to normalize representations. [28] normalize the representations of low-degree and high-
degree nodes to have similar distributions.

A different line of research has produced algorithms that separate the learning process for high and
low-degree nodes. [53] embed degree-specific weights and hashing functions within the layers of
GNNs that guarantee degree-aware node representations. [45] propose a degree-specific GNN layer,
to avoid parameter sharing across nodes with different degrees, and a Bayesian teacher network that
generates pseudo-labeled neighbors for low-degree nodes to increase their proximity to labels. [60]
learn separate expert models for high and low-degree nodes with class and degree-balanced data
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subsets, and distill the knowledge of these experts into two student models that are tailored to low
and high-degree nodes.

There exist yet other solutions (e.g., based on adversarial learning, attention) that have been pro-
duced. [35] learn debiasing functions that distill and complement the GNN encodings of high and
low-degree nodes, respectively. [33] leverage meta-learning to learn to learn representations for
low-degree nodes in a locality-aware manner. [18] propose a label proximity score, which they find
to be more strongly associated with performance than degree, and learn a new graph structure that
reduces discrepancies in label proximity scores across nodes. [64] leverage an attention mechanism
to enhance focus on low-degree nodes. Other methods include:

• [65] modify the aggregation weights for neighboring node representations according to node
degrees.

• [54] learn custom message passing strategies for nodes with different degrees.
• [14] causally determine if low-degree nodes should “trust” messages from their neighbors.
• [9] learn node representations that are invariant to shifts in local neighborhood distributions.
• [32] optimize the graph’s adjacency matrix to reduce an upper bound on degree bias with a

minimal decrease in overall accuracy.
• [8] locate anchor nodes that through the introduction of links with them can improve the repre-

sentations of low-degree nodes.
• [27] propose a popularity-weighted aggregator for Graph Convolutional Networks.
• [19] leverage hop-aware attentive aggregation to attend differently to information at different

distances.
• [6] estimate the effect of influential high-degree nodes on the representations of low-degree nodes

and remove this effect after each graph convolution.
• [62] use adversarial learning to boost the influence of low-degree nodes.

A.4 Degree Bias from the Perspectives of Homophily and Topology

Prior research has connected degree bias to homophily and graph topology:

• [59] provides a complementary perspective on the possible performance issues of GNNs that
arise from degree disparities in graphs (e.g., low-degree nodes induce oversmoothing in ho-
mophilic graphs, while high-degree nodes induce oversmoothing in heterophilic networks).
Oversmoothing is related to prediction homogeneity (

∑L
l=0 β

(l)
i,c′)

2; for homophilic networks,

as the number of layers in a GNN increases (i.e., as oversmoothing occurs), (
∑L

l=0 β
(l)
i,c′)

2 gets
closer to 0 (i.e., does not increase Ri,c′ ), thereby not inducing as much degree bias. In con-
trast, our theoretical analysis demonstrates that degree bias occurs without oversmoothing and is
amplified by high local homophily.

• [38] connects node distinguishability to node degree and homophily by analyzing the intra-class
vs. inter-class embedding distance. We discuss similar quantities in §4.1 and §4.2. However,
with the exception of Section 3.5, [38] considers the CSBM-H model in its theoretical analysis,
which has pitfalls (as we discuss in §2). Moreover, unlike our work, [38] does not explicitly link
the misclassification error of a node to its degree in a more general data and model setting.

• [48] analyzes the effect of heterophily on GNNs via class separability, which it characterizes
through neighborhood distributions and average node degree. Similar to [38], [48] only considers
the HSBM model in its theoretical analysis.

• [30] observes that GNN performance is lower for high-degree nodes under heterophily. We
likewise observe this in Figure 5 for chameleon and squirrel (which are heterophilic networks).
Moreover, our theoretical analysis explains why degree bias is not observed for heterophilic
graphs. In §4.2, we explain that high-degree nodes in heterophilic networks do not have lower l-
hop prediction homogeneity levels due to higher local heterophily; hence, we do not necessarily
observe better performance for them compared to low-degree nodes.
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B Proofs

B.1 Theorem 1

Proof. Misclassification occurs when ℓ(M|i, c) > ℓ(M|i, c′).

P (ℓ(M|i, c) > ℓ(M|i, c′)) = P
(
− logH

(L)
i,c > − logH

(L)
i,c′

)
(14)

= P
(
H

(L)
i,c < H

(L)
i,c′

)
(15)

= P
(
Z

(L)
i,c′ −Z

(L)
i,c > 0

)
. (16)

If E
[
Z

(L)
i,c′ −Z

(L)
i,c

]
< 0 (i.e.,M generalizes in expectation), by Cantelli’s inequality:

P (ℓ(M|i, c) > ℓ(M|i, c′)) = P
((

Z
(L)
i,c′ −Z

(L)
i,c

)
− E

[
Z

(L)
i,c′ −Z

(L)
i,c

]
> −E

[
Z

(L)
i,c′ −Z

(L)
i,c

])
(17)

≤ 1

1 +

(
−E

[
Z

(L)

i,c′−Z
(L)
i,c

])2

Var
[
Z

(L)

i,c′−Z
(L)
i,c

]
. (18)

We use Cantelli’s inequality, rather than Chebyshev’s inequality, because Cantelli’s inequality is
sharper for one-sided bounds.
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B.2 Theorem 2

Proof. Denoting the l-th term in the summation T (l) = P l
rwXW (l), T

(l)
i,c =∑

j∈V
(
P l

rw

)
ij
XjW

(l)
.,c . It follows by the linearity of expectation that:

E
[
T

(l)
i,c′ − T

(l)
i,c

]
=
∑
j∈V

(
P l

rw

)
ij
· Ex∼DYj

[
xTw

(l)
c′−c

]
(19)

= Ej∼N (l)(i)

[
Ex∼DYj

[
xTw

(l)
c′−c

]]
(20)

= β
(l)
i,c′ . (21)

Furthermore, by the linearity of variance:

Var
[
T

(l)
i,c′ − T

(l)
i,c

]
=
∑
j∈V

[(
P l

rw

)
ij

]2
· Varx∼DYj

[
xTw

(l)
c′−c

]
(22)

≤M
∑
j∈V

[(
P l

rw

)
ij

]2
(23)

= Mα
(l)
i . (24)

Then, once again by the linearity of expectation and variance:

(
E
[
Z

(l)
i,c′ −Z

(l)
i,c

])2
=

(
L∑

l=0

β
(l)
i,c′

)2

, (25)

Var
[
Z

(l)
i,c′ −Z

(l)
i,c

]
≤M(L+ 1)

L∑
l=0

α
(l)
i . (26)

Consequently: (
E
[
Z

(l)
i,c′ −Z

(l)
i,c

])2
Var
[
Z

(l)
i,c′ −Z

(l)
i,c

] ≥
(∑L

l=0 β
(l)
i,c′

)2
M(L+ 1)

∑L
l=0 α

(l)
i

. (27)
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B.3 Theorem 3

Proof. Re-expressing the l-th term T (l) = P l
symXW (l) in the summation:

T
(l)
i,c =

∑
j∈V

(
D− 1

2AD− 1
2

)l
ij
XjW

(l)
.,c (28)

=
∑
j∈V

(
D−1A

)l
ij
·
√
Dii√
Djj

XjW
(l)
.,c (29)

=
√
Dii

∑
j∈V

(
P l

rw

)
ij
· 1√

Djj

XjW
(l)
.,c . (30)

It follows by the linearity of expectation that:

E
[
T

(l)
i,c′ − T

(l)
i,c

]
=
√
Dii

∑
j∈V

(
P l

rw

)
ij
· 1√

Djj

Ex∼DYj

[
xTw

(l)
c′−c

]
(31)

=
√
DiiEj∼N (l)(i)

[
1√
Djj

Ex∼DYj

[
xTw

(l)
c′−c

]]
(32)

=
√
Diiβ̃

(l)
i,c′ . (33)

Furthermore, by the linearity of variance:

Var
[
T

(l)
i,c′ − T

(l)
i,c

]
= Dii

∑
j∈V
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rw
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ij
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· 1

Djj
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j∈V

1

Djj
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)
ij
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= DiiMα̃
(l)
i . (36)

Then, once again, by the linearity of expectation and variance:

(
E
[
Z

(l)
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(l)
i,c

])2
= Dii

(
L∑

l=0

β̃
(l)
i,c′
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, (37)
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Z

(l)
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(l)
i,c

]
≤DiiM(L+ 1)

L∑
l=0

α̃
(l)
i . (38)

Consequently: (
E
[
Z

(l)
i,c′ −Z

(l)
i,c

])2
Var
[
Z

(l)
i,c′ −Z

(l)
i,c

] ≥
(∑L

l=0 β̃
(l)
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)2
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l=0 α̃

(l)
i

. (39)
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B.4 Lemma 1

Proof. Define g(Z
(L)
i [t]) = ∇

Z
(L)
i [t]

ℓ[t](M|i, c). For simplicity of notation, let x = Z
(L)
i [t]. It is

sufficient to show that ∥g(x)∥2 ≤ λ. By simple derivation, (g(x))i = −
∑

a̸=i e
xa∑

b exb
, and for j ̸= i,

(g(x))j = −
exj∑
b exb

. Then, by Hölder’s inequality:

∥g(x)∥22 =

(∑
a̸=i e

xa

)2
+
∑

a̸=i (e
xa)

2

(
∑

b e
xb)

2 (40)

≤
2
(∑

a ̸=i e
xa

)2
(
∑

b e
xb)

2 ≤ 2. (41)

Thus, λ =
√
2.
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B.5 Theorem 4

Proof. By the Lipschitz continuity of ℓ[t](SYM|i, c) (Lemma 1) and the triangle inequality:∣∣ℓ[t+ 1](SYM|i, c)− ℓ[t](SYM|i, c)
∣∣ ≤ λ

∥∥∥Z(L)
i [t+ 1]−Z

(L)
i [t]

∥∥∥
2

(42)

≤ λ

L∑
l=0

∥∥∥(P l
symX

)
i

(
W (l)[t+ 1]−W (l)[t]

)∥∥∥
2

(43)

= λη

L∑
l=0

∥∥∥∥(P l
symX

)
i

∂ℓ[t]

∂W (l)[t]
(B[t])

∥∥∥∥
2

. (44)

By simple derivation, we see that ∂ℓ[t]
∂W (l)[t]

(B[t]) =
(
P l

sym[t]X
)T

ϵ[t], where P l
sym[t] ∈ R|B[t]|×N

is the submatrix formed from the rows of P l
sym that correspond to the nodes in B[t]. Then, by the

sub-multiplicativity of the L2 norm:
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2
. (46)

Similarly to the proof of Theorem 3:(
P l

sym
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i
XXT

(
P l

sym

)T
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Hence,
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, and:
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2
. (49)
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B.6 Theorem 5

Proof. By the Lipschitz continuity of ℓ[t](RW|i, c) (Lemma 1) and the triangle inequality:∣∣ℓ[t+ 1](RW|i, c)− ℓ[t](RW|i, c)
∣∣ ≤ λ

∥∥∥Z(L)
i [t+ 1]−Z

(L)
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2
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By simple derivation, we see that ∂ℓ[t]
∂W (l)[t]

(B[t]) =
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P l
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)T

ϵ[t], where P l
rw[t] ∈ R|B[t]|×N

is the submatrix formed from the rows of P l
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sub-multiplicativity of the L2 norm:
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Similarly to the proof of Theorem 2:(
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C Datasets

In our experiments, we use 8 real-world network datasets from [4], [42], and [41], covering diverse
domains (e.g., citation networks, collaboration networks, online product networks, Wikipedia net-
works). We provide a description and statistics of each dataset in Table 4. All the datasets have
node features and are undirected. For each node, we normalize its features to sum to 1, following
[15]1. We were unable to find the exact class names and their label correspondence from the dataset
documentation.

• In all the citation network datasets, nodes represent documents, edges represent citation links,
and features are a binary bag-of-words representation of documents. The classification task is to
predict the topic of documents.

• In the collaboration network datasets, nodes represent authors, edges represent coauthorships,
and features are a binary bag-of-word representation of keywords from the authors’ papers. The
classification task is to predict the most active field of study for authors.

• In the online product network datasets, nodes represent products, edges represent that two prod-
ucts are often purchased together, and features are a binary bag-of-word representation of product
reviews. The classification task is to predict the category of products.

• In the Wikipedia network datasets, nodes represent Wikipedia websites, edges represent hyper-
links between them, and features are a binary bag-of-word representation of informative nouns
from the pages. The classification task is to predict the level of average daily traffic for pages.

We use PyTorch and PyTorch Geometric to load and process all datasets [40, 15]. Our us-
age of these libraries and datasets complies with their license. PyTorch and PyTorch Geomet-
ric are available under a torch-specific license2 and MIT license3, respectively. Cora ML and
CiteSeer are available under an MIT License4 and can be found here: https://github.com/
abojchevski/graph2gauss/tree/master/data. CS, Physics, Amazon Photo, and Amazon
Computers are available under an MIT License5 and can be found here: https://github.com/
shchur/gnn-benchmark/tree/master/data/npz. chameleon and squirrel are available under
a GLP-3.0 license6 and can be found here: https://graphmining.ai/datasets/ptg/wiki.

While these datasets are widely used, we did not obtain explicit consent from any data subjects
whose data the datasets may contain. To the best of our knowledge (via manual sampling and
inspection), the datasets do not contain any personally identifiable information or offensive content.

Table 4: Summary of the datasets used in our experiments.

Name Domain # Nodes # Edges # Features # Classes
Cora ML citation 2995 16316 2879 7
CiteSeer citation 4230 10674 602 6

CS collaboration 18333 163788 6805 15
Physics collaboration 34493 495924 8415 5

Amazon Photo online product 7650 238162 745 8
Amazon Computers online product 13752 491722 767 10

chameleon Wikipedia 2277 36101 2325 5
squirrel Wikipedia 5201 217073 2089 5

1https://github.com/pyg-team/pytorch_geometric/blob/master/examples/link_pred.py
2https://github.com/pytorch/pytorch/blob/main/LICENSE
3https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE
4https://github.com/abojchevski/graph2gauss/blob/master/LICENSE
5https://github.com/shchur/gnn-benchmark/blob/master/LICENSE
6https://github.com/benedekrozemberczki/MUSAE/blob/master/LICENSE
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D Models

In our experiments, we transductively learn and compute node representations using encoders based
on Graph Convolutional Networks (GCNs) [24], GraphSAGE [17], and Graph Attention Networks
(GATs) [46].

In all cases, we use general message-passing GNNsM [16], which include separate parameters for
source and target nodes and residual connections; in particular, for layer l:

H(l) = σ(l)
(
Z(l)

)
= σ(l)

(
H(l−1)W

(l)
1 + P (l)H(l−1)W

(l)
2 +XW

(l)
3

)
, (58)

where H(l) ∈ RN×d(l)

are the l-th layer node representations (with H(0) = X and d(L) = C),
σ(l) is an instance-wise non-linearity (with σ(L) being softmax), P (l) ∈ RN×N is a graph filter, and
W

(l)
1 ,W

(l)
2 ,W

(l)
3 ∈ Rd(l−1)×d(l)

are the l-th layer model parameters.

We consider the following special cases ofM which vary with respect to their graph filter:

• RW: ∀l ∈ N≤L,P
(l) = Prw = D−1A (i.e., the uniform random walk transition matrix), where

D is the diagonal degree matrix with entries Dii =
∑

j∈V Aij .

• SYM: ∀l ∈ N≤L,P
(l) = Psym = D− 1

2AD− 1
2 .

• ATT: ∀l ∈ N≤L,P
(l) is a graph attentional operator with default hyperparameters and a single

head [46].

Each encoder has three layers (64-dimensional hidden layers), with a ReLU nonlinearity in between
layers. We do not use any regularization (e.g., Dropout, BatchNorm). The encoders are explicitly
trained for node classification with the cross-entropy loss and the Adam optimizer [23] with full-
batch gradient descent on the training set. We use a learning rate of 5e-3. We further use a random
node split of 1000-500-rest for test-val-train. We train all encoders until they reach the training
accuracy of MAJWL and select the model parameters with the highest validation accuracy. Although
we do not do any hyperparameter tuning, the test accuracy values indicate that the encoders are well-
trained.

We use PyTorch [40] and PyTorch Geometric [15]7 to train all the encoders on a single NVIDIA
GeForce GTX Titan Xp Graphic Card with 12196MiB of space on an internal cluster. On average
(with respect to the datasets), the median time per training epoch was 0.05 seconds. Thus, the
estimated total compute is:

0.05 (approximate number of seconds per epoch) (59)
× 500 (number of epochs per training run) (60)
× 10 (number of training runs/random seeds per model) (61)
× 3 (number of models per dataset) (62)
× 8 (number of datasets) (63)
× 12196 MiB (GPU memory) (64)
= 73, 176k MiB× seconds (65)

These experiments were run a few times (e.g., due to the discovery of bugs), but the full research
project did not involve other experiments not reported in the paper. We used a single CPU worker to
load datasets and plot results. The datasets take up 0.2975 MB of disk space.

7Our usage of all libraries complies with their license. PyTorch and PyTorch Geometric are available under
a torch-specific license8 and MIT license9, respectively.

28



E Additional Degree Bias Plots

Unlike the other datasets, we do not observe degree bias for chameleon and squirrel because these
datasets are heterophilic. We intentionally include these datasets to draw contrast to the other, ho-
mophilic datasets and validate our theory. For example, in §4.2, we explain that high-degree nodes in
heterophilic networks do not have more negative l-hop prediction homogeneity levels due to higher
local heterophily levels; hence, we do not necessarily observe better performance for them compared
to low-degree nodes.
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Figure 4: Test loss vs. degree of nodes in citation and collaboration network datasets for RW, SYM,
and ATT GNNs. High-degree nodes generally incur a lower test loss than low-degree nodes do.
Error bars are reported over 10 random seeds; all error bars are 1-sigma and represent the standard
deviation about the mean.
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Figure 5: Test loss vs. degree of nodes in online product and Wikipedia network datasets for RW,
SYM, and ATT GNNs. High-degree nodes generally incur a lower test loss than low-degree nodes
do. Error bars are reported over 10 random seeds; all error bars are 1-sigma and represent the
standard deviation about the mean.
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F Additional Visual Summaries of Theoretical Results

In the plots below, we consider low-degree nodes to be the 100 nodes with the smallest degrees and
high-degree nodes to be the 100 nodes with the largest degrees. Each point in the plots in the left
column corresponds to a test node representation and its color represents the node’s class. The plots
in the left column are based on a single random seed, while the plots in the middle and right columns
are based on 10 random seeds. RW representations of low-degree nodes often have a larger variance
than high-degree node representations, while SYM representations of low-degree nodes often have
a smaller variance. Furthermore, SYM generally adjusts its training loss on low-degree nodes less
rapidly.

The training loss curves in Figure 6 still support our theoretical analysis. Theorem 4 reveals that
for SYM , node degree and the (degree-discounted) expected feature similarity χ̃i affects the rate
of learning. On the other hand, Theorem 5 indicates that for RW , while we do not expect node
degree to impact the rate of learning, the expected feature similarity χi is still influential. Hence,
interpreting Theorems 4 and 5 jointly, we expect and accordingly observe that the orange curve for
SYM has a steeper rate of decrease relative to the orange curve for RW as the number of epochs
increases.
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Figure 6: Visual summary of the geometry of representations, variance of representations, and train-
ing dynamics of RW, SYM, and ATT GNNs on Cora ML.
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Figure 7: Visual summary of the geometry of representations, variance of representations, and train-
ing dynamics of RW, SYM, and ATT GNNs on CS.
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Figure 8: Visual summary of the geometry of representations, variance of representations, and train-
ing dynamics of RW, SYM, and ATT GNNs on Physics.
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Figure 9: Visual summary of the geometry of representations, variance of representations, and train-
ing dynamics of RW, SYM, and ATT GNNs on Amazon Photo.
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Figure 10: Visual summary of the geometry of representations, variance of representations, and
training dynamics of RW, SYM, and ATT GNNs on Amazon Computers.
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Figure 11: Visual summary of the geometry of representations, variance of representations, and
training dynamics of RW, SYM, and ATT GNNs on chameleon.

0.10 0.05 0.00 0.05 0.10
PC1

0.10

0.05

0.00

0.05

0.10

PC
2

RW
Low-degree nodes
High-degree nodes

0 100 200 300 400 500
Epochs of training

0

100

200

300

400

500

600

Tr
ac

e 
of

 sa
m

pl
e 

co
va

ria
nc

e
of

 te
st

 re
pr

es
en

ta
tio

ns

RW
Low-degree nodes
High-degree nodes

0 20 40 60 80 100
Epochs of training

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Tr
ai

ni
ng

 lo
ss

RW
Low-degree nodes
High-degree nodes

450 475 500

0.10 0.05 0.00 0.05 0.10
PC1

0.10

0.05

0.00

0.05

0.10

PC
2

SYM
Low-degree nodes
High-degree nodes

0 100 200 300 400 500
Epochs of training

0

100

200

300

400

500

600

Tr
ac

e 
of

 sa
m

pl
e 

co
va

ria
nc

e
of

 te
st

 re
pr

es
en

ta
tio

ns

SYM
Low-degree nodes
High-degree nodes

0 20 40 60 80 100
Epochs of training

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Tr
ai

ni
ng

 lo
ss

SYM
Low-degree nodes
High-degree nodes

450 475 500

0.10 0.05 0.00 0.05 0.10
PC1

0.10

0.05

0.00

0.05

0.10

PC
2

ATT

Low-degree nodes
High-degree nodes

0 100 200 300 400 500
Epochs of training

0

100

200

300

400

500

600

Tr
ac

e 
of

 sa
m

pl
e 

co
va

ria
nc

e
of

 te
st

 re
pr

es
en

ta
tio

ns

ATT
Low-degree nodes
High-degree nodes

0 20 40 60 80 100
Epochs of training

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Tr
ai

ni
ng

 lo
ss

ATT
Low-degree nodes
High-degree nodes

450 475 500

SQUIRREL

Figure 12: Visual summary of the geometry of representations, variance of representations, and
training dynamics of RW, SYM, and ATT GNNs on chameleon.

34



G Additional Inverse Collision Probability Plots
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Figure 13: Inverse collision probability vs. degree of nodes in citation and collaboration network
datasets for RW, SYM, and ATT GNNs. Node degrees generally have a strong association with
inverse collision probabilities.
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Figure 14: Inverse collision probability vs. degree of nodes in citation and collaboration network
datasets for RW, SYM, and ATT GNNs. Node degrees generally have a strong association with
inverse collision probabilities.
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H Training-Time Degree Bias: Random Walk Graph Filter

We now demonstrate that during each step of training RW with gradient descent, compared to
SYM, the loss of low-degree nodes in S is not necessarily adjusted more slowly. We define
∀l ∈ N≤L, χ

(l)
i ∈ R|B[t]|, where for m ∈ B[t],

(
χ
(l)
i [t]

)
m

= Ej∼N (l)(i),k∼N (l)(m)

[
XjX

T
k

]
.

In effect,
(
χ
(l)
i [t]

)
m

captures the expected similarity between the raw features of nodes j and k

with respect to the l-hop random walk distributions of i ∈ V and m ∈ B[t].
Theorem 5. The change in loss for i after an arbitrary training step t obeys:

∣∣ℓ[t+ 1](RW|i, c)− ℓ[t](RW|i, c)
∣∣ ≤ √2η ∥ϵ[t]∥F L∑

l=0

∥∥∥χ(l)
i [t]

∥∥∥
2
. (66)

For RW, the change (either increase or decrease) in loss for i after an arbitrary training step does
not necessarily have a smaller magnitude if i is low-degree. However, the L-hop neighborhoods
of low-degree nodes still often have less overlap with the neighborhoods of training nodes, which
can constrain the rate at which the loss for i changes. We confirm these findings empirically in
Figure 2 and §F. For all the datasets, the blue curve for RW has a less steep rate of decrease than
the blue curve for SYM as the number of epochs increases. However, for RW itself, the orange
curve generally descends more quickly than the blue curve, with the exception of the heterophilic
chameleon and squirrel datasets, for which the features of nodes in the neighborhoods of high-
degree nodes and training nodes are dissimilar. Therefore, models do not learn more rapidly for
high-degree nodes under heterophily. These findings support hypothesis (H2). Our results for RW
may also apply to ATT when low-degree nodes are generally attended to less.
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I Achieving Maximum Training Accuracy
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Figure 15: Mean absolute parameter gradient vs. training epoch for RW, SYM, and ATT GNNs on
CiteSeer (over 10 random seeds). The training accuracy of SYM, RW, and ATT ultimately reach the
accuracy of MAJWL.

We now empirically show that SYM (despite learning at different rates for low vs. high-degree
nodes), RW, and ATT can achieve their maximum possible training accuracy (i.e., the accuracy of
a majority voting-classifier MAJWL). Furthermore, per our experiments, the accuracy of MAJWL is
often close to 100%, indicating that the WL test does not significantly limit the accuracy of SYM,
RW, and ATT in practice.

Per [57], because the expressive power of SYM, RW, and ATT are limited by the WL test, an upper
bound on their training accuracy is the accuracy of a majority voting-classifier MAJWL applied to
WL node colorings (for details on how to compute colorings, see §II.A and §VI.B of [68]). In
particular, if the WL test produces the colors c ∈ K|S| for nodes in S, MAJWL predicts node i

to have the label Ŷi = MAJWL(i,X,A) = mode{Yj |j ∈ V, cj = ci}. However, Figure 15
and §J reveal that as the number of training epochs increases, the training accuracy of SYM, RW,
and ATT reach the accuracy of MAJWL. Because the accuracy of MAJWL is often close to 100%,
our experiments suggest that insufficient expressive power likely does not contribute to degree bias,
drawing doubt to hypothesis (H7).

Empirically inspecting the model gradients, compared to ATT, as the number of training epochs
increases, the mean absolute gradients of SYM and RW are comparably small but often decrease
more slowly or fluctuate. To understand this, we can analytically inspect the gradients of RW:

∂ℓ[t]

∂W (l)[t]
(B[t]) = XT

(
P l

rw[t]
)T

ϵ[t]. (67)

(
P l

rw[t]
)T

(for l > 0) often has numerous eigenvalues around 0, which can yield gradients
∂ℓ[t]

∂W (l)[t]
(B[t]) with a small magnitude even when ∥ϵ[t]∥ is not small. The same analysis holds

for SYM. As such, SYM and RW may get trapped in suboptimal minima during training, yielding
slower or unstable convergence; in contrast, because ATT has a dynamic filter, its training loss rarely
exhibits slow or unstable convergence.
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J Additional Training Loss Plots
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Figure 16: Mean absolute parameter gradient vs. training epoch for RW, SYM, and ATT GNNs
on Cora ML, CS, and Physics. The training accuracy of SYM, RW, and ATT ultimately reach the
accuracy of MAJWL.
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Figure 17: Mean absolute parameter gradient vs. training epoch for RW, SYM, and ATT GNNs on
Photo and Computers. The training accuracy of SYM, RW, and ATT ultimately reach the accuracy
of MAJWL.
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Figure 18: Mean absolute parameter gradient vs. training epoch for RW, SYM, and ATT GNNs on
chameleon and squirrel. The training accuracy of SYM, RW, and ATT ultimately reach the accuracy
of MAJWL.
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K Connecting Inverse Collision Probability to Node Degree

Our theoretical analysis may be improved upon by establishing a rigorous connection, or a lack
thereof, between the inverse collision probability of a node and its degree.

Via some preliminary analysis, we find that it is possible to express the inverse collision prob-
ability of i (i.e., equivalently express the sum of l-hop collision probabilities) in terms of
Dii. In particular, we can show:

∑L
l=0 α

(l)
i = α

(0)
i +

∑L
l=1

∑
j∈V [(P

l
rw)ij ]

2 = 1 +
1

D2
ii

∑L
l=1

∑
j∈V [

∑
k∈N (i)(P

l−1
rw )kj ]

2. As before, we can see that the inverse collision probability is

larger (and thus Ri,c′ is larger) when Dii is larger and
∑L

l=1

∑
j∈V [

∑
k∈N (i)(P

l−1
rw )kj ]

2 ∈ o(D2
ii).

However, because
∑

k∈N (i) depends on Dii, this expression does not completely isolate the im-
pact of Dii on the inverse collision probability. A similar expression can be derived for SYM by
expressing: Psym = D

1
2PrwD

− 1
2 .

Alternatively, one may consider
∑L

l=0 α
(l)
i ≤

∑∞
l=0 α

(l)
i , and then plug in the steady-state proba-

bilities of uniform random walks on graphs. However, as l → ∞, (P l
rw)ij =

Djj

2|E| only depends
on Djj (not Dii, as desired). It is also possible to upper bound the inverse collision probability as:
1/
∑

l=0 α
(l)
i ≤ 1/(α

(0)
i + α

(1)
i ) = 1/(1/Dii + 1), which is in terms of Dii; however, we cannot

use this upper bound to lower bound Ri,c′ . The collision probabilities themselves are intimately
related to more global properties of graphs; for instance, via eigendecomposition, [(P l

rw)ij ]
2 ≤ λ2l,

where λ < 1 is the eigenvalue of Prw with the largest magnitude [36]. Then, the inverse collision
probability is strictly greater than 1∑L

l=0 |V|λ2l .

This being said, our paper argues that the inverse collision probability is a more fundamental quantity
that influences what the fair graph learning community has termed “degree bias” than degree alone,
which we have shown is positively associated with the inverse collision probability.
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L Limitations and Future Directions

Survey While we aimed to be thorough in our survey of prior papers on degree bias, it is inevitable
that we missed some relevant work. In addition, we extract hypotheses for the origins of degree bias
from the main bodies of papers; it is possible that the hypotheses do not fully or accurately reflect
the current perspectives of the papers’ authors.

Theoretical analysis Our theoretical analysis is limited to linearized message-passing GNNs.
While this is a common practice in the literature [51, 7, 39], it is a strong simplifying assumption. We
empirically validate our theoretical findings on GNNs with non-linear activation functions, but our
paper does not address possible sources of degree bias related to these non-linearities, which would
be interesting to investigate in future work. Towards this, a possible option is to assume that node
features are drawn from a Gaussian distribution and derive precise high-dimensional asymptotics for
degree bias in non-linear GNNs using the Gaussian equivalence theorem, as in [1]. Our assumptions
that GNNs generalize in expectation (Theorem 1) and the variance of node representations is finite
(Theorems 2 and 3) are not overly strong assumptions in practice.

Furthermore, our paper focuses on node classification. However, our findings readily lend insight
into the origins of degree bias in link prediction. For example, if one uses node representations and
an inner-product decoder to predict links between nodes, our results indicate that:

• In the random walk filter case, link prediction scores between low-degree nodes will suffer from
higher variance because low-degree node representations have higher variance (Theorem 2).
Hence, Theorem 1 suggests that predictions for links between low-degree nodes will have a
higher misclassification error.

• In the symmetric filter case, our proof of Theorem 3 suggests that the link prediction scores
between high-degree nodes will be over-calibrated (i.e., disproportionately large) because high-
degree node representations have a larger magnitude (i.e., approximately proportional to the
square root of their degree). Hence, over-optimistic and possibly inaccurate links will be pre-
dicted between high-degree nodes.

The labels and evaluation for link prediction can confound intuition. Unlike node classification, the
labels for link prediction (i.e., the existence or not of a link) make the task naturally imbalanced
with respect to node degree; high-degree nodes have a much higher rate of positive links than low-
degree nodes. This association between degree and positive labels can influence the misclassification
error. Ultimately, more rigorous theoretical analysis and experimentation are needed to confirm the
hypothesized implications of node degree for link prediction performance. Similarly, more research
is required to understand the implications of our findings for degree bias in the context of graph
classification.

Furthermore, our theoretical analysis does not encompass heterogeneous graphs. In our literature
survey, we cover works that establish the issue of degree bias for knowledge graph predictions and
embeddings (e.g., [5, 43]). Our theoretical analysis is general and covers diverse message-passing
GNNs, and can be extended to heterogeneous networks if messages aggregated from different edge
types are subsequently linearly combined. In this setting, Ri,c′ can be computed as the sum of
the prediction homogeneity quantities (

∑L
l=0 β

(l)
i,c′)

2 for each edge type divided by the sum of the
collision probability quantities

∑
j∈V [(P

l
rw)ij ]

2 for each edge type.

Empirical validation We sought to be transparent throughout our paper regarding misalignments
between empirical and theoretical findings. Our experiments focus on the transductive learning
setting; it would be valuable to validate our theoretical findings in the inductive learning setting as
well. Furthermore, while we aimed to cover diverse domains (e.g., citation networks, collaboration
networks, online product networks, Wikipedia networks), as well as homophilic and heterophilic
networks, it remains to identify the shortcomings of our theoretical findings for heterogeneous and
directed networks.

Principled roadmap To do justice to studying the origins of degree bias in GNNs, which our
paper reveals has various and sometimes conflicting understandings, we limit the scope of our paper
to understanding the root causes of degree bias, not providing a concrete algorithm to alleviate it.

43



Instead, we offer a principled roadmap based on our theoretical findings to address degree bias in the
future. We further comment on the limitations of algorithmic solutions to degree bias in our Broader
Impacts section below.
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M Broader Impacts

Our paper touches upon issues of discrimination, bias, and fairness, with the goal of advancing jus-
tice in graph learning. In particular, our analysis of the origins of degree bias in GNNs seeks to
inform principled approaches to mitigate unfair performance disparities faced by low-degree nodes
in networks (e.g., lowly-cited authors, junior researchers, niche product and content creators). De-
spite our focus on fairness, our work can still have negative societal impacts in malicious contexts.
For example, alleviating the degree bias of GNNs that are intended to surveil individuals can further
violate the privacy of low-degree individuals. Ultimately, performance disparities should only be
mitigated when the task is aligned with the interests and well-being of marginalized individuals;
we explicitly do not support evaluating or mitigating degree bias to ethics-wash inherently harmful
applications of graph learning. Furthermore, any algorithm proposed to alleviate degree bias will
not be a ‘silver bullet’ solution; graph learning practitioners must adopt a sociotechnical approach:
(1) critically examining the societal factors that contribute to their networks have degree disparities
to begin with, and (2) monitoring their GNNs in deployment and continually adapting their degree
bias evaluations and algorithms. In addition, alleviating degree bias does not necessarily address
other forms of unfairness in graph learning, e.g., equal opportunity with respect to protected social
groups [2], dyadic fairness [25], preferential attachment bias [44]; fairness algorithms are contextual
and not one-size-fits-all.
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Responsible Research Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See §L.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the theorems, formulas, and proofs in the paper are numbered and cross-
referenced. The assumptions are clearly stated in the main body of the paper and referenced
in the proofs of theorems. Formal proofs are provided in the appendix; while proof sketches
are not included in the main body of the paper, we provide extensive interpretation of
theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details to reproduce experiments are provided in the main body of the paper,
§D, and §C. The code is released via Github.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is released via Github. The data are available through PyTorch
Geometric [15], and data processing details are provided in §C.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See §D and §C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are reported over 10 random seeds in all figures except for the
PCA plots. The factors of variability include model parameter initialization and training
dynamics. All error bars are 1-sigma and represent the standard deviation (not standard
error) of the mean. We implicitly assume that errors are normally-distributed. Error bars are
computed using PyTorch’s std function [40]. We provide this information at the beginning
of §3.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See §D.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See §M.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See §C. The original paper that produced each dataset is cited. Links to
libraries and datasets are included; the versions of software dependencies can be found in
the requirements.txt file via Github. We also provide the name and a link to the license
(which includes terms of use and copyright information, where applicable) of each library
and dataset.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We release our code via Github under an MIT license. We provide a
README that explains how to reproduce our experiments. Training, license compliance,
and consent details are included in §D. Limitations are discussed in §L.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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