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Abstract

Dialogue State Tracking (DST) is crucial for001
linking user intentions to appropriate services002
in task-oriented dialogue systems. We propose003
a zero-shot, scheme-only approach that tackles004
two main challenges: generating synthetic dia-005
logues that balance diversity with schema align-006
ment, and efficiently distilling knowledge from007
a large language model (LLM) into a smaller008
model. Our pipeline first creates scenarios, dia-009
logue logic flows, and utterances via dynamic010
complexity prompting, eliminating reliance on011
handcrafted templates. We then use a two-012
stage distillation process to learn formalized013
dialogue representations and DST related chain-014
of-thought reasoning. This structure preserves015
interpretive capabilities while reducing infer-016
ence overhead. Experiments on the MultiWOZ017
benchmark show that our method achieves018
state-of-the-art performance under zero-shot,019
scheme-only situations and generalizes to few-020
shot scenarios effectively, offering a practical021
and scalable solution for domains that lack real022
data. Our code and model is available at anony-023
mous1024

1 Introduction025

Task-oriented dialogue systems guide users through026

conversational interactions to accomplish specific027

requests, such as booking a restaurant or schedul-028

ing a train journey. Central to these systems is029

Dialogue State Tracking (DST), which involves030

extracting and updating essential information as031

the conversation unfolds (Henderson et al., 2014).032

By organizing details into domain-slot structures,033

DST ensures the system accurately captures user re-034

quirements, maintains contextual consistency, and035

effectively interfaces with external services.036

In practical scenarios, constructing an accurate037

DST model typically requires substantial labeled038

data, which is both time-consuming and costly to039

1https://anonymous.4open.science/r/DistDST-C67C

acquire (Budzianowski et al., 2018). Consequently, 040

zero-shot approaches that reduce reliance on ex- 041

tensive annotations have gained increasing inter- 042

est. Existing research generally classifies zero-shot 043

DST into two main types. The first is the zero-shot 044

cross-domain scenario (Campagna et al., 2020), 045

in which a model trained on specific domains is 046

transferred to a new, unseen domain using only 047

schema information (e.g., slot names and possi- 048

ble values). The second, the zero-shot scheme- 049

only setting (Heck et al., 2023), involves equipping 050

the model solely with the relevant schema with- 051

out providing any actual dialogue data. This latter 052

approach, which constitutes our primary focus, is 053

especially challenging due to the complete absence 054

of domain-specific examples. While proprietary 055

LLMs (e.g. GPT-4) have demonstrated impressive 056

performance under scheme-only conditions, their 057

high computational cost makes them impractical 058

for frequent DST tasks (Feng et al., 2023). In re- 059

sponse, some researchers have experimented with 060

generating synthetic data using these large models, 061

then distilling smaller models from the artificially 062

produced data (Kim et al., 2021; Niu et al., 2024; 063

Kulkarni et al., 2024). However, discrepancies be- 064

tween synthetic and real conversational distribu- 065

tions often limit the effectiveness of models that 066

rely solely on such synthetic resources. 067

In this work, we tackle two primary challenges 068

in zero-shot scheme-only DST: (1) generating 069

synthetic dialogue data that is simultaneously di- 070

verse and faithfully aligned with the task-oriented 071

schema; (2) efficiently distilling this knowledge 072

into a smaller LLM that is capable of handling var- 073

ied conversational styles and complexities while 074

approaching the comprehension performance of 075

proprietary LLMs. 076

To address the first challenge, we propose a three- 077

stage synthetic data generation strategy, targeting 078

schema-based scenario generation, dialogue logic 079

flow design, and utterance generation. Alongside 080
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this, we introduce a dynamic complexity prompting081

technique that begins with a simple baseline and in-082

crementally infuses complexity into the logic flow083

or utterance. Notably, our approach does not rely084

on any template, resulting in dialogues with richer085

diversity than previous methods, while maintaining086

strict adherence to the defined schema. The second087

challenge involves effectively leveraging the syn-088

thetic data to distill a smaller LLM that not only089

manage diverse conversational styles but also bet-090

ter approximate the reasoning of proprietary LLMs.091

To this end, we design a two-stage, step-by-step092

distillation pipeline. In the first stage, the model is093

trained to generate a chain-of-thought (CoT) (Wei094

et al., 2022) for each utterance, comprising a for-095

malized representation. In the second stage, the096

model predicts the dialogue state using both the097

original utterance and its corresponding formalized098

representation. This process not only preserves the099

reasoning structure learned by proprietary LLMs100

but also greatly reduces inference overhead. Conse-101

quently, our distilled smaller model operates more102

efficiently while still achieving robust performance103

in completely unseen dialogue scenarios.104

In summary, our main contributions are three-105

fold:106

• We present a novel synthetic data generation107

strategy. Our approach targets both diver-108

sity in conversational flows and strict schema109

alignment, while explicitly modeling dialogue110

state and intermediate CoT information.111

• We introduce a two-stage distillation process112

that first learns to generate a COT for each113

dialogue, then leverages these intermediate114

reasoning steps to more efficiently predict the115

final dialogue state. This framework preserves116

the proprietary LLM’s understanding and rea-117

soning structure, allowing a smaller model to118

handle zero-shot data more effectively.119

• In experiments on the MultiWOZ dataset,120

our method achieves state-of-the-art perfor-121

mance under the zero-shot, schema-only set-122

ting. Moreover, we demonstrate that our ap-123

proach generalizes well to few-shot scenarios.124

2 Related Work125

2.1 Synthetic Data Generation for DST126

Early research on synthetic dialogue data for DST,127

exemplified by Simulated-Chats (Mohapatra et al.,128

2020) and NeuralWOZ (Kim et al., 2021), re- 129

lied on hand-crafted templates and PLMs (e.g., 130

BERT (Devlin, 2018),RoBERTa (Liu, 2019)) to 131

populate domain-specific slots, which often yield 132

constrained diversity. With the emergence of 133

instruction-tuned LLMs, subsequent work, such 134

as SynthDST (Kulkarni et al., 2024), LUAS (Niu 135

et al., 2024), and EDZ-DA (Gu and Yang, 2024), 136

incorporated more flexible approaches, including 137

template-driven logic flows and multi-agent simu- 138

lations, to increase dialogue variations. Other so- 139

lutions (Finch and Choi, 2024) introduced schema- 140

free generation by creating a large number of short, 141

cross-domain dialogues for model pre-training. 142

However, existing synthetic pipelines still face 143

two obstacles. First, they heavily depend on an 144

LLM’s stochastic outputs rather than systematically 145

covering complex DST scenarios. Second, they 146

seldom integrate intermediate rational data (e.g. 147

chain-of-thought) that would support knowledge 148

distillation for smaller models. Our framework 149

addresses these gaps by introducing both targeted 150

complexity prompts to ensure broad coverage of 151

DST challenges and explicit CoT reasoning that 152

facilitates more effective distillation. 153

2.2 Zero-Shot Scheme-Only DST 154

Zero-shot scheme-only DST does not utilize any 155

real dialogue data but relies entirely on synthetic 156

data or specialized prompting strategies. This setup 157

is highly practical for certain applications yet poses 158

significant challenges. Early work primarily fo- 159

cused on cross-domain scenarios (Campagna et al., 160

2020; Dong et al., 2024), but the emergence of 161

ChatGPT highlighted the feasibility of a purely 162

scheme-only approach. Heck et al. (2023) were 163

among the first to investigate ChatGPT 3.5 com- 164

bined with schema-based prompts for zero-shot 165

scheme-only DST, demonstrating that large lan- 166

guage models can partially solve zero-shot DST 167

problems. Following this, LDST (Feng et al., 168

2023) introduced a prompting strategy that assigns 169

a unique prompt to each slot, thus lifting zero- 170

shot DST accuracy to near full-training-set levels. 171

More recent efforts, such as InstructTODS (Chung 172

et al., 2023), ParsingDST (Wu et al., 2023), Ref- 173

PyDST (King and Flanigan, 2023), IC-DST (Hu 174

et al., 2022) and FnCTOD (Li et al., 2024), lever- 175

age large language models’ strengths in instruc- 176

tion following, JSON parsing, coding, or function 177

calling to further refine how these models address 178

zero-shot DST. However, the question of how to 179
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empower smaller LLMs with the knowledge gained180

by proprietary LLMs remains open. In this paper,181

we tackle precisely this challenge by proposing a182

synthetic data generation framework paired with183

a step-by-step distillation method. Our approach184

enables smaller models to effectively acquire the185

reasoning and inference capabilities demonstrated186

by proprietary LLMs, improving zero-shot DST187

performance without access to real conversational188

data.189

3 Method190

3.1 Task Definition191

In Task-Oriented Dialogue (TOD), DST is respon-192

sible for identifying and updating the key infor-193

mation needed to fulfill a user’s goal across mul-194

tiple conversation turns. Let the conversation be195

denoted by a sequence of user and system utter-196

ances, Ut = {u1, u2, . . . , ut}, where t is the total197

number of turns. At each turn, the DST mod-198

ule predicts a set of domain–slot–value triples,199

DSt = {(d, s, v)i}ni=1, where (d, s, v)i represents200

a specific domain d, a slot s, and the corresponding201

value v. By interpreting user utterances and up-202

dating the evolving dialogue state DS, the system203

keeps track of user goals.204

Before constructing a TOD system, we typically205

define in advance which domain–slot–value com-206

binations need to be tracked. Each slot is rep-207

resented as a tuple smi = (d, s, P )i, where P208

specifies a set of possible values for categorical209

slots. The overall schema is then expressed as210

SM = { sm1, sm2, . . . , smi, . . . , smn}, which211

encompasses all relevant domains. Under the zero-212

shot cross-domain setting, the model is trained on a213

subset of domains DS train ⊂ DS and evaluated on214

a new domain dtest /∈ DS train. Even though labeled215

data is unavailable for dtest, the model is trained on216

utterances U together with DS train labels, and then217

makes predictions for DS test based on the schema218

SMtest. In contrast, the zero-shot scheme-only set-219

ting restricts the model to rely solely on the schema220

SM , without any training utterances U or labels221

from DS train. This stricter requirement demands222

stronger generalization capabilities, as the model223

must still handle DST tasks effectively without any224

real data.225

3.2 Generation of Diverse Synthetic Datasets226

LLMs have proven effective at generating synthetic227

data for data augmentation in various NLP tasks.228

Within DST, prior work has demonstrated the utility 229

of generating synthetic dialogue data in few-shot 230

settings. However, balancing data diversity with 231

task domain relevance remains a substantial chal- 232

lenge in a strictly zero-shot scheme-only context. 233

As shown in Figure 1, our proposed method tackles 234

this issue by implementing a plan-and-solve strat- 235

egy (Wang et al., 2023) that decomposes the gen- 236

eration pipeline into four steps: scenario construc- 237

tion, dialogue logic flow, utterance creation and dia- 238

logue state extraction. This structured approach not 239

only simplifies the overall process but also enforces 240

schema adherence at each stage, thereby mitigating 241

hallucinations and reducing out-of-scope outputs. 242

Furthermore, the intermediate reasoning generated 243

at each step can serve as CoT information for subse- 244

quent knowledge distillation into smaller language 245

models. 246

To further improve dialogue diversity particu- 247

larly concerning DST complexity we draw on the 248

concept of prompt evolution (Fernando et al., 2023). 249

Rather than relying on static prompts, we gradually 250

introduce increased complexity through dynamic 251

complexity prompting. This iterative process be- 252

gins with a straightforward baseline and expands 253

toward more complicate scenarios, maintaining 254

schema alignment while covering a broader range 255

of dialogue conditions. The subsections below de- 256

scribe each phase of our synthetic data generation 257

framework in detail. 258

3.2.1 Scenario Generation 259

In this stage, we define the dialogue scenario 260

S = {di, (d, s, v)j ,desp}, specifying the relevant 261

domain(s), slot-value pairs, and a concise descrip- 262

tion desp. Scenario complexity is determined by 263

the number of domains and the quantity of slot- 264

value pairs. We start by sampling a single domain 265

and use an LLM to select a coherent subset of slot- 266

value pairs and a brief topical description, thereby 267

ensuring realistic contexts (e.g., if a hotel is in the 268

east, a related attraction is more likely in the east). 269

We then progressively add domains and slot-value 270

pairs, again guided by the LLM. This incremental 271

process yields scenarios ranging from simple to 272

highly complex, thus enhancing overall diversity. 273

3.2.2 Dialogue Logic Flow Generation 274

Rather than directly generating utterances from S, 275

we first produce a turn-level logic flow plan using 276

an LLM: 277

Logici = {I, (d, s, v)j , CoT}i, 278
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Shema Scenario Logic Flow Utterance DS

domains: [ restaurant,train]
slot_values: {
        restaurant-area: centre,
        restaurant-food: italian,
                          .....
        train-leaveat: 13:32,
        train-bookpeople": 2,
      }
description: User want to ...

...
{
      Turn_id:5
      utterance: There’s gonna be 4
of us ......
}
...

... 
{
       turn_id: 5
        state: {
          restaurant-bookpeople: 4
        }
        dst_reasoning: User confirms
the number of people.
}
...

Utterance
Smaller LLM

Logic Flow Utterance Logic Flow DS
Smaller LLM

 ...
{
      Turn_id :5
      actions: [ 
            provide_booking_detail,
            request_hotel
      ]
       related_slots: [
            restaurant-bookpeople,
            hotel-type,
                       ......
      ],
     flow_reasoning: User confirms ...
}
...

Dynamic Complexity Prompting

LLM LLM LLM LLM

 Distillation 
Step 1

Distillation 
Step 2

Synthetic Data Generation Pipeline

Section 3.2.2

Figure 1: The overall framework of our synthetic data generation framework and step-by-step knowledge distillation
progress.The top part indicate the Synthetic Data Generation Pipeline and the bottom part refers to the two knowledge
distillation steps

where I (Intention) is a concise statement of the279

speaker’s goal, (d, s, v)j denotes the slot-value280

pairs relevant to that turn, and CoT provides a281

chain-of-thought formalized explanation. This282

logic flow clarifies the dialogue’s logical structure283

before linguistic details are added, serving as both a284

guideline for DST analysis and a safeguard against285

out-of-scope outputs.286

We begin with a simple baseline plan to en-287

sure a more realistic flow. Inspired by Prompt-288

breeder (Fernando et al., 2023), we propose the dy-289

namic complexity prompting strategy. During data290

generation, We will apply five seed complexity mu-291

tations, addressing domain shifts, slot-value updat-292

ing, extension, indirect references and co-reference,293

to iteratively refine the dialogue logic flow. As il-294

lustrated in Figure 2, the LLM receives the current295

dialogue flow alongside a seed mutation prompt,296

proposes a strategy for increasing complexity, and297

modifies the baseline plan accordingly. Repeat-298

ing this process yields a range of logical complex-299

ities, from basic flows to intricate multi-domain300

transitions. This dynamic complexity prompting301

promotes data diversity and keeps each complex-302

ity expansion aligned with the evolving dialogue303

structure, thus minimizing out-of-scope content.304

3.2.3 Utterance Generation 305

Based on the dialogue logic Plann
i=1 flow ob- 306

tained in the previous step, the LLM generates the 307

actual utterances for both user and system turns 308

Ui = LLM(S, P lani). This process mirrors our 309

approach to logic flow generation: we begin with 310

a simple baseline utterance and incrementally in- 311

crease linguistic complexity through three seed 312

complexity mutations. These mutations address 313

grammatical sophistication, co-references or indi- 314

rect references, and more colloquial or oral expres- 315

sions. By repeatedly applying these transforma- 316

tions, we obtain a set of utterances that vary in style 317

and difficulty while still adhering to the previously 318

defined logical structure. 319

3.2.4 Dialogue State Generation 320

In existing methods, synthetic data pipelines of- 321

ten rely on the LLM to extract DST labels directly 322

from the produced utterances. For dialogues of 323

varying complexity, the accuracy of such labels 324

depends heavily on the chosen LLM’s capabili- 325

ties. In our approach, we provide the LLM with 326

three sources of information, Scenario, Dialogue 327

Logic Flow, and Utterances to predict the dialogue 328

state DS = LLM(S, P lann
i=0, U

n
i=0). This multi- 329

faceted view improves the accuracy of DST label 330

4



Upgrade
Context

Static
Complexity

Prompt

Context
(Logic Flow or

Utterance)

LLM

(a) Static Prompt

Seed
Complexity

Mutation

Context
(Logic Flow or

Utterance)

LLM
Dynamic

Complexity
Prompt

LLM

Upgrade
Context

(b) Dynamic Complexity Prompting

Figure 2: Comparison between a static prompt (a) and
the Dynamic Complexity Prompting strategy (b) used
in our pipeline for diverse data generation.

generation, as the LLM can cross-reference context331

from all three levels. We also instruct the LLM332

to produce intermediate reasoning alongside each333

predicted state, further supporting the explanation334

and enabling knowledge distillation in subsequent335

steps.336

3.3 Step-by-Step Knowledge Distillation337

CoT explanations have proven effective in vari-338

ous NLP applications, including DST (Xu et al.,339

2024). Existing work primarily focuses on super-340

vised or cross-domain scenarios, using CoT to en-341

hance interpretive and inferential capabilities for342

a given target dataset. However, in a purely syn-343

thetic setting, rational information (including CoT)344

not only increases explainability but also unifies345

data distributions across different datasets, thereby346

improving a model’s generalization. Our approach347

fully exploits this rational data by dividing knowl-348

edge distillation for a smaller LLM into two stages:349

(1) formalized representation generation and (2)350

chain-of-thought dialogue state inference. This351

two-stage design simplifies complex CoT into man-352

ageable parts and restricts the second step to only353

the domain-slot pairs identified in the first step,354

reducing computational overhead.355

As detailed in Section 3.2, each dialogue turn356

includes the logic flow {I, (d, s, v)j ,CoT}i, indi-357

cating the speaker’s intention, relevant slots, and358

a concise explanation. In the first stage, we con-359

(a) Prompt based One Stage Inference

Dialogue
Context

Step1 CoT
generation

Prompt for Related domain-slot

Dialogue
States

(b) Two Stage Inference:

Figure 3: Comparison between Prompt based One Stage
Inference(a) and Our proposed Two Stage Inference(b)

vert these fields into a formalized representation, 360

thereby reducing ambiguity caused by linguistic 361

variation. This structured view of the turn focuses 362

on related slots, which is more error-tolerant than 363

directly predicting DST labels. We then fine-tune 364

the smaller LLM to generate these representations 365

effectively: 366

Logici = {I, (d, s, v)j ,CoT}i ← sLLM(Ui). 367

where sLLM refers to smaller LLM. In the sec- 368

ond stage, we provide the original utterance U and 369

the formalized representation Logici to the smaller 370

LLM. Selecting a relevant domain-slot pair from 371

Logici, the model is prompted to generate both the 372

CoT and the predicted dialogue state for that slot: 373

{DSi,CoT} ← sLLM(Ui,Logici). 374

This final CoT may reference related turns and their 375

rationale, thereby reinforcing the model’s under- 376

standing of how the dialogue state evolves. 377

This two stage approach, as describe in Figure 3 378

offers two key benefits. First, splitting CoT gen- 379

eration into two stages—formalizing the dialogue 380

content before predicting dialogue states—reduces 381

the complexity of the instructions and thus lowers 382

the risk of error. Second, by limiting the second 383

stage to only the slots identified in the first stage, 384

we significantly decrease computational costs, as 385

the model need not process all possible slots. We 386

discuss more detials in Appendix. Overall, this 387

step-by-step knowledge distillation leverages ra- 388

tional data to improve both the interpretability and 389

efficiency of DST in zero-shot scenarios. The detail 390

instruction template is shown in Appendix. 391
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Table 1: Comparison of DST performance on MultiWOZ 2.1 and MultiWOZ 2.4 under various training conditions.
“Zero-shot” indicates no real training data, relying purely on synthetic data. “1%” and “5%” refer to few-shot
scenarios, where a small fraction of the real dataset is used in addition to synthetic data.

MultiWOZ 2.1 MultiWOZ 2.4
Method Base Model Synthetic Data Zero-shot 1% 5% Zero-shot 1% 5%
SVAG T5<1B NeuralWOZ 19.1 34.4 43.5 23.8 47.6 51.0
SVAG T5<1B Simulated Chats 7.5 - 41.1 12.5 - 47.3
SVAG T5<1B EDZ-DA 17.2 37.2 45.0 23.9 43.8 54.1
Ours T5<1B Ours 21.7 25.8 31.2 29.4 35.1 39.3
LDST Llama 8B - 9.5 36.3 46.7 15.3 46.77 56.48
LDST Llama 11B D0T 12.9 - - 23.6 - -
LDST Llama 8B LUAS 27.9 - - 31.9 - -
Ours Llama 1B Ours 25.7 29.1 35.8 28.7 35.4 41.7
Ours Llama 3B Ours 32.5 41.7 53.0 36.5 49.2 58.4
Ours Llama 8B Ours 45.2 52.1 63.8 49.7 54.7 68.3
IC-DST GPT3.5 >100B - 31.1 - - 35.3 - -
IC-DST GPT3.5 >100B SyntheDST 39.9 - - 45.6 - -
RefPyDST GPT3.5 >100B - - - - 47.9 - -
InstructTODS GPT4 >100B - 48.2 - - - - -
Heck et al. GPT3.5 >100B - 56.4 - - - - -
ParsingDST GPT3.5 >100B - 63.4 - - 64.7 - -
FnCTOD GPT4 >100B - 62.6 - - - - -
LDST GPT3.5 >100B - 61.52 - - 83.16 - -

4 Experiment392

4.1 Synthetic data generation393

Following the procedure outlined in Section 3.2,394

we first construct a synthetic dataset using LLMs.395

Specifically, we employ GPT4o-mini (Achiam396

et al., 2023)2 to generate initial Scenario informa-397

tion and GPT4o (Achiam et al., 2023)3 to produce398

the corresponding dialogue flow, utterances, and399

dialogue state labels. We begin by creating 900400

scenarios, each corresponding to dialogues con-401

taining one, two, or three domains (300 scenarios402

per domain count). For each domain, the LLM403

selects between 75% to 100% of the slots speci-404

fied in the schema to ensure that chosen slot-value405

pairs are semantically coherent. Next, we gener-406

ate a straightforward baseline dialogue logic flow407

for each scenario. We then apply our dynamic408

complexity prompting strategy twice to evolve this409

baseline into progressively more complex dialogue410

flows. Using the same approach, we produce two411

versions of the utterances for each dialogue flow:412

a simple, baseline utterance set, and a complex413

version created through one round of dynamic com-414

plexity prompting. Finally, we analyze each dia-415

logue to extract its corresponding dialogue state.416

2https://platform.openai.com/docs/models#gpt-4o-mini
3https://platform.openai.com/docs/models#gpt-4o

This procedure results in 5,400 synthetic dialogues 417

that exhibit varying levels of complexity. Figure 4 418

presents the distribution of the number of slots 419

per scenario and the dialogue lengths at different 420

complexity tiers. As shown, our proposed method 421

enables the generation of a wide range of easy-to- 422

hard synthetic dialogues, thereby enhancing dataset 423

diversity and better reflecting real-world TOD re- 424

quirements. 425

4.2 Evaluation Dataset and Metrics 426

To evaluate our zero-shot scheme-only perfor- 427

mance, we employ the widely used Multi- 428

WOZ (Budzianowski et al., 2018) dataset. In partic- 429

ular, we include MultiWOZ 2.1 (Eric et al., 2019), 430

one of the most commonly adopted benchmarks 431

for Dialogue State Tracking, as well as MultiWOZ 432

2.4 (Ye et al., 2021), which is built on version 2.1 433

but introduces corrections and enhancements to the 434

test set. Compared to the original release, Multi- 435

WOZ 2.4 features clearer annotations and rectified 436

errors, making it a more reliable benchmark for 437

evaluating DST models. 438

Following previous work, we adopt Joint Goal 439

Accuracy (Budzianowski et al., 2018) (JGA) as our 440

primary evaluation metric. JGA deems a predic- 441

tion to be correct only if all slot-value assignments 442

match the ground-truth labels for a given dialogue, 443
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making it a stringent measure of overall model per-444

formance.445

4.3 Evaluation Baseline446

Few smaller LLM-based approaches have reported447

results for a purely zero-shot, scheme-only setting.448

Most synthetic data generation strategies are gen-449

erally employed for data augmentation, serving as450

a supplement—rather than a replacement—for ex-451

isting training data. To allow a fair comparison,452

we incorporate several previously proposed syn-453

thetic datasets and evaluate their performance in a454

zero-shot context. In particular, we consider meth-455

ods such as NeuralWOZ (Kim et al., 2021), Simu-456

lated Chats (Mohapatra et al., 2020), EDZ-DA (Gu457

and Yang, 2024), D0T (Finch and Choi, 2024),458

LUAS (Niu et al., 2024), and SyntheDST (Kulka-459

rni et al., 2024). Moreover, zero-shot, scheme-only460

scenarios have also been investigated using large-461

scale LLMs (e.g., GPT-3.5, GPT-4). We therefore462

include the results of IC-DST (King and Flanigan,463

2023), LDST (Feng et al., 2023), RefPyDST (King464

and Flanigan, 2023), InstructTODS (Chung et al.,465

2023), ParsingDST (Wu et al., 2023), and FnC- 466

TOD (Li et al., 2024) in our comparisons. Finally, 467

beyond the zero-shot case, we examine how our 468

proposed method performs under 1% and 5% few- 469

shot conditions, offering a more comprehensive 470

view of its capabilities. 471

4.4 Implementation Details 472

We employ Llama3.2 1B, 3B and Llama 3.1 8B 473

models (Dubey et al., 2024) as our distillation tar- 474

gets, using LoRA-based supervised fine-tuning (Hu 475

et al., 2021) for both stages of instruction. We re- 476

serve 600 synthetic dialogues as a development set 477

to adjust hyperparameters. For a fair comparison 478

with smaller PLMs, we also evaluate a T5-Large 479

model (Raffel et al., 2020) by fully fine-tuning it on 480

the same dataset. All experiments are conducted 481

on a single RTX 4090 GPU. 482

4.5 Result 483

Table 1 presents a comparison of our method 484

(“Ours”) with existing approaches on MultiWOZ 485

2.1 and MultiWOZ 2.4 under zero-shot, 1%, and 486

5% few-shot settings. Focusing first on the zero- 487

shot scenario, our Llama 8B model achieves 45.2% 488

JGA on MultiWOZ 2.1, significantly surpassing 489

the 32.3% and 17.3% reported by D0T and LUAS, 490

respectively. Even smaller variants, such as Llama 491

1B and Llama 3B, exhibit competitive zero-shot 492

performance, highlighting the effectiveness of our 493

synthetic data generation pipeline for models of 494

varying scales. These results underscore the ro- 495

bustness of our approach in purely synthetic condi- 496

tions without any real training data. Notably, our 497

T5<1B version also outperforms other synthetic 498

baselines (e.g., Simulated Chats, EDZ-DA). How- 499

ever, in the few-shot setting, the T5-based model 500

performs poorly on our synthetic data, primarily 501

because our prediction process involves chain-of- 502

thought (CoT) reasoning, which smaller models 503

without instruction fine-tuning struggle to handle. 504

By contrast, the 1B instruction-tuned Llama model 505

demonstrates strong performance under few-shot 506

conditions, indicating that instruction-tuned archi- 507

tectures are better suited for managing more com- 508

plex reasoning tasks. 509

Beyond zero-shot performance, introducing a 510

small fraction (1% or 5%) of real dialogues yields 511

considerable gains for our method, with JGA scores 512

often increasing by 5–15 points compared to the 513

zero-shot scenario. For example, the Llama 8B 514

model’s accuracy on MultiWOZ 2.1 rises from 515
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45.2% to 63.8% when 5% of the real data is in-516

cluded—on par with or exceeding several other517

reported baselines. Although larger GPT-based so-518

lutions can perform well in zero-shot settings, they519

typically rely on models exceeding 100B param-520

eters. Our results demonstrate that substantially521

smaller architectures can close much of this gap522

through high-quality synthetic data creation, staged523

complexity prompts, and step-by-step knowledge524

distillation, ultimately providing a more resource-525

efficient solution for DST deployment526

4.6 Ablation Study527

Our ablation study investigates two key factors528

that may affect the zero-shot generalization per-529

formance of our method: (1) the effect of different530

complexity levels in synthetic data, and (2) the531

contribution of each step in our step-by-step knowl-532

edge distillation procedure.533

Synthetic Complexity MultiWOZ2.1
Baseline 21.7
High Complexity 37.3
Easy-to-Hard 43.7

Table 2: Synthetic Complexity Results for Multi-
WOZ2.1 Zero-shot

To explore how dialogue complexity affects534

model performance, we fixed the synthetic dataset535

size to 800 samples per group and categorized them536

into baseline, high-complexity, and diverse easy-537

to-hard sets. The baseline group consisted of min-538

imally complex dialogues generated without iter-539

ative complexity increases, the high-complexity540

group comprised dialogues that underwent mul-541

tiple rounds of progressive complexity prompts,542

and the diverse easy-to-hard group covered a full543

spectrum from simple to complex dialogues. As544

shown in Table 2, the diverse easy-to-hard data pro-545

duced the best zero-shot results, highlighting the546

importance of covering multiple difficulty levels to547

enhance generalization.548

Label Step1 Step2 MultiWOZ2.1
DS CoT CoT #turn <15 #turn >15
✓ 29 12
✓ ✓ 39 21
✓ ✓ ✓ 46 39

Table 3: Two step distillation Ablation study

We further examined the step-by-step distilla-549

tion procedure to evaluate the impact of each stage 550

on final performance. Our approach includes two 551

chain-of-thought (CoT) elements: one in Step 1 552

to generate a formal representation of the utter- 553

ance, and another in Step 2 to track the evolution 554

of slots and values over the course of the conversa- 555

tion. To isolate the contributions of these steps, we 556

conducted ablation experiments on 100 dialogues 557

with more than 15 turns and 100 dialogues with 558

fewer than 15 turns. The results in Table 4 show 559

that incorporating the CoT from Step 1 provides 560

an approximately 10% improvement in zero-shot 561

accuracy by offering a more robust representation 562

for each turn. Additionally, Step 2 further reduces 563

errors, particularly for longer dialogues, where slot- 564

value tracking becomes more challenging. These 565

findings confirm the effectiveness of our step-by- 566

step distillation method, demonstrating how each 567

stage’s CoT contributes in distinct yet complemen- 568

tary ways to the overall DST performance. 569

5 Conclusion 570

We have presented a framework for zero-shot 571

scheme-only DST that combines a novel diverse 572

synthetic data generation pipeline with a two-stage 573

knowledge distillation process. By employing dy- 574

namic complexity prompts, our approach produces 575

diverse, schema-aligned dialogues without relying 576

on manual templates. We then leverage intermedi- 577

ate CoT representations to guide a smaller LLM 578

through a step-by-step distillation procedure, sub- 579

stantially improving its ability to handle unseen 580

dialogue scenarios. Experiments on MultiWOZ 581

demonstrate that our method achieves state-of-the- 582

art zero-shot results while remaining both computa- 583

tionally efficient and readily adaptable to few-shot 584

conditions. 585

6 Limitations 586

Although our approach demonstrates promising 587

results in zero-shot scheme-only DST, several limi- 588

tations remain. First, the method relies on a well- 589

defined schema to guide synthetic data generation. 590

If the schema is incomplete or inaccurate, the re- 591

sulting dialogues may not accurately capture real- 592

world complexity. Second, dynamic complexity 593

prompting, while improving data diversity, can oc- 594

casionally produce logically inconsistent or out-of- 595

scope content.Finally, the generated data are not 596

manually reviewed, leaving open the possibility 597

that they may contain inappropriate content. 598
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A Example of Dynamic Complexity757

Prompting758

In Table 6, we provide examples of prompts gener-759

ated through our dynamic complexity mechanism.760

To maintain diversity, we impose minimal con- 761

straints on prompt generation, resulting in some 762

prompts that offer specific recommendations (e.g., 763

indicating which turn should include which ac- 764

tions), while others present more general guide- 765

lines. Our experimental findings show that using 766

highly restrictive prompts increases the risk of pro- 767

ducing out-of-scope content. 768

B Instruction Template for Knowledge 769

Distillation 770

Tables 7 and 8 provide the instruction templates 771

we use during the knowledge distillation process, 772

where all CoT content is derived from the synthetic 773

data generation stage. These templates define how 774

the model should generate and interpret CoT infor- 775

mation at each step of the distillation, ensuring a 776

consistent framework that facilitates transfer from 777

large LLMs to smaller ones. 778

C Details of the Two-Stage Inference 779

Typical prompt-based DST models use one of two 780

inference strategies. Early approaches attempt to 781

generate all dialogue states at once from the com- 782

plete dialogue history (Chung et al., 2023). How- 783

ever, this method often suffers from errors and 784

hallucinations (e.g., predicting slots not included 785

in the schema). To address these issues, DST-as- 786

Prompting (Lee et al., 2021) introduced a per-slot 787

inference strategy that queries each slot one by 788

one. Subsequent studies such as LDST (Feng et al., 789

2023) followed this paradigm, substantially improv- 790

ing accuracy at the cost of high computational over- 791

head—particularly in multi-domain settings. For 792

instance, MultiWOZ 2.1 includes 23 slots across 793

its hotel, train, and restaurant domains, requiring 794

23 separate inferences per turn. 795

Method # Query
One stage per turn 1790
One stage per slot 41170
Our two stage 6444

Table 4: The number of query for different inference
method

We propose a more balanced approach: in the 796

first stage, we predict the set of potentially rele- 797

vant slots; in the second stage, we only query those 798

slots. Table 4 compares the number of query for a 799

random sample of 100 test dialogues under differ- 800

ent strategies, showing that our two-stage method 801
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achieves a significant reduction in computational802

overhead while retaining the advantages of per-slot803

inference.804

Model Recall
Llama 1B 95.4
Llama 3B 97.2
LLama 8B 98.1

Table 5: The recall of stage 1 results on test set

One limitation of the two-stage process, how-805

ever, is that inaccuracies in Stage 1 can omit certain806

slots and thereby reduce final recall. We therefore807

measure the recall of Stage 1 slot predictions for808

Llama-based solutions, focusing on the extent to809

which it covers the gold slot set. Results in Table 5810

show that ignoring the value extraction step, the811

model successfully identifies most of the poten-812

tially relevant slots, ensuring robust overall DST813

performance.814

D Training Details815

We employ llama_factory (Zheng et al., 2024)4816

with the Liger Kernel (Hsu et al., 2024)5 for ef-817

ficient supervised fine-tuning and use vLLM6 for818

inference on the test set. For our synthetic dataset,819

we train the model for two epochs using a learning820

rate of 1e − 4. The LoRA rank is set to 16 for821

the 3B and 8B versions and to 8 for the 1B model.822

Under these settings, the 1B, 3B, and 8B models823

complete training in approximately 8, 14, and 31824

hours, respectively.825

In the few-shot setting, no chain-of-thought826

(CoT) annotations are available. We therefore first827

use an LLM(GPT-4o) to extract the CoT in two828

steps, then perform supervised fine-tuning. To829

avoid overfitting, we train for two epochs with a830

learning rate of 5e− 5 for the 3B and 8B models831

and 2e− 5 for the 1B model.832

4https://github.com/hiyouga/LLaMA-Factory
5https://github.com/linkedin/Liger-Kernel
6https://github.com/vllm-project/vllm
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Category Prompts

Utterance - Indirect
Slot Usage

At Turn 7 and Turn 12, refer back to a previously stated slot by using an indirect
phrase or pronoun (e.g., ’that place’, ’it’, ’the same hotel’), rather than repeating
the exact slot name.

Utterance - Natu-
ral Conversational
Flow

Use mild slang (e.g., ’gonna,’ ’wanna’) in some turns, and let a few user/system
turns expand into 2–3 sentences. E.g., ’I’m really hoping we can find something
affordable. I heard your deals are great.

Utterance - Error
Injection or Typos
(for Naturalness)

Insert a few small spelling or grammar mistakes in user utterances for restaurant
name, making sure the conversation remains understandable overall.

Dialogue Flow
- Multi-Domain
Jumps

Ensure the user abruptly introduces a another domain mid-conversation, then
later returns to the original domain.

Dialogue Flow
- Multi-Domain
Variation

Include at least ONE instance where the user deals with TWO or more domains
in a single turn. Keep the plan coherent, ensuring the user returns to or finalizes
all relevant domains.

Dialogue Flow -
Slot Contradictions

At Turn 16, the user provide contradictory or overlapping slot info for hotel type
and hotel name.

Table 6: Dynamic Generated Complexity Prompt

Category Prompts

Instruction You are given a task-oriented dialogue between the "user" and the "system".
Please analyze the conversation, especially the last two turns, and produce a
concise chain-of-thought analysis including the following:

• Intentions of each of the last two turns.

• Related slot names of the last two turns, enclosed in [slot][/slot] tokens.

• Formalized representation of the last two turns.

Input The task-oriented dialogue is as follows: {dialogue_history} Now, generate
your chain-of-thought based on the above context.

Output Analyzing the last two turns, I found that:
[Turn {turn_id} {turn.speaker.upper()}]: {turn.representation}
{turn.speaker.upper()} intends to {intention}.
The related slot(s) in schema is/are [slot]{slots_cot}[/slot].

Table 7: Instruction template for Stage 1 Knowledge Distillation
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Category Prompts

Instruction You are a dialogue state tracker for a task-oriented dialogue system. You will be
given:

• A dialogue between the "user" and the "system".

• Formalized representation of the dialogue.

Your task is to analyse and predict the **dialogue states** for the given slot
name. If the slot is not mentioned in the dialogue, please predict the slot value as
NONE. Output your reasoning progress and the predict value start with [state]
and end with [/state].

Input The task-oriented dialogue is as following: {dialogue_history} The formalized
representation of the dialogue: {form_cot} Now, please analyse and predict the
value for slot *{slot}*, which refers to {slot_description}. Output your reasoning
progress and the predict value start with [state] and end with [/state].

Output After read the context, I found slot *{slot}* is related to Turn {turn_id_list}. In
detail, In turn {turn_id}, {form_cot} ... In conclusion, the dialogue state for slot
*{slot}* is <state>{ds}</state>

Table 8: Instruction template for Stage 2 Knowledge Distillation
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