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Abstract

Online imitation learning is the problem of how best to mimic expert demonstra-
tions, given access to the environment or an accurate simulator. Prior work has
shown that in the infinite sample regime, exact moment matching achieves value
equivalence to the expert policy. However, in the finite sample regime, even if one
has no optimization error, empirical variance can lead to a performance gap that
scales with H2/Nexp for behavioral cloning and H/

√
Nexp for online moment

matching, where H is the horizon and Nexp is the size of the expert dataset. We
introduce the technique of replay estimation to reduce this empirical variance: by
repeatedly executing cached expert actions in a stochastic simulator, we compute a
smoother expert visitation distribution estimate to match. In the presence of para-
metric function approximation, we prove a meta theorem reducing the performance
gap of our approach to the parameter estimation error for offline classification
(i.e. learning the expert policy). In the tabular setting or with linear function
approximation, our meta theorem shows that the performance gap incurred by
our approach achieves the optimal Õ

(
min(H3/2/Nexp, H/

√
Nexp

)
dependency,

under significantly weaker assumptions compared to prior work. We implement
multiple instantiations of our approach on several continuous control tasks and find
that we are able to significantly improve policy performance across a variety of
dataset sizes.

1 Introduction

In online imitation learning (IL), one is given access to (a) a fixed set of expert demonstrations and
(b) an environment or simulator to perform rollouts in. Many online IL approaches fall under the
umbrella of solving a moment matching problem between learner and expert trajectory distributions
Ziebart et al. [2008], Ho and Ermon [2016],

min
π∈Π

sup
f∈F

Eπ[f(s, a)]− EπE [f(s, a)], (1)

where Eπ[·] denotes the expectation over a random trajectory {(s1, a1), · · · , (sH , aH)} generated by
rolling out π. Swamy et al. [2021] show that for an appropriate choice of F , approximate solutions
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Figure 1: Top: Attempting to exactly match a finite-sample approximation of expert moments can
cause a learner to reproduce chance occurrences (e.g. the relatively unlikely flight through the
trees). This can lead to policies that perform poorly at test time (e.g. because the learner flies
through the trees relatively often). Bottom: Replay estimation reduces the empirical variance in
expert demonstrations by repeatedly executing observed expert actions in a stochastic simulator. By
generating new trajectories (e.g. s1 → s1 → s2 on the right) that are consistent with expert actions,
one can augment the original demonstration set and compute expert moments more accurately.

of (1) have a performance gap linear in the horizon, the gold standard for sequential problems.
However, a key assumption in their work is that expert moments (EπE [f(s, a)]) can be estimated
arbitrarily well from the available demonstrations. The resulting bounds are therefore purely a
function of optimization error. Moving to the finite-sample regime introduces an additional concern:
the statistical error that stems from the randomness in the data-generating process. When a small
set of demonstrations are used in an adversarial optimization procedure like (1), the learner may
choose to take incorrect actions in order to match noisy moments estimated from the dataset, leading
to policies that perform poorly at test-time. Ideally, one would solve this problem by querying the
expert for more demonstrations, as in the work of Ross et al. [2011]. However, when we are unable
to do so, we still have to grapple with the question of “how can we smooth out a noisy empirical
estimate of expert moments?"

Our answer to this question is the technique of replay estimation. In its most basic form, replay
estimation consists of repeatedly executing observed expert actions within a stochastic simulator,
terminating rollouts whenever one ventures out of the support of the expert demonstrations. Effec-
tively, this approach stitches together parts of different trajectories to generate a smoothed estimate
of expert moments. By using the simulator where we know the expert’s actions, we can generate
more diverse training data that is nevertheless consistent with the expert demonstrations. We argue
that this technique is at once conceptually simple, practically feasible, and minimax optimal in
several settings. Formally, we prove that in the worst case, behavioral cloning has a performance
gap ∝ H2/Nexp, online empirical moment matching, ∝ H/

√
Nexp, and our approach of replay

estimation ∝ min{H3/2/Nexp, H/
√
Nexp} in the tabular setting as well as with linear function ap-

proximation. Our key insight is that we can use a combination of simulated and empirical rollouts
to optimally estimate expert moments. We can then plug this improved estimate into a variety of
moment-matching algorithms, for strong test-time policy performance. More explicitly, our work
makes the following three contributions:

1. We extend replay estimation (RE ) Rajaraman et al. [2020] beyond the tabular and determin-
istic setting by introducing the notion of a soft membership oracle and prefix weights.

2. We show how to instantiate the membership oracles for IL with parametric function ap-
proximation and prove a meta-theorem relating the imitation gap of RE to the parameter
estimation error for offline classification on the dataset (Theorem 3). Instantiating our main
result in the case of linear function approximation, we show how to achieve the best known
imitation gap of Õ

(
H3/2d5/4/Nexp

)
under significantly weaker assumptions compared to

prior work Rajaraman et al. [2021].
3. We give multiple practical options for constructing performant membership oracles. We

then use these approximate oracles to significantly improve the performance of online IL on
several continuous control tasks across a variety of dataset sizes. We also investigate the
differences between our proposed oracles.
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We sketch the benefits of replay estimation before providing theoretical and empirical evidence to
support our claims.

2 The Replay Estimator

We begin with a tabular vignette to illustrate our key insight in greater detail. We compare two
algorithms: offline behavioral cloning (BC) Pomerleau [1989] and online moment matching (MM)
Swamy et al. [2021]. Throughout, we focus on learning policies from finite samples.

Suboptimality of Empirical Moment Matching. Consider the MDP in Fig. 2, where the expert
always takes the green action. Doing so puts them in s1 or s2 with equal probability. Given that
the expert is deterministic and there are few states, BC could easily recover the expert’s policy by
learning to simply output the observed green action on both states, even when there are very few
demonstrations.

s1 s2

Unif({s1, s2})

s1

expert
empirical
replay

s2
Figure 2: An MDP where the expert
always takes the green action that puts
them in the uniform distribution over s1

and s2. Because of full expert support,
BC will learn to always take this action
at both states. However, if the empirical
state distribution is more tilted towards
s2, MM will take the incorrect red action.

Now, what would happen if we tried to match moments
of the expert’s state-action visitation distribution for this
problem? It is rather unlikely that we see exactly equal
probabilities for both states in the observed data. If by
chance we see s2 more than we see s1, the learner might
realize that the only way to match the observed state dis-
tribution (a prerequisite for matching the observed state-
action distribution) is to occasionally take the red action
at s2. In general, this could cause the learner to spend
an unnecessary amount of time in s2 which may be un-
desirable (e.g. if s2 corresponds to the tree-filled area
in Fig. 1 (top)). The core issue we hope to illustrate in
this example is that by treating the empirical estimate of
the expert’s behavior as perfectly accurate, distribution
matching can force the learner to take incorrect actions to
minimize training error, leading to test-time performance
degradation. As we will discuss in Sec. 3, this can lead to
slow statistical rates ∝ H/

√
Nexp.

Suboptimality of Behavioral Cloning. Because it does not account for the covariate shift that
results from policy action choices, behavioral cloning can lead to a quadratic compounding of errors
and poor test time performance Ross et al. [2011]. Consider, for example, the MDP in Fig. 3.

s1 s2 sn. . .

sx

Unif({s1, . . . , sn})

s1

expert
empirical
replay

s2 s3…

Figure 3: The expert always takes the green action, which
places it in a uniform distribution over s1, . . . , sn. At states
where we have demonstrations (e.g. s1, s2), both BC and MM
will take the same, correct action. However, at states where
we have no demonstrations (e.g. s3), MM will correctly take
the green action to get back to states with demonstration
support, while BC might not.

Let us assume that the expert always
takes the green action, dropping them
in a state in the top row with uniform
probability. In a small demonstration
set, we might not see expert actions at
some states in the top row. At all such
states, BC will have no idea of what
to do. In contrast, MM will take the
green action as doing so might send
the learner back to a state with positive
demonstration support. Thus for this
problem, MM will recover the optimal
policy while BC will not. As we will
discuss in Sec. 3, this leads to errors
∝ H2/Nexp in the worst case.

Replay Estimation. The previous
two examples show us that there exist
simple MDPs for which BC or MM will
not recover the expert’s policy. This
begs the question: is it possible to do

better than both worlds and recover the optimal policy on both problems with a single algorithm? It
turns out it is indeed possible to do so, via the technique of replay estimation. In its simplest form,
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replay estimation involves playing a cached expert action whenever possible and re-starting the rollout
if one ventures out of the support of the demonstrations. Then, one appends these rollouts to the
demonstration set, treating them as additional training data – while biased, they are consistent with
observed expert behavior. Intuitively, repeated simulation has a smoothing effect on the training data
as doing so marginalizes out the statistical error that comes from the stochasticity of the dynamics. We
can see this point more explicitly by considering the above two MDP examples: in Fig. 2, repeatedly
playing the green action and appending these rollouts to the expert dataset would bring us much
closer to a uniform distribution over s1 and s2. Similarly, in Fig. 3, replay estimation would bring us
toward a uniform distribution over the states {s1, · · · , sn} in the expert demonstrations.

We could then plug in this improved distribution estimate into the MM procedure (1). Notice how doing
so would cause MM to be highly likely to recover the optimal policy on both MDPs. For example, in
Fig. 2, replay estimation would make the learner much less likely to play the red action in s2, It turns
out this fact is sufficient to establish statistical optimality in the tabular setting and with linear function
approximation, with an error rate ∝ min(H3/2/Nexp, H/

√
Nexp). In short, replay estimation is a

practical technique for reducing some of the finite-sample variance in expert demonstrations that
enables MM to perform optimally in the finite sample regime. We now provide some intuition on how
to generalize this approach to beyond the tabular setting.

Leaving the Tabular Setting. The prior work of Rajaraman et al. [2020] considers the tabular
setting; this characteristic makes it easy to answer the question of “on what states do we know the
expert’s action?" To enable us to answer this question more generally, we introduce the notion of a
membership oracleM : S → {0, 1}. Explicitly,M(s) = 1 for states where we know the expert’s
action well (e.g. states where we have lots of similar demonstrations) andM(s) = 0 otherwise.
Alternatively,M(s) = 1 on states where BC , which attempts to directly output expert actions, is
accurate and 0 otherwise.

We can then compute expert moments by splitting on the output of the membership oracle:

EπE [f(s, a)] = EπE [f(s, a)1(M(s) = 1)]︸ ︷︷ ︸
(i)

+ EπE [f(s, a)1(M(s) = 0)]︸ ︷︷ ︸
(ii)

(2)

Note that the indicators in (i) and (ii) are complements of each other, rendering the above sum a valid
estimate of the expert moment. As we know the expert action well whereverM(s) = 1, simulated
rollouts of the BC policy approximates (i) well; on the other hand we resort to a naive empirical
estimate to approximate (ii), as we do not know enough about the expert’s action at these states
to accurately generate additional demonstrations via BC rollouts. In general, we relaxM to a soft
membership oracle Zadeh [1965], in order to handle uncertainty in how well we know the expert’s
action at a given state. We proceed by first analyzing the statistical properties of applying MM to this
bipartite estimator before discussing practical constructions of performant membership oracles.

3 Theoretical Analysis

|S|H |S|H2

Number of Trajs., Nexp

J(
π

E
)
−

J(
π

)

Tabular Sample Complexity

RE ∝ min( H3/2|S|
Nexp

, H
√
|S|

Nexp
)

BC ∝ H2|S|
Nexp

MM ∝ H
√
|S|

Nexp

Figure 4: In the tabular setting, RE in-
herits the superior low-data performance
of moment-matching approaches and is
able to perform better than both MM and
BC with enough data.

The proofs of all results in this section are deferred to
appendix A. We begin by introducing some notation.

Notation. Let ∆(X) denote the probability simplex
over set X and let &,.,� respectively denote greater
than, lesser than and equality up to constants. We study
the IL problem in the episodic MDP setting with state
space S, action space A and horizon H . We assume
that the transition, reward function and policies can be
non-stationary. The MDP transition is denoted P =
{ρ, P1, · · · , PH−1}, where ρ is the initial state distribu-
tion and Pt : S ×A → ∆(S), while the reward function
is denoted r = {r1, · · · , rH} where rt : S × A → [0, 1].
In the online imitation learning setting, the learner has
access to a finite dataset D of Nexp trajectories (i.e. the
sequences of states visited and actions played) generated
by rolling out expert policy πE . Importantly, the learner
does not observe rewards during rollouts. The fundamen-
tal goal of the learner is to learn a policy π̂ such that the
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imitation gap, J(πE)−J(π̂) is small. Here, J(π) denotes
the expected value of the policy π, Eπ

[∑H
t=1 rt(st, at)

]
. ED[·] denotes the empirical expectation

computed using trajectories from the dataset D.

Behavior cloning. A standard approach for imitation learning is behavioral cloning (BC) Pomerleau
[1989], which trains a classifier from expert states to expert actions. More formally, for the 0-1 loss `
(or a continuous proxy) BC minimizes the empirical classification error,

πBC ← arg min
π∈Π

ED

[
1

H

∑H

t=1
`(πt(st), at)

]
. (3)

It is known from Ross et al. [2011] and Rajaraman et al. [2020] that in the tabular setting, the expected
imitation gap for BC is always . |S|H2/Nexp. The fast 1/Nexp rate comes from the fact that on
states where the learner observes the deterministic expert’s actions, BC simply replays them. Thus,
the performance gap is proportional to the mass of unseen states, which decays as 1/Nexp. The H2

dependence comes from the fact that a single mistake can take the learner out of the distribution of
the expert, causing it to make mistakes for the rest of the horizon. Importantly, this bound is tight –
i.e. there exists an MDP instance on which BC incurs this imitation gap (See Appendix A.3).

Theorem 1 (Theorem 6.1 of Rajaraman et al. [2020]). Then, there exists a tabular MDP instance
such that the BC incurs, E

[
J(πE)− J(πBC)

]
& min

{
H, |S|H2/Nexp

}
.

Moment matching. Many standard algorithms in the IL literature fall under the empirical moment
matching framework (e.g. GAIL Ho and Ermon [2016], MaxEnt IRL Ziebart et al. [2008]); see Table
3 of Swamy et al. [2021] for more examples. Reward moment matching corresponds to finding a
policy which best matches the state-action visitation measure of πE , in the sense of minimizing an
Integral Probability Metric (IPM) Müller [1997]. In the finite sample setting, the empirical moment
matching learner πMM attempts to best match the empirical state-visitation measure. Namely,

πMM ∈ arg min
π∈Π

sup
f∈F

Eπ

[∑H
t=1 ft(st, at)

H

]
−ED

[∑H
t=1 ft(st, at)

H

]
. (4)

First we show an upper bound on the imitation gap incurred by empirical moment matching.
Theorem 3.1. Consider the empirical moment matching learner πMM (eq. (4)), instantiated with an ap-
propriate discriminator class F . The imitation gap satisfies E

[
J(πE)− J(πMM)

]
. H

√
|S|/Nexp.

The proof of this result can be found in Appendix A.2. It turns out that this guarantee is essentially
tight for empirical moment matching, answering an open question from Rajaraman et al. [2020].
Theorem 3.2. IfH ≥ 4, there is a tabular IL instance with 2 states and actions on which with constant
probability, the empirical moment matching learner (eq. (4)) incurs, J(πE)− J(πMM) & H/

√
Nexp.

The proof of this result is deferred to appendix A.4. The proof of this lower bound exploits the fact
that the data generation process in the dataset is inherently random. Consider a slight modification of
the MDP instance shown in fig. 2, where the reward function is 0 for t = 1. For t ≥ 2, the transition
function is absorbing at both states; the reward function equals 1 at the state s1 for any action and is 0
everywhere else. Then, the expert state distribution at time 2 and every time thereon is in uniform
across the two states, {1/2, 1/2}. However, in the dataset D, the learner sees a noisy realization of
this distribution in the dataset of the form {1/2 − δ, 1/2 + δ} for |δ| ≈ ±1/

√
Nexp. Because of

this noise, the empirical moment matching learner may be encouraged to deviate from the expert’s
observed behavior and pick the red action at s2 as this results in a better match to the empirical state
visitation measures at every point in the rest of the episode - a prerequisite to matching the empirical
state-action visitation measure. The learner is willing to pick an action different from what the expert
played in order to better match the inherently noisy empirical state-action visitation distribution.

Remark 1. Theorems 1 and 3.2 are separate lower bound IL instances against the performance of
BC and empirical moment matching. On the uniform mixture of the two MDPs (i.e. deciding the
underlying MDP based on the outcome of a fair coin), with constant probability, both J(πE) −
J(πBC) & |S|H2/Nexp and J(πE)− J(πMM) & H/

√
Nexp. On this mixture instance, training both

BC and empirical moment matching and choosing the better of the two is also statistically suboptimal.
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3.1 Replay Estimation

A natural question at this point is whether there is an algorithm that is better than both worlds, i.e.
algorithm which can outperform the worst case imitation gap of empirical moment matching and BC .
The answer to this question in the tabular setting was recently provided by Rajaraman et al. [2020]
who propose Mimic-MD , achieving better performance than both BC and MM . This improvement is
possible because BC does not use any dynamics information and MM does not leverage the knowledge
of where expert actions are known. However, it is unclear how to extend this approach beyond the
tabular setting as the algorithm relies on a large measure of states being visited in the demonstrations.

Algorithm 1: Replay Estimation (RE )

Input: Expert demonstrations D, policy class Π, moment class F =
⊕H

t=1 Ft, simulator SIM,
ALG which returns a membership oracle given a dataset;

1 Partition the dataset D into D1 and D2;
2 Using ALG, train the membership oracleM on D1;
3 Train πBC using behavior cloning on D1;
4 Roll out πBC in SIM Nreplay times to construct a new dataset, Dreplay;
5 Define prefix weights P(s1...t) =

∏t
t′=1M(st′ , t

′);
6 Define,

Ê(f) = EDreplay

[
1

H

∑H

t=1
ft(st, at) (P(s1...t))

]
+ ED2

[
1

H

∑H

t=1
ft(st, at) (1− P(s1...t))

]
.

7

Output: πRE, a solution to the moment-matching problem:

arg min
π∈Π

sup
f∈F

Eπ

[
1

H

∑H

t=1
ft(st, at)

]
− Ê(f) (5)

To handle this challenge, we introduce the notion of a soft membership oracle Zadeh [1965],M :
S × [H]→ [0, 1] which captures the learner’s inherent uncertainty in the expert’s actions at a state at
each point in an episode. The soft membership oracle assigns high weight to a state if BC is likely
to closely agree with the expert policy and gives a lower weight to states where BC is likely to be
inaccurate. By this definition, if the membership oracle is consistently large at all the states visited in
a trajectory, we can be confident that a trajectory generated by BC is as though it was a rollout from
the expert policy. Formally, for any function g and time t = 1, · · · , H , we have the decomposition,

EπE [g(st, at)] = EπE [g(st, at)P(s1···t)]︸ ︷︷ ︸
(i)

+ EπE [g(st, at) (1− P(s1···t))]︸ ︷︷ ︸
(ii)

(6)

where P(s1···t) is defined as the prefix weight
∏t
t′=1M(st′ , t

′). We need to use prefix weights
instead of the single-sample weights sketched in the previous section to account for the probability
of BC getting to the current state in the same manner the expert would have. Because of the high
accuracy of BC on segments with high prefix weights, in eq. (6), (i) can be approximated by replacing
the expectation over πE by that over πBC, i.e. replay estimation. On the other hand, since the prefix
weight is low on the remaining trajectories in (ii), we know that BC is inaccurate, so we resort to
using a simple empirical estimate to estimate this term.

While we leave the particular choice of the soft membership oracle flexible, intuitively, states at
which BC closely agrees with the expert policy should be given high weight while where those where
BC is inaccurate should be weighted lower. In Section 4, we discuss several practical approaches to
designing such a soft membership oracle. We first prove a generic policy performance guarantee for
the outputs of our algorithm as a function of the choice ofM.

Theorem 2. Consider the policy πRE returned by Algorithm 1. Assume that πE ∈ Π and the ground
truth reward function rt ∈ Ft, which is assumed to be symmetric (ft ∈ Ft ⇐⇒ −ft ∈ Ft) and
bounded (For all ft ∈ Ft, ‖ft‖∞ ≤ 1). Choose |D1|, |D2| = Θ(Nexp) and suppose Nreplay →∞.
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With probability ≥ 1− 3δ,

J(πE)− J(πRE) . L1 + L2 +
log (FmaxH/δ)

Nexp
(7)

where Fmax , maxt∈[H] |Ft|, and,

L1 , H2 EπE

[∑H
t=1M(st, t)TV

(
πEt (·|st), πBCt (·|st)

)

H

]
, (8)

L2 , H3/2

√
log (FmaxH/δ)

Nexp

∑H
t=1 EπE [1−M(st, t)]

H
.

We discuss a proof of this result in Appendix B and include bounds when Nreplay is finite.

Remark 2. Note that Theorem 2 can be extended to infinite function families using the standard
technique of replacing |Ft| by the ε log-covering number of Ft in say, the L2 norm, for ε = 1

Nexp
.

For ease of exposition here, we stick to the case where Ft is finite.

The term L1 measures how accurate BC is on states from expert trajectories whereM(st, t) is large.
Intuitively, if we setM(st, t) = 1 on states where BC is accurate andM(st, t) = 0 elsewhere, we
would expect this term to be small. L2 can be thought of a measure of BC ’s coverage: it tells us
how much of the expert’s visitation distribution we believe BC to be inaccurate on. If BC has good
coverage (i.e. 1−M(st, t) is small on expert trajectories), we expect this term to be small.

Prima facie, one might think that because L1 resembles the imitation gap of BC and L2 resembles
that of MM , RE can only perform as well as the best of BC (∝ H2/Nexp) and MM (∝ H/

√
Nexp) on

a given instance. However, with a careful choice ofM, one can achieve “better than both worlds”
statistical rates. In particular, since RE is a generalization of Mimic-MD of Rajaraman et al. [2020], in
the tabular setting, an appropriately initialized version of RE achieves the optimal imitation gap of

min
{
|S|H3/2

Nexp
, H
√
|S|
Nexp

}
log
(
|S|H
δ

)
and strictly improves over both BC and MM .

We now show how to extend this result and instantiate the membership oracle for parametric function
approximation and provide a statistical guarantee under a particular margin assumption.

3.2 Parametric Function Approximation: Reduction to Offline Classification

While BC can be thought of as a reduction of IL to offline classification, the algorithm does not take
into account the knowledge of the transition of the MDP. This is reflected in the quadratic dependency
in the horizon, error compounding Ross et al. [2011]. In this section, we study a novel reduction of IL
with parametric function approximation to parameter estimation in offline classification, which we
define formally. We provide a provable guarantee, assuming the learner has access to a classification
oracle and the underlying function class admits a Lipschitz parameterization.

Definition 1 (IL with function-approximation). In this setting, for each t ∈ [H], there is a parameter
class Θt ⊆ Bd2, the unit L2 ball in d dimensions, and an associated function class {fθt : θt ∈ Θt}.
For each t ∈ [H] there exists an unknown θEt ∈ Θt such that ∀s ∈ S,

πEt (s) = arg max
a∈A

fθEt (s, a). (9)

Definition 2 (Lipschitz parameterization). A function class G = {gθ : θ ∈ Θ} where gθ(·) : X → R
is said to satisfy L-Lipschitz parameterization if, ‖gθ(·)− gθ′(·)‖∞ ≤ L‖θ − θ′‖2. In other words,
for each x ∈ X , gθ(x) is an L-Lipschitz function in θ, in the L2 norm.

Assumption 1. For each t, the class {fθt : θt ∈ Θt} is L-Lipschitz in its parameterization, θt ∈ Θt.

To deal with parametric function approximation, we assume that the learner has access to an offline
classification oracle which, given a dataset of classification examples, approximately returns the
underlying ground truth parameter. More formally,
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Assumption 2 (Offline classification oracle). We assume that the learner has access to a multi-
class classification oracle, which given n examples of the form, (si, ai) where si i.i.d.∼ D and ai =

arg maxa∈A fθ∗(s
i, a), returns a θ̂ ∈ Θ such that, with probability ≥ 1− δ, ‖θ̂ − θ∗‖2 ≤ EΘ,n,δ .

We assume that this classification oracle is used by RE to train the BC policy in Line 3 of Algorithm 1.

A careful reader might note that Assumption 2 asks for a slightly stronger requirement than just
finding a classifier with small generalization error (which need not be close to the ground truth θ∗).
The latter problem was studied in Daniely et al. [2013] who show that the Natarajan dimension, up
to log-factors in the number of classes (i.e. number of actions) captures the generalization error of
the best learner, which scales as Θ(1/n) given n classification examples. Under some mild regularity
(coverage) assumptions on the input distribution D, we show that the generalization guarantee carries
over to learning the parameter θ, for example in linear classification (Appendix B.4). In particular, we
show that EΘ,n,δ . d+log(1/δ)

n when fθ = 〈θ, ·〉. The membership oracle we study is defined below,

M(s, t)=

{
+1 if ∃a ∈ A such that, ∀a′ ∈ A, fθ̂BC

t
(s, a)−fθ̂BC

t
(s, a′) ≥ 2LEΘt,Nexp,δ/H

0 otherwise.
(10)

Intuitively,M assigns a state as +1 if BC classifies it with a significant margin as some action.

Finally, we introduce the main assumption on the IL instances we study. We assume that the
classification problems solved by BC at each t ∈ [H] satisfy a margin condition.
Assumption 3 (Weak margin condition). The weak margin condition assumes that for each t, there
is no classifier θ ∈ Θt such that for a large mass of states, fθ(st, πEt (st))−maxa6=πE

t (st) fθ(st, a),
i.e. the “margin” from the nearest classification boundary, is small. Formally, the weak-margin
condition with parameter µ states that, for any θ ∈ Θt and η ≤ 1/µ,

PrπE

(
fθ(st, π

E
t (s))− max

a 6=πE
t (st)

fθ(st, a) ≥ η
)
≥ e−µη. (11)

The weak margin condition only assumes that there is at least an exponentially small (in η) mass of
states with margin at least η. Smaller µ indicates a larger mass away from any decision boundary. It
suffices to assume that eq. (11) is only true for θ as the classifier in Assumption 2 for our guarantees
(Theorem 3) to hold.

Under these three assumptions and using the membership oracle defined above, we can provide a
strong guarantee for RE :
Theorem 3. For IL with parametric function approximation, under Assumptions 1 to 3, appropriately
instatiating RE ensures that with probability ≥ 1− 4δ,

J(πE)− J(πRE) . H3/2

√
µL log (FmaxH/δ)

Nexp

∑H
t=1 EΘt,Nexp,δ/H

H
+

log (FmaxH/δ)

Nexp
. (12)

In Appendix B.4, we explicitly instantiate these guarantees for the special case of where the expert
follows a linear classifier acting on a known set of feature representations of the state-action pairs.
The prior work of Rajaraman et al. [2021] shows an imitation gap of Õ

(
H3/2d5/4/Nexp

)
for

RE in the linear expert setting, under the restrictive assumptions of a binary action space, and
a certain uniform distribution assumption on the feature distribution. In contrast, the guarantee
of Theorem 3 can be used to achieve the same guarantee, for general action spaces and under
a significant weakening of the uniform feature distribution constraint to a multi-class analog of
the strong distribution assumption Audibert and Tsybakov [2007]. Under this assumption, we
show that the best achievable parameter recovery error, EΘt,Nexp,δ/H and the best achievable 0-1
generalization error (Es∼D[maxa∈A fθ̂(s, a) 6= maxa∈A fθ∗(s, a)], in the notation of Assumption 2)
for classification, Eclass

Θt,Nexp,δ/H
, match up to problem dependent constants.

The best known statistical guarantees on imitation gap for BC (Ross et al. [2011]) and MM are,

J(πE)− J(πBC) ≤ Gap(πBC) , H2

∑H
t=1 Eclass

Θt,Nexp,δ/H

H
, and (13)

J(πE)− J(πMM) ≤ Gap(πMM) , H

√
log (FmaxH/δ)

Nexp
(14)
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The guarantee in Theorem 3 for RE therefore grows as Gap(πMM)
√
Gap(πBC)/H , whenever we are able

to establish that EΘt,Nexp,δ/H � Eclass
Θt,Nexp,δ/H

up to problem dependent constants. Our guarantees
for RE in the presence of parametric function approximation thus give us reasons to expect RE to
improve the performance of MM . We now turn our attention to validating this in practice.

4 Practical Algorithm

When considering RE (Alg. 1), two main questions arise: (i) How does one construct a membership
oracle in practice, especially when action spaces may be continuous?, and (ii) How does one solve the
moment matching problem (eq. (5))? We now provide potential answers to both of these questions.
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Figure 5: Left: All variants of RE are able to nearly match expert performance while MM struggles to
make any progress. Center: We add i.i.d. noise to the environment to make the control problem more
challenging. RE is still able to match expert performance, unlike MM . Right: We compute correlations
between the idealized prefix weights ofMEXP and the other oracles and seeMMAX correlate most.
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Figure 6: We see RE withMMAX improve the performance of MM on the Noisy Walker2DBulletEnv
and HopperBulletEnv tasks. We see RE (and MM ) out-perform BC on the initial-state-perturbed
Walker2DBulletEnv and HopperBulletEnv tasks .

Membership Oracle. M represents how uncertain BC is about the expert’s action. Ideally, we
would be able to query the expert policy for an action and weight by the distance between the BC and
expert actions, e.g. for sigmoid function σ and constants µ, β,

MEXP(s, t) = σ

(
µ−

∥∥πBC(s)− πE(s)
∥∥

2

β

)
, (15)

However, in the non-interactive setting, we can only approximate this quantity. The first approxima-
tion we propose using is inspired by Random Network Distillation (RND) [Burda et al., 2018], used
by Wang et al. [2019] to estimate the support of the expert policy. We instead propose using RND as
a measure of how uncertain BC is about expert actions. That is,

MRND(s, t) = σ



µ−

∥∥∥πBC(s)− π̂BC(s)
∥∥∥

2

β


 , (16)

where π̂BC is a network trained to imitate πBC on expert states. To train π̂BC, we evaluate πBC on expert
states and plug this new dataset into their standard IL pipeline.

We can also utilize other uncertainty measures like the disagreement of an ensemble, which has
shown success on various simulated sequential decision making tasks [Pathak et al., 2019]. Past work
by Brantley et al. [2019] utilizes the variance of a set of BC learners as a regularizer on top of standard
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BC error. We instead propose using it to weight the two halves of our estimator. Instead, we define,

MVAR(s, t) = σ

(
µ− Var(πBC(1)(s), . . . , πBC(k)(s))

β

)
, (17)

where {πBC(1), · · · , πBC(k)} are BC policies trained with different initializations, which produces
sufficient diversity when using deep networks as function approximators. Lastly, we can also use the
maximum difference in the ensemble Kidambi et al. [2021] as our disagreement measure:

MMAX(s, t) = σ

(
µ−maxi,j∈[k]

∥∥πBCi (s)− πBCj (s)
∥∥

2

β

)
, (18)

For computing prefix weights, we use the average of distances up till the current timestep instead
of the sum of distances that would follow directly from the idealized algorithm presented in Sec. 3.
This modification serves to improve the numerical stability of our method.

Moment Matching. We implement approximate Nash equilibrium computation of (5) by running a
no-regret learner against a best-response counterpart [Swamy et al., 2021]. Our approach is related
to the GAIL algorithm of Ho and Ermon [2016] which we improve in 4 ways: (i) we use a general
Integral Probability Metric Müller [1997] instead of the Jensen-Shannon Divergence used in the
original paper which improves the representation power of the the discriminator, (ii) we add in
gradient penalties to the discriminator, which improves convergence rates Gulrajani et al. [2017], (iii)
we solve the entropy-regularized forward problem via Soft-Actor Critic Haarnoja et al. [2018] as the
policy optimizer, for improved sample efficiency, and (iv) we use optimistic mirror descent instead of
gradient descent as our optimization algorithm for both players, giving us faster convergence to Nash
equilibria, both in theory Syrgkanis et al. [2015] and in practice Daskalakis et al. [2017]. Together,
these changes lead to an implementation which significantly out-performs the original, giving us a
strong baseline to compare against. We include an ablation to confirm this fact in Appendix C. We
emphasize that the RE technique can be used to improve any online moment matching algorithm and
that the above description is merely the approach we chose for this paper.

5 Experimental Results

We now quantify the empirical benefits of RE on several continuous control tasks from the the PyBullet
suite Coumans and Bai [2016–2019]. All the task we consider have long horizons (H ≈ 1000) and
we use relatively few demonstrations. (Nexp ≤ 20). We set Nreplay as 100 BC rollouts (Line 4 of
Algorithm 1). We test all four membership oracles from the previous section (MEXP as an idealized
target,MRND,MVAR, andMMAX as practical solutions). In Fig. 5 (left), we see that with only twelve
trajectories, RE is able to reliably match expert performance for all oracles considered, while MM is
not. The environment considered in this experiment is nearly deterministic, indicating that RE can
help even when the environment is not stochastic. We hypothesize that the randomness in the initial
state is sufficient for replay estimation to generate a significant improved estimate of the state-action
visitation measure. This improvement is especially interesting considering both of the examples we
study in Sec. 3 were heavily stochastic. We see a similar result in Fig. 5 (center), where we add in
i.i.d. noise to the environment dynamics at each timestep. This makes the problem significantly more
challenging than the standard version of the Walker task. RE is still able to match expert performance,
withMMAX working notably well. The correlation plot in Fig. 5 (right) shows usMMAX appears to
be best correlated with the idealized prefix weights,MEXP under the state distribution induced by
BC . Because of its superior performance, we useMMAX for the rest of our experiments. In the left
half of Fig. 6, we see RE improve the performance of MM . In the right half, we see RE out-perform
BC in responding to an extremely tiny amount of noise added to the initial velocity of the agent
(similar to the experiments of Reddy et al. [2019]) – we defer more details to Appendix C). These
results indicate that RE can out-perform MM and BC , agreeing with our theory. We release our code at
https://github.com/gkswamy98/replay_est. 2

2After the initial publication of this paper, we continued to tune our baseline and fix bugs in our method’s
implementation. We then updated the result plots for both of the Noisy environments. Compared to their original
performances, MM scores higher and RE scores lower. However, the RE still significantly out-performs MM.
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