
A Human Behavioral Baseline for Collective Governance in Software Projects

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 We study how open source communities describe participation and control through
2 version controlled governance documents. Using a corpus of 710 projects with
3 paired snapshots, we parse text into actors, rules, actions, and objects, then group
4 them and measure change with entropy for evenness, richness for diversity, and
5 Jensen Shannon divergence for drift. Projects define more roles and more actions
6 over time, and these are distributed more evenly, while the composition of rules
7 remains stable. These findings indicate that governance grows by expanding and
8 balancing categories of participation without major shifts in prescriptive force.
9 The analysis provides a reproducible baseline for evaluating whether future AI
10 mediated workflows concentrate or redistribute authority.

1 1 Introduction

12 The use of artificial intelligence systems in software project management has become increasingly
13 salient [Hashimzai and Mohammadi, 2024]. In addition to assisting individual developers, they are
14 coordinating core management functions, including drafting pull requests, triaging issues, proposing
15 code reviews, and enforcing release gates. As these capabilities are embedded in team tooling,
16 decision rights migrate from human maintainers toward sociotechnical pipelines. In these pipelines,
17 algorithms and people jointly govern workflows [Xiao et al., 2024, Wessel et al., 2022]. This
18 shift raises questions about how authority is redistributed when algorithms mediate both individual
19 contributions and collective coordination [Crawford et al., 2023]. Insights from recent work on
20 algorithmic collective action indicate that when multiple groups interact with the same algorithmic
21 system, their strategies can interfere in unexpected ways. A campaign that achieves near perfect
22 success in isolation may see its efficacy drop sharply when a second group acts at the same time
23 [Karan et al., 2025]. We use *algorithmic collective action* to denote coordinated behavior among
24 participants when interactions are shaped by algorithmic systems within sociotechnical platforms. In
25 software development, the growing reality of human and algorithmic co-production leads us to ask:
26 how might AI systems embedded in team support tools reshape governance structures, stakeholder
27 participation, and power relations on platforms, and what options exist for steering them toward the
28 common good [Varanasi and Goyal, 2023]?

29 The debate about how AI systems reshape governance has outpaced empirical evidence [Delgado
30 et al., 2023]. Scholars of AI governance and participatory design warn that algorithmic infrastructures
31 can undermine stakeholder agency, reinforce hierarchies, or reallocate decision rights [Birhane et al.,
32 2022]. The recency of AI technologies make it currently challenging to gain substantial inferences on
33 trends of human-AI interactions in software project management. In addition, most studies examine
34 these emergent dynamics through case studies, audits, or simulations without a historical baseline
35 against which to evaluate the change [Margetts, 2022]. As a result, claims about AI-induced shifts in
36 governance remain speculative. Establishing a historical baseline for governance change is therefore

37 the central objective of this paper. Before assessing whether AI systems redistribute power, narrow
38 opportunities for participation, or enable more inclusive governance, it is necessary to understand
39 how authority has evolved in primarily human-governed settings [Sharma et al., 2020]. Our study
40 addresses this need by constructing a large-scale longitudinal baseline of institutional change in open
41 source project governance before the widespread adoption of AI-managed tools, providing a reference
42 point for evaluating how future AI-mediated platforms may reshape participation and oversight. To
43 our knowledge, this is the first large-scale longitudinal baseline of open-source governance prior to
44 the widespread adoption of AI-managed tools.

45 Open source software communities have been extensively studied as exemplar instances of collective
46 knowledge work Benkler [2006], Heckman et al. [2007], Lee and Cole [2003], O’Mahony and Ferraro
47 [2007], Schweik and English [2012], Chakraborti et al. [2024a]. Importantly, they are a transparent
48 testbed for studying governance [O’Mahony, 2005]. Open source projects externalize governance in
49 version-controlled files such as GOVERNANCE.md, which makes rules explicit, textual, and historically
50 archived. Because governance edits are version-controlled and public, rule changes are observable
51 at fine temporal resolution and comparable across time and projects. This is unique to OSS, which,
52 unlike conventional organizational settings, supports systematic observation of how authority changes
53 over time.

54 We treat AI systems as non-human stakeholders whose programmed objectives interact with human
55 goals in shared workspaces. This framing aligns with a view of algorithmically mediated collaboration
56 in which both human contributors and AI systems participate in shaping collective outcomes and
57 therefore require institutional oversight. We lay a fundamental step in this important discourse, by
58 analyzing version-controlled GOVERNANCE.md documents from open source software projects and
59 contribute the following:

- 60 1. Our corpus captures several years of Open source software (OSS) projects before the
61 widespread adoption of AI-managed project tools and management suites, offering a neutral
62 reference point for future evaluations of AI-mediated governance.
- 63 2. By tracing how roles, responsibilities, and decision rights evolve, we provide an account
64 of governance as it is encoded and renegotiated collectively, rather than inferred only from
65 individual behaviors or outcomes.
- 66 3. We establish a text-based analytical framework that is replicable and easily extendable to
67 governance records besides markdown files (e.g. prompts used to steer agentic workflows),
68 and therefore can support future studies aimed at understanding software engineering team
69 power structures under AI agent-human co-production.

70 Together these contributions establish a foundation for participatory AI research. Understanding
71 organic governance trajectories in open source communities can inform the design of participatory
72 AI systems that allow collective human input in decision processes and provide benchmarks for
73 assessing whether AI infrastructure serves the common good. This baseline enables falsifiable pre/post
74 evaluations of AI-mediated workflows, including whether authority becomes more concentrated or
75 participation more uneven when assistants are introduced.

76 Building on this baseline, we frame our analysis around three research questions. First, how do these
77 communities distribute authority over time, and what does that suggest for steering AI systems toward
78 the common good? Second, how are norms, responsibilities, and decision rights encoded in open
79 source governance over time and what parallels exist for encoding values into AI systems? Third,
80 can open source governance evolution serve as a model for participatory AI design in which users
81 collectively influence system behavior?

82 These questions move from describing historical change in open source governance to identifying
83 patterns that matter for the future of AI systems. By tracing how authority shifts, how rules harden or
84 soften, and which governance elements remain stable versus contested, we offer an empirical founda-
85 tion for examining how AI-managed infrastructures may redistribute power, reshape participation,
86 and influence the prospects for collective oversight.

87 The rest of the paper is organized as follows. The description of the data and methods is summarized
88 in Section 2. Section 3 represents the main results of the study. Then, Section 4 provides interpretation.
89 Finally, Section 5 describes the conclusion, limitation, and future work.

90 **2 Methods**

91 We describe the corpus, selection criteria, preprocessing, institutional parsing, and analysis that
92 convert governance prose into comparable structures. The aim is a simple pipeline that others can
93 rerun on future AI-managed cohorts.

94 **Data and coverage.** GitHub is the most widely used hosting platform for open-source development,
95 built on the distributed version-control system Git. It provides an infrastructure for collaboration,
96 coordination, and community visibility as well as storing code. Governance is a persistent concern
97 in this context: projects must determine how authority should be allocated, how contributor rights
98 should be granted or lost, and how conflicts should be resolved. Many communities address these
99 governance challenges through informal norms, foundation-level oversight, and increasingly, explicit
100 written constitutions. A notable development has been the emergence of `GOVERNANCE.md` as a de
101 facto standard for codifying project rules, alongside related artifacts such as `CONTRIBUTING.md`,
102 codes of conduct, and maintainership guides. These files articulate roles, permissions, obligations,
103 and protected resources, making governance unusually transparent and traceable.

104 Starting with a seeded collection and filename patterns, we analyzed 710 repositories with at least
105 one governance file at the repository root. The corpus spans 2013–2022, with governance commits
106 recorded through June 2022 (earliest: 2013-05-09; latest: 2022-05-19). File coverage is dominated by
107 `GOVERNANCE.md`, which appears in 673 out of 710 projects (94.8%), alongside 37 filename variants.
108 The latest governance file is present for all projects, and Markdown structure is detectable in 498
109 repositories (70.1%), with a median of 5 sections (range: 2 to 25) Yan et al. [2023].

110 Across the corpus we record 3,889 governance commits corresponding to repository by commit pairs
111 and 2,890 unique commit OIDs, covering 107,869 line level edits with 82,076 additions and 25,793
112 deletions.

113 **Paired subset and pairing rules.** The pipeline produced net governance changes (earliest and
114 latest snapshots) for the 637 repositories over an observation period from 2014-03-26 to 2022-05-
115 18. `GOVERNANCE.md` file names were dominant, being 601 of 637 (or 94.3%). Inclusion requires
116 at least two recoverable governance snapshots per project; we label the earliest valid snapshot as
117 *initial* and the most recent as *latest*. We require across day change with the two snapshots fall on
118 different calendar days, which in practice implies at least two distinct `GOVERNANCE.md` commits.
119 For each repository with a governance file, we traversed the Git history to recover the earliest valid
120 version of that file and paired it with the most recent version. Projects with only one usable snapshot
121 are excluded from longitudinal analysis but retained for descriptive statistics. For the 637 paired
122 repositories, the gap from earliest to latest commit has median 0 days with interquartile range 247,
123 minimum 0, and maximum 2616; we refer to 0 day gaps as within day revisions. The across day
124 change subset comprises 279 of 637 which equals 43.8 percent. Where multiple governance files
125 existed, we would create a composite governance view by concatenating in a deterministic order and
126 removing repeated boilerplate; in this paired cohort, one governance file per repository sufficed.

127 **Normalization and alignment.** We preprocess governance documents by removing badges and
128 images, converting tables to lists, normalizing headings, and stripping markup. Text is segmented into
129 short paragraph blocks and sentences using a splitter tuned for Markdown lists. To reduce pronoun
130 ambiguity, we apply coreference resolution while maintaining a reversible mapping to original offsets
131 [Lee et al., 2018] [Jurafsky and Martin]. Where headings are detectable, we record section counts
132 across snapshots to capture the degree of governance structuring.

133 **Institutional parsing.** The governance structure of each GitHub project in our corpus was extracted
134 from its `GOVERNANCE.md` constitution using the Institutional Grammar (IG) framework [Ostrom,
135 2009] (Crawford & Ostrom, 1995; Ostrom, 2006). This framework maps the syntactic elements
136 of policy texts to institutional primitives, first decomposing paragraphs and multi-phrase sentences
137 into simple "institutional statements". Under the institutional grammar, an institution is treated as
138 a bag of institutional statements. Recent NLP methods have made their automated extraction from
139 policy text feasible Rice et al. [2021], Chakraborti et al. [2024b]. Governance documents were parsed
140 into institutional statements consisting of four linked components. An institutional statement has a
141 *Role* (known in IG as 'Attribute') when its grammatical subject is a kind of agent. Roles account for
142 the types of actor or position recognized by the institution (e.g., "project lead," "contributor"). An
143 *Action* (the 'Aim' in IG; syntactically the verb) identifies activities recognized by the institution as
144 requiring governance (e.g., "commit," "assign," "review"). A *Deontic* captures the prescriptive force

145 of the institutional statement, expressed through modal verbs such as "may," "should," or "must,"
146 which indicate whether an action is permitted, recommended, or required. Deontics can also be
147 enabling ("can") or restricting ("cannot"). An *Object* represents the grammatical object of the rule,
148 whether another actor or a resource that is subject to the action enacted by the statement's role. For
149 example, in the sentence "The technical committee must ratify the development roadmap", the Role
150 is "technical committee," the Action is "ratify," the Object is "roadmap," and the Deontic is "must,"
151 which renders the statement obligatory.

152 We extracted these components with the NLP4Gov toolkit [Chakraborti et al., 2024b] [Chakraborti
153 et al., 2024a], which combines dependency parsing with semantic role labeling to parse each unitary
154 institutional statement into its IG components. The parser emits tuples with and anchors spans and
155 positions, enabling traceability back to the original text. Modal verbs such as *may*, *can*, *should*, *must*,
156 and *will* were canonicalized into a closed set of deontic types, while role names such as *maintainer*,
157 *committer*, *reviewer*, and *release manager* were normalized into a controlled vocabulary manually.
158 We further manually categorized Actions into a version of the Typology of Rules adapted from the
159 institutional analysis literature Ostrom [2009], Weible et al. [2012], Weible and Heikkila [2017],
160 Weible et al. [2018]. To test the reliability of these qualitative steps of the analysis, two authors coded
161 the same sample of 50 Actions, which demanded the most manual categorization among the four
162 types of institutional features. Over this sample they demonstrated a percent agreement of 82% and
163 a Cohen's $\kappa = 0.92$, over 9 labels, including a null label, strong evidence for the intersubjective
164 validity of the chosen typology.

165 **Embedding, clustering, and metrics** Each canonical tuple is rendered as a short governance
166 statement. We encode each governance statement with a Sentence-BERT encoder [Reimers and
167 Gurevych, 2019] and apply BERTOPIC [Grootendorst, 2022] to derive semantic clusters per repository
168 at two snapshots (initial, latest). BERTOPIC operates in the embedding space to form topic-like
169 groups and uses class-based TF-IDF to label them. To ensure even clustering across all the projects'
170 corpus, we use the library's standard hyperparameters without custom tuning. For structure, we report
171 (i) richness K as the number of distinct clusters per repository and (ii) normalized Shannon entropy
172 H (bits, base 2) over cluster proportions, with longitudinal change $\Delta H = H_{\text{latest}} - H_{\text{initial}}$. For drift,
173 we compute Jensen–Shannon divergence (JSD, bits) between the aligned initial and latest cluster
174 distributions for each repository. All repository-level estimates are aggregated with equal-weight
175 bootstrap confidence intervals by resampling repositories with replacement.

176 **Analysis and inference.** Using the paired across day subset defined above, we compute, for each
177 repository r and snapshot $v \in \{\text{initial, latest}\}$, the empirical distribution over semantic cluster labels.
178 Section A in Appendix provides the main equations of the methodology. Specifically, Normalized
179 Shannon entropy $H_v(r)$ summarizes evenness (Eq. 1), and *change* is $\Delta H(r)$ (Eq. 2). Distributional
180 drift is measured with Jensen–Shannon divergence in bits between the aligned initial and latest
181 distributions (Eq. 3). Richness $K_v(r)$ is the count of distinct labels in snapshot v with a presence
182 threshold of at least two statements (Eq. 4); the paired change is $\Delta K(r)$ (Eq. 5). To control for
183 document length, we also report a rarefied ΔK by sampling an equal number of statements from
184 both snapshots and averaging paired differences over repeated draws (Eq. 6). Entropy and JSD are
185 computed only for repositories with at least five labeled statements in each snapshot; richness uses
186 the presence threshold described above. All repository-level estimands are reported as equal-weight
187 means across repositories with percentile confidence intervals obtained by a repository bootstrap
188 (Eqs. 7–8; resampling repositories with replacement, $B=10,000$). Unless noted otherwise, intervals
189 are 95% and units are bits for H and JSD.

190 3 Results

191 We study within repository change by pairing the earliest recoverable governance snapshot with the
192 latest and computing: (i) Shannon entropy for each version $H_v(r)$ in Eq. (1) and the paired change
193 $\Delta H(r)$ in Eq. (2); (ii) distributional drift via Jensen–Shannon divergence in Eq. (3); and (iii) breadth
194 as the count of distinct constructs $K_v(r)$ in Eq. (4) and its paired change $\Delta K(r)$ in Eq. (5), with the
195 size controlled rarefied estimate $\widetilde{\Delta K}(r)$ in Eq. (6). Repository level summaries are aggregated with
196 equal weight bootstrap confidence intervals using the resampling scheme in Eqs. (7)–(8) ($B=10,000$).
197 Unless noted, units are bits for H and Jensen–Shannon divergence. The minimum per version screen
198 of at least five labeled statements is applied as specified in Methods.

Table 1: **Attention to roles and actions becomes more even; deontic polarity is broadly stable.** Entries report repository-paired changes in concentration (Shannon entropy $\Delta H = H_{\text{latest}} - H_{\text{initial}}$, bits) (mean) and within-repository distributional drift (Jensen–Shannon divergence, bits). Rows show means across repositories; 95% CIs are from equal-weight bootstrapping over repositories ($B=10,000$). Bold ΔH intervals exclude 0. † Binary coding of deontics into enabling vs. restricting.

Feature	<i>n</i>	Initial H	Latest H	ΔH [95% CI]	JSD [95% CI]
Roles	169	1.775	1.866	+0.092 [0.011, 0.173]	0.202 [0.172, 0.234]
Actions	213	1.905	1.979	+0.074 [0.017, 0.134]	0.126 [0.107, 0.146]
Deontic	144	1.057	1.052	-0.005 [-0.066, 0.056]	0.062 [0.048, 0.079]
Deontic †	149	0.108	0.076	-0.032 [-0.066, -0.001]	0.009 [0.005, 0.014]

Table 2: **Projects define more roles and govern more actions over time.** Entries report the repository-paired change in the number of distinct constructs ($\Delta K = K_{\text{latest}} - K_{\text{initial}}$) (mean) with equal-weight bootstrap 95% CIs over repositories ($B=10,000$). The rarefied estimate draws the same number of statements from each snapshot (cap 100) before counting, to address length differences. Units are counts of distinct clusters; bold intervals exclude 0.

Feature	<i>n</i>	Initial K	Latest K	Mean ΔK [95% CI]	Rarefied ΔK [95% CI]
Roles	244	3.46	3.95	+0.484 [0.258, 0.713]	+0.224 [0.092, 0.352]
Actions	266	3.86	4.46	+0.602 [0.417, 0.793]	+0.228 [0.134, 0.326]
Deontics	236	1.14	1.15	+0.008 [-0.038, 0.055]	-0.024 [-0.062, 0.012]
Objects	97	1.27	1.33	+0.062 [-0.062, 0.186]	+0.075 [-0.009, 0.162]

199 **Breadth.** Projects define a wider array of who acts and what is governed over time. Roles and actions
200 both show clear increases in the number of distinct constructs per repository, and those increases
201 remain positive under the rarefied control that equalizes snapshot length ($\widehat{\Delta K}(r)$ in Eq. (6)). Deontic
202 and object counts show no effect on average. Table 2 reports the paired changes ΔK with percentile
203 confidence intervals that reflect between project variation.

204 **Concentration and drift.** Attention across constructs becomes more evenly distributed for roles
205 and actions. Mean ΔH is positive for both features and the corresponding intervals exclude zero.
206 Under the standard modal inventory deontic composition is broadly unchanged, while collapsing to
207 enabling versus restricting yields a small decrease in evenness. Mean Jensen–Shannon divergence
208 values indicate within project drift between initial and latest snapshots for all features, with larger
209 drift for roles and actions than for deontics. Table 1 reports ΔH and Jensen–Shannon divergence.

210 **Interpretation of intervals.** The paired design means intervals summarize between project uncer-
211 tainty, not within project sampling error. Results are robust to the minimum per version screen and
212 rarefaction confirms that breadth findings are not an artifact of longer documents. Object results are
213 underpowered in the paired subset and are reported for completeness.

214 Overall, communities diversify and rebalance the governance space of actors and activities while
215 leaving prescriptive polarity comparatively stable. These patterns provide a human authored baseline
216 against which AI assisted cohorts can be evaluated for concentration, drift, and breadth shifts
217 (Tables 2–1).

218 4 Interpretation

219 Our paired design establishes a human authored baseline for how projects formalize participation
220 and control over time. Two results are robust. Projects broaden and rebalance who acts and what
221 is governed: both the count of distinct constructs and the evenness of attention rise for Roles and
222 Actions (Tables 2 and 1). The force of rules is comparatively stable: under the standard Deontic
223 inventory we see no effect on average, while an enabling versus restricting recode shows a small
224 decrease in evenness. Objects are underpowered and we treat them as descriptive context.

225 These findings are consistent across complementary summaries. For Roles and Actions, entropy and
226 richness move together, and rarefied ΔK confirms that gains are not explained by longer files. Jensen
227 Shannon divergence indicates within repository drift as catalogs expand. The change distribution has
228 many near zeros with a minority of large moves, which is consistent with punctuated edits rather than
229 steady drift.

230 The measurements suggest priorities for AI assistance. Tools should emphasize specification over
231 escalation: help communities name and rebalance Roles and Actions, surface uneven coverage, and
232 propose governance ready statements that identify actor, deontic force, action, and object. Edits
233 should be exposed as structured deltas that indicate which dimension changes. Given the small
234 decrease in evenness under the enabling versus restricting recode, systems should require explicit
235 acknowledgement before intensifying restricting language and make such shifts visible in review.

236 To evaluate AI assisted cohorts against the baseline, we recommend reporting paired changes in
237 evenness and count for Roles and Actions (for example ΔH and ΔK with the rarefied variant),
238 Deontic composition and polarity shares, authority concentration such as the share of approvals by
239 role and the prevalence of single gate approvals, and participation outcomes such as time to first
240 review and the distribution of review work. Where possible, control for repository size and activity.

241 Scope and external validity are limited. We analyze governance text rather than behavior, intervals
242 reflect between project uncertainty via equal weight resampling at the repository level, and artifacts
243 are predominantly in English with policies sometimes spread across files. The labeling, pairing,
244 entropy and richness computation, Jensen Shannon divergence, and bootstrapping pipeline is artifact
245 agnostic and can be applied to multi file policy inventories. Equal weighting avoids collapsing smaller
246 projects into larger ones and aligns with participatory aims.

247 5 Conclusion

248 We provide a reproducible human baseline for how open-source projects formalize participation
249 and control. Governance prose is parsed into tuples (actor, deontic force, action, object), clustered,
250 and summarized with entropy H for evenness (Eq. 1), paired change ΔH (Eq. 2), Jensen–Shannon
251 divergence for drift (Eq. 3), and richness K for the count of distinct constructs (Eq. 4), with equal-
252 weight repository bootstrapping for uncertainty (Eqs. 7–8). Empirically, projects define more *roles*
253 and govern more *actions* over time ($\Delta K > 0$; rarefied estimates corroborate that gains are not length
254 artifacts; Table 2); evenness also rises for roles and actions ($\Delta H > 0$), while deontic composition
255 is broadly stable, with a small decrease under the enabling/restricting recode (Table 1). Read as
256 institutional signals, these patterns are consistent with maturation by accretion: catalogs of who acts
257 and what is done broaden and rebalance, while prescriptive polarity changes slowly. Additionally,
258 robustness checks across alternative minimum per-version thresholds showed that results remained
259 consistent, indicating that observed patterns are not artifacts of threshold choice.

260 **Limitations.** We analyze governance text rather than behavior; many consequential rules live outside
261 GOVERNANCE.md (for example CONTRIBUTING.md, CODEOWNERS, CI settings, issue templates) or in
262 informal channels, and the corpus is predominantly English open source, which limits generality.
263 Our paired design requires two recoverable snapshots per repository, so survivorship and timing
264 effects can bias change estimates, and stabilization thresholds (at least five labeled statements per
265 snapshot for evenness and drift, presence threshold $\tau = 2$ for richness) trade variance for selection;
266 Objects are comparatively sparse. Natural language processing and representation choices, including
267 segmentation, coreference, embedding, and clustering, can miss conditionality and shape absolute
268 values of K , H , and Jensen Shannon divergence; although coder agreement for Action types was
269 high, residual category bias is possible. Inference is descriptive and comparative rather than causal:
270 equal weight repository bootstrapping reflects between project variability without fully adjusting for
271 confounders such as age or scale, and Jensen Shannon divergence is direction agnostic and can be
272 affected by cluster relabeling across snapshots.

273 **Future Work** Researchers could extend this baseline to cohorts that adopt AI assisted governance
274 and development tools, enabling before and after comparisons of concentration, breadth, and drift and
275 linking governance change to outcomes such as review latency, newcomer acceptance, and workload
276 distribution. Researchers could also examine causal pathways by pairing textual change with event
277 data from code review and release processes.

278 **References**

279 280 Yochai Benkler. *The Wealth of Networks: How Social Production Transforms Markets and Freedom*.
Yale University Press, New Haven, CT, 2006.

281 282 283 284 Abeba Birhane, William Isaac, Vinodkumar Prabhakaran, Mark Diaz, Madeleine Clare Elish, Iason Gabriel, and Shakir Mohamed. Power to the people? opportunities and challenges for participatory ai. In *Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization*, pages 1–8, 2022.

285 286 287 288 Mahasweta Chakraborti, Curtis Atkisson, Ştefan Stănciulescu, Vladimir Filkov, and Seth Frey. Do we run how we say we run? formalization and practice of governance in oss communities. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, pages 1–26, 2024a.

289 290 291 Mahasweta Chakraborti, Sailendra Akash Bonagiri, Santiago Virgüez-Ruiz, and Seth Frey. Nlp4gov: A comprehensive library for computational policy analysis. In *Extended Abstracts of the CHI Conference on Human Factors in Computing Systems*, pages 1–8, 2024b.

292 293 294 Talia Crawford, Scott Duong, Richard Fueston, Ayorinde Lawani, Samuel Owoade, Abel Uzoka, Reza M Parizi, and Abbas Yazdinejad. Ai in software engineering: a survey on project management applications. *arXiv preprint arXiv:2307.15224*, 2023.

295 296 297 Fernando Delgado, Stephen Yang, Michael Madaio, and Qian Yang. The participatory turn in ai design: Theoretical foundations and the current state of practice. In *Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization*, pages 1–23, 2023.

298 299 Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. *arXiv preprint arXiv:2203.05794*, 2022.

300 301 302 Irshad Ahmed Hashimzai and Mohammad Qias Mohammadi. The integration of artificial intelligence in project management: A systematic literature review of emerging trends and challenges. *TIERS Information Technology Journal*, 5(2):153–164, 2024.

303 304 305 Robert Heckman, Kevin Crowston, U Yeliz Eseryel, James Howison, Eileen Allen, and Qing Li. Emergent decision-making practices in free/libre open source software (floss) development teams. In *Open Source Development, Adoption and Innovation*, pages 71–84. Springer, 2007.

306 307 Daniel Jurafsky and James H Martin. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition.

308 309 310 Aditya Karan, Nicholas Vincent, Karrie Karahalios, and Hari Sundaram. Algorithmic collective action with two collectives. In *Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency*, pages 1468–1483, 2025.

311 312 313 G. Lee and R. Cole. From a firm-based to a community-based model of knowledge creation: the case of the linux kernel development. *Organization Science*, 14:633–649, 2003. doi: 10.1287/orsc.14.6.633.24866.

314 315 316 317 318 319 Kenton Lee, Luheng He, and Luke Zettlemoyer. Higher-order coreference resolution with coarse-to-fine inference. In Marilyn Walker, Heng Ji, and Amanda Stent, editors, *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pages 687–692, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2108. URL <https://aclanthology.org/N18-2108/>.

320 Helen Margetts. Rethinking ai for good governance. *Daedalus*, 151(2):360–371, 2022.

321 322 Siobhan O’Mahony. Nonprofit foundations and their role in community-firm software collaboration. 2005.

323 Elinor Ostrom. *Understanding institutional diversity*. Princeton university press, 2009.

324 325 S. O’Mahony and F. Ferraro. The emergence of governance in an open source community. *Academy of Management Journal*, 50:1079–1106, 2007. doi: 10.5465/amj.2007.27169153.

326 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
327 *arXiv preprint arXiv:1908.10084*, 2019.

328 Douglas Rice, Saba Siddiki, Seth Frey, Jay H. Kwon, and Adam Sawyer. Machine coding of
329 policy texts with the institutional grammar. *Public Administration*, 99(2):248–262, 2021. doi:
330 <https://doi.org/10.1111/padm.12711>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/padm.12711>.

332 Charles M Schweik and Robert C English. *Internet Success: A Study of Open-Source Software Commons*. MIT Press, Cambridge, MA, 2012.

334 Gagan Deep Sharma, Anshita Yadav, and Ritika Chopra. Artificial intelligence and effective gover-
335 nance: A review, critique and research agenda. *Sustainable Futures*, 2:100004, 2020.

336 Rama Adithya Varanasi and Nitesh Goyal. “it is currently hodgepodge”: Examining ai/ml practition-
337 ers’ challenges during co-production of responsible ai values. In *Proceedings of the 2023 CHI*
338 *conference on human factors in computing systems*, pages 1–17, 2023.

339 Christopher M Weible and Tanya Heikkila. Policy conflict framework. *Policy Sciences*, 50(1):23–40,
340 2017.

341 Christopher M Weible, Tanya Heikkila, Peter DeLeon, and Paul A Sabatier. Understanding and
342 influencing the policy process. *Policy sciences*, 45(1):1–21, 2012.

343 Christopher M Weible, Tanya Heikkila, and Jonathan Pierce. Understanding rationales for collabora-
344 tion in high-intensity policy conflicts. *Journal of Public Policy*, 38(1):1–25, 2018.

345 Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A Gerosa. Quality
346 gatekeepers: investigating the effects of code review bots on pull request activities. *Empirical*
347 *Software Engineering*, 27(5):108, 2022.

348 Tao Xiao, Hideaki Hata, Christoph Treude, and Kenichi Matsumoto. Generative ai for pull request
349 descriptions: Adoption, impact, and developer interventions. *Proceedings of the ACM on Software*
350 *Engineering*, 1(FSE):1043–1065, 2024.

351 Yibo Yan, Seth Frey, Amy Zhang, Vladimir Filkov, and Likang Yin. GitHub OSS Governance File
352 Dataset . In *2023 IEEE/ACM 20th International Conference on Mining Software Repositories*
353 (*MSR*), pages 630–634, Los Alamitos, CA, USA, May 2023. IEEE Computer Society. doi:
354 [10.1109/MSR59073.2023.00089](https://doi.org/10.1109/MSR59073.2023.00089). URL <https://doi.ieee.org/10.1109/MSR59073.2023.00089>.

356 **Appendix**

357 **A Methods**

358 Figure bellow presents an end-to-end pipeline that transforms raw governance documents into
 359 structured institutional insights. It begins with data normalization and pairing rules that align
 360 governance snapshots across versions. Coreference resolution reduces pronoun ambiguity, enabling
 361 more accurate attribution of roles. Semantic Role Labeling maps sentences to predicate-argument
 362 structures, identifying the underlying grammar of governance actions. These structured tuples are
 363 then embedded and clustered using BERTopic to capture governance topologies. The resulting
 364 clusters are evaluated using metrics such as entropy, Jensen–Shannon divergence, and per-project
 365 cluster counts to quantify structural diversity, prescriptiveness, and change. This modular pipeline
 366 supports scalable, interpretable analysis of institutional evolution in OSS projects.

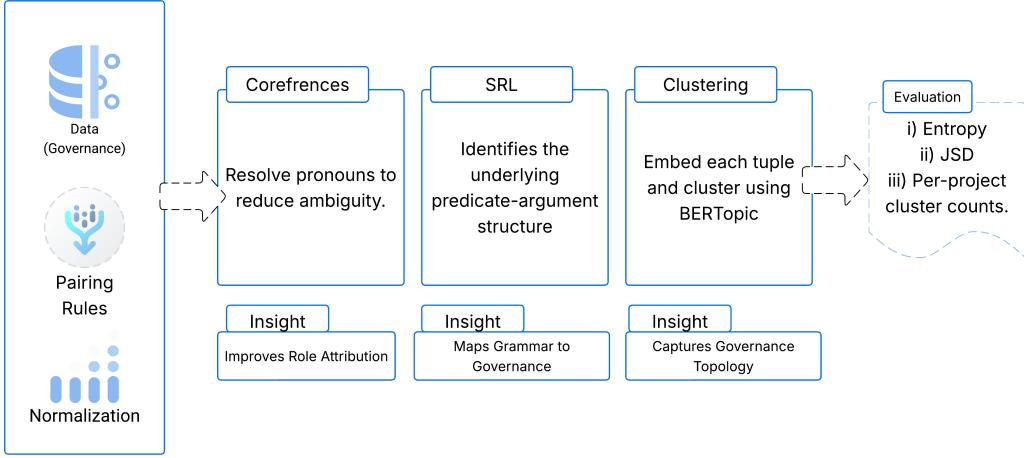


Figure 1: End-to-end pipeline from raw governance files to structured institutional statements and analysis.

$$H_v(r) = - \sum_k p_{r,v}(k) \log_2 p_{r,v}(k), \quad v \in \{\text{initial, latest}\}. \quad (1)$$

$$\Delta H(r) = H_{\text{latest}}(r) - H_{\text{initial}}(r). \quad (2)$$

$$\text{JSD}(p_{r,\text{initial}}, p_{r,\text{latest}}) = \frac{1}{2} \text{KL}(p_{r,\text{initial}} \| m_r) + \frac{1}{2} \text{KL}(p_{r,\text{latest}} \| m_r),$$

$$m_r = \frac{1}{2}(p_{r,\text{initial}} + p_{r,\text{latest}}). \quad (3)$$

$$K_v(r) = \sum_k \mathbf{1}\{c_{r,v}(k) \geq \tau\}, \quad \tau = 2. \quad (4)$$

$$\Delta K(r) = K_{\text{latest}}(r) - K_{\text{initial}}(r). \quad (5)$$

$$\widetilde{\Delta K}(r) = \frac{1}{R} \sum_{t=1}^R \left(K_{\text{latest}}^{(t)}(r; n_r) - K_{\text{initial}}^{(t)}(r; n_r) \right),$$

$$n_r = \min\{N_{r,\text{initial}}, N_{r,\text{latest}}, 100\}. \quad (6)$$

$$\hat{\theta}^{*(b)} = \frac{1}{n} \sum_{r \in \mathcal{R}^{*(b)}} s(r), \quad b = 1, \dots, B, \quad B = 10,000. \quad (7)$$

$$\text{CI}_{1-\alpha} = \left[Q_{\alpha/2}(\{\hat{\theta}^{*(b)}\}), Q_{1-\alpha/2}(\{\hat{\theta}^{*(b)}\}) \right]. \quad (8)$$

367

368 **B Computational Resource**

369 Some experiments were run using Google Colab with freely available GPU resources. Additional
 370 analysis and processing were performed on a local machine equipped with four Quadro RTX 8000

371 GPUs (48GB VRAM each), CUDA version 12.4, and driver version 550.163.01. Resource usage
 372 remained moderate, and no large-scale distributed training was required.

373 **C Additional Results**

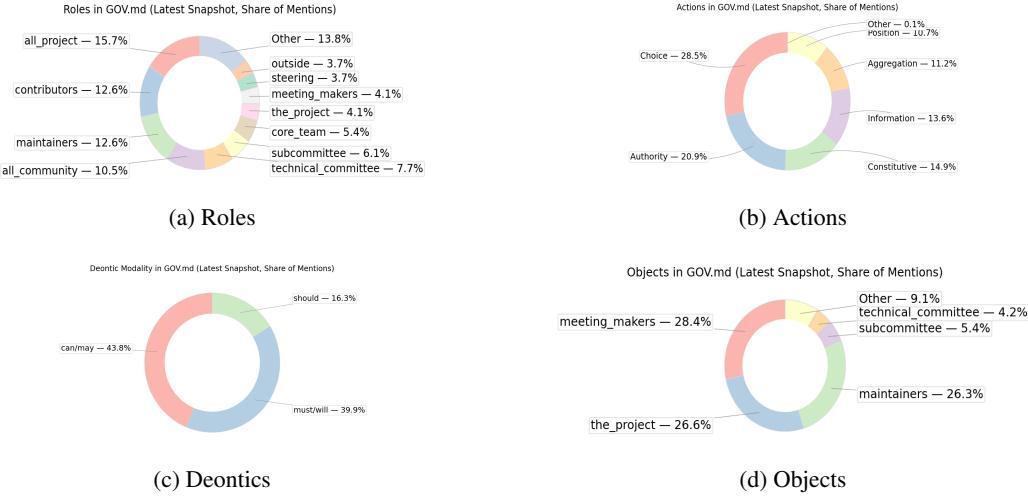


Figure 2: **Latest-snapshot composition of governance constructs.** Donuts show the relative share of clusters within each feature (Roles, Actions, Deontics, Objects). These panels are descriptive context; inference relies on paired change metrics reported in the main text.

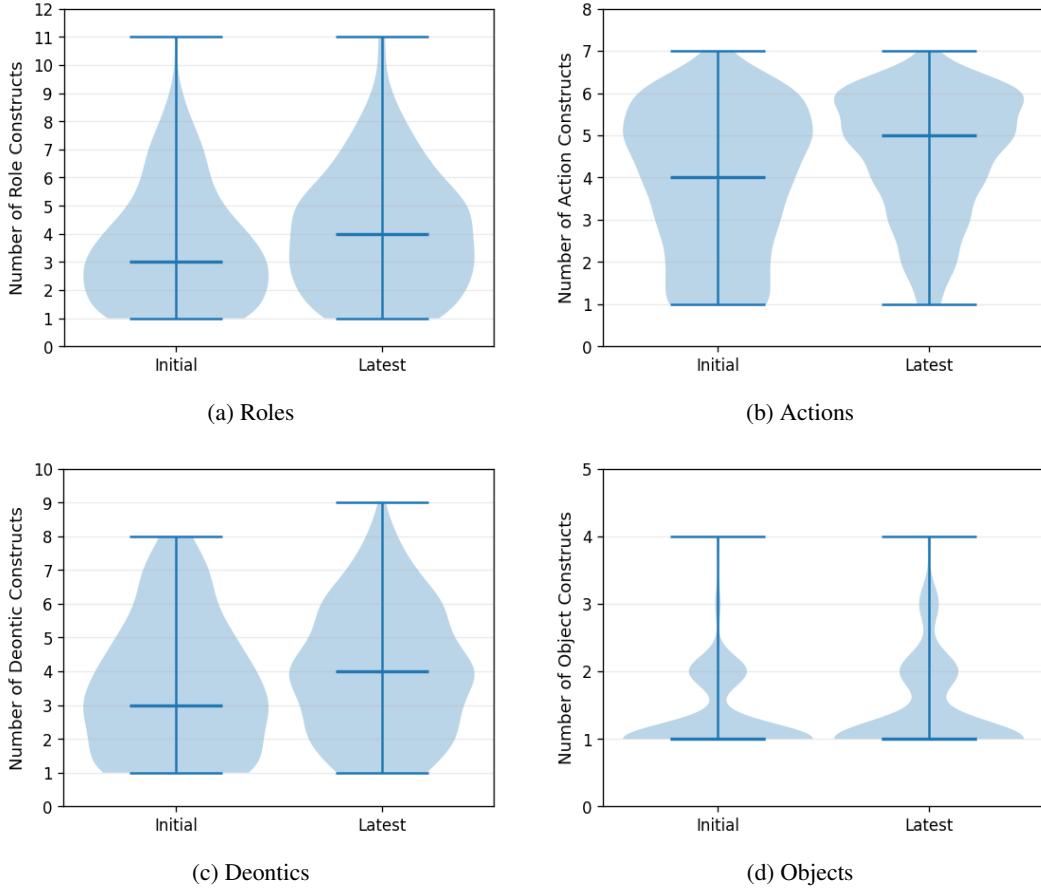


Figure 3: Distribution of per-repository **distinct construct counts** at the initial and latest snapshots for each institutional feature. Violins show density; the horizontal line is the median. Panels provide descriptive context; paired bootstrap estimates are reported in Table 2.

374 NeurIPS Paper Checklist

375 The checklist is designed to encourage best practices for responsible machine learning research,
 376 addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
 377 the checklist: **The papers not including the checklist will be desk rejected.** The checklist should
 378 follow the references and follow the (optional) supplemental material. The checklist does NOT count
 379 towards the page limit.

380 Please read the checklist guidelines carefully for information on how to answer these questions. For
 381 each question in the checklist:

- 382 • You should answer **[Yes]** , **[No]** , or **[NA]** .
- 383 • **[NA]** means either that the question is Not Applicable for that particular paper or the
 384 relevant information is Not Available.
- 385 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

386 **The checklist answers are an integral part of your paper submission.** They are visible to the
 387 reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
 388 (after eventual revisions) with the final version of your paper, and its final version will be published
 389 with the paper.

390 The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
 391 While "**[Yes]** " is generally preferable to "**[No]** ", it is perfectly acceptable to answer "**[No]** " provided a
 392 proper justification is given (e.g., "error bars are not reported because it would be too computationally

393 expensive" or "we were unable to find the license for the dataset we used"). In general, answering
394 "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we
395 acknowledge that the true answer is often more nuanced, so please just use your best judgment and
396 write a justification to elaborate. All supporting evidence can appear either in the main paper or the
397 supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
398 please point to the section(s) where related material for the question can be found.

399 **IMPORTANT**, please:

400 • **Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist".**
401 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
402 • **Do not modify the questions and only use the provided macros for your answers.**

403 **1. Claims**

404 Question: Do the main claims made in the abstract and introduction accurately reflect the
405 paper's contributions and scope?

406 Answer: [Yes]

407 Justification: Sections 1-5

408 Guidelines:

- 409 • The answer NA means that the abstract and introduction do not include the claims
410 made in the paper.
- 411 • The abstract and/or introduction should clearly state the claims made, including the
412 contributions made in the paper and important assumptions and limitations. A No or
413 NA answer to this question will not be perceived well by the reviewers.
- 414 • The claims made should match theoretical and experimental results, and reflect how
415 much the results can be expected to generalize to other settings.
- 416 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
417 are not attained by the paper.

418 **2. Limitations**

419 Question: Does the paper discuss the limitations of the work performed by the authors?

420 Answer: [Yes]

421 Justification: Section 5

422 Guidelines:

- 423 • The answer NA means that the paper has no limitation while the answer No means that
424 the paper has limitations, but those are not discussed in the paper.
- 425 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 426 • The paper should point out any strong assumptions and how robust the results are to
427 violations of these assumptions (e.g., independence assumptions, noiseless settings,
428 model well-specification, asymptotic approximations only holding locally). The authors
429 should reflect on how these assumptions might be violated in practice and what the
430 implications would be.
- 431 • The authors should reflect on the scope of the claims made, e.g., if the approach was
432 only tested on a few datasets or with a few runs. In general, empirical results often
433 depend on implicit assumptions, which should be articulated.
- 434 • The authors should reflect on the factors that influence the performance of the approach.
435 For example, a facial recognition algorithm may perform poorly when image resolution
436 is low or images are taken in low lighting. Or a speech-to-text system might not be
437 used reliably to provide closed captions for online lectures because it fails to handle
438 technical jargon.
- 439 • The authors should discuss the computational efficiency of the proposed algorithms
440 and how they scale with dataset size.
- 441 • If applicable, the authors should discuss possible limitations of their approach to
442 address problems of privacy and fairness.

443 • While the authors might fear that complete honesty about limitations might be used by
444 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
445 limitations that aren't acknowledged in the paper. The authors should use their best
446 judgment and recognize that individual actions in favor of transparency play an impor-
447 tant role in developing norms that preserve the integrity of the community. Reviewers
448 will be specifically instructed to not penalize honesty concerning limitations.

449 **3. Theory assumptions and proofs**

450 Question: For each theoretical result, does the paper provide the full set of assumptions and
451 a complete (and correct) proof?

452 Answer: [NA]

453 Justification: [NA]

454 Guidelines:

455 • The answer NA means that the paper does not include theoretical results.
456 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
457 referenced.
458 • All assumptions should be clearly stated or referenced in the statement of any theorems.
459 • The proofs can either appear in the main paper or the supplemental material, but if
460 they appear in the supplemental material, the authors are encouraged to provide a short
461 proof sketch to provide intuition.
462 • Inversely, any informal proof provided in the core of the paper should be complemented
463 by formal proofs provided in appendix or supplemental material.
464 • Theorems and Lemmas that the proof relies upon should be properly referenced.

465 **4. Experimental result reproducibility**

466 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
467 perimental results of the paper to the extent that it affects the main claims and/or conclusions
468 of the paper (regardless of whether the code and data are provided or not)?

469 Answer: [Yes]

470 Justification: Sections 2 and 3

471 Guidelines:

472 • The answer NA means that the paper does not include experiments.
473 • If the paper includes experiments, a No answer to this question will not be perceived
474 well by the reviewers: Making the paper reproducible is important, regardless of
475 whether the code and data are provided or not.
476 • If the contribution is a dataset and/or model, the authors should describe the steps taken
477 to make their results reproducible or verifiable.
478 • Depending on the contribution, reproducibility can be accomplished in various ways.
479 For example, if the contribution is a novel architecture, describing the architecture fully
480 might suffice, or if the contribution is a specific model and empirical evaluation, it may
481 be necessary to either make it possible for others to replicate the model with the same
482 dataset, or provide access to the model. In general, releasing code and data is often
483 one good way to accomplish this, but reproducibility can also be provided via detailed
484 instructions for how to replicate the results, access to a hosted model (e.g., in the case
485 of a large language model), releasing of a model checkpoint, or other means that are
486 appropriate to the research performed.
487 • While NeurIPS does not require releasing code, the conference does require all submis-
488 sions to provide some reasonable avenue for reproducibility, which may depend on the
489 nature of the contribution. For example
490 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
491 to reproduce that algorithm.
492 (b) If the contribution is primarily a new model architecture, the paper should describe
493 the architecture clearly and fully.

494 (c) If the contribution is a new model (e.g., a large language model), then there should
495 either be a way to access this model for reproducing the results or a way to reproduce
496 the model (e.g., with an open-source dataset or instructions for how to construct
497 the dataset).
498 (d) We recognize that reproducibility may be tricky in some cases, in which case
499 authors are welcome to describe the particular way they provide for reproducibility.
500 In the case of closed-source models, it may be that access to the model is limited in
501 some way (e.g., to registered users), but it should be possible for other researchers
502 to have some path to reproducing or verifying the results.

503 **5. Open access to data and code**

504 Question: Does the paper provide open access to the data and code, with sufficient instruc-
505 tions to faithfully reproduce the main experimental results, as described in supplemental
506 material?

507 Answer: [\[Yes\]](#)

508 Justification: Data is public.

509 Guidelines:

- 510 • The answer NA means that paper does not include experiments requiring code.
- 511 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 512 • While we encourage the release of code and data, we understand that this might not be
513 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
514 including code, unless this is central to the contribution (e.g., for a new open-source
515 benchmark).
- 516 • The instructions should contain the exact command and environment needed to run to
517 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 518 • The authors should provide instructions on data access and preparation, including how
519 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 520 • The authors should provide scripts to reproduce all experimental results for the new
521 proposed method and baselines. If only a subset of experiments are reproducible, they
522 should state which ones are omitted from the script and why.
- 523 • At submission time, to preserve anonymity, the authors should release anonymized
524 versions (if applicable).
- 525 • Providing as much information as possible in supplemental material (appended to the
526 paper) is recommended, but including URLs to data and code is permitted.

527 **6. Experimental setting/details**

528 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
529 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
530 results?

531 Answer: [\[Yes\]](#)

532 Justification: Section 2

533 Guidelines:

- 534 • The answer NA means that the paper does not include experiments.
- 535 • The experimental setting should be presented in the core of the paper to a level of detail
536 that is necessary to appreciate the results and make sense of them.
- 537 • The full details can be provided either with the code, in appendix, or as supplemental
538 material.

539 **7. Experiment statistical significance**

540 Question: Does the paper report error bars suitably and correctly defined or other appropriate
541 information about the statistical significance of the experiments?

542 Answer: [\[NA\]](#)

543 Justification: [\[NA\]](#)

546 Guidelines:

- 547 • The answer NA means that the paper does not include experiments.
- 548 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
- 549 dence intervals, or statistical significance tests, at least for the experiments that support
- 550 the main claims of the paper.
- 551 • The factors of variability that the error bars are capturing should be clearly stated (for
- 552 example, train/test split, initialization, random drawing of some parameter, or overall
- 553 run with given experimental conditions).
- 554 • The method for calculating the error bars should be explained (closed form formula,
- 555 call to a library function, bootstrap, etc.)
- 556 • The assumptions made should be given (e.g., Normally distributed errors).
- 557 • It should be clear whether the error bar is the standard deviation or the standard error
- 558 of the mean.
- 559 • It is OK to report 1-sigma error bars, but one should state it. The authors should
- 560 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
- 561 of Normality of errors is not verified.
- 562 • For asymmetric distributions, the authors should be careful not to show in tables or
- 563 figures symmetric error bars that would yield results that are out of range (e.g. negative
- 564 error rates).
- 565 • If error bars are reported in tables or plots, The authors should explain in the text how
- 566 they were calculated and reference the corresponding figures or tables in the text.

567 **8. Experiments compute resources**

568 Question: For each experiment, does the paper provide sufficient information on the com-

569 puter resources (type of compute workers, memory, time of execution) needed to reproduce

570 the experiments?

571 Answer: [\[Yes\]](#)

572 Justification: Appendix

573 Guidelines:

- 574 • The answer NA means that the paper does not include experiments.
- 575 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
- 576 or cloud provider, including relevant memory and storage.
- 577 • The paper should provide the amount of compute required for each of the individual
- 578 experimental runs as well as estimate the total compute.
- 579 • The paper should disclose whether the full research project required more compute
- 580 than the experiments reported in the paper (e.g., preliminary or failed experiments that
- 581 didn't make it into the paper).

582 **9. Code of ethics**

583 Question: Does the research conducted in the paper conform, in every respect, with the

584 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

585 Answer: [\[Yes\]](#)

586 Justification: [\[Yes\]](#)

587 Guidelines:

- 588 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- 589 • If the authors answer No, they should explain the special circumstances that require a
- 590 deviation from the Code of Ethics.
- 591 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
- 592 eration due to laws or regulations in their jurisdiction).

593 **10. Broader impacts**

594 Question: Does the paper discuss both potential positive societal impacts and negative

595 societal impacts of the work performed?

596 Answer: [\[Yes\]](#)

597 Justification: Sections 4 and 5

598 Guidelines:

- 599 • The answer NA means that there is no societal impact of the work performed.
- 600 • If the authors answer NA or No, they should explain why their work has no societal
601 impact or why the paper does not address societal impact.
- 602 • Examples of negative societal impacts include potential malicious or unintended uses
603 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
604 (e.g., deployment of technologies that could make decisions that unfairly impact specific
605 groups), privacy considerations, and security considerations.
- 606 • The conference expects that many papers will be foundational research and not tied
607 to particular applications, let alone deployments. However, if there is a direct path to
608 any negative applications, the authors should point it out. For example, it is legitimate
609 to point out that an improvement in the quality of generative models could be used to
610 generate deepfakes for disinformation. On the other hand, it is not needed to point out
611 that a generic algorithm for optimizing neural networks could enable people to train
612 models that generate Deepfakes faster.
- 613 • The authors should consider possible harms that could arise when the technology is
614 being used as intended and functioning correctly, harms that could arise when the
615 technology is being used as intended but gives incorrect results, and harms following
616 from (intentional or unintentional) misuse of the technology.
- 617 • If there are negative societal impacts, the authors could also discuss possible mitigation
618 strategies (e.g., gated release of models, providing defenses in addition to attacks,
619 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
620 feedback over time, improving the efficiency and accessibility of ML).

621 11. Safeguards

622 Question: Does the paper describe safeguards that have been put in place for responsible
623 release of data or models that have a high risk for misuse (e.g., pretrained language models,
624 image generators, or scraped datasets)?

625 Answer: [NA]

626 Justification: [NA]

627 Guidelines:

- 628 • The answer NA means that the paper poses no such risks.
- 629 • Released models that have a high risk for misuse or dual-use should be released with
630 necessary safeguards to allow for controlled use of the model, for example by requiring
631 that users adhere to usage guidelines or restrictions to access the model or implementing
632 safety filters.
- 633 • Datasets that have been scraped from the Internet could pose safety risks. The authors
634 should describe how they avoided releasing unsafe images.
- 635 • We recognize that providing effective safeguards is challenging, and many papers do
636 not require this, but we encourage authors to take this into account and make a best
637 faith effort.

638 12. Licenses for existing assets

639 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
640 the paper, properly credited and are the license and terms of use explicitly mentioned and
641 properly respected?

642 Answer: [Yes]

643 Justification: Sections 1 and 2

644 Guidelines:

- 645 • The answer NA means that the paper does not use existing assets.
- 646 • The authors should cite the original paper that produced the code package or dataset.
- 647 • The authors should state which version of the asset is used and, if possible, include a
648 URL.

649 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
650 • For scraped data from a particular source (e.g., website), the copyright and terms of
651 service of that source should be provided.
652 • If assets are released, the license, copyright information, and terms of use in the
653 package should be provided. For popular datasets, paperswithcode.com/datasets
654 has curated licenses for some datasets. Their licensing guide can help determine the
655 license of a dataset.
656 • For existing datasets that are re-packaged, both the original license and the license of
657 the derived asset (if it has changed) should be provided.
658 • If this information is not available online, the authors are encouraged to reach out to
659 the asset's creators.

660 **13. New assets**

661 Question: Are new assets introduced in the paper well documented and is the documentation
662 provided alongside the assets?

663 Answer: [NA]

664 Justification: [NA]

665 Guidelines:

666 • The answer NA means that the paper does not release new assets.
667 • Researchers should communicate the details of the dataset/code/model as part of their
668 submissions via structured templates. This includes details about training, license,
669 limitations, etc.
670 • The paper should discuss whether and how consent was obtained from people whose
671 asset is used.
672 • At submission time, remember to anonymize your assets (if applicable). You can either
673 create an anonymized URL or include an anonymized zip file.

674 **14. Crowdsourcing and research with human subjects**

675 Question: For crowdsourcing experiments and research with human subjects, does the paper
676 include the full text of instructions given to participants and screenshots, if applicable, as
677 well as details about compensation (if any)?

678 Answer: [NA]

679 Justification: [NA]

680 Guidelines:

681 • The answer NA means that the paper does not involve crowdsourcing nor research with
682 human subjects.
683 • Including this information in the supplemental material is fine, but if the main contribu-
684 tion of the paper involves human subjects, then as much detail as possible should be
685 included in the main paper.
686 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
687 or other labor should be paid at least the minimum wage in the country of the data
688 collector.

689 **15. Institutional review board (IRB) approvals or equivalent for research with human
690 subjects**

691 Question: Does the paper describe potential risks incurred by study participants, whether
692 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
693 approvals (or an equivalent approval/review based on the requirements of your country or
694 institution) were obtained?

695 Answer: [NA]

696 Justification: [NA]

697 Guidelines:

698 • The answer NA means that the paper does not involve crowdsourcing nor research with
699 human subjects.

700 • Depending on the country in which research is conducted, IRB approval (or equivalent)
701 may be required for any human subjects research. If you obtained IRB approval, you
702 should clearly state this in the paper.
703 • We recognize that the procedures for this may vary significantly between institutions
704 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
705 guidelines for their institution.
706 • For initial submissions, do not include any information that would break anonymity (if
707 applicable), such as the institution conducting the review.

708 **16. Declaration of LLM usage**

709 Question: Does the paper describe the usage of LLMs if it is an important, original, or
710 non-standard component of the core methods in this research? Note that if the LLM is used
711 only for writing, editing, or formatting purposes and does not impact the core methodology,
712 scientific rigorousness, or originality of the research, declaration is not required.

713 Answer: [NA]

714 Justification: [NA]

715 Guidelines:

716 • The answer NA means that the core method development in this research does not
717 involve LLMs as any important, original, or non-standard components.
718 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
719 for what should or should not be described.