
CLAM: Unifying Finetuning, Quantization, and Pruning by
Chaining LLM Adapter Modules

Neelay Velingker 1 Amish Sethi * 1 Jason Liu * 1 William Dodds * 1 Zhiqiu Xu 1 Saikat Dutta 1 Mayur Naik 1

Eric Wong 1

Abstract

As LLMs have grown in size and applicability, so
too have the number of methods that adapt them
for downstream tasks. Recent works to address
challenges in memory consumption, task perfor-
mance, and inference efficiency have led to the
fields of parameter-efficient finetuning (PEFT),
quantization, and pruning, among others. While
it is useful to combine their benefits, composing
these techniques in flexible ways is challenging
due to the changes each method makes to the
model and any restrictions they might impose. To
address these challenges, we develop an algebraic
abstraction called CLAM that enables unlimited
chaining of popular resource-efficient methods
on nearly every modern LLM with minimal over-
head. We demonstrate that CLAM can create new
compositions of techniques that achieve SOTA
performance on specializing compressed models
across multiple benchmarks.

1. Introduction
As LLMs continue to scale beyond the capabilities of con-
sumer hardware, there is a growing need to democratize
them. Emerging approaches seek to accomplish this ob-
jective by combining the benefits of optimizations such as
PEFT, quantization, and pruning (Dettmers et al., 2024; Li
et al., 2023; Zhang et al., 2023a;b).

This is a nontrivial task in general. PEFT methods often
change model architectures with new layer types and opera-
tions. Similarly, quantization produces replacement weights
having different dimensions, data types, and operator se-
mantics. Pruning yields new weights, some of whose values
must remain constant after subsequent operations.

*Equal contribution 1University of Pennsylvania, Philadel-
phia, USA. Correspondence to: Neelay Velingker <nee-
lay@seas.upenn.edu >.

ICML 2024 workshop on Efficient Systems for Foundation Mod-
els, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by the
author(s).

In this paper, we seek to address these fundamental chal-
lenges and make the following contributions:

Unifying abstraction. To connect PEFT, quantization, and
pruning, we reformulate popular methods in these domains
according to a new, functionally equivalent algebraic ab-
straction. Past work in unifying the field of PEFT has
viewed their methods as modifications to intermediate acti-
vations (Chen et al., 2022; He et al., 2022), and have gener-
ally been rigid in the techniques they combine. We take an
alternate approach by instead considering all these methods
as modifications to the model’s weight tensors using a com-
putation graph, allowing us to combine and stack techniques
in a novel manner.

General framework. We implement this abstraction in our
new framework CLAM which stands for Chaining LLM
Adapter Modules. CLAM is compatible with nearly every
transformer in Hugging Face’s transformers library
with minimal configuration overhead. It also incorporates
many SOTA techniques for making models more accessible,
reformulated as adapters that can be combined and chained
in an unlimited fashion. This framework yields a novel,
more efficient, and performant adapter design space that
subsumes prior works at this intersection.

Empirical results. We evaluate CLAM on well-established
finetuning benchmarks in GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) to produce specialized
models that minimize model memory consumption while
maximizing downstream task performance better than
comparable prior methods. Specifically, CLAM’s newly
discovered PEFT techniques outperform their counterparts
by as much as 6.5%. Furthermore, CLAM realizes a novel
quantization scheme that not only surpasses the state-of-
the-art QLoRA (Dettmers et al., 2024) but also shows
comparable performance when further compressed with
pruning, effectively halving the number of non-zero bits.

2. Background
2.1. Techniques for Accessible LLMs

Quantization (Dettmers et al., 2022; Frantar et al., 2022) and
pruning (Frantar & Alistarh, 2023b; Sun et al., 2023) are two

1

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

…
d4 LoHa

d3 (IA)3

d2 VeRA

d1 LoRA

Differentiable adapters

…
n4 WANDA pruning

n3 Magnitude pruning

n2 FP8

n1 NF4

Non-differentiable adapters

Adapter Library

d3n4d2d1n1

stage 4stage 3stage 2stage 1

W'''
b'''

Y = W'''x + b'''Wp''
bp''

(IA)3W''
b''

prune
ratio=0.5

W'
b' rank=16

VeRAWq

bq rank=32

LoRAW
b

NF4

Training Pipeline

M - Model D - Data W - Weight A - Adapter

M ← inject_adapter(M, Wall, An1())

M ← inject_adapter(M, {Wquery, Wvalue}, Ad1(rankd1, lrd1))

M ← inject_adapter(M, Wattn, Ad2(rankd2, lrd2))

M ← mark_adapters_as_trainable(M)

M ← finetune(M,D)

M ← merge(M)

M ← inject_adapter(M, Wall, An4(ration4))

M ← prune(M, D)

M ← inject_adapter(M, {Wquery, Wvalue, Wmlp}, Ad3(lrd3))

M ← mark_adapters_as_trainable(M)

M ← finetune(M,D)

CLAM program

4

3

1

2

Figure 1. CLAM overview. CLAM enables unlimited chaining of popular techniques in PEFT, quantization, and pruning on LLMs.

1 2 NPEFT NCLAM

1

2

4

∞

LoRA
LoHA

IA3
VeRA
NF4

WANDA

QLoRA
LoftQ

WANDA + LoRA
LoRAPrune

AutoPEFT
UniPELT

He et al. 2022

CLAM

Number of Supported Techniques

C
ha

in
ab

le
L

en
gt

h
pe

rB
lo

ck

Single Techniques Standalone Pairs
Custom Frameworks Unlimited Chaining

Figure 2. Space of combinatory LLM techniques. Each design
approach is labeled with exemplar methods. NPEFT is the total
number of PEFT techniques. NCLAM is the number of CLAM-
compatible techniques that grows over time with new discoveries.

well-studied non-differentiable techniques for compressing
LLMs. Quantization (Appendix A.1) discretizes floating-
point weights into a lower-bit data type, whereas pruning
(Appendix A.2) saves memory via weight sparsification.

Parameter-efficient finetuning (PEFT) aims to match the
downstream task performance of full finetuning while train-
ing as few parameters as possible. This saves on memory
usage and training time. PEFT methods such as LoRA (Hu
et al., 2021), (IA)3 (Liu et al., 2022), LoHA (Hyeon-Woo
et al., 2021), and VeRA (Kopiczko et al., 2024) introduce
tunable adapters into a given transformer while the original
pretrained parameters are frozen. Appendix A.3 discusses
each technique in detail and why they are challenging to
compose with other techniques.

2.2. Combining Resource-Efficient Techniques

The current space of combining techniques can be divided
into two general design patterns as depicted in Figure 2:
standalone pairs and custom hybrid frameworks.

Standalone pairs (Dettmers et al., 2024; Sun et al., 2023)
select two specific techniques (e.g. NF4 quantization and

LoRA) to combine but do not take composability with other
techniques as a design goal. Attempting to combine new
techniques with these pairs often leads to interface errors,
where the implementation’s limited interoperability mani-
fests as type errors or undefined behavior. Appendix A.4
discusses standalone pairs in more detail.

Custom hybrid frameworks support a mixture of techniques
(pre-dominantly PEFT) in an architecturally restrictive man-
ner, where the number of active techniques per transformer
block is fixed (typically 3–4) and the space of available tech-
niques is often manually pre-determined and non-extensible.
In (He et al., 2022), (Mao et al., 2022), and (Zhou et al.,
2024), at most 2 distinct techniques can operate on the same
weight matrix within a block.

2.3. CLAM Motivation

Figure 1 illustrates a training pipeline that can be encoun-
tered when exploring the space of technique combinations.
This proposed pipeline highlights some of the challenges
when designing a unified framework for chaining techniques,
which are detailed in Appendix A.5. In summary, combining
any two techniques—the most basic case—involves care-
fully balancing numerous restrictions and design choices,
and the complexity only increases as one attempts to inte-
grate additional techniques. CLAM offers a mathematically
and algorithmically-unified solution to this problem.

3. The CLAM Framework
We begin by establishing a common interface over which
each optimization must operate. Recall that pruning and
quantization directly modify the weights over which they are
applied; conversely, PEFT techniques operate as adapters
modifying a hidden state. Therefore, we begin by refor-
mulating PEFT adapters to perform weight modification
instead, akin to merging adapters with gradient tracking.
We similalry reformulate non-differentiable methods (e.g.
pruning, quantization), and additionally introduce abstrac-
tions to manage finetuning before and after applying them.

2

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

Table 1. CLAM-aligned reformulation over a linear layer
Method Original Formulation CLAM-Aligned Formulation

Format y = Wx+ b y = W ′x+ b′

LoRA y = Wx+ b+ cABx y = (W + cAB)x+ b
(IA)3 y = (Wx+ b)⊙ l y = (Wdiag(l))x+ (b⊙ l)
LoHA y = Wx+ b + y = (W+

c(A1B1 ⊙A2B2)x c(A1B1 ⊙A2B2))x+ b
VeRA y = Wx+ b+ y = (W+

ΛAAΛBBx ΛAAΛBB)x+ b
Pruning y = (M ⊙W)x+ b y = (M ⊙W)x+ b
Quantization y = Q(W)x+ b y = Q−1(Q(W))x+ b

3.1. Technique Reformulation

Modern libraries and literature design PEFT adapters as
modules inserted into a target network to affect change upon
intermediate activations. However, this design presents a
challenge. By individually modifying the hidden state in a
black-box fashion, any two techniques cannot be mathemati-
cally combined without understanding their inner mechanics.
To resolve this without breaking semantic equivalence, we
observe that recent PEFT techniques have been designed
to merge any additionally introduced parameters into the
original weights to minimize latency overhead otherwise
introduced by adding new modules. We leverage this emer-
gent trend, intended to facilitate low-latency inference, to
design the adapter interface in CLAM as follows:

A(W, b)→ (W ′, b′)

where W ′, b′ have the same data type and shape as tensors
W, b. We then rely on automatic differentiation to actively
track and back-propagate to these live merged parameters
during finetuning. We posit that any technique that can be
reformulated as some y = W ′x + b′ is fully compatible
with CLAM in a modular fashion.

Table 1 shows the reformulation of popular techniques from
§2.1 using CLAM’s interface. Pruning uses this interface
without reformulation as it, by definition, take as input and
produce as outputs weights of the same format. Note that
for a quantized weight matrix Q(W), we can rely on the
dequantization function Q−1 to retrieve an approximate
matrix W ′ of the same shape and data type as W . CLAM
supports quantization methods that perfectly reconstruct
zeros, allowing for pruning structures to stay intact. It is
important to acknowledge that a post-training quantization
or pruning method may be non-differentiable; that is, for
a pruning function P (W) or quantization function Q(W),
there may be no computable ∂P (W)

∂W nor ∂Q(W)
∂W , depending

on the method, which we address in §3.2. Given that most
modern transformers operate using linear layers, they need
only to specify the names of target modules to work with
the linear layer interface of CLAM.

3.2. Chaining and Staging

Because all adapters can expect the same type of input and
output, CLAM is now able to limitlessly chain differentiable
adapters to construct new PEFT techniques. Given a series
of adapters {Ai} of length K, the output y for a given input
x and parameters W and b is defined as:

y = AK
(
AK−1

(
· · · A1(W)

))
x+AK

(
AK−1

(
· · · A1(b)

))
However, we note that some operations within adapters
may be non-differentiable, such as binning in quantization.
Therefore, we introduce staging, which trains subsequences
of adapters in the chain in sequential stages. Intuitively, the
chain is broken down into stages according to the regular ex-
pression (A∗

nA∗
d), where An is the set of non-differentiable

adapters and Ad is the set of differentiable adapters. In this
process, each stage is trained separately, where the output
of the previous stage is the input to the next. We formalize
this process in Appendix A.10.

3.3. Learning Rates

We observe (see Table 4 in Appendix A.8) that different
PEFT techniques require significantly different learning
rates to achieve the best performance. The optimal learning
rates differ by order of magnitude, ranging from 0.0004
(LoRA) to 0.1 (VeRA). Therefore, using a universal learning
rate for all PEFT techniques is sub-optimal (see ablation
study in Appendix A.9). Instead, in CLAM, we propose a
global learning rate scale c as the single learning-rate-related
hyperparameter. For each adapter module i, we use lri =
c · lroptimal

i as the learning rate for its weights, where lroptimal
i

is an empirically obtained optimal learning rate based on
experiments when adapter i is applied individually.

3.4. Implementation

We implement CLAM in Python with direct integration with
Hugging Face’s transformers library. We use PyTorch
to interface with transformers, implement techniques,
and handle differentiation with multiple learning rates; all re-
formulated PEFT and pruning techniques are implemented
this way. Since quantization works most efficiently when
written in CUDA, we rely on the bitsandbytes library
for sub-implementations of NF4, FP4, and FP8. For a
detailed overview of the programmatic abstractions, refer
to Appendix A.11. CLAM’s recursive mechanics allow
for a clean and modular interface for combining adapter
techniques. Consequently, adding new techniques does not
require considering the compatibility of existing techniques,
as this is automatically handled by the code. We plan to
open-source this library along with all techniques and ex-
pand upon it with the addition of any new method that can
be reformulated in our abstraction.

3

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

Table 2. Results for combining PEFT techniques (upper) and compression techniques (lower).
Method Bit reduction RTE MRPC STS-B CoLA CB Average

P
E

F
T-

O
N

LY

T
5-

B
A

S
E

(IA)3 — 67.76.8 88.51.5 86.90.5 54.81.4 92.91.8 78.2
LoRA — 74.31.3 91.20.7 88.40.4 55.51.0 93.42.7 80.56
LoHA — 70.95.1 89.40.6 89.10.5 57.50.8 93.4 1.0 80.0
VeRA — 71.21.2 89.50.7 87.00.1 55.00.5 90.52.1 78.6
CLAM-2 — 69.33.0 91.00.9 88.40.5 56.51.4 88.13.7 78.7
CLAM-3 — 77.02.0 91.50.7 89.30.5 60.20.8 94.02.1 81.6

C
O

M
P

R
E

S
S

IO
N

G
E

M
M

A
-2

B
Q(IA)3 72.9 82.40.6 85.01.5 89.30.4 60.31.3 70.82.7 77.6
QLoRA 72.6 82.71.0 85.61.2 89.80.8 65.51.0 73.21.8 79.4
QLoHA 72.2 58.59.7 82.41.9 89.80.3 62.41.1 67.35.5 72.1
QVeRA 72.9 78.92.8 86.33.7 88.02.0 59.52.4 70.24.1 76.58
PLoRA 49.6 54.31.8 85.10.9 90.90.0 66.10.8 67.34.5 72.7
CLAM-Q›3 72.2 84.41.7 86.90.5 90.90.1 64.31.6 74.43.7 80.2
CLAM-PQ›3 85.7 83.92.9 84.21.2 89.61.1 59.22.4 79.99.3 79.4

4. Experiments
We seek to answer the following research questions. RQ1:
Can CLAM produce better PEFT compositions than individ-
ual techniques? RQ2: Can CLAM compose quantization,
pruning, and PEFT techniques to create new state-of-the-art
techniques for compressing and finetuning models? RQ3:
Are CLAM chains more parameter efficient?

4.1. Experimental Setup

Models, compute, and datasets. We evaluate CLAM on
two models with different architecture and size. First, we
apply CLAM to T5-BASE (Raffel et al., 2020), an encoder-
decoder LLM with 220M parameters. Thereafter, we move
to GEMMA-2B (Team et al., 2024), a decoder-only model.
Both models are fitted with classification heads to interface
with the benchmarks. All experiments were run on a ma-
chine with 8 NVIDIA A100 GPUs. Learning rates were
set on a per-experiment basis. We train these models on
the GLUE (Wang et al., 2018) benchmarks CoLA, MRPC,
RTE, and STS-B and the SuperGLUE (Wang et al., 2019)
benchmark CB.

Evaluation. For our configuration searches, we generate a
train and validation split of the provided training sets. The
provided test sets are held out for validation after optimal
configurations are determined. Details on these splits can
be found in Appendix A.8. We report Pearson correlation
for STS-B, Matthew’s correlation for CoLA, and evaluation
accuracy for the rest of the benchmarks.

Search and compression. We employ the Tree-structured
Parzen Estimator (Bergstra et al., 2011) algorithm via the
Optuna framework to explore the search space consisting of
technique combinations, learning rate scales, and individual
ranks. The value that is optimized is the evaluation perfor-
mance on the training holdout set. Each trial consists of
applying a single CLAM stage followed by some finetuning
epochs (the details of which can be found in Appendix A.8),
where the training holdout is evaluated after each epoch.
To avoid returning overfit results to the search algorithm,
we report the best holdout score over all epochs. We run

CLAM for at most 120 trials, which is 12% or 0.7% of the
total search space for chains of length 2 and 3 respectively.
We use NF4 (Dettmers et al., 2024) for quantization and
WANDA (Sun et al., 2023) for pruning.

4.2. RQ1: Discovering Better PEFT Methods

Baselines. We use individual PEFT techniques (IA)3,
LoRA, LoHa, and VeRA as finetuning baselines, and eval-
uate their performance when applied on T5-BASE. We
perform grid search on learning rates and ranks individually
for each technique over all datasets. Results of baselines
are presented in Table 2. The respective optimal learning
rates are presented in Table 4 of Appendix A.8, which will
be used as the base learning rate in CLAM.

Setup. We show the potential of chaining PEFT techniques
by presenting results from the best combinations of lengths
2 and 3, denoted by CLAM-2 and CLAM-3. For CLAM
trials, we search for the global learning rate scale c from a
discrete set {0.1, 0.4, 1, 4}, set lroptimal

i for each individual
technique i as shown in Table 4, and search the individual
rank from a discrete set {4, 8, 16, 32, 64}. For CLAM-2,
the search space is of size 1024, and CLAM-3 it is 16384.
The best configuration is selected based on the validation
results by searching for up to 120 trials using Optuna, and
results evaluated on test sets are reported in Table 2.

Results. CLAM-3 performs consistently better than the best
of individual methods over all datasets, while only exploring
0.73% (120/16384) of the search space. In comparison, we
perform full grid search for all hyperparameters of individ-
ual methods. Notably, we limit the search space for the
rank used by CLAM so that CLAM-2 and CLAM-3 would
not use more trainable parameters than the highest budget
provided to baselines. Under the same (or less) budget, and
with less hyperparameter search, CLAM-3’s superiority
over baselines demonstrates the efficacy of the design space
enabled by CLAM. Interestingly, CLAM-2 only performs
better than baselines on one out of five datasets. We attribute
this result to the limited design space of CLAM-2. In fact,
the performance gap between CLAM-2 and CLAM-3 con-
versely shows that a higher-order design space is desirable.

4

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

Table 3. Control experiments with same parameter / bit budget.
Method RTE MRPC STS-B CoLA CB Average

PARAMS (T5-BASE)

LoRA 61.04.9 91.20.7 87.71.8 55.51.0 93.42.7 77.7
LoHA 70.95.2 79.50.7 89.10.8 57.50.9 93.41.0 78.1
CLAM-3 73.40.9 91.50.7 89.30.3 60.10.8 94.02.1 81.7

BITS (GEMMA 2B)

CLAM-P(86%)-3 54.21.7 9.12.9 68.11.4 41.820.7 73.81.0 49.4
CLAM-PQ›3 83.92.9 84.21.2 89.61.1 59.22.4 79.99.3 79.4

4.3. RQ2: Chaining for Better Compression

We start with combining quantization with PEFT techniques
to seek the optimal quantization method. Then we further in-
troduce pruning to pursue the optimal compression method.

Baselines. For the optimal quantization experiment, we
observe how CLAM combines PEFT with quantization;
therefore, we compare with the SOTA technique QLoRA
(Dettmers et al., 2024) as implemented in CLAM, as well as
its variants QLoHA, QVeRA, and Q(IA)3 that are naturally
enabled by our framework. For the optimal compression
experiment, we observe how CLAM performs in combining
quantization, pruning, and PEFT. As such, we compare
CLAM to QLoRA and Wanda-LoRA (denoted PLoRA).

Setup. For the optimal quantization experiment, we use
CLAM to search PEFT chains of length 3; however, unlike
the optimal PEFT experiment, we prepend a quantization
adapter to the chain, denoted as CLAM-Q›3. This gives us
a search space of size 16384, of which we search 120 trials
per benchmark. For the optimal compression experiment,
we take the best chain per benchmark from the optimal
quantization experiment’s results and add a pruning adapter
to the beginning of the chain, denoted as CLAM-PQ›3,
effectively combining quantization, pruning, and PEFT.

Results for optimal quantization. Table 2 presents results
for the baselines and CLAM. The optimal quantization
shows that CLAM created chains surpassed the baselines on
performance on four of five benchmarks, including QLoRA.
This result is despite only searching 0.73% percent of the
chain search space. It provides evidence that CLAM’s
chaining method can be more effective than any standalone
technique for finetuning models that have been quantized.

Results for optimal compression. Providing further insight
into CLAM’s ability to compress and finetune models, the
optimal compression experiment (Table 2) introduces prun-
ing. It shows that, despite its backbone having 50.0% fewer
non-zero bits than CLAM-Q›3, it performs to within 1% on
average. Furthermore, it averaged roughly the same score
as QLoRA and performed 6.7% better than PLoRA despite
having 50.0% and 73.1% fewer non-zero bits, respectively.
This may be counterintuitive, as one may expect a combined
technique to perform roughly on par with the lesser of the
pair; however, we contend that this CLAM chain could

have subtle benefits, which are twofold. First, pruning and
quantization can have a combined regularizing effect on
the model. Second, and more importantly, differentiable
CLAM PEFT chains are inherently more mathematically
expressive than LoRA and thus can better make up for the
information loss introduced by compression.

4.4. RQ3: Parameter Efficiency of CLAM Chains

PEFT techniques. We conduct control experiments to show
that chained techniques perform significantly better than
their individual component techniques under the same train-
able parameter count. This experiment is conducted on a
per-benchmark basis. Specifically, we set LoRA and LoHa’s
rank accordingly so that LoRA and LoHa use the same num-
ber of trainable parameters as CLAM-3 for that specific
chain on that benchmark (as shown in Table 8). VeRA is
not included here since the parameter count is far lower
than other techniques and to provide the same budget would
require an impractical r value in the tens of thousands. As
presented in the upper half table of Table 3, with the same
parameter count, CLAM-3 significantly outperforms indi-
vidual techniques, showing that CLAM-3 can utilize train-
able parameters more effectively, and combining multiple
techniques has advantages.

Compression. Similarly, we conduct experiments to show
that with the same number of active bits (same compression
ratio), pruning with quantization performs significantly bet-
ter than pruning alone. We set the sparsity ratio of WANDA
to 86% so that the number of active bits matches CLAM-
PQ›3. Quantization alone is not included as a baseline here
since there is no hyperparameter to control bit reduction.
As presented in the lower half of Table 3, pruning at a high
sparsity ratio induces significant performance loss. On the
contrary, CLAM-PQ›3 can largely retain the performance.
This result clearly shows that the combination of multiple
compression techniques is highly beneficial.

5. Conclusion
We presented CLAM, a framework for unlimited chaining
of adapters across PEFT, quantization, and pruning. The
key idea is that all techniques are reformulated as adapters
that perform weight modification according to a shared in-
terface. We demonstrate that CLAM composes new PEFT
techniques that outperform their individual components;
new quantization-aware finetuning methods that outperform
the state-of-the-art; and a new compression method at the
intersection of all three fields which performs competitively
with pruning or quantization alone, but for significantly less
information-holding bits. However, CLAM has design and
computational limitations, which we elaborate in Appendix
A.7. In the future, we plan to expand our framework with
emerging techniques and open-source our library with direct
compatibility with modern software stacks.

5

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

References
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Al-

gorithms for hyper-parameter optimization. In Shawe-
Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Wein-
berger, K. (eds.), Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2011.

Chen, J., Zhang, A., Shi, X., Li, M., Smola, A., and Yang,
D. Parameter-efficient fine-tuning design spaces. In
International Conference on Learning Representations,
2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8(): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 2022.

Dettmers, T., Svirschevski, R. A., Egiazarian, V.,
Kuznedelev, D., Frantar, E., Ashkboos, S., Borzunov,
A., Hoefler, T., and Alistarh, D. Spqr: A sparse-quantized
representation for near-lossless llm weight compression.
In International Conference on Learning Representations,
2023.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 2024.

Frantar, E. and Alistarh, D. Qmoe: Practical sub-1-bit
compression of trillion-parameter models. arXiv preprint
arXiv:2310.16795, 2023a.

Frantar, E. and Alistarh, D.-A. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot. In
International Conference on Machine Learning, 2023b.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. International Conference on Learn-
ing Representations, 2022.

GGML. Ggml: Tensor library for machine learning, 2024.
URL https://github.com/ggerganov/ggml.

Han, Z., Gao, C., Liu, J., Zhang, S. Q., et al. Parameter-
efficient fine-tuning for large models: A comprehensive
survey. arXiv preprint arXiv:2403.14608, 2024.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient trans-
fer learning. In International Conference on Learning
Representations, 2022.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2021.

Hyeon-Woo, N., Ye-Bin, M., and Oh, T.-H. Fedpara: Low-
rank hadamard product for communication-efficient fed-
erated learning. arXiv preprint arXiv:2108.06098, 2021.

Kalajdzievski, D. A rank stabilization scaling factor for
fine-tuning with lora. arXiv preprint arXiv:2312.03732,
2023.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. VeRA:
Vector-based random matrix adaptation. In The Twelfth
International Conference on Learning Representations,
2024.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. Advances in Neural Information
Processing Systems, 2022.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient prompt tuning. In Empirical
Methods in Natural Language Processing, 2021.

Li, Y., Yu, Y., Liang, C., Karampatziakis, N., He, P., Chen,
W., and Zhao, T. Loftq: Lora-fine-tuning-aware quantiza-
tion for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. A. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems, 2022.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora:
Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 2023.

Mao, Y., Mathias, L., Hou, R., Almahairi, A., Ma, H., Han,
J., Yih, S., and Khabsa, M. Unipelt: A unified frame-
work for parameter-efficient language model tuning. In
Proceedings of the Association for Computational Lin-
guistics, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
2020.

6

https://github.com/ggerganov/ggml

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models. In
International Conference on Learning Representations,
2023.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Valipour, M., Rezagholizadeh, M., Kobyzev, I., and Ghodsi,
A. Dylora: Parameter efficient tuning of pre-trained
models using dynamic search-free low-rank adaptation.
arXiv preprint arXiv:2210.07558, 2022.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In Linzen,
T., Chrupała, G., and Alishahi, A. (eds.), Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, November
2018.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. Advances in Neural Information
Processing Systems, 32, 2019.

Yang, A. X., Robeyns, M., Wang, X., and Aitchison, L.
Bayesian low-rank adaptation for large language models.
In International Conference on Learning Representations,
2023.

Zhang, M., Shen, C., Yang, Z., Ou, L., Yu, X., Zhuang,
B., et al. Loraprune: Pruning meets low-rank parameter-
efficient fine-tuning. arXiv preprint arXiv:2305.18403,
2023a.

Zhang, Y., Zhao, L., Lin, M., Yunyun, S., Yao, Y., Han, X.,
Tanner, J., Liu, S., and Ji, R. Dynamic sparse no training:
Training-free fine-tuning for sparse llms. In International
Conference on Learning Representations, 2023b.

Zhou, H., Wan, X., Vulić, I., and Korhonen, A. Autopeft:
Automatic configuration search for parameter-efficient
fine-tuning. Transactions of the Association for Compu-
tational Linguistics, 2024.

7

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

A. Appendix
A.1. Quantization

Quantization converts values from a high-precision data type to a lower-precision data type. For transformers, this is typically
a lossy mapping of a tensor’s M -bit floating-point element XFP(M) ∈ R to an N -bit integer XInt(N) ∈ {0 . . . 2N − 1},
where M ∈ {16, 32, 64} and N ∈ {1, 2, 4, 8}. This requires binning of the form:

XInt(N) = Q(XFP(M)) = round
(
(2N − 1)F

(
XFP(M)

))
where F : R→ [0, 1] is a cumulative distribution function. Determining the optimal F at varying bits N is a significantly
active area of research. For example, QLoRA (Dettmers et al., 2024) proposes a normal F that assigns floats to 4-bit
NormalFloat (NF4) bins.

As explained in Appendix A.5, quantization can break structural invariants of data types and “un-prune” zeroed-out weights.
Quantization frameworks thus provide dequantization functions so that the data type conversion is approximately revertible:

XFP(M) ≈ Q−1(XInt(N)) = F−1
(
XInt(N)/(2N − 1)

)
A.2. Pruning

Pruning aims to speed up matrix storage and multiplication with sparsification by setting a certain percentage of the matrix
elements to zero. A general pruning process on a linear layer can be formulated as:

y = (M ⊙W)x+ b

where M is a Boolean mask of the same shape as W . Several methods aim to prune as many parameters with as little
performance degradation as possible (Frantar & Alistarh, 2023b; Ma et al., 2023; Sun et al., 2023). Pruning is typically done
in a structure (i.e. in specific GPU-advantaged patterns), which introduces complications for subsequent techniques, such
as quantization or PEFT, which should not disrupt this pattern; in reverse order, to combine properly, a pruning technique
should be able to operate on quantized data structures.

A.3. PEFT Techniques

(IA)3. (IA)3 (Liu et al., 2022) is a PEFT method that learns rescaling factors for activations in the network. Given a frozen
weight Wi ∈ Rm×n, input x ∈ Rn×1, and rescaling factor li ∈ Rm×1, it will directly rescale the output of a projection:
y = (Wix)⊙ li. While straightforward, combining it with another PEFT method is complicated because it is multiplying
the hidden state, rather than adding to it. Say we want to combine this technique with another that adds to the activation;
it is ambiguous whether this additive activation should be multiplied by IA3, in addition to the original activation, or not.
Moreover, pruning and quantization may compromise the adapter, since it is especially information-dense. To resolve this,
one may choose to merge the adapter into the weight, but if it is being combined with another PEFT technique, merging may
not be possible due to dimension or type mismatch.

Low-rank adaptation (LoRA). LoRA (Hu et al., 2021) inserts two trainable low-rank matrices Ai ∈ Rm×r and Bi ∈ Rr×n

for every targeted weight Wi ∈ Rm×n in a pretrained model. During a forward pass of the model, they are used to construct
an additional projection that is added to the hidden state in the form: y = Wix+ cAiBix, where c ∈ R is a constant. During
finetuning, only the parameters Ai and Bi are updated. LoRA can be problematic in combining with other techniques
because it introduces entirely new weight matrices that must be accounted for by other adapters (see (IA)3 for instance). It is
an important design decision whether or not these new matrices should be quantized or pruned, as doing so could impact
performance significantly given their higher-than-average information density. As mentioned above, it may not be possible
to merge LoRA when it is combined with other techniques if those other techniques are not mergeable; even if merging was
possible, the merging may be lossy as LoRA weights are typically stored in higher precision than model weights.

Low-rank Hadamard product (LoHA). Proposed by Hyeon-Woo et al. (2021), LoHA is similar to LoRA with one
exception: they introduce additional matrices that are combined via a Hadamard product. More specifically, given a target
weight Wi, LoHA introduces the low-rank matrices Ai,1, Ai,2 ∈ Rm×r and Bi,1, Bi,2 ∈ Rr×n in: y = Wix+ c(Ai,1Bi,1⊙

8

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

Ai,2Bi,2)x. This Hadamard product is intended to provide additional expressivity. This PEFT technique holds similar
challenges for being combined as with LoRA.

Vector-based random matrix adaptation (VeRA). VeRA (Kopiczko et al., 2024) bears strong similarities to both LoRA
and (IA)3. It randomly generates a pair of low-rank matrices shared across all VeRA adapters, each individually learning an
associated rescaling of these random matrices. Given a frozen weight Wi, shared frozen matrices A ∈ Rm×r and B ∈ Rr×n,
and trainable diagonal matrices ΛA,i and ΛB,i, VeRA add to the original projection via: y = (Wix) + ΛA,iAΛB,iB This
method contains the challenges of both LoRA and (IA)3 simultaneously. The scaling diagonals are sensitive to both pruning
as well as quantization, and the added operations within this method make combining with other PEFT techniques more
ambiguous and challenging.

A.4. Standalone Pairs

Recent works have successfully demonstrated that combining techniques is effective in minimizing the number of bits in a
model while maximizing parameter-efficient finetuning performance. One method, QLoRA (Dettmers et al., 2024), combines
NF4 quantization with LoRA; given a weight matrix Wi that has been quantized to Di according to NF4 quantization,
QLoRA computes the following on a forward pass:

y = Q−1
NF4(Di)x+ cAiBix

where Q−1
NF4 is the NF4 dequantize function. A similar method, Wanda-LoRA (Sun et al., 2023), prunes the matrix Wi to

get Pi in:
y = Pix+ cAiBix.

A.5. Challenges in Combining Techniques

Quantization-first. Popular quantization techniques such as NF4 (Dettmers et al., 2024) do not preserve the structural
invariants of the data being quantized. In NF4’s current implementation, quantized matrices of shape (m,n) are stored as
Int8 vectors of length mn/2, where each element represents two NF4 values. Because the tensor shape is changed, NF4
does not preserve a one-to-one mapping between elements in the original and quantized tensors. This is problematic for
PEFT adapters and pruners that seek to directly manipulate possibly-quantized weights since they must account for all
possibilities of data types and structures as well as their operator semantics. Thus, in a quantization-first combination,
subsequent adapters must accommodate the changes in the pretrained matrix’s shape, data type, and operational semantics.

Quantization–Pruning. When combining quantization and pruning, the pruning method must operate over the structural
changes induced by quantization as previously mentioned. On the other hand, quantization must be able to reconstruct
zero-valued elements perfectly in order to preserve the pruned weight structure.

PEFT–Pruning. When combining PEFT and pruning, any PEFT adapter that merges back into the pretrained model must
not change sparsified matrix entries. Lastly, consider combining techniques within PEFT; some techniques operate by
multiplying the hidden state (e.g. (IA)3), while others add to it; in this case, the order of operations when combining two
techniques matters.

Algorithmic ambiguities. Foremost, there is the choice of invariants a technique must satisfy (or modify to satisfy) to be
chainable. Further algorithmic ambiguities are revealed by considering the example pipeline in Figure 1. VeRA (d2) is
followed by pruning (n4), but should the reparameterized VERA weights be pruned before, during, or after fine-tuning?
Note also that the PEFT method LoRA (d1) is not applied in isolation. Learnable scaling vectors are subsequently applied
by VeRA and IA3 (d3), and it is not obvious whether they should rescale the LoRA-reparameterized weights, or the merged
weights after LoRA fine-tuning. More generally, it needs to be specified whether “applying” a PEFT method constitutes just
injecting adapter weights into the model, or also includes the fine-tuning step.

A.6. Related Work

Unified PEFT frameworks. He et al. (2022) and Mao et al. (2022) propose unified perspectives of PEFT by implementing
hybrid architectures for tuning custom ensembles of PEFT modules. Chen et al. (2022) and Zhou et al. (2024) present
methods of searching for new PEFT designs over a unified space of configurations. CLAM expands on these frameworks
by enabling the unlimited nesting of PEFT modules within each other. Our work further broadens the space of unifiable

9

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

techniques by supporting quantization and pruning techniques in addition to PEFT.

Combining LLM techniques. Combinatory solutions from Dettmers et al. (2024) and Li et al. (2023) exploit both the
fine-tuning efficiency of LoRA and the memory savings from quantization. Similar benefits from joining LoRA with pruning
are explored by Sun et al. (2023) and Zhang et al. (2023a). CLAM subsumes many of these combinations and facilitates the
discovery of future ones by introducing freely chainable techniques drawn from an extensible library of adapters.

Quantization. Works such as GPTQ (Frantar et al., 2022), SpQR (Dettmers et al., 2023), GGML (GGML, 2024), and
AWQ (Lin et al., 2023) quantize to around 4 bits, in some instances going as low as 2 bits. Other techniques, such as
QMoE (Frantar & Alistarh, 2023a), focus on a specific architecture and are able to achieve sub 1-bit quantization. CLAM is
designed to be agnostic to any particular quantization method, and it is future work to subsume all of these.

Pruning. The main bottleneck to adopting neural pruning techniques for billion-parameter LLMs is the computationally
intensive retraining step for recovering performance after pruning. Thus, there is significant research interest in retraining-
free pruning methods, such as WANDA (Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023b), and the frameworks
of Kwon et al. (2022) and Zhang et al. (2023b). Other approaches employ a parameter-efficient method like LoRA for
retraining (Ma et al., 2023; Zhang et al., 2023a). CLAM’s interface is designed to integrate both of these directions.

PEFT. Two major designs are additive PEFT and reparameterized PEFT (Han et al., 2024). Additive PEFT methods such as
soft-prompting (Lester et al., 2021) and (IA)3 (Liu et al., 2022) inject new parameters (e.g. learnable scaling vectors) into
transformer modules. Reparameterized PEFT decomposes weight matrices into lower-dimensional forms for tuning; this
is explored by LoRA (Hu et al., 2021) and its derivatives (Valipour et al., 2022; Yang et al., 2023; Kalajdzievski, 2023),
as well as LoHA (Hyeon-Woo et al., 2021), VeRA (Kopiczko et al., 2024) and DoRA (Liu et al., 2024). CLAM unifies
additive and reparameterized techniques in an interoperable manner.

A.7. Limitations

While CLAM was designed to interface with as many emerging PEFT techniques as possible, by design, it cannot limitlessly
chain those that are not mergeable (i.e., there is no computable W ′ emulating its modifications to some given tensor W).
This might leave even simple techniques, such as those using non-linear functions, incompatible. Integrating these modules
into CLAM chains is necessary for maximum subsumption and likewise an intended future direction.

Not every chain is a valid one. For example, quantizing in a chain more than once is undefined behavior, requiring the
quantization algorithm to be able to operate over the data structure it was designed to produce. Also, there is no hard
requirement that every quantization algorithm preserve zeros for pruning. Therefore, there needs to be a more nuanced
accommodation for technique-specific restrictions.

CLAM focuses on the linear layer for maximum compatibility across models. However, doing so neglects other large
transformers, such as emerging multi-modal models, that employ convolutional layers. It is worth studying how CLAM
chains could have an impact on these other types of models and their respective fields by supporting these other layer types.

Finally, §4.2 demonstrates that CLAM chains of length 3 can have tens of thousands of possible configurations. This space
is intractable to search with our current methods. Therefore, principled explorations of this newly introduced design space
are a new opportunity for future research.

10

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

A.8. Experimental Setup

Table 4. Optimal learning rates by methods.
Method RQ1 RQ2 RQ3 (T5-base) RQ3 (Gemma 2B)

(IA)3 1e-2 1e-2 1e-2 1e-2
LoRA 4e-4 4e-4 4e-4 4e-4
LoHA 4e-3 1e-3 4e-3 1e-3
VeRA 1e-1 1e-1 1e-1 1e-1

Table 5. Training Settings for Baselines
Training setting Configuration

optimizer paged_adamw_32bit
weight decay 0.06
optimizer momentum β1, β2 = 0.9, 0.999
batch size 32
training epochs 10
learning rate schedule linear
warmup steps 0
max gradient norm 1.0

Table 6. The dataset sizes for the holdout set for various benchmarks. search-train and search-val are the splits we applied on
the original training sets from GLUE and SuperGLUE for the purposes of hyperparameter and configuration searching. eval-train is
the entire training set and eval-test is the holdout test set for the purposes of validation.

Dataset #search-train #search-val #eval-train #eval-test

RTE 1,992 498 2,490 277
MRPC 2,934 734 3,668 408
STS-B 4,599 1,150 5,749 1,500
CoLA 6,841 1,710 8,551 1,043
CB 200 50 250 56

11

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

Table 7. Baseline configurations used across various tasks, found via hyperparameter search. Note that quantized methods (denoted as
beginning with ‘Q’), values were used for both the optimal quantization and compression experiments.

Task (IA)3 LoRA LoHA VeRA Q(IA)3 QLoRA QLoHA QVeRA PLoRA

RTE
Rank — 64 8 64 — 8 64 64 8

LR 4e-2 4e-4 1e-2 1e-1 1e-2 1e-3 4e-3 1e-4 1e-3
Train params 0.13M 3.54M 1.77M 0.06M 0.31M 0.93M 14.75M 0.05M 0.93M

MRPC
Rank — 16 16 32 — 64 32 64 64

LR 1e-2 4e-4 4e-3 1e-1 1e-2 1e-4 4e-3 4e-2 1e-4
Train params 0.13M 1.77M 3.54M 0.06M 0.31M 7.38M 7.38M 0.05M 7.38M

STS-B
Rank — 8 32 32 — 32 16 32 32

LR 4e-2 1e-3 4e-3 4e-1 1e-2 4e-4 4e-3 4e-2 4e-4
Train params 0.13M 0.88M 7.08M 0.06M 0.31M 3.69M 3.69M 0.04M 3.69M

CoLA
Rank — 32 16 64 — 64 8 8 64

LR 1e-2 4e-4 4e-3 1e-1 1e-2 1e-4 4e-3 4e-2 1e-4
Train params 0.13M 3.54M 3.54M 0.06M 0.31M 7.38M 1.85M 0.05M 7.38M

CB
Rank — 4 32 64 — 64 8 8 64

LR 4e-2 1e-2 4e-2 1e-1 1e-3 1e-3 1e-3 1e-1 1e-3
Train params 0.13M 0.44M 7.08M 0.06M 0.31M 7.38M 1.85M 0.05M 7.38M

Table 8. CLAM configurations used across various tasks, found via search over the configuration space. The quantization method used is
NF4, and the pruning method used is WANDA. ‘Q‘ denotes that quantization was applied before the PEFT chain. ‘PQ’ denotes that
pruning was applied first and then quantization second before the PEFT chain. Note that ‘PQ‘ re-uses configurations found for ‘Q‘. All
PEFT methods in CLAM-Q and CLAM-PQ chains use hyperparameters for their quantized forms found in Table 7.

Task Method PEFT 1 PEFT 2 PEFT 3 LR scale Train params

RTE

CLAM-2 LoRA (64) VeRA (4) — 1.0 7.13M
CLAM-3 (IA)3 (IA)3 (IA)3 1.0 14.34M
CLAM-Q›3 LoRA (16) LoRA (4) (IA)3 1.0 2.61M
CLAM-PQ›3 LoRA (16) LoRA (4) (IA)3 1.0 2.61M

MRPC

CLAM-2 (IA)3 LoHA (16) — 1.0 3.67M
CLAM-3 (IA)3 LoRA (32) (IA)3 1.0 3.80M
CLAM-Q›3 VeRA (4) LoRA (64) VeRA (64) 0.4 7.46M
CLAM-PQ›3 VeRA (4) LoRA (64) VeRA (64) 0.4 7.46M

STS-B

CLAM-2 LoRA (32) LoHA (4) — 0.4 4.42M
CLAM-3 VeRA (32) (IA)3 LoRA (64) 1.0 7.26M
CLAM-Q›3 VeRA (64) LoHA (16) LoRA (16) 1.0 5.57M
CLAM-PQ›3 VeRA (64) LoHA (16) LoRA (16) 1.0 5.57M

CoLA

CLAM-2 LoRA (32) (IA)3 — 1.0 3.67M
CLAM-3 (IA)3 LoRA (32) (IA)3 0.4 3.80M
CLAM-Q›3 VeRA (64) LoHA (16) LoRA (16) 1.0 5.84M
CLAM-PQ›3 VeRA (64) LoHA (16) LoRA (16) 1.0 5.84M

CB

CLAM-2 VeRA (64) LoRA (64) — 1.0 6.19M
CLAM-3 (IA)3 LoHA (4) VeRA (4) 4.0 1.07M
CLAM-Q›3 LoRA (64) LoRA (64) LoRA (4) 1.0 15.21M
CLAM-PQ›3 LoRA (64) LoRA (64) LoRA (4) 1.0 15.21M

12

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

A.9. Ablation Study

Fixed PEFT hyperparameters. In our first ablation, we simplified our search over the different orderings of PEFT
techniques by fixing the decomposition rank and learning rates of each technique to be the optimal ones found from our
baseline search in Table 7. For example, LoRA on RTE uses a fixed rank of 64 and learning rate of 4e-4. We call the length
2 and 3 configurations found by this modified search CLAM-2∗ and CLAM-3∗. The decreased performance of CLAM-2∗

and CLAM-3∗ compared to CLAM-2 and CLAM-3 on the benchmarks suggests that while the fixed parameters were
optimized for individual tasks, they may not be universally effective across different configurations or compositional chains.
This suggests the necessity for dynamic parameter adjustment and an extensive search to underscore the rich interactions
between different PEFT techniques.

Table 9. Results for fixing hyperparameters during PEFT configuration search. Baseline results are from Table 2.
Method RTE MRPC STS-B CoLA CB Average

(IA)3 67.76.8 88.51.5 86.90.5 54.81.4 92.91.8 78.2
LoRA 74.31.3 89.50.4 88.40.4 55.12.0 87.55.4 79.0
LoHA 69.22.3 89.40.6 89.10.5 57.30.7 82.75.7 77.5
VeRA 66.21.5 87.61.3 84.80.9 49.21.1 87.53.1 75.1

CLAM-2∗ 62.74.5 91.60.5 86.70.7 56.51.4 84.52.7 76.4
CLAM-3∗ 68.20.7 91.20.9 88.00.9 56.71.3 88.72.1 78.6

Table 10. CLAM configurations found by the PEFT ordering search with hyperparameters fixed.
Task Method PEFT 1 PEFT 2 PEFT 3 Train params

RTE CLAM-2∗ LoHA (IA3)3 — 1.90M
CLAM-3∗ LoHA LoHA LoRA 1.06M

MRPC CLAM-2∗ LoHA LoRA — 5.31M
CLAM-3∗ (IA)3 LoHA LoHA 7.21M

STS-B CLAM-2∗ (IA)3 LoRA — 1.01M
CLAM-3∗ LoRA (IA)3 LoRA 8.85M

CoLA CLAM-2∗ LoRA (IA)3 — 3.67M
CLAM-3∗ (IA)3 LoHA LoHA 7.21M

CB CLAM-2∗ LoHA LoHA — 14.16M
CLAM-3∗ VeRA VeRA LoHA 7.20M

13

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

Global learning rate. Our objective in this ablation was to investigate the effects of applying a single global learning
across all PEFT adapters for a given task, as opposed to individual learning rates per PEFT parameter group. We retain an
individual search for each technique’s optimal rank in this experiment. The global learning rate is searched over the same
space of learning rates that we provide to each individual optimization during the Optuna search. We call the length 2 and 3
configurations found by this modified search CLAM-2† and CLAM-3†. We find that CLAM-3† performs 2.2% worse than
CLAM-3 while CLAM-2† performs 0.3% better than CLAM-2. This suggests the use of a global learning rate has less
effect when there are only 2 optimizations, but with 3 optimizations, each parameter’s groups sensitivity to learning rate
leads to sub-optimal results.

Table 11. Results for using a global learning rate during PEFT configuration search. Baseline results are from Table 2.
Method RTE MRPC STS-B CoLA CB Average

(IA)3 67.76.8 88.51.5 86.90.5 54.81.4 92.91.8 78.2
LoRA 74.31.3 89.50.4 88.40.4 55.12.0 87.55.4 79.0
LoHA 69.22.3 89.40.6 89.10.5 57.30.7 82.75.7 77.5
VeRA 66.21.5 87.61.3 84.80.9 49.21.1 87.53.1 75.1

CLAM-2† 64.77.9 90.51.0 89.50.9 57.21.8 92.93.1 79.0
CLAM-3† 68.23.4 91.30.3 89.70.2 58.61.3 89.34.7 79.4

For example, consider the length 3 chain deemed optimal for STS-B which contains (IA)3 then LoHA then VeRA. The
recommended learning rates provided in the papers are 3e-3 (Liu et al., 2022), 10−1.5 (Hyeon-Woo et al., 2021), and 1e-2
(Kopiczko et al., 2024) respectively. We pose that a fixed learning rate for all 3 of these parameter groups is suboptimal for
two reasons. First, trying to fit one uniform learning rate leads to worse training as the optimizer loses finer control over the
parameter updates. Second, each parameter in a PEFT technique can be expressive in different ways, learning complex,
unique dependencies over the training data. A uniform learning rate restricts the ability of these adapters to effectively learn
these nuances, leading to degraded performance.

Table 12. CLAM configurations found by the PEFT ordering search with single per-task global learning rates.
Task Method PEFT 1 PEFT 2 PEFT 3 Global LR Train params

RTE CLAM-2† (IA)3 LoHA (16) — 1e-2 3.67M
CLAM-3† LoHA (4) VeRA (4) LoHA (8) 1e-2 2.71M

MRPC CLAM-2† (IA)3 (IA)3 — 7e-3 0.26M
CLAM-3† (IA)3 LoHA (64) (IA)3 4e-3 14.41M

STS-B CLAM-2† LoHA (32) (IA)3 — 4e-3 7.21M
CLAM-3† (IA)3 LoHA (4) VeRA (32) 7e-3 1.07M

CoLA CLAM-2† (IA)3 LoHA (32) — 4e-3 7.21M
CLAM-3† (IA)3 VeRA (4) LoHA (16) 5e-3 3.72M

CB CLAM-2† LoHA (64) (IA)3 — 7e-3 14.28M
CLAM-3† VeRA (8) LoRA (32) LoRA (4) 2e-3 4.04M

14

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

A.10. Staging Algorithms

Algorithm 1 Adapter Integration and Fine-Tuning Algorithm for Generic Transformer

Require: GenericTransformer G, chain of adapters C = [A1, A2, . . . , An], where Ai is either differentiable (Ad) or
non-differentiable (An)

Ensure: Aquantize appears at most once in C
1: assert count(Aquantize, C) ≤ 1
2: Split C into subchains S = [S1, S2, . . . , Sm] using the regular expression (A∗

nA
∗
d)

3: for each subchain Si ∈ S do
4: if Si contains only non-differentiable adapters then
5: for each non-differentiable adapter An ∈ Si sequentially do
6: G← An(G) {Apply An sequentially to modify the backbone of G}
7: end for
8: else
9: for each differentiable adapter Ad ∈ Si sequentially do

10: G← Ad(G) {Apply Ad sequentially to G}
11: end for
12: Fine-tune G on the training data
13: Merge all Ad in Si into the backbone of G:
14: G← Merge(G,Si)

15: if any adapter up to this point includes quantization, i.e., ∃Aquantize ∈
⋃i

j=1 Sj then
16: Ensure the backbone of G remains quantized
17: end if
18: end if
19: end for
20: return GenericTransformer G

Figure 3. Algorithm for integrating and finetuning a chain of adapters in a Generic Transformer.

In this section, we discuss the algorithm that takes a chain of adapters and applies them to a transformer. First, we check to
make sure quantization only happens once in the chain. Second, we split the chain according to the regular expression. We
then apply each subchain to the model, finetune it, and then merge the differentiable adapters back into the model. Finally,
we maintain quantization if it has been applied in that chain or any previous chain.

15

CLAM: Unifying Finetuning, Quantization, and Pruning by Chaining LLM Adapter Modules

A.11. Programmatic Implementation

We now provide an overview of abstractions within CLAM. First, all transformers (imported via transformers)
are represented by a G : GenericTransformer type, which contains a mapping G.L between generic labels and
the paths to corresponding target matrices in the transformer (e.g., {"query": [transformer_name.block[0].q_proj,
transformer_name.block[1].q_proj, . . .], . . . }). This mapping is useful for the method:

G.inject_adapter(M,λx.fA(x, θ))

in which M is a list of labels to be wrapped (e.g., {"query", "value"}) and λx.fA(x, θ) is the function that takes a specific
target weight tensor x and returns it wrapped and replaced by the instantiated adapterA using hyperparameters θ. G also has
various functions such as G.finetune(D) which will finetune the model and all of its adapters with the dataset D; similarly,
G.prune(D) will prune the model if there are pruning adapters in G. To enable parameter-efficient training, CLAM also
defines the utility function mark_adapters_as_trainable(G.auto_model) which in turn only enables gradient-based updates
for adapter parameters and not the pretrained backbone.

We contend that, so long as the layers at the paths in G.L are linear, CLAM supports chaining at that path. In this
way, CLAM is versatile in its applications to transformers and potential future architectures. To understand why, we
now describe core functionality for adapters. An adapter A is used in functions get_underlying_weight(A) and
get_underlying_bias(A), which query the layer that the adapter wraps for a weight and bias representation. These
functions are used in the implementation of get_equivalent_weight(A) and get_equivalent_bias(A), which
return a weight and bias equivalent in type to the underlying representation, now adding any new A-specific operations to
the gradient graph of A’s underlying representation.

16

