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ABSTRACT

Effective long-term planning in complex environments benefits from not only
leveraging immediate information but also utilizing past experiences. Drawing
inspiration from how humans use long-term memory in decision-making, we pro-
pose the POMDiffuser framework, an approach to planning in partially observable
environments. While conventional Diffuser models often memorize specific envi-
ronments, POMDiffuser explores the potential of learning to plan from memory,
with the aim of generalizing to new scenarios. By incorporating a memory mech-
anism in POMDP scenarios, our model extends diffusion-based planning models
into the realm of meta-learning with carefully designed tasks that require the dif-
fusion planner to demonstrate both long-term planning and memory utilization.
We investigated existing diffusion-based models, focusing on their applicability,
computational efficiency, and performance trade-offs.

1 INTRODUCTION

To operate effectively in complex environments, an intelligent agent must have two key abilities:
the capacity to memorize past experiences and the ability to use this memory to imagine future sce-
narios for planning (Schacter et al., 2007; 2012). These abilities are particularly crucial in partially
observable environments (Kaelbling et al., 1998) where current observations lack sufficient infor-
mation for optimal decision-making. In such scenarios, agents need to infer the hidden state of the
world—known as the belief state—by leveraging past experiences.

For both memory and planning, the critical challenge lies in extending the horizon length both
backward and forward. The quality of the belief state relies heavily on how far into the past the agent
can consider, as a longer history provides a richer belief representation. Similarly, the advantages
of long-horizon planning—such as avoiding short-sighted decisions, aligning immediate actions
with long-term objectives, addressing sparse reward issues, and effectively managing unfamiliar
tasks—become more pronounced as the planning range extends (Hamrick et al., 2020). In particular,
achieving long-term memory and extended planning simultaneously is critical (Momennejad, 2024;
Gregor et al., 2019).

Although various model architectures have been explored to enhance memory and planning abili-
ties, these architectures face significant challenges in effectively integrating long-horizon memory
with long-horizon planning. Recurrent Neural Networks (RNNs) significantly limit their scalability
with large datasets as its training process does not allow parallel processing of a sequence. Their
dependence on autoregressive rollouts for planning leads to error compounding, which worsens in
particular with longer planning horizons (Lambert et al., 2022). Lastly, the vanishing gradient re-
stricts their memory to retain long-term dependencies.

Transformers (Vaswani et al., 2017) have emerged as an alternative, capturing dependencies over
long sequences without sequential processing constraints. It also excels in parallel computation and
capturing global context. However, each step of the rollouts involves quadratic complexity with
respect to sequence length, making them computationally intensive for extended planning tasks.
Furthermore, they still face challenges due to their reliance on autoregressive rollouts, leading to
compounding error (Lambert et al., 2022; Bachmann & Nagarajan, 2024).

Structured State Space Models (SSMs) , such as Mamba (Gu & Dao, 2024), offer a promising
alternative to the intensive computation of Transformers by modeling long sequences with linear
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complexity relative to sequence length while preserving parallel trainability. Although SSMs reduce
the cost of a single-step rollout to constant complexity O(1) compared to the quadratic complexity
of Transformers, they still rely on autoregressive planning.

The Diffuser (Janner et al., 2022; Ajay et al., 2023) approach, a new planning method based on
Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020), has recently emerged as a promising
paradigm in planning. It addresses the compounding error issue by generating the entire sequence
simultaneously, treating the sequence like an image, which allows for holistic sequence genera-
tion. This approach enables more accurate and efficient planning over long horizons. However, as
noted by the authors of Decision Diffuser (Ajay et al., 2023), a major limitation of diffusion-based
planning is that it has so far been applicable only to MDP settings. Extending this approach to
POMDPs—where long-context memory must be effectively integrated—remains an open challenge.

In this paper, we address these limitations by conducting the first systematic investigation of long-
memory, long-planning diffusion models for POMDPs. To this end, we introduce a diffusion plan-
ning framework called POMDiffuser, which integrates different versions of POMDiffusers based
on the belief encoding architecture used alongside the Diffuser planner. Specifically, we explore
POMDiffusers built on RNNs, Transformers, and SSMs, analyzing the strengths and weaknesses of
each approach, particularly in terms of achieving both long-memory and long-planning capabilities.
Furthermore, by encoding and conditioning on the belief representation, this framework offers a
natural extension of the Diffuser planner as a meta-planner.

Additionally, as no benchmark currently exists to evaluate long-memory and long-planning capa-
bilities within the Diffusion framework, we propose a new benchmark suite to fill this gap. Our
experimental results demonstrate that SSM-POMDiffuser performs well in tasks requiring complex
reasoning ability from the long and global contextual memory, in planning problems, while en-
joying superior computational efficiency. However, we found that it struggled with more complex
long-memory and long-horizon planning tasks, where the agent must remember detailed aspects of
the environment.

The contributions of this paper are: (i) the first systematic empirical investigation of long-memory,
long-planning diffusion models for POMDPs, (ii) the introduction of the POMDiffuser framework,
which for the first time extends the Diffuser planner’s capabilities to POMDPs, and (iii) the devel-
opment of a benchmark suite for Diffusion Planning in POMDPs.

2 BACKGROUND

2.1 STATE SPACE MODELS

Structured State Space Models (SSMs) are sequence-to-sequence models well-suited for tasks that
require significant memory retention and are particularly effective at processing long sequences due
to their computational efficiency. These models transform an input sequence x1:T ∈ RT×D into an
output sequence y1:T ∈ RT×D through a specific recurrence relation:

ht = Atht−1 +Btxt,

yt = Ctht.
(1)

At each time step t, xt and yt both belong to RD, representing the input and output at that mo-
ment. The hidden state ht ∈ RH captures the historical information up to time t. The matrices
At ∈ RH×H , Bt ∈ RH×D, and Ct ∈ RD×H are designed to model long-range dependencies
within the sequence efficiently. In time-invariant SSMs, where At, Bt, and Ct remain constant,
y1:T can be computed in parallel from x1:T , enhancing training efficiency. At is often diagonal or
block-diagonal, with its eigenvalues initialized near the unit circle to facilitate stability over long
sequences (Gu et al., 2020; 2022). Recent studies have explored conditioning these matrices on the
input sequence, allowing the model to adapt and focus on pertinent input information (Gu & Dao,
2024).

2.2 DIFFUSION PROBABILISTIC MODELS FOR PLANNING

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2021)
have achieved remarkable success in various image generation tasks (Dhariwal & Nichol, 2021;

2
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Figure 1: Overview of POMDiffuser in the inference stage. When using the Transformer-based
memory, it achieves more accurate memory-aligned planning but suffers from quadratic computa-
tion, whereas SSM memory benefits from constant time complexity by updating the current belief.

Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Liu et al., 2024). These models
generate data by iteratively denoising across K steps, starting from Gaussian noise xM ∼ N (0, I).
The generative process is expressed as:

pθ(x0) =

∫
p(xK)

K−1∏
k=0

pθ(xk | xk+1) dx1:K , (2)

where each transition pθ(xk | xk+1) is a Gaussian with learnable mean µθ(xk+1) and fixed co-
variance σ2

kI. The model is trained to predict the noise ϵ added to the data x0 during the forward
diffusion process:

L(θ) = Ex0,k,ϵ

[
∥ϵ− ϵθ(xk)∥2

]
, (3)

where xk =
√
ᾱkx0+

√
1− ᾱkϵ and ϵ ∼ N (0, I). Building on this framework, Janner et al. (2022)

introduces Diffuser, a diffusion-based model for planning in offline reinforcement learning settings.
Trajectories of states and actions are formatted into a two-dimensional array:

τ =

[
s0 s1 . . . sT
a0 a1 . . . aT

]
. (4)

Diffuser uses a diffusion model pθ(τ) to generate complete trajectories. It efficiently plans long
sequences, avoiding the cumulative errors common in other planning approaches.

3 MEMORIZE LONG TO PLAN LONG

3.1 MEMORY

To build an efficient model for long-memory and long-horizon planning tasks, POMDiffuser consists
of two main components: memory and planner. Due to its flexible conditioning methodology, it can
integrate various memory architectures, but two main candidates stand out.The first is recurrent
memory, which offers constant time complexity during inference (RNN-POMPDiffuser). However,
RNN-based memory make a training time bottleneck that isn’t from the Diffusion based planner.
Thus, SSM-based memory is more practical, as it provides both constant time complexity for belief
updates and parallelizable training. We instantiated this as SSM-POMDiffuser, using an SSM as the
memory encoder:

ht ← frecurrent(ht−1,ot,at−1) (5)

where ot is the current observation from the environment and at−1 is the previous action. In addition,
frecurrent can be any memory model that recursively models p(x1:T ), e.g. GRU Chung et al. (2014) or
Mamba Gu & Dao (2023). While it is common to encode additional information such as the reward
rt and done signal dt when relevant to the task, we omit this information since we are considering
a setup with sparse rewards, where modeling world dynamics is more crucial.

3
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Figure 2: Overview of POMDiffuser in the training stage. We trained our model in an offline RL
setting, where we sampled batches of context and plan pairs.

Another attractive option is Transformer-based memory (Parisotto et al. (2020)), which excels due
to its powerful pairwise interactions between tokens using attention mechanism. In Transformer-
POMDiffuser, memory is no longer a compressed embedding but a set of tokens.

h1:N×2
t ← fTranformer(o

1:N
t ,a1:Nt ,p) (6)

where p is the positioning embedding vector. In a reinforcement learning setting, the input is a
trajectory consisting of multiple sequences of observation and action pairs. Typically, the trajectory
is truncated to the maximal length N that the Transformer model can handle.

3.2 PLANNING WITH THE MEMORY

To condition contextual information when the Diffusion model generates data, there are two op-
tions: using external memory, as we propose, in a heterogeneous manner, or using a single Diffusion
model by incorporating the past clean trajectory as part of the denoising target τ k

1:t ← τ 0
1:t dur-

ing the denoising process, where k is a random denoising step in the Diffusion modeling process.
This homogeneous approach of modeling context and the generation process simultaneously may be
simple and effective, but it inherently suffers from quadratic complexity.

We suggest detaching this process into two separate components—memory and planning—as it re-
duces the time complexity from O((L+H)2) to O(L logL+H2), where L is the memory length
and H is the planning horizon. Since we adopt the heterogeneous approach to modeling memory, it
must be conditioned when the plan decoder generates a plausible trajectory. There are generally two
ways to incorporate memory information in a heterogeneous manner: by concatenating the memory
embedding with the noisy input, or through cross-attention computation during the denoising pro-
cess. We chose the latter, as it allows for more computation during the denoising process and aligns
well with the memory representation being a set of tokens in Transformer-POMDiffuser. After con-
ditioning the memory in the denoising process, the memory and planner are jointly trained with the
diffusion modeling objective.

L(θ) = Eτ0,ϵ,ht

[∥∥ϵ− ϵθ(τ
k,ht)

∥∥2] (7)

where τ k =
√
ᾱkτ0 +

√
1− ᾱkϵ, ϵ ∼ N (0, I). To avoid confusion in notation, we clarify that k

refers to the denoising step variable, and β represents the time step in the agent’s environment. As
the denoising decoder, we primarily adopted a Transformer decoder denoising network, while the
UNet model was used only for the Superimposed-MNIST task. This is how the denoising network
receives noisy input and predicts the noise in Transformer-decoder network:

z0 = fMLP([τ
k,p,k]) (8)

zl+1 = f l
Transformer(z

l,h) (9)

where τ k is the input, p is the position embedding, k is denoising step embedding, h1, . . . ,hL−1

are the hidden states and ϵ̂k = hL is the output.
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3.3 SELECTING ACTIONS THROUGH INVERSE DYNAMICS

When using diffusers for planning, relying solely on observations and employing inverse dynamics
to deduce actions has proven to be effective (Ajay et al., 2023). This approach is particularly ben-
eficial when states are continuous but actions are discrete (Tedrake). Based on this, we adopted the
inverse dynamics model to predict actions from observations. However, unlike in MDPs, predict-
ing actions solely from adjacent frames in POMDPs can be unreliable. To address this issue, we
used Transformer encoders (Vaswani et al., 2017) to predict the full action sequence from the entire
trajectory τ0, expressed as:

τ0 = (st, st+1, ..., st+H−1) , a1:H = fTransformer(τ0) . (10)

3.4 STRATEGIES TO PLAN LONGER

As the planning horizon increases, the computational burden on the Diffusion model grows quadrat-
ically. To address this issue, we introduce latent-level planning, inspired by work from other do-
mains, where it has proven effective in generating and handling high-resolution datasets using VAEs
(Rombach et al., 2022). We observe a similar challenge in long-horizon planning, where operating
directly in the observation space becomes inefficient. To mitigate this, we demonstrate the efficacy
of planning at the latent level using a pre-trained autoencoder, showing significant improvements in
computational cost.

4 RELATED WORK

Efficient World Models. Model-based reinforcement learning (MBRL) is renowned for its sam-
ple efficiency, utilizing world models for planning or policy learning in imagination trajectories
(Kalweit & Boedecker, 2017; Ha & Schmidhuber, 2018). Commonly, MBRL incorporates RNNs
(Ha & Schmidhuber, 2018; Hafner et al., 2019a;b; 2020; 2023) or Transformers (Chen et al., 2021;
Micheli et al., 2023; ?) as its backbone architectures. However, despite its improved sample effi-
ciency, MBRL’s computational inefficiency is often limited by the constraints of the backbone archi-
tectures. To overcome these limitations, recent advancements have introduced State Space Model-
based world models that enhance computational efficiency and sustain performance, especially in
tasks requiring long-term memory (Deng et al., 2024; Momennejad, 2024). However, despite their
advancements, these models still face challenges in long-horizon planning due to error accumulation
in autoregressive modeling (Lambert et al., 2022; Bachmann & Nagarajan, 2024).

Conditioned Diffusion for Planning. Recent advances in conditional generative modeling have
enabled diffusion models to generate high-quality outputs based on conditions (Ho et al., 2020;
Saharia et al., 2022; Liu et al., 2024). In decision-making, these techniques guide diffusion-based
planners using return values, tasks, or constraints to generate trajectories (Ajay et al., 2023; Ni
et al., 2023; Liang et al., 2023; Chen et al., 2024). The Decision Diffuser Ajay et al. (2023) em-
ploys conditional generative modeling to replace traditional value function estimation with a return-
conditioned diffusion model. Although effective in MDPs, it lacks demonstration for long-horizon
planning in POMDPs, where maintaining long-range beliefs is crucial. Additionally, the method’s
quadratic increase in time complexity with contextual information makes it impractical for environ-
ments with extensive context requirements. MetaDiffuser (Ni et al., 2023) and AdaptDiffuser (Liang
et al., 2023) showed how to plan in a heterogeneous manner but did not address long planning with
long-term dependencies in an environment. Diffusion forcing (Chen et al., 2024) first demonstrated
past history-conditioned plan generation using GRU memory in POMDPs, yet it did not conclu-
sively address the feasibility of generating globally contextualized plans in environments requiring
extensive memory. To our knowledge, our work is the first to focus on integrating long context for
long-horizon planning.

5 EXPERIMENTS

5.1 ENVIRONMENTS

To evaluate POMDiffuser’s performance in POMDPs with long-horizon planning and long memory,
we designed three tasks: superimposed MNIST, 2D Memory Maze, and Blind Color Matching.

5
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Figure 3: 2D Memory Maze. (a) Procedurally-generated environment. (b) Goal-conditioned navi-
gation task.
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Figure 4: Results of Superimposed MNIST. While the Transformer model excels in short-memory
tasks, the SSM model outperforms it in both training efficiency and performance as task length
increases. Due to time constraints in processing 3.5K and 6.2K data with RNNs, we used specially
designed datasets for RNN-POMDiffuser.

Superimposed MNIST To demonstrate POMDiffuser’s ability to memorize and plan in the sim-
plest scenario, we designed a task using the MNIST dataset, where each image x ∈ R1×H×W is
flattened into x̃ ∈ RHW . Two flattened images x̃1 and x̃2 are randomly selected from the MNIST
dataset. At each time step t, the model receives a single pixel value ot ∈ R, defined as follows:

ot =

{
x̃
(t)
1 if 1 ≤ t ≤ L/2,

x̃
(t−L)
2 if L/2 < t ≤ L+ 1

(11)

After observing all 1568 pixel values, the model predicts the pixel-wise superposition of the two
images y ∈ R784. The target image is computed by: y = x̃1 + x̃2. This requires the model to
memorize both images x̃1 and x̃2 and plan how to reconstruct their superposition.

2D Memory Maze To evaluate the agent’s performance in goal-conditioned planning tasks under
minimal settings, we simplified the Memory Maze task from Pasukonis et al. (2022) while retaining
its core features of strong partial observability and reward sparsity. In each episode, a procedurally
generated map is created with randomized elements, including wall colors, goal locations, and grid
layouts. The agent is restricted to observing only a partial top-down view of the map. The objective
is to navigate from the current observation ot to the target goal ogoal.

Initially, the agent explores the environment to collect burn-in context frames by navigating the map.
Subsequently, the agent is tasked with planning a path to the goal. Since the maze configuration
changes every episode, the agent cannot memorize specific maps but must instead learn to infer the
structure of the given map and the location of the goals based on episodic experience. For further
details, refer to Appendix B.2.

Blind Color Matching We extended our experiments to a robotics control task that requires long-
term planning and memory. The task involves picking and placing distributed blocks onto floors
that match each block’s color. The robot agent receives a sparse reward only after placing all blocks

6
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Figure 5: 2D Memory Maze. (a) Procedurally-generated environment. (b) Goal-conditioned navi-
gation task.

on their corresponding floors. To prevent the agent from memorizing the environment, configura-
tions—locations of floors and blocks—are shuffled, resulting in 192 unique setups. We split the
training and testing datasets to ensure agents are evaluated on new configurations unseen during
training.

Unlike conventional robotics control tasks, the robot cannot perceive the global state of the envi-
ronment. We restrict the agent’s visibility to its own joint information, preventing it from seeing
blocks and floors unless the end-effector is close enough to an object to observe and check its color.
Otherwise, the agent perceives only its own body. For details of the Blind Color Matching task, see
Appendix D.

For the simple superimposed MNIST task, we utilized UNet (Ronneberger et al., 2015) as a back-
bone, which has been widely used in diffusions (Dhariwal & Nichol, 2021). In advanced tasks,
Memory Maze 2D and Blind Color Matching, we utilized Transformer (Vaswani et al., 2017) back-
bones which showed good performance on diffusion. We conducted an ablation study on the back-
bone networks in our setting and found that the Transformer performed better despite using fewer
parameters.

5.2 SUPERIMPOSED MNIST

In the Superimposed MNIST (SMNIST) task, we investigated the impact of varying memory lengths
on time complexity and performance while keeping the planning horizon fixed. We designed three
SMNIST tasks with memory lengths of 1,568 pixels (1.5k), equivalent to the original 28x28 image
resolution. These tasks were augmented to 3,528 (3.5k) and 6,272 (6.2k) pixels to investigate the
effects of extended memory in complex pattern recognition tasks. Each task was configured with a
fixed planning horizon of 784 steps, equivalent to the original scale. This setup allowed us to assess
the computational demands of each baseline model and evaluate how well they retain memory across
numerous past observation tokens.

SMNIST 1.5k In the 1.5k SMNIST task, the POMDiffuser with Transformer demonstrated the
best performance, as it can directly access the context when generating trajectories. The one that
utilized Mamba did not generate perfect plans.The one with RNN occasionally failed to reflect the
global contextual information. Autoregressive Transformer baselines also failed due to compound-
ing errors; although they could perfectly predict the next token during teacher forcing, they faltered
at inference time. Refer to Appendix F.1 for qualitative samples.

SMNIST 3.5k and 6.2k For the more challenging 3.5k and 6.2k SMNIST tasks, we compared
only the RNN and Transformer memory baselines, as other baselines did not improve performance.

In the RNN-memory baseline, encoding contexts of length 3.5k and 6.2k was computationally too
slow. To address this, we reduced the input resolutions by mapping 42× 42 and 56× 56 images to
28 × 28 through uniform random sampling of indices. This approach penalized the computational
inefficiency of the RNN by limiting its ability to access the full contextual information. For further
details, see Appendix B.1.

7
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The Transformer-memory baseline did not suffer from a training bottleneck like the RNN-memory
baseline but faced challenges due to memory complexity as the number of contextual tokens in-
creased. As the memory length grew, we had to reduce the batch size quadratically. Consequently,
despite consuming the same amount of gradient steps, this model could not converge in a reasonable
time.

5.3 2D MEMORY MAZE

Table 1: Performance on 2D Memory Maze

Maze Size 9× 9 15× 15

Methods Maze MSE (↓) Distance (↓) Return (↑) Maze MSE (↓) Distance (↓) Return (↑)
null-Diffuser 0.1581 4.72 0.2159 0.1970 13.36 0.1247

Homogenous Diffuser 0.0207 0.32 0.9391 Too slow to converge
POMDiffuser (RNN) 0.0506 0.492 0.8877 Too slow to converge
POMDiffuser (SSM) 0.0240 0.372 0.8973 0.0919 3.711 0.4367
POMDiffuser (TF) 0.0214 0.384 0.8545 0.0568 1.947 0.5994
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Sequence Length
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0.6
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Figure 6: Time comparison in MM2d

In the 9 × 9 grid setting, the Homogeneous Diffuser
achieved the best performance across all metrics. This
model excels by integrating historical context directly
into the noisy trajectory during the denoising process, ef-
fectively leveraging the benefits of homogeneous mod-
eling in diffusion models. We ensured a fair compari-
son among models by controlling factors such as batch
size (maintaining the same number of gradient steps) and
the size of the denoising neural networks. Both SSM-
POMDiffuser (SSM) and POMDiffuser (Transformer)
performed comparably, demonstrating their ability to
handle long sequences effectively.

In the more challenging 15 × 15 grid setting, the Homo-
geneous Diffuser and POMDiffuser (RNN) models were too slow to converge, making it impractical
to obtain results within a reasonable timeframe. The POMDiffuser (SSM) and POMDiffuser (Trans-
former) models showed decreased performance compared to the 9 × 9 grid. This decline can be
attributed to the increased complexity and the larger amount of low-level information that must be
retained as the grid size expands. Additionally, due to practical considerations, we maintained the
same maximum context length, which limited the agent’s access to the complete information neces-
sary to reach the goal successfully.

5.4 BLIND COLOR MATCHING

Method Return (↑)
POMDiffuser (SSM) 0.6956
POMDiffuser (TF) 0.0187

Table 2: Performance on BCM

In the blind color matching task, which demands extensive
memory with a context length reaching up to 3,000, the
POMDiffuser (SSM) exhibited superior performance. This
task presents significant challenges for the Transformer model,
requiring reductions in batch sizes compared to those utilized
by the Mamba memory model and resulting in slower conver-
gence rates. On the other hand, Mamba excels in capturing
global context, a strength stemming from its ability to recall
key high-level information efficiently.

5.5 EFFICIENT PLANNING IN THE LATENT SPACE

2D Memory Maze 9×9-LongHorizon We also observe a slight performance enhancement with
the latent level planner as the model size increases while still retaining computational efficiency
despite the model’s growth. The Homogeneous model, which exhibited strong performance on the
9x9 grid, becomes excessively slow to converge as its time complexity escalates to O((L+H)2).

8
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(a) POMDP Setup

Agent’s view 
(POMDP)

Global state 
(MDP)

(b) Expert strategy

See  blockGreen See  floorGreen See  floorBlue See  blockRed Move  blockRed

⇒  floorRedMove  block ⇒  floorGreen GreenMove  block ⇒  floorBlue Blue

Figure 7: Blind Color Matching. (a) Unlike conventional state-based control tasks, the robot agent
is not permitted to observe distant parts of the environment from the end-effector. (b) The expert-
level strategy for solving the task, which is composed of two phases: exploration and solving the
known pair of the block and floor.

Table 3: Ablation studies on latent space planning

Methods Maze MSE (↓) Distance (↓) Training Time (↓)
POMDiffuser (TF) 0.0898 3.350 0.2467

+ Latent-Level plan 0.0766 2.937 0.1595

5.6 MEMORIZE BETTER TO PLAN LONGER

Our approach is closely related to predictive coding, as it simultaneously learns contextual memory
representations and planning tasks Gregor et al. (2019). We conducted additional experiments on the
Superimposed MNIST and Memorymaze-2D datasets to explore the relationship between planning
horizon and the amount of global information retained in the belief or memory.

Superimposed MNIST Using the Transformer-memory Diffuser-Planner, we compared the atten-
tion maps of the Transformer’s memory for different plan horizon lengths. We examined the portion
of the attention map that contained attention values exceeding a certain threshold across the entire
context frame pair, along with qualitative results.

Figure 8: Attention map across different
planning horizons

Horizon Global Ignorance (↓)
224 0.1176
392 0.0284
784 0.0211

Table 4: As the planning horizon gets
shorter, the belief states tend to be un-
aware of global information.

Memorymaze-2D Using the SSM-memory Diffuser-planner, we carried out a global map probing
task, adjusting the planning horizon to 36, 72, 108, and 450 steps. In this task, we utilized a frozen
SSM memory model, a component of the SSM-memory Diffuser-planner, to generate a compressed
memory representation h ∈ RD from the context ∈ RN×C . The task involved predicting the top-
down global maze layout based solely on this memory embedding. We observed that as the planning

9
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horizon increased, the memory encoded more global information, leading to improved mean squared
error (MSE) in predicting the maze layout.

Figure 9: Qualitative samples of belief probing.

Horizon Probing MSE (↓)
36 0.1261
72 0.0246

108 0.0174

Table 5: As the planning hori-
zon lengthens, probing accu-
racy increases.

6 CONCLUSION AND LIMITATIONS

In this paper, we introduced the POMDiffuser, the first diffusion-based planning framework designed
for POMDPs, addressing the challenge of long-memory and long-planning in partially observable
environments. By integrating belief encoding architectures like RNNs, Transformers, and Structured
State Space Models (SSMs), our framework extends the capabilities of the Diffuser planner beyond
MDP settings. We analyzed the strengths and weaknesses of each approach and demonstrated that
POMDiffuser successfully combines long-term memory and extended planning, making it effective
for tackling complex tasks in partially observable environments. Additionally, we introduced a new
benchmark suite to evaluate diffusion models’ long-memory, long-planning capabilities, filling a
critical gap in current evaluation methodologies.

Our results show that POMDiffuser offers a powerful and generalizable solution for planning in
POMDPs, and we see several future directions to improve upon this work. These include explor-
ing online fine-tuning of the diffusion planner, enhancing belief encoding mechanisms, and further
advancing meta-planning capabilities. We hope that our benchmark suite will encourage further
research into memory-augmented diffusion models, driving the development of more robust and
efficient long-horizon planning solutions in partially observable environments.

10
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A MODEL ARCHICTECTURES

For the Superimposed Mnist task, we utilized UNet as its backbone, and for 2D Memory Maze and
Blind Color Matching, we utilized Transformer.

Tasks

Module Hyperparameter Superimposed MNIST 2D Memory Maze Blind Color Matching

General Batch Size 128 128 24
Total Steps 400,000 250,000 300,000
Warmup Steps % 0.05 0.05 0.05
Decay Steps % 0.5 0.5 0.5
Max Gradient Size 0.1 0.1 0.1

Memory Input Size 1 1 1
Hidden Dim 256 256 256
Num Blocks 8 4 4
State Size 16 16 16
Expand 2 1.5 1.5

Generator Observation Dim 1 3 (12 if latent) 22
Action Dim 0 0 0
Horizon 784 784 784
Transition Dim 1 1 1
Cond Dim 256 256 256
Cross Attention Type Intermediate Intermediate Intermediate
Nhead - 8 8
Num Layers - 20 20
D Model 32 128 128
Dim Feedforward - 512 512
Dim Mults [1, 2, 4, 8] - -
Attention False - -
Num CA Blocks 3 - -
Cond Drop Probability 0.0 0 0
Dropout - 0 0
N Timesteps 1568 25 25
Sampling Timesteps null null null

Table 6: Hyperparameter settings for Superimposed MNIST, 2D Memory Maze, and Blind Color
Matching tasks.
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B ENVIRONMENTS

B.1 SUPERIMPOSED-MNIST DATA FOR RNN-POMDIFFUSER

flatten

reshape

flatten

Memory

Planner

Figure 10: Serialized inputs update belief
state for planning.

When experimenting with SMNIST at resolutions
of 42 × 42 and 56 × 56 to test longer memory se-
quences, using RNNs becomes computationally im-
practical due to their sequential processing of long
sequence data. To make RNNs more manageable,
the data resolution was fixed at 28×28. However, to
maintain a fair comparison with Transformers and
SSMs, which can process entire sequences of pix-
els parallelly, RNNs were restricted to only access-
ing specific 28× 28 pixel regions from the upscaled
42× 42 and 56× 56 images. This approach ensures
a balanced evaluation by compensating for the in-
herent advantages of models that can handle larger
inputs more efficiently.

B.2 2D MEMORY MAZE

Environment details. The agent navigates through
a maze from a top-down view but can only see a 3× 3 area around itself, as illustrated in Figure 2.
Each element in this grid is mapped to an RGB value. To create a long-horizon, memory-demanding
scenario, the agent’s observation frame ot ∈ R3 at each time step is flattened into õt ∈ R9×3.
Movement is controlled by four discrete actions: up, down, left, and right.

flatten flatten
a0 aT

flatten flatten
a0 aT

Context Plan

Memory Planner

Figure 11: Preprocessing of observations in Memorymaze-2D dataset.

Dataset collection. We created a scripted policy that navigates the map using a BFS strategy. Every
time the agent reaches the goal, the goal location is reset, and the agent continues to explore the
map. We randomly select the exploration location from the walkable paths on the map, enforcing
that the target navigation location is far from the current position, exceeding a pre-defined L1 dis-
tance. We used L1 distance thresholds of 5, 8, and 12 for the Memorymaze-2D 9×9 Long-horizon,
Memorymaze-2D 9×9, and Memorymaze-2D 15×15, respectively.

Training and test split. For the training and test split in offline model training and online envi-
ronment interactions, we generated 5,000 unique maps for training and another 100 maps for testing
and validation. For both the Memorymaze-2D 9×9 Long-horizon and Memorymaze-2D 9×9 tasks,
we used an episode length of 5,000, while for Memorymaze-2D 15×15, we used an episode length
of 10,000.

Dataset statistics. To determine the amount of burn-in context required for training our model,
POMDiffuser, and for evaluation through environment interactions, we investigated how many con-
textual frames are necessary to reach any goal point on the map. For Memorymaze-2D 9×9, ap-
proximately 100 frames are sufficient to solve any goal location in the maze, while 300 frames are
needed for Memorymaze-2D 15×15.
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Evaluation process. We evaluate the trained POMDiffuser through 100 interactions with test split
environments and average the score. More specifically, the agent receives a reward of 1 when it
reaches the target location. Since we adopted an open-loop interaction based on the imagined plan,
the agent finishes the episode if it incorrectly plans and walks through a wall. The episode then ends,
and the agent receives a small reward proportional to how close it was to the target when the episode
finished, calculated as:

r =
Maze size× 2− L1 Distance(posagent, posg)

Maze size× 2
(12)

C BELIEF PROBING IN 2D MEMORYMAZE.

Figure 12: Line plot of validation MSE loss on the maze layout prediction task.

We conducted a probing task to evaluate the informational richness of the belief states used for
subsequent planning. After freezing the parameters of the POMDiffuser (SSM), we allowed the
model to process some burn-in frames and used the final hidden state to probe the map. We then
collected pairs of (h,maze layout), and trained a simple Transformer decoder network that predicts
the maze layout starting from zero tokens, conditioned on the belief states.

We trained this simple network for 30k gradient steps and compared the MSE loss across different
planning horizons of the pre-trained POMDiffuser: 36, 72, and 108.

C.1 CLASSIFIER-FREE GUIDANCE IN 2D MEMORY MAZE.

We tested Classifier-Free Guidance (CFG), which has shown strengths in conditioned diffusion gen-
erative modeling without the need for a separate class classifier. The empirical results did not show
a noticeable improvement in the POMDiffuser’s generative performance.
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Figure 13: Line plot of contextual inconsistency, measuring how the generated trajectories are mis-
aligned.

D BLIND COLOR MATCHING

Dataset collection. For dataset collection in Blind Color Matching, we use a PyBullet-based motion
planning algorithm to control the Kuka arm with 7 degrees of freedom (DOF) joints. We collected
expert policy data, where the robot gathers environment information at the start of each episode
and solves the task by picking and placing a block onto a floor tile of the same color as the block.
The environment contains 192 unique configurations. We randomized the position of each block
and the exploration behavior of the expert robot. Additionally, we incorporated semantic reasoning
components into the environment, where blocks and floor tiles of the same color cannot be placed
in adjacent spots among the six hexagonal locations. This allows the agent to skip unnecessary
exploration by leveraging memory. For example, if 3 out of 6 floor tiles are revealed to be Blue,
Green, and Red, and the remaining 3 tiles are unknown, the agent can infer the positions of the
remaining blocks without further exploration. If the known tiles are all separated by exactly two
spaces, the environment rule that prevents blocks of the same color from being adjacent allows the
agent to deduce that the corresponding blocks must be placed on the opposite sides, eliminating the
need to explore the remaining tiles.

Dataset preprocessing. To convert the MDP state space into the POMDP observation space, we
reduced the MDP state size from 43 to 22, using the following format:

• MDP state (size 43):

– q pos (7)

– attachment (3)

– ee pos (3)

– [cube pos (3), cube rotation (4), cube color (1)] x 3

– floor color (6)

• POMDP state (size 22):

– q pos (7)

– attachment (1)

– cube info (3 + 4 + 3)

– floor color (4)

As explained in the limitations, we did not adopt closed-loop re-planning with window slicing.
Instead, we used only the last 192 steps for the planning sequence, while all preceding steps were
treated as contextual information. The maximum length of the contextual memory is approximately
3,000 steps.
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Training and test split. We split the total 192 environmental configurations into 180 for training
and 12 for testing, ensuring that the agent is evaluated in environments it has not encountered during
training.
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E TRAINING AUTO-ENCODER FOR LATENT-LEVEL PLANNING

We trained a deterministic auto-encoder to demonstrate latent-level planning in the 2D Memory
Maze task. While training VAEs is common, we chose to train an auto-encoder to simplify the
model design and due to the simplicity of the dataset. We used a shallow 1D convolutional network
with residual connections, featuring a bottleneck structure.

Table 7: The Autoencoder architecture used for plan abstraction.

Layer Kernel Size Stride Channels Output Channels Activation

ResBlock Encoder 3 1 3 1024 ReLU
Bottleneck Encoder 3 3 1024 12 Tanh
Conv1D Transpose 3 3 12 1024 ReLU
Conv1D Projection 3 3 3 3 -

F QUALITATIVE RESULTS

F.1 SUPERIMPOSED MNIST

Figure 14: Randomly Selected Example of the of Superimposed MNIST.

Our experimental results reveal notable distinctions between the POMDiffuser models employing
Structured State Space Models (SSMs) and Recurrent Neural Networks (RNNs) in their ability to
maintain and utilize memory for generating consistent outputs. Specifically, the POMDiffuser (SSM)
model, when presented with a sequence starting with the digit ’3’, accurately regenerates the digit
’3’. In contrast, the POMDiffuser (RNN) model, under the same conditions, erroneously produces
the digit ’5’.

Despite these differences in output fidelity, the Learned Perceptual Image Patch Similarity (LPIPS)
scores, which quantify perceptual differences between images, do not exhibit significant variation
between the two models. This suggests that while both models maintain a perceptual resemblance
to the target digit, the SSM-based POMDiffuser demonstrates a superior capacity for updating its
belief state with sufficient information to generate the appropriate class. Conversely, the RNN-based
POMDiffuser appears less capable of accurately updating its belief state under the same conditions.

This outcome underscores the efficacy of SSMs in capturing and utilizing relevant information to
maintain consistency in generative tasks, particularly in environments requiring robust memory and
inference capabilities.

G ADDITIONAL RELATED WORKS

G.1 BENCHMARKS FOR LONG PLANNING WITH LONG MEMORY

Vision-Based Tasks Vision-based Reinforcement Learning tasks(Mnih, 2013) often feature weak
POMDPs, where the problem of partial observability is mitigated by frame stacking or using a sim-
ple RNNs network. This approach, however, is not ideal for our experiments, as long-term memory
is now always necessary for making optimal decisions. In contrast, benchmarks like DeepMind
Lab (Beattie et al., 2016) and Memory Maze (Chen et al., 2021) present challenges that require both
reward sparsity and long-term memory (Fortunato et al., 2019). . However, these environments also
come with high visual complexity, complicating the direct evaluation of planner-generated trajecto-
ries. To evaluate the model effectively, we must either measure the reward from real-environment
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interactions or compare the similarity between generated trajectories and real frames by following
the generated actions. These CPU-intensive methods, due to the simultor, slow down the discovery
of effective models, impeding the speed of the evaluation process.

Continuous Control Tasks. Control problems involving continuous state spaces, such as the move-
ment of complex joints, are central to robotics tasks, which is why simulator-based tasks like DMC
and Mujoco (?Todorov et al., 2012) have been developed. Similarly, benchmarks like D4RL (Fu
et al., 2020) have been designed to include various behavioral optimizations for offline RL. How-
ever, most control tasks are modeled as MDPs and, therefore, do not require memory. A simple
workaround is to transform the MDP into a POMDP by introducing Gaussian noise or delaying
perception. However, this approach has limitations, as it still makes encoding the global context in
long-term memory optional rather than essential. Robotics tasks, such as AntMaze, Pick and Place,
and Block Stacking, are often based on visual observations. However, the increasing visual com-
plexity of these tasks makes the problem more challenging. Furthermore, since they typically use
a single map, relying on past observations for memory is optional. As a result, these tasks are not
well-suited for evaluating an agent’s ability to learn and manage long-term memory.
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