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Abstract

To stay safe and effective when collaborating with a cobot or an Al agent, people
must be able to predict the future behaviors of their automated partners. We
propose using the Variation Theory of Learning, a theory of how humans learn new
concepts, to allow people to predict agent behaviors by building conceptual models
of agent policies. In this work, we explore the space of design decisions needed to
operationalize Variation Theory and how to best to scaffold peoples’ experiences
of interacting with agents to inform their conceptual model development. We
study this operationalization by analyzing two domains: a pick-and-place robot
arm task and a simulated highway driving environment. We find evidence that
operationalizing Variation Theory can assist people in identifying a given agent’s
behavior in novel settings, an intermediary task en route to measure the promise of

applying Variation Theory to people predict new agent behaviors.

1 Introduction and Background

Imagine working in close physical proximity to
a robot. If you cannot predict how the robot will
pick something up, there is a risk that you will
collide with the robot [6]. Alternatively, imag-
ine a radiologist examining scans with the help
of a faulty prediction model. The consequences
of misunderstanding where likely failures exist
could harm patients and lead to unequal health
outcomes. When we interact with an agent, we
face the problem described in philosophy as the
“problem of other minds” [15]. We cannot analyze
the other mind’s internal decision-making policy
and instead determine agents’ internal reasoning
based on observed behaviors [[5]. In its most
general form, being able to predict agent behav-
iors implies the person maintains an accurate
belief distribution over the agent’s policy that
determines which actions the agent might take.

We present an approach to addressing the prob-
lem of how to learn about the behaviors of a
particular agent based on a theory of human
learning—the Variation Theory of Learning [9].

Figure 1: People start with many hypotheses about
how an agent might behave. For example, a robot
might move in many different ways, here abstractly
represented by three trajectories. Variation Theory
can be applied to help people narrow the space of
possible policies towards the true behavior.

Variation Theory builds up people’s concept models through a sequence of steps that exposes “patterns
of variance and invariance” to help the person isolate the core behaviors from superficial details [9].
Variation Theory can help the person predict future agent behaviors by sequentially reducing the
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Figure 2: The steps of variation theory applied to the HighwayEnv environment.

hypothesis space of possible agent policies. Variation Theory helps people develop a conceptual
model that matches the outputs of that correct policy. This technique scaffolds a person’s model of
the agent by revealing information-rich examples of agent behaviors. While our larger goal is to
help people—whether expert model-designers or end users—predict agents’ behaviors, we study the
intermediary task of identifying a given agent’s behavior from a set of alternative behaviors. This
tests whether Variation Theory can help people narrow down the space of possible agent policies to
ultimately help them predict the agent’s future behaviors. Variation theory is a theory of how humans
learn concepts, where each concept is made of “aspects” that distinguish one version of the concept
from another. We apply these broad learning theories to assist people in learning what to expect
from a machine’s behavior; this space of expected behaviors constitutes, in our setting, the concept.

Variation theory, as described by Marton [9], is a sequential procedure that helps people learn each

aspect by isolating its effect in the larger concept. The sequential steps of Variation Theory are:

1. Familiarization: Familiarization shows examples with all aspects maintained the same, which
helps people find the essential aspects of the policy. When people see an example of the behavior,
this causes them to generate a set of possible explanations for what they have just seen: their
hypothesis space of policies.

2. Contrast: Contrast varies the aspect being learned but keeps all other environmental factors the
same. This helps create the policy’s concept boundaries by showing what is not a part of the
concept, eliminating it from people’s space of possible policies.

3. Generalization: Here, the aspect being learned remains the same while external aspects are
changed. Generalization helps define the policy concept by finding the unchanging aspects that
are key to the policy regardless of the experienced environment, and combats overfitting in the
contrast step if irrelevant aspects were coincidentally held constant and interpreted as essential.

Booth et al. first proposed applying Variation Theory to the human-robot interactions setting and
identified its use for guiding people’s learning of robot models [3]. However, this work did not
implement Variation Theory or any human subject studies. Though they did not use the language of
Variation Theory, Dragan and Srinivasa’s work showed that using familiarization helps people better
predict the motion of a robot [4]]. Their study showed users a robot reach its arm to an object placed
on the table, then tested whether the users could correctly identify the motion from several possible
motion options. Familiarization alone improved users’ ability to predict future robot motions, but
users still found this task challenging, especially when predicting unnatural robot motions. Hence,
adding in the other steps of Variation Theory has promise for improved behavior prediction, an
essential component of improved human-robot or human-AlI collaboration.

2 Domains

We consider two motivating example domains: a robot arm in a pick and place task, and a rein-
forcement learning agent for a highway environment. The pick and place domain was modeled after
Dragan and Srinivasa’s setup [4], though with a different robot (a Franka Panda). This robot reaches
for different objects before it, but there is ambiguity in how the robot performs that motion—for
example, the robot might use a policy based on optimizing the distances from obstacles like in
CHOMP [[10] or it might follow a policy that rotates each joint in a specific order, like sequentially
from wrist-to-shoulder. The human observing this behavior has many possible hypotheses of policies
that could exhibit this behavior. Some people might imagine the robot always taking direct paths;
some people might imagine the robot being cautious and slow. This work attempts to scaffold



people’s learning to narrow down that space of possible policies to be the one moving wrist to
shoulder joint-wise. To learn to be able to predict motions for this particular policy, there are two
distinct aspects that must be understood: (a) it moves joint-wise and (b) it moves sequentially from
the smallest joint to the largest.

To test the resilience of the operationalization in multiple
settings, we also study a reinforcement learning agent in
the HighwayEnv [8] environment, a simple simulator ap-
proximating a self-driving car. There were several possible
environments ranging from a simple highway with several
lanes of traffic moving in one direction to a round-about
and a highway entrance. We test multiple policies, based
loosely on the reward functions described by Amitai et
al [1]]. All the policies have the same task (avoid other cars
while moving forward), but each has a distinguishing as-
pect: moving in the right lane quickly, avoiding other cars,
or driving parallel with the car in front. Here, correctly
being able to predict future car motions is important for
Figure 3: Pick and place domain above ~g£iving targeted feedback and, for other drivers in its prox-
highway driving domain. imity, avoiding the vehicle and maintaining safe driving
procedures.

Both these domains were challenging for people to predict
or identify the correct robot behavior without the guidance of Variation Theory. For the robot arm,
when people were simply exposed to examples of robot behavior, they had 52.4% accuracy. For the
cars, those trained by just showing the car moving in the environment had 48% accuracy. Without
improving training, people cannot reliably identify the policies.

3 Design Decisions for Operationalizing Variation Theory

To design our scaffolding in line with Variation Theory, we must find aspects of the policy that
would change the behavior of the agent and group each aspect into either “environmental” or “agent-
related”. Is this aspect changing the “environment” (making the agent’s behavior change in response
to changes in the world around it such as the type of road it is on) or is it changing the agent itself
(the policy)? Showing only a small sample of the behaviors is desirable as Dragan and Srinivasa
showed thatpredictability does not increase with the number of examples [4], and too many examples
risks overwhelming the user.

3.1 Familiarization

The first step of Variation Theory, familiarization, is relatively straightforward. This step repeatedly
shows the minimal typical behavior of the agent. The objective is to communicate the agent’s task to
the user by providing a basic example of it achieving the task.

* Pick-and-place: Show an example of robot motion that shows the arm moving from point A to B,
moving without obstacles. This step establishes the concept space but extrapolation of the behavior
remains challenging. The current concept space might consist, for example, of the set: {up then
down, joints move one at a time, gripper followed by body, gets best grip}

* Highway Driving: Show a video of the car slowing and moving to the left. This sets up the concept
space as being all possible policies that don’t hit others and move forward. The current concept
space might consist, for example, of the set: {moving to the left-most lane, slowing, avoiding other
cars, passing other cars, fastest in lane}

Key Choices The key choices in this step are using the variables identified earlier to find what should
be held constant throughout the examples shown. Another important decision is to show an example
of successful behavior at achieving the task—showing what it cannot do is not yet important if the
people watching don’t know what it should be doing.

3.2 Contrast

The contrast step contrasts different possible policies’ reaction to the same environment. Even if
everything else were the same, how could this agent plausibly behave differently? This step now tries
to reduce the space by eliminating valid but incorrect possible policy generalizations from the first
step. By showing alternatives to each of the distinguishing aspects, the concept space is corralled.



* Pick-and-place: Show examples of an alternate policy (shoulder-to-wrist) next to correct policy.
This highlights order of the joints’ movement as an essential consideration in the policy. The
concept space is now limited to concepts that produce the right behavior in this scenario - but this
still leaves alternative policies which exhibit identical behavior. A possible current concept space
could be: {joints move one at a time, moves for best grip, rotates instead of straight line}

* Highway Driving: Compare with an agent moving aggressively near other vehicles to pass,
therefore eliminating policy options that involve getting close to other vehicles like being the fastest.
Someone’s concept space might update to: {moving to the left-most lane, slowing, avoiding others}

Key Choices To eliminate possible but incorrect options, these alternatives should be:

Plausible Consider alternate possible policies that could, on first glance, be viable - this disrupts
people’s malformed priors. Show the user that these are not actually how YOUR agent will behave.
Pick-and-place: Show the users policies that are still optimal in terms of robot movement - gibberish
trajectories that are not optimal in any way would usually violate people’s optimality assumption [4],
so are likely not in the space of concepts they are thinking about. Highway Driving: Do not show
alternate trajectories that weren’t initially in the concept space, like hitting cars.

Maximally visually distinct In selecting these, pick moments of greatest difference in behavior
between policies to maximize the effect. All demonstrations must be visibly different in behavior
for humans to learn from it. Showing the direct opposite of the distinguishing aspects, not changing
anything else about the scenario, ensures that the difference is highlighted. For example, the smooth
motion contrasts with joint-wise motion, eliminating any smooth motion from the possibilities.

Aligned When demonstrating these, show the two policies in an aligned representation to make the
differences clearer, as suggested by Analogical Transfer Theory [2]. For example, robot arms were
displayed side by side simultaneously for the differences to be immediately comparable.

3.3 Generalization

Demonstrations for this step should help users become able to predict the possible changes from the
"environment" variables, like obstacles or a different object to pick up. Essentially, now that the user
has a rough idea of the policy, we show examples that break any incorrect models they built. Ideas
from the concept space that could be disguised in the previous steps as causing the same behavior are
elicited by showing different environments where those policies would behave differently.

* Pick-and-place: By showing an environment where the item has a different grip but the robot’s
policy remains the same would eliminate a grip-based policy from the considered space.

» Highway Driving: Display scenarios where the car moves in a new environment. The limited
number of exposures mean that there are other possible policies which could cause those behaviors.
Here, show alternate environments where the car maintains avoidance of other vehicles but moves
into different lanes, or is forced to speed up to avoid others approaching from behind.

Key Choices The environmental changes should be prioritized by what would cause the largest
deviation from the prior behaviors seen. To do this, consider the simplest model that could have
been generated from what has been seen so far, examine where that model might fail, then generate
examples of that kind of "out-of-distribution" behavior. Generalization can not only narrow the
concept space, it can also widen it if the contrast step only showed policies with a red herring shared
aspect. For example, if locations during the contrast step only showed the robot going left, it is
possible someone might interpret that as a key aspect - generalization could then show an example of
it going right to counteract that false aspect. By the end of the training process, the concept space has
been scaffolded in such a way that the policy to expect is clear.

4 Evidence of Conceptual Model Formation

Pick and Place For the robot arm, we ran a first user study to [7] investigate the impact of solely
using the contrast step on scaffolding people’s mental model formation of how a robot would move.
Using a similar setup to Dragan and Srinivasa [4]], we showed participants training videos beforehand
followed by six test scenes, four of which they had not been exposed to in training in two groups -
familiarization and contrast. Familiarization participants saw videos of a robot arm moving to a place
on the table, while contrast saw the same video side-by-side to a contrasting video of the same goal
but with a different policy of motion.



Throughout this study and the next, prediction accuracy was defined as the intermediate measure of
correctly selecting the example policy that matched the policy they were trained on out of 3 shown
options with visibly different policies.

Though the mean accuracy results of this preliminary study were not statistically significant, the
accuracy showed an absolute increase in prediction ability moving from 52.4% with familiarization to
70.2% under contrast. Unseen settings showed contrast had a significantly higher accuracy at 72.4%
compared to familiarization’s 50.0% with p=0.01. Users exposed to the first step, familiarization,
seemed to not have coalesced to a single explanation - one person noting their assessment of the
robot’s policy being: "it moves chaotically". Participant’s descriptions of the policy varied widely but
included "Each arm segment adjusts its angulation to arrive at the final result." Here we see that the
actual policy is within the concept space that people come up with, but that there are many alternate
policies people believe could cause the behavior seen so far. On the other hand, most contrast users
had discerned the important aspects of the policy - rotating joint-wise and moving wrist to shoulder.

Highway Driving For the Highway Driv-
ing domain, we ran a second user study to
test the impacts of our chosen decisions for
each step of variation theory and the com-
bination of all the steps. There were four
branches - familiarization, contrast, gener- 07

alization, and those combined. The study gg
featured a training phase where human par- 4
ticipants were shown examples of car be- 03
haviors as described above and a testing  .”
phase which asked them to predict which o

of the three options matched the behavior Total Unseen seen

of the car they had been trained with. The m Familiarization  m Contrast ~m Generalization ~m Combined

tests were drawn from both seen and un-

seen environments. For all scenarios, the Figure 4: Accuracies for each step of variation theory in
policies of moving fast in the right lane the highway domain: this demonstrates the overall help
and maintaining distance from others had a  of using variation theory steps in the right and distance
baseline mean accuracy for familiarization policies.

of 48%, contrast with 52%, generalization

at 63%, and the combined condition increasing to 58% accuracy, though no statistically significant
effect was observed. These absolute increases in accuracy support further work to test the intervention.

Accuracy from Right and Distance Policies Only

Highway Driving revealed a possible limitation when using Variation Theory - we theorize that it
narrows down the concept space users have, but if a user does not start with a certain concept as
a possibility (here likely due to pre-exposure to how cars usually drive) that concept needs to be
added as a possibility in their mental model before Variation Theory can make an impact. Showing
Variation Theory steps with a car whose policy was to move parallel to its nearest neighbor resulted
in not statistically significant decreases in prediction ability. The qualitative responses reveal the
critical aspect of the right or distance policies (which lane or how much distance) were immediately
discerned by the users (appearing in 87% of responses) while the critical aspect of the parallel policy
was only discerned by 1 respondent out of 20, most likely because this is not a typical goal people
have while driving. This implies that if we have a robot that can go against our innate biases of what
we think it can do, it will take more scaffolding to get there.

5 Conclusion

In this paper, we have explored operationalizing Variation Theory in two domains and proposed
design guidelines for how to do so in others. We have found support for Variation Theory helping
people to predict machine behavior, though there are limitations: policies that are excluded from
people’s original ideas of how the machine should behave seem to be not be supported by this
operationalization. This is a first attempt to make these theories of learning concrete - more work
should be attempted to do the challenging work of operationalizing the generality of the theory in
different domains. Further work would help explore how to expand, rather than narrow, people’s
concept space to include these unexpected policies.
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