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ABSTRACT

Self-supervised learning (SSL) is an increasingly popular paradigm for representa-
tion learning. Recent methods can be classified as sample-contrastive, dimension-
contrastive, or asymmetric network-based, with each family having its own ap-
proach to avoiding informational collapse. While dimension-contrastive methods
converge to similar solutions as sample-contrastive methods, it can be empirically
shown that some methods require more epochs of training to converge. Moti-
vated by closing this divide, we present the objective function FroSSL which is
both sample- and dimension-contrastive up to embedding normalization. FroSSL
works by minimizing covariance Frobenius norms for avoiding collapse and min-
imizing mean-squared error for augmentation invariance. We show that FroSSL
converges more quickly than a variety of other SSL methods and provide theoreti-
cal and empirical support that this faster convergence is due to how FroSSL affects
the eigenvalues of the embedding covariance matrices. We also show that FroSSL
learns competitive representations on linear probe evaluation when used to train a
ResNet18 on the CIFAR-10, CIFAR-100, STL-10, and ImageNet datasets.

1 INTRODUCTION

The problem of learning representations without human supervision is fundamental in machine
learning. Unsupervised representation learning is particularly useful when label information is dif-
ficult to obtain or noisy. It requires the identification of structure in data without any preconceptions
about what the structure is. One common way of learning structure without labels is self-supervised
learning (SSL). Recently, a flurry of SSL approaches have been proposed for learning v1sua1 rep-
resentations ( , ; s ;

; ). The basrc goal of SSL 1s to train
neural networks to capture semannc 1nput features that are augmentation-invariant. This goal is
appealing for representation learning because the inference set often has similar semantic content to
the training set. We provide a more rigorous definition of this process in Section 2.1.

>

A trivial solution to learning augmentation-invariant features is to learn networks that encode every
image to the same point. Such a solution is known as informational collapse and is of course useless
for downstream tasks. SSL approaches can be roughly divided into three families, each with its
own method of avoiding collapse. The first family consists of sample contrastlve methods (

, s ) which
use Z1 p and Za; as pos1t1ve samples and all 21 J,ZQ j» 1 # jas negatlve samples. Here Z; and
Zy are the embeddlngs of views 1 and 2, as shown in Figure 1. Sample-contrastive methods use
a contrastive loss to explicitly bring the positive samples close together while pushing the negatrve
samples apart. The second family consists of asymmetric network methods ( ;

, ) which place restrictions on the network archltectures used.

Restrrctlons 1nclude stop gradients as in ( ) and asymmetrical encoders as in

( ). Interestingly, the objective functions typically used by this family allow for collapse,
though this is avoided in practice due to the architectural restrictions. The third, and most recent,
family are the dimension-contrastive methods ( ;

, ). These methods operate by reducing the redundancy in feature dlmensmns Methods in
this family are able to avoid the use of negative samples while also not requiring restrictions in the
network architecture to prevent collapse.
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Figure 1: The SSL pipeline used in this work. In general, the encoder and projector may be asym-
metric. We use symmetric encoders with shared weights and the same augmentation set for each
view. We refer to X; as view 1 of X, and X5 as view 2.
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One disadvantage common to all current SSL methods is their speed of convergence. When com-
pared to traditional supervised learning, SSL methods must be trained for large numbers of iterations
to reach convergence. For example, a typical experiment in the literature is to train for 1000 epochs
on ImageNet which can take several weeks even with 4 GPUs. An imperative direction of research
is to investigate how to reduce SSL training time. An observation that is often hidden by only report-
ing the final epoch accuracy is that, empirically, certain SSL methods seem to converge slower than
others. This phenomenon has been observed in Simon et al. (2023) but not discussed in detail. We
provide additional support for this claim in Section 5. Our work attempts to answer the following
research question: Does there exist an SSL method with dimension-contrastive advantages, namely
simplicity via avoidance of both negative sampling and architectural restrictions, while achieving a
superior speed of convergence to other existing SSL methods?

We propose an SSL objective which we call FroSSL. Similar to many dimension-contrastive meth-
ods, FroSSL consists of a variance and invariance term. The invariance term is simply a mean-
squared error between the views and is identical to VICReg’s invariance term (Bardes et al., 2022).
The variance term is the log of the squared Frobenius norm of the normalized covariance embedding
matrices. To the best of our knowledge, using the Frobenius norm of covariance matrices has not
been explored in SSL. Our contribution can be summarized as:

* We introduce the FroSSL objective function and show that it is both dimension-contrastive
and sample-contrastive up to a normalization of the embeddings.

* We evaluate FroSSL on the standard setup of SSL pretraining and linear probe evaluation
on CIFAR-10, CIFAR-100, STL-10, and Imagenet. We find that FroSSL achieves strong
performance, especially when models are trained for fewer epochs.

* We examine the covariance eigenvalues of various SSL methods to show which methods
lead to the best-conditioned, and thus quickest, optimization problems.

2 BACKGROUND

Consider a matrix A € R™*". Let A;; € R be the element at the ¢-th row and j-th column of A. Let
A; . € R™ be a column vector representing the i-th row of A. Let o, (A) be the k-th largest singular
value of A. If A is square, let A\;(A) the k-th largest eigenvalue of A. An elementwise exponent
is denoted as A®P, while an element-wise product (Hadamard product) is denoted as A ® B. The
Frobenius norm of A is defined as:

min(m,n)

HAIF =YD A% = > oi(A). )
g
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Table 1: Taxonomy of dimension-contrastive SSL methods describing how they avoid informational
collapse and achieve augmentation invariance

Method Variance Invariance
Barlow Twins  Cross-correlation off-diagonals Cross-correlation diagonals
VICReg (Variance) Hinge loss on auto-covariance diagonal MSE
(Covariance) covariance off-diagonals per view
W-MSE Implicit through whitening MSE
CorInfoMax Log-determinant entropy of covariance per view MSE

FroSSL (ours) Log of normalized covariance Frobenius norm per view MSE

For any real matrix A, we have:
AT Allr = [|AAT || 2)

2.1 THE SELF-SUPERVISED LEARNING PROBLEM

Many visual SSL methods follow a similar procedure which was first introduced in

( ). An example of this procedure is depicted in Figure 1. Let X = {z;}? ; be a mini-batch
with n samples. Let T'(+) be a function that applies a randomly selected transformation to an image
from a set of image transformations (augmentations). Let f be a visual encoder network and g be a
projector network.

First, each image x; € X is paired with augmented versions of itself, making the augmented dataset
Xaug = {T(w;), T(x;)}7y = {X1,X>}". Note that X; ; and X5 ; have identical semantic content,
but different style content. Second, this paired augmented dataset is passed through the networks to
get d-dimensional embeddings Z = g(f(Xaug)) = Z1, Z>. Finally, an SSL objective is computed on
the embeddings and backpropagated through both networks. The goal of the objective is to ensure
that the paired images are mapped close together, i.e. Z;; ~ Zp;. Thus the goal of SSL is to
train the networks to extract semantic features that are invariant to any augmentations that can be
computed using 7'(-).

2.2 DIMENSION-CONTRASTIVE METHODS

The dimension-contrastive methods, which are sometimes called negative-free contrastive (

, ) or feature decorrelation methods ( , ), operate by reducing the redundancy
in feature dimensions. Instead of examining where samples live in feature space, these methods ex-
amine how feature dimensions are being used.

Many recent works in dimension-contrastive SSL, whether explicitly or implicitly, consist of having
a loss function that fulfills two roles:

* Variance This is the explosion factor that ensures informational collapse is avoided.

* Invariance This is the implosion factor that ensures useful augmentation-invariant repre-
sentations are learned.

SSL methods belonging to the dimension-contrastive family include Barlow Twins ( ,

), VICReg ( , ), W-MSE ( R ), and CorInfoMax ( s

). Barlow Twins objective pushes the normalized cross-covariance between views towards the
identity matrix. VICReg consists of three terms, dubbed variance, invariance, and covariance. The
invariance term enforces similarity in embeddings across views, while the variance/covariance terms
regularize the covariance matrices of each view to prevent collapse. W-MSE whitens and projects
embeddings to the unit sphere before maximizing cosine similarity between positive samples. Fi-
nally, CorIlnfoMax maximizes the log det entropy of both views while minimizing mean-squared
error. A taxonomy of these methods is shown in Table 1.

YT (x;), T(x:)} should be understood as making to separate calls to the function 7. For each call a
transformation is selected at random



3 THE FROSSL OBIJECTIVE

To motivate FroSSL, we begin by examining the Barlow Twins objective,

Loatow = Y (1= Mi)> + A > M;;? 3)
i i ity

where M is the cross-correlation matrix. Without feature normalization, the objective Lgyriow
pushes M to approach identity and is not rotationally invariant. However, we posit that dimension-
contrastive methods should be rotationally invariant because the orientation of the covariance does
not affect the relationships between principal components. In other words, redundancy in the embed-
ding dimensions is invariant to the rotation of the embeddings. Thus dimension-contrastive methods
should be rotationally invariant as well.

One natural matrix operation that is invariant to unitary transformations is the Frobenius norm.
Minimizing the Frobenius norm of normalized embeddings will cause the embeddings to spread
out equally in all directions. Normalizing the embeddings is crucial because otherwise, minimizing
the Frobenius norm will lead to trivial collapse. We propose to use the following term to reduce
redundancy between dimensions:

Lrwo = log(| 2] Z1||%) +log(11 23 Zo[%) S

The Ly fills the role of a variance term. For the invariance term, we can simply use mean-squared
error between the views, defined as

1 n
Lmsg = — i — 2243 5
MSE H;HZL 22, |2 )
Combining (4) and (5) yields the FroSSL objective.
o 1 «
minimize Lposse = log(||Z7 Z1||%) + log(|| 2T Z,||%) + ~ Z ||21,i — 22.4]]3 (6)
i=1

Due to Equation (2), we can choose to compute either ||Z] Z1||% or ||Z1ZT||r depending on if
d > n. The former has time complexity O(nd?) while the latter has complexity O(n?d). For
consistency, we always use the former in our experiments. We provide Pytorch-style pseudocode in
Appendix A.

3.1 THE ROLE OF THE LOGARITHM

The role of the logarithms in (4) is twofold. First, the logarithm allows interpreting Lg;, as entropy
maximization. One recent information-theoretic framework with success in deep learning is matrix-
based entropy ( , ). It is an information-theoretic quantity that behaves
similarly to Rényi’s a-order entropy, but it can be estimated directly from data without making
strong assumptions about the underlying distribution. In particular, the first and second terms of (4)
correspond to the matrix-based negative collision entropies of Z; and Z». This is relevant because
collision entropy measures the coincidence of points in a space. By maximizing collision entropy,
the coincidence of points is minimized and trivial collapse is avoided.

Second, we hypothesize that the log ensures that the contributions of the variance term to the gradient

of the objective function become self regulated (dl%g{(m) = ﬁ d{igf) ) with respect to the invariance

term. Initially we attempted using tradeoffs between (4) and (5). However, a grid search showed
that the optimal tradeoff was when the terms were equally weighted. This is a nice advantage over
methods such as Barlow Twins and VICReg, where the choice of tradeoff hyperparameters is crucial
to the performance of the model. We later compare the experimental performance of Equation (6)
with and without the logarithms, showing that using logarithms leads to a gain in performance.

3.2 FROSSL 1S BOTH SAMPLE-CONTRASTIVE AND DIMENSION-CONTRASTIVE

It can be shown, up to an embedding normalization, that FroSSL is both dimension-contrastive
and sample-contrastive. First, we provide formal definitions of dimension-contrastive and sample-
contrastive SSL that were first proposed in ( ).



Definition 3.1 (Dimension-Contrastive Method). An SSL method is said to be dimension-
contrastive if it minimizes the non-contrastive criterion £,,.(Z) = ||Z7Z — diag(Z* Z)||%, where
Z € RV*P is a matrix of embeddings as defined above. This may be interpreted as penalizing the
off-diagonal terms of the embedding covariance.

Definition 3.2 (Sample-Contrastive Method). An SSL method is said to be sample-contrastive if it
minimizes the contrastive criterion £.(Z) = ||ZZT — diag(ZZ™)||%. This may be interpreted as
penalizing the similarity between pairs of different images.

Next, we use the duality of the Frobenius norm, as shown in Equation (2), to show that FroSSL
satisfies the qualifying criteria of both dimension-contrastive and sample-contrastive methods.

Proposition 3.1. If every embedding dimension is normalized to have equal variance, then FroSSL
is a dimension-contrastive method. The proof is shown in Appendix E.1.

Proposition 3.2. If every embedding is normalized to have equal norm, then FroSSL is a sample-
contrastive method. The proof is shown in Appendix E.2.

Proposition 3.3. If the embedding matrices are doubly stochastic, then FroSSL is simultaneously
dimension-contrastive and sample-contrastive.

Proposition 3.3 allows for interpreting FroSSL as either a sample-contrastive or dimension-
contrastive method, up to a normalization of the data embeddings. The choice of normalization strat-
egy is not of particular importance to the performance of an SSL method ( , ). Un-
less otherwise specified, we only normalize the variance and not the embeddings. Another method
that shares these properties is TiCo ( R ). Additionally, variants of the dimension-
contrastive VICReg were introduced in ( ) that allowed it to be rewritten as the
sample-contrastive SimCLR. However, VICReg itself is not able to be rewritten in such a way.

4 RELATED WORK

4.1 EXISTING SSL METHODS

The dimension-contrastive family of SSL methods was discussed in Section 2.2. The sample-
contrastive family of methods operates by discriminating positive and negative pairs of samples.
Many sample-contrastive methods require large batch sizes for the best performance, However, this
is not a property that FroSSL shares. Prominent methods in this family include SimCLR (

R ), MoCo ( s ; R ), and SWAV ( R ). SimCLR
first introduced projector heads and data augmentation for positive sample generation, both of which
have become prevalent in the SSL literature. MoCo built upon SimCLR and introduced momentum
encoders, which improved training stability, as well as a memory bank to mitigate the large batch
size requirements of SimCLR. On the other hand, SwAV relaxed the sample discrimination problem
by instead contrasting cluster assignments. SWAV was shown to perform well even with small batch
sizes without requiring a momentum encoder or memory bank.

The asymmetric network methods employ a variety of architectural techniques in order to prevent
trivial collapse. These techniques include asymmetrical encoders ( ,

), momentum encoders ( , ), and stop gradients ( , ). Whlle these
methods can achieve great results, they are rooted in implementation details and there is no clear
theoretical understanding of how they avoid collapse ( , ).

4.2 SSL METHODS USING KERNELS

There is prior work in SSL that uses kernel-based objectives for learning representations, much like
we do. SSL-HSIC ( , ) uses an objective based on the Hilbert-Schmidt Independence
Criterion ( s ), which itself has ties to matrix-based entropy. TiCo ( s )
considers the theoretical connections between kernel Gram matrices and covariance matrices. TiCo
also makes use of an exponential moving average on covariance matrices which serves as a memory
bank.
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Figure 2: A side-by-side comparison of the FroSSL variant in (8) and the Barlow Twins variant
from ( ). The top row shows the loss and the bottom row shows the top 10 eigen-
values of the View 1 covariance matrix. The x-axis is t = Ir * step.

4.3 ENTROPY IN SSL

The FroSSL objective is closely related to the CorInfoMax objective proposed in ( ).
max LcomnfoMax = log det(Z] Z1 + el) + log det(Z3 Zz + €I) — BLysk (7)

The CorInfoMax objective uses log det entropy, as opposed to the matrix-based entropy described
in Section 3.1. One advantage of our approach is that the Frobenius norm can be computed in
O(d?n), assuming that d < m. On the other hand, logdet entropy always requires computing
the eigendecomposition which is O(d?). Another advantage of FroSSL over CorInfoMax is the
absence of hyperparameters in the objective. We found the selection of € to be critical for avoiding
instabilities in the eigendecomposition.

Another recent work that uses entropy is SImMMER ( , ). Rather than log det or matrix-
based entropy, SimMER uses an entropy estimator based on nearest neighbors (

, ). SimMER is not negative-free because the estimator implicitly chooses the nearest
neighboring point as a negative. We hypothesize that using matrix-based entropy, via the Frobenius
norm, instead of nearest-neighbor entropy estimators allows for more robust representations.

5 THE TRAINING DYNAMICS OF FROSSL

5.1 STEPWISE CONVERGENCE IN THE LINEAR REGIME

Recent work has examined the training dynamics of SSL models ( , ). In par-
ticular, they find that the eigenvalues of the covariance exhibit “stepwise” behavior, meaning that
one eigendirection is learned at a time. They claim that this phenomenon contributes to slowness
in SSL optimization because the smallest eigendirections take the longest to be learned. This is
supported by a recent finding that shows that high-rank representations lead to better classification
accuracies ( , ). An interesting line of analysis shown in ( ) is
provable stepwise convergence with linear networks. Linear networks are appealing theoret1cal tools
because one can work out what they converge to. Inspired by (

; , ), we introduce a slightly simplified varlant of FroSSL which is
amenable to analysis in the linear regime:

L =212y — Ll + |23 Zo — Ll|% + |1 21 — Za||% 8
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Figure 3: The top 14 eigenvalues of the embedding covariance Z{ Z;. The condition number and
eigenvalue Shannon entropy are shown for the end of epoch 5 (roughly 2000 steps). A vertical line
marks the saturation of the 14" eigenvalue. The best quantities are bolded.

While not included in the main text, we work out exact training dynamics in Appendix D. In par-
ticular, we show the optimal representation and a closed-form solution for the linear layer at each
training step.

Shown in Figure 2 is a comparison between Equation (8) and the Barlow Twins variant || Z] Zo —
I |% studied in ( ). We train two linear layers, one for each view, using full batch
gradient descent on 1024 samples drawn from CIFAR10. It is readily observed that (8) converges
much quicker.

5.2 STEPWISE CONVERGENCE IN THE NONLINEAR REGIME

The phenomenon of stepwise convergence occurs in the nonlinear regime as well. We create an
experimental setup similar to the one used in ( ). For all SSL objectives, a ResNet18
was trained on STL10 using I = 0.1 and a batch size of 256. The learning rate was chosen by
performing a sweep over {le-4, le-3, le-2, le-1} and selecting the one that led to the highest
linear probe accuracy after 100 epochs. A learning rate of 0.1 was best for all objectives. Further
experimental details are given in B.1.

In Figure 3, we compare FroSSL to VICReg, Barlow Twins, and SimCLR. We train for 5 epochs
and plot the top 14 eigenvalues of the view 1 covariance Z{ Z; over time. At the end of the 5th
epoch, FroSSL outperforms the other methods in the following three metrics:

T
+ Condition Number Given by %
1 i 21

smallest eigendirection is as relevant as the largest.

The ideal condition number is 1 because the

* Shannon Entropy Given by — >, A; log()\;), where the eigenvalues are normalized to sum
to 1 before computation. The optimal value here is maximum entropy, which is obtained
when all eigenvalues are equal. Higher entropy is better because more eigendirections have
been learned.

* Saturation Given by the step at which the 14th eigenvalue saturates. Earlier is better
because convergence can occur with fewer training steps.

We speculate that FroSSL allows the covariance eigenvalues to converge quicker because per Equa-
tion (1), the Lg, can be rewritten as below. This shows that if the embedding dimensions are nor-
malized to have variance p, then L, explicitly tries to make the covariance eigenvalues approach
to p.

d d
Lo = log(||Z] Z1||%) + log(||Z3 Za||F) = log (Z \(z] Zl>> + log (Z X (z3 Zz)> 9)

6 EXPERIMENTAL RESULTS

We use a standard linear probe evaluation protocol, which is pretraining a ResNet18 backbone and
then training a linear classifier on the representation, on the CIFAR-10, CIFAR-100, STL-10, and



Table 2: Comparison of SSL methods on small datasets. CIFAR-10 and CIFAR-100 were trained
for 1000 epochs with baseline results reported from ( ); ( ).
STL-10 was trained for 500 epochs and all baseline results are from our implementation. Best result
is in bold, second best is underlined.

Method CIFAR-10 CIFAR-100 STL-10  Average

Sample-Contrastive

SimCLR 91.8 65.8 85.9 81.2

SwWAV 89.2 64.9 82.6 78.9

MoCo v2 92.9 69.9 83.2 82.0
Asymmetric Network

SimSiam 90.5 66.0 88.5 81.7

BYOL 92.6 70.5 88.7 83.9

DINO 89.5 66.8 78.9 78.4
Dimension-Contrastive

VICReg 92.1 68.5 85.9 82.2

Barlow Twins 92.1 70.9 85.0 82.7

W-MSE 2 91.6 66.1 724 76.7

CorInfoMax 92.6 69.7 - -

FroSSL (no logs) 88.9 62.3 82.4 71.9

FroSSL 92.8 70.6 87.3 83.6

ImageNet datasets. The first three datasets are presented in Section 6.1. while the latter is shown in
Section 6.2.

6.1 EVALUATION ON SMALL DATASETS

For CIFAR-10, CIFAR-100, and STL-10, we use the solo-learn SSL framework (

). In Table 2, we show linear probe evaluation results on these datasets. It is readily seen that
FroSSL learns competitive representations with other SSL methods. For methods other than FroSSL
and CorInfoMax, we show CIFAR-10 and CIFAR-100 results from ( );

( ). In our experience, CorInfoMax is sensitive to choice of hyperparameters and we were
not able to get it to converge on STL-10. The implementation details can be summarized as:

¢ Optimizer The backbone uses LARS optimizer ( , ) with an initial learning
rate of 0.3, weight decay of le-6, and a warmup cosine learning rate scheduler. The linear
probe uses the SGD optimizer ( , ) with an initial learning rate of 0.3, no
weight decay, and a step learning rate scheduler with decreases at 60 and 80 epochs.

* Epochs For CIFAR-10 and CIFAR-100, we pretrain the backbone for 1000 epochs. For
STL-10, we pretrain for 500 epochs. All linear probes were trained for 100 epochs.

¢ Hardware The backbones were trained on one NVIDIA V100 GPU.

* Hyperparameters For methods other than FroSSL, we use the CIFAR-100 hyperparame-
ters reported in ( ) on the STL-10 dataset. A batch size of 256 is used
for all methods.

In Table 3, online linear classifier accuracies are shown for STL-10 on several epochs during train-
ing. FroSSL outperforms all other dimension-contrastive methods. Another observation is that for
the first 30 epochs, FroSSL outperforms all other SSL methods shown. This trend complements the
empirical stepwise convergence results discussed in Section 5.2. In the subsequent section, we will
see if this trend scales up to ImageNet.

6.2 EVALUATION ON IMAGENET

Here we use FroSSL to train a ResNet18 on ImageNet for 100 epochs. We compare to Barlow Twins
on the exact same setup. We show the topl and top5 accuracies in the first 30 epochs in Figure 4.
Even after the first epoch, FroSSL has an improvement of 12.2% over Barlow Twins. We show the
first 30 epochs to emphasize what happens early in training. Afterward, Barlow Twins does catch
up to FroSSL and achieves similar performances. FroSSL and Barlow Twins achieve final top1/top5
accuracies of 53.4/77.7 and 52.5/77.5. The implementation details can be summarized as:

* Optimizer The backbone uses stochastic gradient descent (SGD) with an initial learning
rate of le-2, weight decay of 5e-4, and a cosine annealing scheduler with warm restarts



Table 3: Top-1 Accuracies on STL-10 using an online linear classifier during training.

Epoch
Method 3 10 30 50 100
Sample-Contrastive
SimCLR 40.7 448 615 662 70.1
SwAV 309 387 64.6 693 743
MoCo v2 246 450 638 694 752
Asymmetric Networks
SimSiam 31.8 412 547 656 711
BYOL 28.8 327 59.6 647 70.6
DINO 26.6 267 382 432 46.1
Dimension-Contrastive
VICReg 436 511 612 675 71.1
Barlow Twins 32.1 466 620 626 69.0
W-MSE 2 172 304 456 534 619
FroSSL (no logs) 40.5 519 606 64.1 673
FroSSL 448 569 648 67.1 720
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Figure 4: Comparison of SSL methods when training a ResNet18 on ImageNet.

every 15 epochs. The linear probe uses the Adam optimizer with an initial learning rate of
Se-3, no weight decay, and a step learning rate scheduler with decreases every 10 epochs.

* Epochs The backbone is trained for 100 epochs. Linear probes were trained for 100 epochs.
* Hardware The backbones were trained on 4 NVIDIA A100 (40GB) GPUs.

¢ Hyperparameters We use A=5e-3 for Barlow Twins as recommended in
( ). An effective batch size of 224 was used for the backbones, which equates to 56

samples per GPU. We use the same augmentation set as ( ).

6.3 ABLATIONS

In Tables 2 and 3, we test a variant of FroSSL with no logarithms. This variant has obviously
worse performance than FroSSL. Importantly, we do not use any tradeoff hyperparameter between
the invariance and variance terms. While such a hyperparameter may improve performance, one
intuition in Section 3.1 was that the logarithm acts as a natural alternative to tradeoffs. Furthermore,
simply adding a logarithm to an objective function is more straightforward than doing an exhaus-
tive hyperparameter sweep. This is a nice advantage over methods which require careful tuning of

hyperparameters ( ); ( ); ( ).

7 CONCLUSION

We introduced FroSSL, a self-supervised learning method that can be seen as both sample- and
dimension-contrastive. We demonstrated its effectiveness through extensive experiments on stan-
dard datasets. In particular, we discovered that FroSSL is able to achieve substantially stronger
performance than alternative SSL methods when trained for a small number of epochs. To better
understand why this is happening, we presented empirical results based on stepwise eigendecompo-
sitions and a comprehensive theoretical analysis. An interesting future direction of research would
be to try FroSSL in combination with other SSL methods as a way of achieving faster convergence.
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