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ABSTRACT

Out-of-distribution (OOD) generalization is a defining hallmark of truly robust
and reliable machine learning systems. Recently, it has been empirically observed
that existing OOD generalization methods often underperform on real-world tabu-
lar data, where hidden confounding shifts drive distribution changes that boosting
models handle more effectively. Part of boosting’s success is attributed to variance
reduction, handling missing variables, feature selection, and connections to multi-
calibration. This paper uncovers a crucial reason behind its success in OOD gen-
eralization: boosting’s ability to infer stable environments robust to hidden con-
founding shifts and maximize predictive performance within those environments.
This paper introduces an information-theoretic notion called a-predictive suffi-
ciency and formalizes its link to OOD generalization under hidden confounding.
We show that boosting implicitly identifies suitable environments and produces an
a-predictive sufficient predictor. We validate our theoretical results through syn-
thetic and real-world experiments and show that boosting achieves robust perfor-
mance by identifying these environments and maximizing the association between
predictions and true outcomes.

1 INTRODUCTION

The ability to generalize beyond the training distribution is a defining hallmark of trustworthy ma-
chine learning. Numerous methods have been proposed to enhance out-of-distribution (OOD) per-
formance on data that differs from the in-distribution (ID) training data (Muandet et al., 2013; Ar-
jovsky et al., 2019; Sagawa et al., 2019; Liu et al., 2021c; Zhou et al., 2022; Singh et al., 2024; Yang
et al., 2024). These methods typically rely on assumptions such as invariance to ensure generaliza-
tion beyond training environments. In practice, however, factors such as differing data-generating
processes, selection bias, measurement error, and shifts in unobserved confounding variables of-
ten undermine the validity of these assumptions (Fan et al., 2014; Alabdulmohsin et al., 2023; Tsai
et al., 2024; Liu & Cui, 2025; Prashant et al., 2025; Gowtham Reddy et al., 2025). Consequently,
sophisticated methods for OOD generalization often underperform more traditional methods such
as boosting, mixture-of-experts (MoE), and multi-layer perceptrons (MLP) (Gulrajani & Lopez-Paz,
2021; Vedantam et al., 2021; Rosenfeld et al., 2022; Gardner et al., 2023; Liu et al., 2023; Nastl &
Hardt, 2024). It is therefore crucial to understand the underlying mechanisms that enable traditional
methods to generalize better under real-world distribution shifts (Fan et al., 2014; Liu & Cui, 2025;
Gowtham Reddy et al., 2025).

The nature of underlying distribution shifts guides the development of generalizable methods. Tra-
ditionally, it is assumed that distribution shifts are due to either label shift (Tachet des Combes et al.,
2020; Garg et al., 2020; Alexandari et al., 2020; Wu et al., 2021) or covariate shift (Gretton et al.,
2009; Sugiyama & Kawanabe, 2012; Schneider et al., 2020). Recent studies however reveal that hid-
den confounding shift is also prevalent in real-world data (Landeiro & Culotta, 2018; Reddy et al.,
2022; Alabdulmohsin et al., 2023; Liu et al., 2023; Tsai et al., 2024; Reddy & N Balasubramanian,
2024; Prashant et al., 2025; Gowtham Reddy et al., 2025). Based on these assumptions, existing
approaches are typically framed by partitioning the data to capture the inherent heterogeneity of the
underlying distribution. Such partitioning—whether specified a priori or defined by researchers—
serves as the basis for different notions of generalization such as invariance (Arjovsky et al., 2019;
Krueger et al., 2021; Creager et al., 2021), robustness (Sagawa et al., 2019), multicalibration (Kim
et al., 2019; Wald et al., 2021; Gopalan et al., 2022; Wu et al., 2024a), and predictive informa-
tion (Gowtham Reddy et al., 2025).
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A popular approach of defining such partitioning is to assign environment labels using metadata
from the data-collection process. For instance, in housing price prediction, region identifiers such
as zip codes or states are commonly used as environment labels (Gardner et al., 2023). Similarly,
in medical diagnostics, hospital IDs—reflecting differences in equipment, protocols, and patient
populations—often serve as environment labels when training models to predict disease outcomes
from lab-test data. Data categorization into different subpopulations or environments may lead to
different performances (Liu et al., 2021a; Liu & Cui, 2025). When the underlying environment
labels are not available or the readily available environment labels do not accurately represent the
underlying data heterogeneity, recent methods focus on identifying correct subpopulations so that
the invariance relationships between covariates and labels can be learned effectively (Liu et al.,
2021a;b; Lin et al., 2022; Liu et al., 2024).

Due to its reliance on the partitioning, OOD generalization is an algorithmic manifestation of the
reference class problem: Given a single case (an individual, an event, a situation), which group or
“reference class” should we use to assign its probability? For example, to predict the price of a
house in New York City, one may consider the reference class to be the set of all houses in the New
York City and attribute their average price as a prediction for the current house. Another possible
reference class is the set of houses within a radius of 10 kilometers. Hence, the prediction depends
heavily on the partition we choose. Philosophers have argued there is no purely objective way to
pick a unique reference class (Hajek, 2007; Hu, 2025). Likewise, in OOD generalization, one must
decide which features/relations are stable (e.g., causal mechanisms) and which are domain-specific
artifacts. If the model partitions the data “wrong”, e.g., grouping patients by hospital ID rather than
disease mechanism, predictions fail OOD. This is particularly challenging when the distribution
shifts are due to shifts in hidden confounders, as we discuss in § 3 (Landeiro & Culotta, 2018;
Alabdulmohsin et al., 2023; Tsai et al., 2024; Prashant et al., 2025; Gowtham Reddy et al., 2025).
Recent work addresses this challenge through automatic environment inference (Liu et al., 2021a;
Creager et al., 2021) in the presence of hidden confounding shifts (Wu et al., 2024a). Unfortunately,
there is no way to guarantee that the “correct” environments will be recovered.

This connection highlights an epistemic root of the OOD generalization problem: it hinges on se-
lecting the “right” partition of data into environments, factors, or causal classes. This choice
determines which distributional features are “stable” and transferable across domains, and which
are merely spurious. Choosing the wrong partition, by contrast, leads to brittle predictors that ex-
ploit spurious correlations. However, since there is no way to resolve this ambiguity objectively, we
argue that—instead of focusing on identifying the right partition—one should focus on designing
methods that acknowledge this uncertainty explicitly and faithfully, for instance by working with
sets of reference classes rather than a single one. To this end, recent theoretical analyses show that
boosting models are the key to developing OOD generalization methods (Kim et al., 2019; Gopalan
et al., 2022; Globus-Harris et al., 2023). These methods show a strong connection between multical-
ibration and boosting-based algorithms for regression (Globus-Harris et al., 2023; Wu et al., 2024a)
and classification.

We conjecture that ensemble methods, such as boosting, owe their competitive performance in OOD
settings to an inherent form of epistemic humility regarding the choice of reference classes. Specif-
ically, the final predictions are aggregated from a diverse collection of weak learners, each of which
captures the data from a distinct perspective, thereby mitigating overreliance on any single parti-
tion of the world. To formally investigate this, we define an information-theoretic notion called
a-predictive sufficiency. We first show the connection between a-predictive sufficiency and gen-
eralization under a hidden confounding shift. We then show that boosting can be viewed as an
algorithm that learns an a-predictive sufficient predictor. Unlike existing methods that identify ideal
environment partitioning of data, we show that boosting implicitly learns environment labels cor-
responding to hidden confounding shifts. Since boosting returns a-predictive sufficient predictors,
boosting can solve the OOD generalization problem under a hidden confounding shift. Unlike the
traditional explanations for the success of boosting based methods, our explanations focus on the
aspect of implicit identification of environment variables that lead to generalization under hidden
confounding shift. Our contributions are as follows.

* We define an information-theoretic notion of a-predictive sufficiency. We then present its equiv-
alence with the notion of generalization under hidden confounding shift, expressed in terms of
predictive information between ground truth labels and predictions (§ 4).
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* We show that the boosting algorithm returns a predictor that is a-predictive sufficient and, in doing
so, boosting implicitly identifies environments corresponding to hidden confounding shifts (§ 5).

* Our experiments on synthetic and real-world data validate our claims that boosting implicitly
captures hidden confounding shifts for generalization (§ 6).

2 RELATED WORK

OOD Generalization Under Hidden Confounding Shift. In recent years, out-of-distribution
(OOD) generalization under hidden confounding has attracted considerable attention due to its
prevalence in real-world data (Landeiro & Culotta, 2018; Alabdulmohsin et al., 2023; Tsai et al.,
2024; Prashant et al., 2025). Solutions to this problem often include either adjusting for hidden
confounder value (Alabdulmohsin et al., 2023; Tsai et al., 2024) or inferring hidden confounder
value (Prashant et al., 2025) under proxy variable assumptions. Because the true confounder (parent
of the outcome) is latent, achieving full invariance under hidden confounding is challenging. A prac-
tical alternative is to identify regions of the input distribution corresponding to different confounder
values and deploy specialized predictors per region (Gowtham Reddy et al., 2025).

Model architecture integrally affects OOD behavior. When an architecture aligns with the under-
lying invariant structure, generalization improves (Li et al., 2023; Wu et al., 2024b). Motivated
by the if-then-else like conditional structure of classifying visual attributes, Li et al. (2023)
propose a sparse MoE model for learning generalizable models. More generally, models of them
form: P(Y | X) = >, P(U | X)P(Y | X,U) can equivalently be interpreted as routing weights
P(U | X) with per-region invariant predictions P(Y" | X, U). Consequently, recent backbone de-
signs for OOD robustness draw inspiration from MoE architectures (Wu et al., 2024b; Prashant et al.,
2025). Since boosting can also be viewed as a model architecture aligning with the above-mentioned
generative model, in this paper, we study how boosting methods provide structural inductive biases
required for generalization under the hidden confounding shift. Even if boosting is acknowledged
to perform well under hidden confounding shifts, understanding why boosting performs well is un-
derexplored and is the main focus of this work. Our insights might also add another explanation
why boosting methods perform successfully on typical tabular benchmark data suffering from rela-
tively high amounts of noise with high risk of distribution shift between test and training data: They
implicitly detect and partially control for hidden confounding.

Boosting, Multicalibration, and OOD Generalization. Multicalibration, originally proposed as a
fairness tool (Hébert-Johnson et al., 2018), has recently been adapted for invariance learning (Wu
et al., 2024a). Recent methods show the connection between multicalibration and boosting for
regression (Globus-Harris et al., 2023; Wu et al., 2024a) and classification (Kim et al., 2019; Gopalan
et al., 2022). Crucially, Bayes-optimality guarantees for these approaches depend on structural
assumptions about the grouping (reference) functions used for multicalibration. Those assumptions
can be restrictive in OOD settings (e.g., when hidden confounders misalign with the chosen groups),
limiting the applicability of standard multicalibration/boosting guarantees to OOD generalization.

For instance, Wu et al. (2024a) enforce multicalibration across environments by grouping data ac-
cording to the entire family of density-ratio functions between a target and a source distribution.
Each ratio (or its thresholded variants) serves as a soft grouping function over the joint distribution
of inputs and outputs. This approach automatically isolates the subpopulations that are most sus-
ceptible to distributional shift and thereby imparts invariance without requiring any explicit group
annotations. However, note that this framework addresses covariate shifts in P(X) and concept
shifts in P(Y" | X), but does not explicitly accommodate shifts in P(X | Y'), which often arise under
hidden confounder shifts and are studied in this paper.

Learning invariant relationships between covariates and labels across training environments is
enough for inference at test time. Moreover, a grouping-function class must be rich enough that,
for every allowed target, the joint density-ratio itself lies in the grouping function class. This “clo-
sure under density ratios” ensures that calibration on Pg carries over to every reweighted Pr. This
process creates environment labels based on density ratios and then uses those environment labels
for downstream invariant learning. Similar techniques for inferring environment labels can be found
in (Liu et al., 2021a; Creager et al., 2021). Accordingly, learnability implicitly requires optimal
labeling of data points into different environments. Under hidden confounding shift, this is partic-
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ularly hard, since the corresponding environments are not directly observed or a priori known, but
are critical for OOD performance. How boosting addresses this challenge is the focus of this paper.

Reference Class and Predictive Information. Density-ratio—based grouping acts as a stand-in for
data partitioning by an unobserved confounder. While it may not recover the true latent assignments
exactly, it reliably highlights the same-risk regions. Recently, (Gowtham Reddy et al., 2025) has
shown that under hidden confounding shift, the objective of generalization can be viewed as max-
imizing predictive information between ground truth labels and predictions for each environment,
where environments precisely encode shifts in hidden confounding values. In the ideal case, the
environments should correspond to the reference classes with respect to the hidden confounder. In
this work, we show how boosting achieves predictive information using the notion of predictive suf-
ficiency, and also how boosting implicitly learns to cluster data with respect to hidden confounding.

3 OOD GENERALIZATION UNDER HIDDEN CONFOUNDING SHIFT

In this section, we provide the necessary background on hidden confounding and reference class to
understand the rest of the paper.

Notations and preliminaries. Follow-
ing Alabdulmohsin et al. (2023); Tsai
et al. (2024); Prashant et al. (2025);
Gowtham Reddy et al. (2025), we model
hidden confounding shift using the causal
graph shown in Figure 1. The causal graph
contains covariates X, label Y, environ-
ment variable £, hidden confounding vari-
able U, feature extractor ¢, and the predic-
tion Y. E encodes the shifts in the distri-  Fjgyre 1: Causal graph for modeling hidden confound-
bution of hidden confounding variable U ing shifts across environments.

across environments. A model prediction

can be obtained as Y = (f 0 )(X). Throughout the paper, we denote entropy and mutual informa-

tion by H(X) = —Ex [log(P(X))] and I(X;Y) = Ex v [log 5,535 respectively. Conditional
entropy and conditional mutual information are defined similarly. We measure the model perfor-
mance in an information-theoretic way using the mutual information 7 (Y’; }A’) between the true label
Y and predictive counterpart Y. Following Federici et al. (2021) and Gowtham Reddy et al. (2025),
we measure the concept shift by I(Y; E | ¢(X)), which can also be viewed as a measure of invari-
ance.

Hidden Confounding Shift. Distribution shifts are usually modeled through a shift in the distri-
bution of a hidden variable U and how that variable influences other observed variables X, Y. For
instance, when U — Y and U A X, we observe lable shift (Tachet des Combes et al., 2020; Garg
et al., 2020; Alexandari et al., 2020; Wu et al., 2021). When U 4 Y and U — X, we observe
covariate shift (Gretton et al., 2009; Sugiyama & Kawanabe, 2012; Schneider et al., 2020). In this
work, we consider the case where U — Y and U — X, which is more prevalent in real-world data
and is referred to as a hidden confounding shift(Alabdulmohsin et al., 2023; Liu et al., 2023; Tsai
et al., 2024; Prashant et al., 2025; Gowtham Reddy et al., 2025).

We briefly review key definitions from causal graphical models (Pearl, 2009). A causal graph G is
a directed graph whose vertices correspond to random variables and directed edges represent direct
causal relationships. A path is a sequence of distinct nodes connected by edges, and it is said to
be directed if every edge aligns with the direction of the path. Along such a path, one may refer to
parents, children, ancestors, and descendants in the usual sense. Three elementary substructures are
distinguished in a causal graph: (i) a chain X; — X; — X, (ii) a fork X; < X; — X}, and (iii)
a collider X; — X; < Xj. In both chains and forks, X; and X}, are marginally dependent but
become independent when conditioning on X ;. In a collider, X; and X}, are marginally independent
yet conditioning on the collider X; (or its descendants) renders them dependent. A path is said to be
blocked by a conditioning set S if either (a) it contains a chain or fork with its middle node in S, or
(b) it contains a collider such that neither the collider nor any of its descendants belongs to S. Two
nodes are conditionally independent given S precisely when every path between them is blocked.
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3.1 REFERENCE CLASS FOR GENERALIZATION UNDER HIDDEN CONFOUNDING SHIFT

As discussed in § 1 and § 2, the notion of reference class is crucial for OOD generalization
if the generalization is achieved via multicalibration or predictive information. Here, we first
formally state the definition of reference class, and environments induced by those reference classes
(Definition 3.1), and then describe the crucial assumption of common confounder support.

Definition 3.1 (Reference classes and Environments). Let X C RY be the feature space and fix
a subset of feature indices S C {1,...,d}. For any feature vector x € X, we write xg for the
projection of © onto the coordinates in S. The reference class of « with respect to S is the set of all
vectors that agree with x on those coordinates, i.e. [x]s := {2’ € X : 2y = xg}. Equivalently, on
a finite dataset D = {xV) ..., (™}, we define an equivalence relation v ~g ¥’ <= xg = ',
and the equivalence classes under ~g are precisely the reference classes. The collection of all
reference classes Eg = {[z]s : x € X'} (or, when working with a dataset, {[x]s : © € D}) forms
environment partition of the data: each point belongs to exactly one reference class and different
reference classes are disjoint.

Assumption 3.1 (Common confounder support (Prashant et al., 2025)). Let U denote the un-
observed confounder taking values in some space U. We assume that every confounder value
that can occur in the target environment can also occur in the source (training) environment i.e.,
supp(P(U|&te)) C supp(P(U|Ewr)). Equivalently, in finite-sample terms, the set of confounder lev-
els observed in the target is contained in the set observed in the source.

Assumption 3.1 rules out target-only confounder values and ensures that the training data provide
examples from all confounder regions that may be encountered at test time. Common confounder
support is necessary for generalization because of the decomposition Py (y | ) = >, Pre(u |
2)Ps(y | u, x). From this expression, if the P, (u|z) > 0 and P, (u|z) = 0, then the model cannot
learn Py,.(y | u,x) for those u vales during training. This leads to challenges in generalization
because the model encounters previously unseen confounding patterns at test time.

4  «-PREDICTIVE SUFFICIENCY FOR OOD GENERALIZATION

In this section, we use the notion of maximizing predictive information as the target metric for OOD
generalization under hidden confounding shift. We then define the notion of a-predictive sufficiency
(Definition 4.2) as a proof concept that relates to this target metric, and using the decomposition
results recently proposed by Gowtham Reddy et al. (2025), we prove that achieving a-predictive
sufficiency is the key to achieve generalization under hidden confounding shift (Proposition 4.1).
We will leverage these insights to explain the success of boosting methods for OOD generalization
under the hidden confounding shift. We begin by formally defining predictive information.

Definition 4.1 (Predictive Information). The predictive information between true outputs Y and
model predictions Y is defined as the mutual information I(Y;Y).

In a recent work, Gowtham Reddy et al. (2025) show that predictive information can be de-
composed into a combination of various terms such as variation (I(¢(X); E | Y)), feature shift
(I(¢p(X); E)), label shift (I(Y; E)), concept shift (I(Y; E | ¢(X))), conditional informativeness
(I(p(X);Y | E)), and residual (I(¢(X);Y | Y)). Furthermore, under the hidden confound-
ing shift, the decomposition simplifies further and the predictive information can be represented in
terms of conditional informativeness and residual:

I(V;Y) =I(Y;6(X) | E) = I(Y;¢(X) | Y), (1)

Minimizing the residual term implies that all the information contained in ¢(X) is utilized by the
function f so that no residual information is left in ¢(X). Conditional informativeness motivates
maximizing the mutual information between representations and labels within each environment
corresponding to the reference class induced by hidden confounder values. Model architectures
such as boosting trees and MoE are especially good at modeling such environment-specific require-
ments (Wu et al., 2024b; Prashant et al., 2025; Li et al., 2023). Our goal in this work is to explain this
puzzling empirical phenomenon and provide a better theoretical understanding of the mechanisms
behind the success of boosting methods. A key technical quantity we use towards this goal is the
information-theoretic notion of a-predictive sufficiency, formally defined below.
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Definition 4.2 («-Predictive Sufficiency). For o > 0, a prediction Y is a-predictive sufficient for
Y across environments E if the mutual information between prediction error Y —Y and E given
predictionY is less than or equal to aie., Y —Y;E|Y) < a.

Intuitively, O-predictive sufficiency implies that the prediction error Y — Y is independent of E for
each outcome value Y. Since F encodes the information about U (a direct parent of Y'), achieving
predictive sufficiency implies that the predictor Y relies on X and Y through model training to
implicitly account for the impact of U. This helps in learning a robust predictor capable of OOD
generalization.

As a special case where f is an identity function, i.e., Y = (fo¢)(X) = ¢(X) and o = 0, predictive
sufficiency is equivalent to the concept shift I(Y; E | ¢(X)). That is, under this special case,
predictive sufficiency implies concept shift and hence invariance. Minimizing concept shift is known
to be a primary factor for performance improvements (Liu et al., 2023; Gowtham Reddy et al., 2025).
While a-predictive sufficiency is inspired by the notion of c-approximate multicalibration, we note
that a-predictive sufficiency is a stronger condition than a-approximate multicalibration (Globus-
Harris et al., 2023; Wu et al., 2024a). That is, predictive sufficiency implies multicalibration, but not
vice versa. As a first technical result, we prove that a-predictive sufficiency naturally relates to the
predictive information in the following proposition.

Proposition 4.1. For a covariate vector X, label Y, with causal structure X — Y, an environment

variable E, a feature extractor ¢, and prediction Y, a-predictive sufficiency of Y for'Y across
environments I can be expressed as follows:

Y =Y E|Y) = —1(Y;¢(X) | BE.Y) + 1(Y;0(X) | V) + I(Y; E | $(X)). 2

Proofs of theoretical results are presented in Appendix § A. It follows from the causal graph in Fig-

ure 1 that I(Y;¢(X) | E,Y) < I(Y;¢(X) | E). This is because conditioning reduces mutual
information unless the conditioned variable opens any spurious path between Y and ¢(X). Hence

I(Y;¢(X) | E,Y) is a lower bound on the conditional informativeness. Thus, we note the crucial
observation: achieving a-predictive sufficiency can therefore be viewed as maximizing predictive
information under the hidden confounding shift. Building on this observation, we will next show
that boosting can return a predictor that is a-sufficient for Y—thereby explaining the OOD general-
ization behavior of the boosting methods.

5 BOOSTING RETURNS «-PREDICTIVE SUFFICIENT PREDICTOR

In this section, we leverage the insights from the previous section to argue that boosting returns -
predictive sufficient predictor. On a mechanistic level, boosting has weak learning as its primitive.
Crucially, boosting iteratively combines several weak learners to form a strong learner. There are
several notions of weak learning (Natekin & Knoll, 2013; Schapire & Freund, 2013; Mayr et al.,
2014; Bentéjac et al., 2021; Globus-Harris et al., 2023; Wu et al., 2024a), but on an intuitive level, a
weak learner is a learner that performs slightly better than random guessing or a constant predictor.
In the same spirit, we begin by defining an information-theoretic weak learner below. Let H be a
hypothesis space with a set of hypothesis functions of the form h : X — R;h € H.

Assumption 5.1 (v-approximate weak learner). For any environment e € &, we assume that the
hypothesis class H satisfies the y-approximate weak learning condition in the sense that whenever
the Bayes predictor Y*, defined as Y*(X) = P(Y | X), yields strictly more predictive information
than a baseline predictor c. by a margin v, i.e.,

IY;Y" | X €e) > k(ce) +7.

where k(c.) := I(Y;c. | X € e). Then, there exists an h € H that yields strictly more predictive
information than a baseline predictor cg by the same margin v, i.e.,

I(Y;h(X) | X €e) > k(ce) + 7.

In Assumption 5.1, k(c.) = 0 for a constant predictor c.. In what follows, we consider the constant
predictor c. as a baseline predictor. Intuitively, a hypothesis class H satisfies y-approximate weak
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Algorithm 1 Standard boosting algorithm

Require: Step size 7, base predictor Yo, hypothesis class #, reweighting rule to obtain D,

1: Initialize Yo — hg,t <0 > hg is often a constant predictor
2: while training error decreases do

3 Find weak learner h;1 € H that maximizes I(Y’; hy11 (X)) under distribution D;

4: Update predictor: Ytﬂ — Y, + Nhiy1(X)

5 Update distribution D, using the reweighting rule and increment ¢ by 1.

6: end while

learning condition if one can find a predictor h € H that weakly improves the predictive information
compared to the lower bound of v on the irreducible predictive information of the Bayes predictor.
We next state some standard assumptions before stating our main result.

Assumption 5.2 (Existence of reweighted distributions). At each round t, the exists a p € (0,1)
such that the boosting algorithm chooses reweighted distributions D¢(v) (e.g., based on model out-

puts/level sets) such that P(Y; = v) > p for all t.

Assumption 5.2 avoids degenerated reweighting at each step and ensures non-trivial information is
gained at each round ¢ when combined with Assumption 5.3 as described below. Following Globus-
Harris et al. (2023); Wu et al. (2024a), given any environment F', we assume access to a local oracle
as described below.

Assumption 5.3 (Local Oracle). For any environment e € &, there exists an oracle Ay, that returns
a hypothesis function h' € H such that the following holds:

B € argmax I(Y;h(X) | X € e)
heH

Assumption 5.4 (Strong learner is a deterministic function of weak learners). At any round t, Y, is
a deterministic function of (hg, . .., ht).

Assumption 5.4 is required to decompose the predictive information I(Y; Y) into contributions
from each weak individual learner. In practice, this assumption holds as the models are usually
deterministic once they are trained.

For our analysis, we consider the standard boosting algorithm described in Algorithm 1. We now
show that this boosting algorithm can return an a-predictive sufficient predictor after training for a
certain number of time steps.

Theorem 5.1. Under Assumptions 5.2-5.4, there exists a finite T < oo such that the predictor Y,
learned by Algorithm I after t > T' rounds is a-predictive sufficient. The lower bound is given by

_— H(Y)—H(Y |X,E)—a—I(Y;Y)
B Py '

When the environment E is unknown, the same result holds by setting H(Y | X, E) = 0.

In particular, Theorem 5.1 guarantees that the iterative boosting algorithm converges in finite number
of iterations, and lead to the a-sufficient predictor.

We now prove the correspondence between a boosting model’s leaf embeddings and the hidden
confounder variable U. Since leaf embeddings in boosting model correspond to both outcome and

input representations, we show how boosting achieves H(U | YT) < ¢ for some 6 > 0 such that

after the time step 7, the uncertainty in U given the predictions Y7 is less than or equal to §. We
start with the assumption below.

Assumption 5.5. We assume that [(U;Y) > ¢- I(Y;Y) for some ¢ > 0.
From the causal graph shown in Figure 1, there exists a causal path from U to Y and hence there

always exists a ¢ > 0 that satisfies the Assumption 5.5. Another way of interpreting the Assump-
tion 5.5 is that partial information about Y must come from U, which is true from the causal graph 1.
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Corollary 5.1. Under the Assumptions 5.2-5.5, there exists a finite T'" < oo such that the predictor
Y, learned by Algorithm 1 after t > T rounds satisfies HU | Yt) < 0 for a small 6. The lower
bound on T is given by
H(U) =6 —c-1(Y;Yp)

copory

T =

6 EXPERIMENTAL RESULTS

We perform experiments on both synthetic and real-world datasets to empirically explain how boost-
ing excels at OOD generalization under hidden confounding shifts. Specifically, we compare the
performance of boosting methods in terms of performance, predictive information, and predictive
sufficiency. Code to reproduce the results is presented in the supplementary material. Additional
results are presented in Appendix § B.

Methods: We experiment on two standard
boosting algorithms:  CatBoost (Dorogush
et al., 2018) and XGBoost (Chen & Guestrin,

CatBoost (#estimators=100, max depth=10)
ID MSE=2.495, OOD MSE=2.702
ARI(U,¢(X))=0.730, NMI(U,¢(X))=0.842

2016). We use t-SNE (Maaten & Hinton, 2008) L g
and PCA (Abdi & Williams, 2010) as dimen- = _' L XxaE !: = El
sionality reduction methods for visualizations. . EE R : " £
We perform hyperparameter tuning to choose ; s x '.'.'_-.. -;‘.'.: x % x 4o*§
the best model when comparing the perfor- B e x * x b
PR R Tt THE Rl 20 @
mance of models. R e T e g
x ¥y fgEgggx °
Evaluation Metrics: We consider the test ac- e r TR <
curacy to evaluate the performance of models . rxxk il B
in a classification setting, and test mean squared x .'_- i >
error (MSE) in a regression setting. We use the Rl

Adjusted Rand Index (ARI) and the Normal-
ized Mutual Information (NMI) to evaluate the
goodness of clustering (usually with respect to
the hidden confounding variables in synthetic
data). We evaluate predictive sufficiency and predictive information and compare the performance
of models related to these measures. We use the nonparametric entropy estimation toolbox (Kraskov
et al., 2004; Steeg & Galstyan, 2011; 2013) to evaluate corresponding mutual information terms.

Figure 2: CatBoost representations with respect to
hidden confounder value.

Synthetic Experiment 1: We use linear structural tSNE

equations to generate synthetic data following the Ty, v Usngx
causal graph: U — X, U — YV, X — Y, U ~ - v e
N (pte,0¢) where e € {1,2,...,10}, p, is sampled ol ¥

randomly between —50 and +-50, and o is set to 0.5. W

Each environment has 500 samples. We shift . by a z M v

small fraction to induce a distribution shift where the 2004 Vg v

test data lives. We train CatBoost and XGBoost on 100

this dataset. To get the representations from these ol p A Ay
boosting methods, we obtain leaf embeddings for 060 065 070 075 080 085 090 095 100

ARI
each data point as a vector of length d, where d is . .
the number of trees in the model. We observe that Figure 3: XGBoost ARI vs. MSE. Markers

models that achieve low MSE are those whose rep-

resentations are aligned with hidden confounder values. As shown in Figure 2, the clusters of
representations of a trained CatBoost model align with the hidden confounder value. For similar vi-
sualizations for various combinations of dimensionality reduction techniques, values of the number
of estimators (trees), and the maximum depth hyperparameters of CatBoost and XGBoost models,
see the results in Figures B1-B4 in Appendix B.

indicate results for different random seeds.

Synthetic Experiment 2: Next, we consider a causal graph of Uy — X, U; —» Y, X —» Y, Uy —
S, Uy = Y, Ur ~ N(pe,0¢), Uz ~ N (s, 0r). We generate 10 environments, each containing 50
samples. Note that S does not causally influence the outcome Y. When XGBoost is only trained
with X as input, it fails to capture the underlying shifts in hidden confounder values because neither
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Figure 4: California housing dataset. XGBoost model representations are clustered according to
hidden confounder values. There is a common confounder support between the train and test data.
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Figure 5: 20 Newsgroups dataset. XGBoost model representations are clustered according to the
hidden confounder values. There is a common confounder support between the train and test data.

U; nor S are observed during training; see Figure 3 where ARI is low and MSE is high. How-
ever, when XGBoost is trained using both X and S as inputs, we observe low MSE and high ARIL
This result explains the observed phenomena that adding additional covariates helps in generaliza-
tion performance as observed in (Nastl & Hardt, 2024). Any covariate that acts as a proxy for an
unobserved confounder helps improve generalization performance.

Real-world Data - California Housing Dataset: In this dataset, the goal is to predict the me-
dian house price based on the features median income, house age, rooms, bedrooms, population,
occupancy, latitude, longitude. We simulate an artificial hidden confounding shift using observed
covariates and the outcome. Specifically, we use a combination of the values of median income,
house age, and median house price to induce a distribution shift. Notably, we ensure that the values
of hidden confounders at test time belong to the set of hidden confounder values at train time (As-
sumption 3.1). The results in Figure 4 clearly show clustering of PCA representations of XGBoost
leaf embeddings with respect to hidden confounder values.

Real-world Data - 20 Newsgroups: The goal is to predict the news category of a document from its
raw text. Documents are vectorized using TF-IDF and subsequently reduced with Truncated SVD
to have 200 features. We simulate an artificial hidden confounding shift between train and test data
using a combination of features such as document length, keyword indicator, and the outcome (class
index). Similar to the previous experiment, we ensure that the common confounding support (As-
sumption 3.1) holds. Figure 5 shows a clear association between clustering of PCA representations
of XGBoost leaf embeddings and the clusters associated with hidden confounder values.

Table 1: Comparison of XGBoost and CatBoost on real-world datasets.

| California Housing | 20 Newsgroups

Method | MSE Pred. Info.  Pred. Suffi. | Accuracy Pred. Info.  Pred. Suffi.

XGBoost | 0.31+£0.00 0.47+0.03 0.00+0.00 | 62.354+0.40 0.27+£0.10 0.03+£0.00
CatBoost | 0.29+0.00 0.56+0.10 0.00+0.00 | 62.61 £0.00 0.68+0.08 0.00=+0.00
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Comparison of Performance and Predictive Information: Finally, we compare the performance
of XGBoost and CatBoost and observe the underlying predictive information and predictive suffi-
ciency values. It is evident from the results, shown in Table 1, that higher predictive information im-
plies better performance, and a lower predictive sufficiency value means better performance. These
results corroborate our theoretical claims.

7 LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

We reframed OOD generalization under hidden confounding as a reference-class inference prob-
lem and introduced a-predictive sufficiency as an information-theoretic target that characterizes
when predictors transfer across environments. We prove that standard boosting algorithms return
a-predictive sufficient predictors in finitely many rounds, thereby implicitly inferring environments
and maximizing predictive information, explaining their strong OOD behavior beyond variance re-
duction or feature selection alone. Empirically, across synthetic and real-world tabular tasks, boost-
ing’s learned representations cluster by hidden confounders and achieve high predictive information
with low predictive-sufficiency residuals, aligning with the theory and yielding robust OOD perfor-
mance. These results provide a principled account of why boosting often outperforms specialized
OOD methods. We see this work as a foundation for new OOD algorithms that estimate or regu-
larize «, relax common-support assumptions, and extend predictive-sufficiency guarantees beyond
tabular settings.
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APPENDIX

A PROOFS OF THEORETICAL RESULTS

Proposition 4.1. For a covariate vector X, label Y, with causal structure X — Y, an environment

variable E, a feature extractor ¢, and prediction Y, a-predictive sufficiency of Y for'Y across
environments I can be expressed as follows:

I(Y =Y;E[Y) = -1(Y;¢(X) | E,Y) + 1(Y;¢(X) | V) + I(Y; E | ¢(X)). ()

Proof. 1t follows directly that

I(Y,¢(X)|Y)+I(

= I(Y;¢(X) | V) + I(Y,Y; E | $(X)) - I(Y; E | $(X )) I(Y;¢(X) | B,Y)
= I(Y;6(X) | V) + 1(Y; E | $(X)) + I(Y; E | (X )Y) -1y ;0(X) | E,Y)
= 1(Y;9(X) | V) + I(Y; E| (X)) — [(Y; 6(X) | B,Y).

From the causal graph in Figure 1, we have Y 1L E | ¢(X). Hence I(Y; E | ¢(X)) = I(Y; E |
#(X),Y) = 0 in the proof above.

Theorem 5.1. Under Assumptions 5.2-5.4, there exists a finite T < oo such that the predictor Y,
learned by Algorithm I after t > T rounds is a-predictive sufficient. The lower bound is given by

H(Y)— HOY | X, E) — o~ I(Y:Y))
Py '
When the environment E is unknown, the same result holds by setting H(Y | X, E) = 0.

T =

Proof. From Assumption 5.4, )A/T is a deterministic function of (hg,hy,hs,..., hy), and

I(Y;Yy) = I(Y; ho) because Y; is initialized to hg before boosting training loop. Now we have the
following:

T
I(Y;Yr) < I(Yiho, ... hr) = I(Y;Y0) + Y I(Yihe | by, hyy) 3)
t=1

Consider any round ¢ > 1, and let S := (hq,...,hs—1). Then, we have
I(Y5he | S) =Es[I(Yihe | S =) =Es[I(Yihe | § = s)lses,] 2 p-7- “4)
From Equations (3) and (4) we have the following.
I(Y;Yy) <I(Y;Yo)+T-p-y ®)
GivenY,Y —Y and Y have one-to-one correspondence. Hence, it follows that: I(Y —Y; E | V) =
I(Y;E | Y). We next use the following simple upper bound on I(Y; E | Y7):
I(Y;E |Yr) = H(Y | Yr) = H(Y | Y7, E) < H(Y | Y1), (©6)

and hence I(Y; E | Yy) < H(Y | Y7). Furthermore, since H(Y | Y7) = H(Y) — I(Y; Y1), we
have: I(Y;E | Yr) < H(Y) — I(Y;Yr). Now to get [(Y; E | Y1) < a, it is sufficient to have
H(Y) - a < I(Y;Yr), and following from Equation 3, it follows that
I(Y:Yo)+ T p-y 2 HY) -
H(Y)—a—I(Y;Y)
P '

T>

14
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We argue that the our claim will hold if we can show that 7" is some finite integer. However,
it is easy as the right hand side in the above expression is bounded from above by % €
R, and hence from the Archimedean property of the real numbers, we can always find aT € N
for which the property holds, thereby arguing the existence of the iteration step 7" for which the

boosting algorithm achievesAthe argued a—p{edictive sufficiency. Furthermore, we recall from 6,
I(Y;E | AYT) = H(YA| Yr) — H(}/ | Yr, E) Without removing the term with E, we have
IY;E | Yr)=H(Y |Yr) - H(Y | Yr, E) = H(Y) = I(Y;Yr) = H(Y | Y1, E).
Now to get I(Y; E | Y7) < o, it is sufficient to have H(Y) — H(Y | Y7, E) —a < I(Y; Yr)
I(Y;Yo) + Tpy > H(Y) = H(Y | Y7, E) —
H(Y)-H(Y |Y7,E) —a—I(Y;Y))
p-7

T>

To avoid the dependence on Y7, we can replace H(Y | Yy, E) with its lower bound H(Y | X, E)
and still have a valid bound as below.

HY)-H(Y | X,E)—a—I(Y;Y)
P

T>

O

Corollary 5.1. Under the Assumptions 5.2-5.5, there exists a finite T'" < oo such that the predictor

Y, learned by Algorithm 1 after t > T rounds satisfies H(U | SA/t) < 0 for a small 6. The lower
bound on T is given by

H(U) =6 —c-1(Y;Yp)
-

T =

Proof. From the proof of the Theorem 5.1, we have the following:
I(Y;Y7) > I(Y;Y) +T-p-y (7)

From Assumption 5.5, we have the following:

IU;Yr) > c- (I(Y:Yo) + T -p-7) ()
H(U | Yr)=HU) — I(U;Yr) < HU) — - (I(Y;Yo) +T - p- ) 9)
(10)

To ensure H(U | Y7) < 4, it is enough to ensure H(U) — ¢ - (I(Y;Yy) +T - p-~) < 8. Solving
this for 7" implies the desired inequality below:

H(U) =6 —c-1(Y;Y))
C‘p.ry

T>

(1)

O

B ADDITIONAL EXPERIMENTAL RESULTS

Figures B1- B4 show the results with respect to various choices of hyperparameters, dimensionality
reduction methods, and metrics. A key takeaway from these results is that better clustering with
respect to hidden confounders is consistently associated with better performance. This explains the
reason behind the success of boosting methods. Figure B5 shows ID and OOD MSE for different
values of distribution shifts. Since high distribution shifts cannot satisfy the common confounder
support assumption, the generalization performance drops significantly due to large shifts in data
distribution. Figure B6 shows performance comparison of XGBoost and CatBoost with invariant

15



Under review as a conference paper at ICLR 2026

t-SNE (n=10, d=1) t-SNE (n=10, d=5) t-SNE (n=10, d=10) t-SNE (n=10, d=15)
1D=51.605, 00D=47.235 ID=5.675, 00D=5.904 ID=3.579, 00D=3.780 1D=3.404, 00D=3.746
ARI=0.633, NMI=0.791 ARI=0.602, NMI=0.776 ARI=0.699, NMI=0.834 ARI=0.667, NMI=0.796
* = 3 ' = s o
. s = . ll . z
3 . = s " x = =gz 2
z = a2 z x = z " E g =
= . = = =gy =oazx "
T = 4 = 4 = =z *
= 4% s = ay s s s =
£ M : wra T L 1 2s ¥ }\. =
Ak z 2 Q. = Ry = 2 s
. A s aom g%, PN o
z = = = n = z =
= x = P = z =
2 L z z =]
x . 3= 2 LI
z - = =z g x
T = = z = z z
t-SNE (n=20, d=1) t-SNE (n=20, d=5) t-SNE (n=20, d=10) t-SNE (n=20, d=15)
1D=38.523, 00D=33.034 1D=3.249, 00D=3.382 ID=2.768, 00D=2.907 1D=2.704, 00D=2.892
ARI=0.630, NMI=0.792 ARI=0.754, NMI=0.856 ARI=0.677, NMI=0.826 ARI=0.757, NMI=0.844
- = x "L " l. =", * l- g S
x x x
= = z l. 5 z X = llll......l
- = = s x . gn TP aa®a
= : " = . nE . sz 2% L T
., . s Saax, x "suxgzaz’s
. e Lttt . LRl I 5 ] L T L 10
. . Lna -'xx;.-"..' EI FELE)
. PR R A P S
N n %y, Tt A% .
s ng W, aattet 13,
L Txat, T awg s 30
. ~ x5, &
= z P z ox LR Sk T
ix z =
PR =%,
= T LI ) Toaom
t-SNE (n=50, d=1) t-SNE (n=50, d=5) t-SNE (n=50, d=10) t-SNE (n=50, d=15) 20
1D=22.176, 00D=18.064 ID=2.561, 00D=2.685 ID=2.511, 00D=2.712 1D=2.495, 00D=2.716
ARI=0.724, NMI=0.854 ARI=0.718, NMI=0.846 ARI=0.663, NMI=0.811 ARI=0.652, NMI=0.794
= = T g z s
= z s 2 z
z 2 z N B Rt . 3 e tra TR 10
1 =® x pXakg® gn ¥, sxz s ax,
z . z L] =, ,.l' ' lll.llllll.lllllll
z = 3 = = B X EE g% =
. x AR 3. x
= - x " aglfgrtoa ot R Sy L matrm R T,
= 2 x zxpPlyz =, LS T Y /1 R ) PR e L 0
. :A . s Tttt R trnanigfic 10N CER T Thd Pr b
2 £t ot aats 2 xxaslalisx So LR L r ]
A PRI x = sasndy PR R AT
v = B aprriada PR e
' a =z LIt ] B anptay
z I - . ER Sy T e -10
. " RS *ata}
: s " L 2 laags
LI x ')
: N
t-SNE (n=100, d=1) t-SNE (n=100, d=5) t-SNE (n=100, d=10) t-SNE (n=100, d=15)
1D=9.792, 00D=10.622 ID=2.534, 00D=2.703 ID=2.495, 00D=2.702 1D=2.487, 00D=2.721
ARI=0.767, NMI=0.879 ARI=0.680, NMI=0.826 ARI=0.730, NMI=0.842 ARI=0.595, NMI=0.767
a a * ) :
L zx
T - =x =, z! z%a
2 x 2
. . Srrxy YL sEkg2 PR AT N
* - L LR Tl LT i spSagzn
- U] ity LR o N e iy r
= & = T2t LAt L )£ 2 aytaaiis s
P s ® LR Uy gy R LRyl T T
z = % z EzxWza Txg Tz Ny t-1]
z 2 Ttady ag % P YTy I P nA L Tt LEY
e L R B L1 L LT
x 8% mzag f llll..ll...lll x'.lll xiza l'.-.l' =
2% iy} 2 Egazais 1glny
x Pt agxatiy ® Rx iaaaliaiiraxa
= ML By L A L
= "z s s T, gsax® 2%
= o, s 2 = gis
= u n z? am =

Figure B1: Results on CatBoost method. Dimensionality reduction is done using t-SNE. Results
show the goodness of clustering with respect to the hidden confounder value. Above each subplot,
clustering metrics: ARI, NMI are reported along with hyperparameter choices, ID, and OOD MSE
values.

risk minimization (IRM) (Arjovsky et al., 2019) and group DRO (Sagawa et al., 2019). We consider
the same setup as the synthetic experiment 2 presented in the main paper, where the causal graph is:
U - XU, =Y X —>Y U — S., Uy =Y, U ~ N(ue,ae), Us ~ /\/'(,uf,af). When Ol‘lly X
is used as input, we observe that XGBoost and CatBoost perform better than IRM and GroupDRO,
indicating that boosting methods are effective under a hidden confounding shift. When we use
both X, .S as inputs, only GroupDRO performs on par with boosting, while IRM still performs
worse. This also shows that invariance learning is insufficient for generalization under a hidden
confounding shift.
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Figure B2: Results on CatBoost method. Dimensionality reduction is done using PCA. Results
show the goodness of clustering with respect to the hidden confounder value. Above each subplot,
clustering metrics: ARI, NMI are reported along with hyperparameter choices, ID, and OOD MSE
values.
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Figure B3: Results on XGBoost method. Dimensionality reduction is done using t-SNE. Results
show the goodness of clustering with respect to the hidden confounder value. Above each subplot,
clustering metrics: ARI, NMI are reported along with hyperparameter choices, ID, and OOD MSE
values.
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Figure B4: Results on XGBoost method. Dimensionality reduction is done using PCA. Results
show the goodness of clustering with respect to the hidden confounder value. Above each subplot,
clustering metrics: ARI, NMI are reported along with hyperparameter choices, ID, and OOD MSE
values.
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Figure B5: Performance of XGBoost for different shift factor values. Colors indicate different
combinations of number of trees, number of samples in each domain, and depths of trees.
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Figure B6: Comparison with OOD generalization methods.
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