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Abstract

Estimating the 3D pose of hand and potential hand-held
object from monocular images is a longstanding challenge.
Yet, existing methods are specialized, focusing on either
bare-hand or hand interacting with object. No method
can flexibly handle both scenarios and their performance
degrades when applied to the other scenario. In this pa-
per, we propose UniHOPE, a unified approach for general
3D hand-object pose estimation, flexibly adapting both sce-
narios. Technically, we design a grasp-aware feature fu-
sion module to integrate hand-object features with an ob-
ject switcher to dynamically control the hand-object pose
estimation according to grasping status. Further, to up-
lift the robustness of hand pose estimation regardless of
object presence, we generate realistic de-occluded image
pairs to train the model to learn object-induced hand oc-
clusions, and formulate multi-level feature enhancement
techniques for learning occlusion-invariant features. Ex-
tensive experiments on three commonly-used benchmarks
demonstrate UniHOPE’s SOTA performance in addressing
hand-only and hand-object scenarios. Code will be released
on https://github.com/JoyboyWang/UniHOPE_Pytorch.

1. Introduction
Estimating the 3D pose of hand and potential hand-held
objects from monocular images is a long-standing task with
applications in VR/AR, human-computer interactions, etc.

However, existing methods are divided. As Fig. 1 illus-
trates, hand pose estimation (HPE) methods [5, 9, 25, 36,
39, 49, 64] predict the 3D hand pose without considering the
hand-held object. Conversely, hand-object pose estimation
(HOPE) methods [18, 19, 31, 32, 47] assume the presence of
a hand-held object and perform object pose estimation with
an extra object branch. Yet, they always make predictions
even there is no object. Neither approach offers the flexibility
to consider both hand-only and hand-object scenarios.

Tab. 1 provides a detailed analysis of the performance
of state-of-the-art (SOTA) HPE methods [39, 49, 64] and
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Figure 1. Existing approaches (top) for 3D hand pose estimation
are either Hand Pose Estimation (HPE), which predicts hand pose
only, or Hand-Object Pose Estimation (HOPE), which assumes
hand-held object. Our novel UniHOPE approach (bottom) offers
flexibility and robustness to handle both scenes in a unified manner.

HOPE methods [18, 31]. We observe an obvious perfor-
mance degradation when these methods are applied across
different scenes (see “Hand-Only↔Hand-Object Scene”)
due to their task-specific designs. Though training on all
scenes helps, it negatively impacts their original task perfor-
mance (see “All→Hand-Only/Hand-Object Scene”), reveal-
ing their limited generalization capabilities. This observation
motivates the need for a unified approach that can adapt ef-
fectively to both hand-only and hand-object scenes.

In this work, we present UniHOPE, the first method to
unify HPE and HOPE by addressing (i) basic criteria: adap-
tively switch between two scenes; and (ii) advanced criteria:
robustly estimate hand pose regardless of object presence.

First, to meet the basic criteria, we propose that the hand
pose must always be predicted regardless of whether the
hand is grasping an object or not, while the object pose
should be estimated only if the object is present. Though a
straightforward solution is to manually select existing SOTA
HPE and HOPE methods according to the input scene, this
approach is suboptimal, as switching between models leads
to incoherent results and prevents joint optimization for one
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HPE Hand-Only Scene Hand-Only → Hand-Object Scene All → Hand-Only Scene All → Hand-Object Scene

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
HandOccNet [39] 12.98 12.52 19.60 (-6.62) 18.95 (-6.43) 13.16 (-0.18) 12.70 (-0.18) 14.58 14.10
H2ONet [49] 13.34 13.13 21.98 (-8.64) 21.42 (-8.30) 14.14 (-0.80) 14.00 (-0.87) 15.20 15.03
SimpleHand [64] 14.05 13.51 18.37 (-4.32) 17.54 (-4.03) 14.63 (-0.58) 13.96 (-0.45) 14.88 14.21

HOPE Hand-Object Scene Hand-Object → Hand-Only Scene All → Hand-Object Scene All → Hand-Only Scene

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
Keypoint Trans. [18] 17.99 17.57 25.10 (-7.11) 24.40 (-6.83) 18.79 (-1.00) 18.35 (-0.78) 19.75 19.26
HFL-Net [31] 14.61 14.13 19.39 (-4.78) 18.61 (-4.48) 14.77 (-0.16) 14.29 (-0.16) 13.61 13.10

Table 1. Existing HPE methods trained on hand-only scene exhibit obvious performance degradation when testing on hand-object scene
(1st vs. 2nd columns). Though training on all scenes (3rd & 4th columns) helps to improve metrics on the hand-object scene (2nd vs. 4th
columns), their original performance is adversely affected (1st vs. 3rd columns). The HOPE methods also exhibit a similar pattern (see
bottom part). These results demonstrate the inabilities of the existing methods to flexibly handle hand-only and hand-object scenes altogether.

model to work on both scenes. Importantly, we design an
end-to-end method that dynamically controls object pose
estimation through an internal object switcher by estimating
the confidence of the grasping status, thereby promoting com-
patibility with various scenarios. However, solely adopting
existing network architectures along with our object switcher
encounters another issue caused by the commonly-used hand-
object information interaction structure [31, 32, 45]. When
no object is present, extracting object features is unnecessary,
so irrelevant object-to-hand feature transitions compromise
hand pose estimation accuracy. To overcome this issue, we
formulate a grasp-aware feature fusion module to utilize
grasping confidence to select effective object features in
hand-object feature fusion.

Second, the advanced criteria emphasize coherent and
robust hand pose estimation, regardless of whether the hand
is grasping an object or not. As hand-held objects frequently
cause severe occlusions, it is essential to learn occlusion-
invariant features to accurately recover hand poses. Ideally,
the feature of a non-occluded hand serves as the optimal
representation for an occluded hand with the same pose,
as it simplifies the prediction difficulty. To facilitate this,
we propose training the model by transferring knowledge
from the corresponding non-occluded hands to the occluded
ones. Due to the scarcity of such paired data, we innovatively
leverage diffusion-based generative models to create realistic
de-occluded hand images from the originally-occluded ones.
Subsequently, we adopt multi-level feature enhancement
techniques to help the network simulate occlusion-invariant
features by utilizing information from the de-occluded hand
images in a self-distillation framework.

Our main contributions are summarized as follows:
• We demonstrate the necessity for a unified solution to

hand-object pose estimation and propose UniHOPE, a
novel approach to handle general hand-object scenarios.

• We design an internal object switcher that provides flexi-
bility across different scenes and formulate a grasp-aware
feature fusion module to adaptively utilize the effective
object information based on grasping status.

• We propose an occlusion-invariant feature learning strat-

egy for robustness, first using a generative de-occluder to
prepare paired de-occluded hand images and then applying
feature enhancement at multiple levels.

• Extensive experiments on three widely-used datasets in our
unified setting show the SOTA performance of UniHOPE.

2. Related Work
Monocular 3D Hand Pose Estimation (HPE). Most
methods formulate HPE by regressing MANO coeffi-
cients [2–4, 10, 51, 57, 60–63, 65]. Other common rep-
resentations include voxels [26, 36, 37, 52], implicit func-
tions [25], and meshes [8, 9, 29, 49, 64]. While they achieve
superior performance in predicting hand poses, they do not
account for object pose estimation during hand-object inter-
actions, which is critical for practical applications.
Monocular 3D Hand-Object Pose Estimation (HOPE).
To jointly estimate the hand and object poses simultaneously,
recent works can be categorized into two main streams: (i)
Template-free methods reconstruct objects without know-
ing their 3D models. Hasson et al. [19] recover the object
mesh from a deformed icosphere. Tse et al. [45] propose
to optimize hand and object meshes iteratively. More re-
cent works leverage implicit [11, 12, 24, 54, 56] or neural
fields [13] to represent the hand and object; yet, these meth-
ods often struggle to accurately model unseen objects due to
limited data prior. (ii) Template-based methods assume the
3D object model is known, focusing on regressing its pose.
Liu et al. [32] proposes a semi-supervised learning approach.
Lin et al. [31] design a dual-branch backbone to leverage
mutual hand-object information. Though these methods pro-
duce promising results, they focus on the hand-object scene,
lacking the flexibility to handle the hand-only scenario.
Hand-Object Image Synthesis. Since we generate paired
de-occluded hand images for unified scenarios, we also re-
view methods for hand-object image synthesis. Rendering-
based methods [15, 19, 53] use common tools [1, 14, 35] to
render images as augmented data for HPE and HOPE tasks.
With the advance of generative models [16, 21, 42–44, 48],
recent methods generate more realistic data for various pur-
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Figure 2. Our UniHOPE framework. (i) We first de-occlude hand images occluded by objects to form pairs, conditioned on the depth map
and hand-object mask, with adaptive selection of control strength to produce high-quality samples; (ii) to accommodate both hand-only and
hand-object scenes, our object switcher dynamically controls the object output by predicting grasping status, which guides the feature fusion
module to eliminate irrelevant object features; and (iii) to robustly estimate hand pose, our multi-level feature enhancement techniques
utilize paired data to learn occlusion-invariant hand features.

poses, including image generation [22, 38, 59], object-prior
guidance [55], hand re-malformation [33], and training data
augmentation [40, 50]. In this work, we propose to gener-
ate paired de-occluded hand images to facilitate learning
occlusion-invariant hand features, thereby improving robust-
ness to handle both hand-only and hand-object scenes.

3. Method
3.1. Overview
Distinct from previous studies, we address a more general
scenario, i.e., the model always predicts hand pose, regard-
less of whether the hand is grabbing an object or not. If an
object is present, our model also estimates its pose.

Fig. 2 shows our UniHOPE pipeline. First, we propose to
dynamically estimate hand-object pose in an end-to-end man-
ner (see the red section in Fig. 2), where our object switcher
flexibly controls the output and our grasp-aware feature fu-
sion module integrates grasp-relevant object information
(Sec. 3.2). Next, to improve robustness against occlusions,
we first design our generative de-occluder to prepare high-
quality paired data by adaptively adjusting control strengths
(see blue section), which is then used to learn occlusion-
invariant features through our multi-level feature enhance-
ment techniques (see yellow section, Sec. 3.3). Finally, we
detail the loss functions used in our approach in Sec. 3.4.
3.2. Dynamic Hand-Object Pose Estimation
To accommodate both HPE and HOPE, it is essential to con-
sistently predict hand poses while estimating object poses
only when an object is present. Directly combining existing
HPE and HOPE methods is insufficient due to the incoher-
ence introduced by model switching and the lack of joint opti-

mization. In this section, we present our end-to-end dynamic
hand-object pose estimation approach. To flexibly control
the object output, we introduce an object switcher that pre-
dicts grasping status, trained with automatically-generated
labels. Further, we propose a grasp-aware feature fusion
module guided by the grasping status to prevent object-to-
hand irrelevant feature transitions when no object is present.
Grasping Label Preparation. To support model training,
we automatically prepare grasping status labels, as existing
datasets [6, 17] do not provide this information. Follow-
ing [50], we compute the isotropic Relative Rotation Error
(RRE) and Relative Translation Error (RTE) between the
object poses in the initial and current frames:

RRE=arccos(
trace(ξtR

⊤
ξ0R−1)

2
), RTE= ||ξtT − ξ0T ||2, (1)

where ξR ∈ R3×3 and ξT ∈ R3 denote the object rotation
matrix and translation vector, respectively. The superscripts
0 and t indicate the frame index. The object is labeled as
grasped if the computed errors exceed a defined threshold.
Object Switcher. With the prepared labels, we employ a
multi-layer perceptron (MLP) g(·) to predict the grasping
status from the object feature Fo

p, which is extracted by the
Feature Pyramid Network (FPN) [30] from the input image.
This process is supervised by the binary cross-entropy loss:

Ls=−
1∑

j=0

1(Ĝ = j) · log exp(g(Fo
p)j)∑1

k=0 exp(g(F
o
p)k)

, (2)

where Ĝ is the ground-truth grasping label and 1(·) is the
indicator function. During testing, the object pose estimation
branch is deactivated if predicted as non-grasping, providing
more accurate responses for hand-object interactions.



Grasp-aware Feature Fusion. Previous studies have
shown that feature interaction between hand and object can
effectively enhance performance in hand-object scenes [31,
32, 45]; however, such interaction can disrupt hand feature
learning in the hand-only scene due to the absence of objects
(see Tab. 1). To mitigate interference from irrelevant object
features, we design the grasp-aware feature fusion. During
training, the object feature Fo

r and the hand feature Fh
r pro-

duced by RoIAlign [20] are concatenated to form the feature
FH only when the object is predicted as grasped. Next,
FH is processed through a multi-head attention block [46],
resulting in the fused hand-object feature FOH :

FH = Concat(Fh
r , sF

o
r + (1− s)Fh

r ) and

FOH = Softmax(
FHFHT

√
dH

)FH ,
(3)

where s=Argmax(g(Fo
p)) indicates the predicted grasping

status. Concat(·) and Softmax(·) represent the concatena-
tion and soft-max operations along the channel dimension,
respectively. dH is the channel dimension of FH . This ap-
proach enables the network to flexibly toggle object outputs
while maintaining robust feature representations for the hand
across various scenes. Then, similar to [31], FOH is fed into
an hourglass-structured hand encoder to produce MANO-
related features and regress 2D hand joint coordinates.

3.3. Occlusion-invariant Feature Learning
Hands are frequently occluded when interacting with objects.
To achieve robust estimation, the extracted hand feature for
the same hand pose should be occlusion-invariant and irre-
spective of object presence. Given the fact that estimating
the bare hand pose is easier than that of the one occluded
by a held object, our key insight is to enable the network to
simulate the non-occluded hand features from the occluded
ones by transferring cross-domain knowledge. Thus, we
propose generating plausible de-occluded hand images as
pairs for training samples affected by object-caused occlu-
sions, employing an adaptive adjustment strategy for control
strength to maximize generation quality. Further, we design
multi-level feature enhancement techniques that leverage this
paired data to promote comprehensive hand feature learning.

Generative De-occluder. For occluded hand images, our
goal is to de-occlude by realistically removing the grasped
object while preserving the hand pose to create paired data.
Inspired by [33, 34], we utilize ControlNet [58], pre-trained
on synthetic hand images, to repaint the hand-object region
M guided by a rendered hand depth map D. Specifically,
following the latent diffusion model [42], the original image
X is first projected into latent space as x0 using a variational
auto-encoder [27]. We then follow the standard forward
diffusion process as outlined in [21]. In each reverse step
t ∈ {T, T − 1, ..., 1}, to preserve the known background

region (1 − M) ⊙ X, we can alternate the corresponding
feature using (1−m)⊙xt as long as maintaining the correct
properties of its distribution, as the transition from xt to xt−1

depends solely on xt, i.e.,

xbg
t−1 ∼ N (

√
ᾱtx0, (1− ᾱtI)), (4)

where m is downsampled from M for calculations in latent
space, and ⊙ is the element-wise product. N (·) denotes the
Gaussian distribution. ᾱt denotes the total noise variance
at step t, as defined in [44]. For the unknown hand-object
region M ⊙ X, we perform the reverse diffusion process
using the DDIM sampler [44], i.e.,

xho
t−1 = DDIM(ϵθ(xt,xmask,D)), (5)

where xmask is the latent feature masked by m. ϵθ(·) de-
notes the denoising model. Thus, the final expression of
xt−1 during one reverse step is:

xt−1 = m⊙ xho
t−1 + (1−m)⊙ xbg

t−1, (6)

which means xbg
t−1 is sampled using the known background

pixels, while xho
t−1 is sampled from the bare-hand data dis-

tribution. They are combined into the new xt−1 using the
hand-object mask, ensuring both consistency and realism.
After the iterative reverse process, the final denoised vector
x0 is sent to the decoder [27] to recover images from latent
features. We show examples of different occlusion condi-
tions along with their de-occluded counterparts in Fig. 3.

Adaptive Control Strength Adjustment. To balance con-
sistency with the condition and realism of the generated hand
images, the user often needs to manually adjust the control
strength parameter in the generative model. We visualize
some examples generated using different control strengths
in Fig. 4. In certain cases, such as the top row, too-small con-
trol strengths make the generated hand not align well with
the depth condition (see (a-b)), while overly-large strengths
result in unrealistic appearances (see (d)). Conversely, in
other cases like the bottom row, a large control strength is
needed to ensure correct hand anatomy (see (h)). There-
fore, a fixed control strength cannot be universally applied,
while manually setting the value for each case is impracti-
cal. To this end, we propose adaptively and automatically
adjusting the control strength to enhance generation qual-
ity. Specifically, we first define candidate control strengths
{s1, s2, ..., sn | 0 < si ≤ 1,∀i} and generate a de-occluded
image for each. Then, we employ a pre-trained hand recon-
struction model from [9] to estimate the 3D hand poses
from the generated images and evaluate the J-PE against the
ground truth. The generated sample with the lowest J-PE is
incorporated into the training process with the same ground-
truth labels as the original sample, e.g., (c) and (h) in Fig. 4
are selected. This approach maximizes the generation qual-
ity by selecting a proper control strength that best balances
realism and consistency for each case.
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Figure 3. De-occluded examples in various occlusion conditions.
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Figure 4. Visualization of our adaptive control strength adjustment.

Multi-level Feature Enhancement. Given the pair of
the original image and the corresponding generated image
(X,X′), our goal is to enhance the hand feature representa-
tion of X by leveraging information from X′. To achieve
this, we introduce pair-wise feature constraints within a sin-
gle network in a self-distillation manner. To holistically
enhance the capability of recovering occluded information
for hand, as shown in Fig. 2, we enhance hand features
throughout the hand branch at multiple levels: (i) The initial-
level feature Fh

i , extracted from the initial layer of the FPN,
captures the low-level information of the hand; (ii) the RoI-
level feature Fh

r , output from the FPN after the RoIAlign
operation, is utilized for adaptive fusion with the object fea-
ture; and (iii) the MANO-level feature Fh

m, extracted before
the MANO decoder, serves as the most pertinent feature
for regressing the MANO coefficients. Since the MANO-
level feature is at a relatively late stage, the occluded and
de-occluded counterparts may not always reside in a similar
feature space. Inspired by [7], we adopt a multi-head atten-
tion block h(·) as the adaptation layer to improve knowledge
transfer. Overall, the feature enhancement constraints are
formulated as the L1 loss between the features of X and X′:

Lenh
init = ||Fh

i − Fh
i

′||1, Lenh
RoI = ||Fh

r − Fh
r

′||1,
and Lenh

MANO = ||h(Fh
m)− h(Fh

m

′
)||1,

(7)

where features with primes belong to the generated image.

Occlusion-aware Case Filtering. During the knowledge
transition from the generated samples to the original ones,
we observe that the feature learning process may not benefit
if the original hand is already non-occluded. In this case,
the knowledge gap between de-occluded and occluded hand
features disappears, which causes the feature constraints
to focus on mitigating the sim-to-real domain gap, mak-
ing the original features close to the simulated ones, thus
yielding suboptimal performance. To address this issue, we
filter out non-occluded samples for paired feature enhance-
ment. Specifically, we compute the Intersection over Union
(IoU) of the provided amodal hand mask (considering object-
caused occlusions) and the rendered full hand mask as the
ground-truth occlusion proportion. During training, feature
constraints are exclusively applied to pairs whose original
occlusion proportion Ô exceeds a pre-defined threshold τ .

Furthermore, non-grasping samples are excluded as they
do not contribute additional information. Thus, the feature
enhancement is conducted only on grasping and occluded
samples, i.e.,

Lenh
∗ = 1((Ô ≥ τ) ∧ (Ĝ = 1)) · Lenh

∗ , (8)

where τ = 0.1 in our experiments. Lenh
∗ represents the

feature enhancement constraints at multiple levels.

3.4. Loss Functions
Our training loss includes regular hand and object losses
similar to [31], along with our object switcher loss Ls, and
feature enhancement constraints Lenh

init, Lenh
RoI , and Lenh

MANO.
First, the hand loss is computed as Lh=LJ+LV +LMANO,
where

LJ = ||J2D−Ĵ2D||2 + ||J3D−Ĵ3D||2,
LV =||V−V̂||2, and LMANO = ||(θ;β)−(θ̂; β̂)||2.

(9)

Here J2D, J3D, and V represent the 2D joint, 3D joint,
and 3D vertex coordinates, respectively. (θ;β) represent
the MANO coefficients. The hat superscript denotes the
ground-truth label.

The object loss Lo supervises the predictions of the 2D
location (projected from 3D object keypoints) and their cor-
responding confidences from image grid proposals [41], i.e.,

Lo =
∑

g

No∑

k=1

(||pg,k − p̂g,k||1 + ||cg,k − ĉg,k||1), (10)

where No is the number of keypoints in the 3D bounding
box of object mesh. pg,k and cg,k are the pixel location and
confidence value at the grid g and control point k, respec-
tively. The hat superscript denotes the ground truth. We
compute the object loss only for those grasping images, as
they contain the complete object for pose estimation.

Overall, the training loss is as follows,

Ltotal =
Lh + Lo + αLs

︸ ︷︷ ︸
sample-wise

+
γinitLenh

init + γRoILenh
RoI + γMANOLenh

MANO︸ ︷︷ ︸
pair-wise

(11)

where α and γ∗ are weights to balance the loss terms.



Methods All Scenes Hand-Only Scene Hand-Object Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
HandOccNet [39] 14.02 6.17 13.55 5.95 13.16 5.31 12.70 5.11 14.58 6.73 14.10 6.49
MobRecon [9] 15.02 6.71 13.93 5.91 14.43 5.88 13.45 5.15 15.40 7.25 14.24 6.39
H2ONet [49] 14.78 5.72 14.63 6.19 14.14 4.74 14.00 5.35 15.20 6.35 15.03 6.74H

PE

SimpleHand [64] 14.78 6.30 14.11 6.03 14.63 5.62 13.96 5.38 14.88 6.74 14.21 6.45

Liu et al. [32] 15.33 6.17 14.79 5.98 15.18 5.48 14.60 5.31 15.43 6.61 14.91 6.40
Keypoint Trans. [18] 19.16 7.70 18.71 7.96 19.75 7.59 19.26 7.98 18.79 7.77 18.35 7.94

H
O

PE

HFL-Net [31] 14.32 6.08 13.83 5.86 13.61 5.20 13.10 5.01 14.77 6.64 14.29 6.41

H2ONet† + HFL-Net† 14.12 5.83 13.75 5.83 13.29 4.70 13.08 5.06 14.66 6.55 14.18 6.33
H2ONet‡ + HFL-Net‡ 14.54 5.90 14.19 6.00 14.14 4.76 14.00 5.35 14.79 6.63 14.31 6.41
HandOccNet† + HFL-Net† 14.34 6.06 13.86 5.85 13.85 5.28 13.35 5.08 14.66 6.56 14.18 6.34
HandOccNet‡ + HFL-Net‡ 14.52 6.15 14.02 5.93 14.09 5.37 13.58 5.17 14.79 6.65 14.31 6.42U

ni
fie

d

UniHOPE (ours) 13.03 5.59 12.59 5.40 12.59 4.83 12.12 4.66 13.31 6.08 12.89 5.87

Table 2. Hand-pose estimation results on DexYCB. †: pre-trained in the original setting. ‡: re-trained in the unified setting. The best and
second-best are marked in bold and underlined. Our UniHOPE attains leading performance for almost all metrics in all scenarios.

Methods gelatin_box bleach_cleanser wood_block average ↑
Liu et al. [32] 26.31 25.07 68.56 38.89
Keypoint Trans. [18] 0.00 1.31 32.61 10.47
HFL-Net [31] 25.88 32.08 70.16 41.59
H2ONet† + HFL-Net† 29.26 30.71 64.84 40.69
H2ONet‡ + HFL-Net‡ 26.12 29.33 69.40 40.51
HandOccNet† + HFL-Net† 29.30 30.57 64.94 40.69
HandOccNet‡ + HFL-Net‡ 26.22 29.51 69.40 40.61
UniHOPE (ours) 26.23 32.32 74.29 43.06

Table 3. Unseen object-pose estimation results on DexYCB.

Methods J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
HandOccNet [39] 28.94 47.96 28.10 49.23 23.34 67.86
MobRecon [9] 29.61 48.10 28.65 49.59 23.38 67.72
H2ONet [49] 30.46 47.09 29.55 48.31 22.10 66.04H

PE

SimpleHand [64] 29.01 47.58 28.09 49.00 21.93 65.90

Liu et al. [32] 29.54 47.55 28.66 48.83 21.82 67.34
Keypoint Trans. [18] 41.04 34.47 39.64 36.02 17.13 56.07

H
O

PE

HFL-Net [31] 28.45 50.34 27.55 51.57 24.31 69.88

H2ONet† + HFL-Net† 31.27 47.70 30.31 48.86 22.91 67.20
H2ONet‡ + HFL-Net‡ 28.49 50.45 27.59 51.67 24.33 69.86
HandOccNet† + HFL-Net† 30.96 47.85 30.01 49.02 23.04 67.47
HandOccNet‡ + HFL-Net‡ 28.33 50.45 27.44 51.67 24.39 69.99U

ni
fie

d

UniHOPE (ours) 26.23 52.26 25.41 53.52 24.64 70.77

Table 4. Hand-pose estimation results (Root-relative) on HO3D.

4. Experiments

4.1. Experimental Settings

Datasets. In our unified setting, we organize the original
dataset into hand-only and hand-object scenes based on the
object grasping status. We conduct experiments on the fol-
lowing commonly-used datasets: (i) DexYCB [6]: we use
the more challenging “S3” split (train/test: 376,374/76,360
samples) with unseen grasped objects in the test set
(train/test: 15/3 objects). We report performance on the
entire dataset (all scenes) as well as separately for hand-
only and hand-object scenes; (ii) HO3D [17] (version 2,
train/test: 66,034/11,524 samples): results are submitted to
the online server as the ground-truth 3D hand annotations
are not publicly accessible, hence results for each scene are
unavailable. Further, to evaluate the generalization ability,
we perform cross-dataset validation on the test set of (iii)
FreiHAND [65] (train/test: 130,240/3,960 samples), which

mainly consists of bare-hand images and lacks object anno-
tations for scene division. Consequently, results for each
scene are also unavailable. More details and results on other
data splits of DexYCB are provided in the Supp.

Evaluation Metrics. We evaluate hand pose estimation
using commonly-used metrics, as in [9, 39, 49]: (i) J/V-PE
denotes the mean per joint/vertex position error (also known
as MPJPE/MPVPE) in mm measured by Euclidean distance
between estimated and ground-truth 3D hand joint/vertex
coordinates; (ii) J/V-AUC calculates the area under the curve
(in percentage) of the percentage of correct keypoints (PCK)
across different error thresholds for joint/vertex; and (iii)
F@5/F@15 is the harmonic mean of recall and precision (in
percentage) between estimated and ground-truth 3D hand
vertices under 5mm/15mm thresholds. We report these
metrics both before (i.e., root-relative) and after Procrustes
Alignment (PA), which aligns the estimation with ground
truths by global rotation, translation, and scale adjustment.

For object pose evaluation, we measure the average 3D
distance (ADD) of the grasped object. Specifically, we re-
port ADD-0.5D, the percentage of objects whose ADD is
within 50% of the object diameter as in [23] considering the
challenge of unseen-object pose estimation in DexYCB.

Implementation Details. We train UniHOPE on eight
NVidia RTX 2080Ti GPUs using a batch size of 64 and
the Adam optimizer [28] with an initial learning rate of 1e-4
(decay by 0.7 every 10 epochs). Input images are resized
to 128×128 and augmented with random scaling, rotating,
translating, and color jittering. To stabilize training, we first
train the network with both original and generated images
for 30 epochs, then incorporate the feature enhancement
constraints for another 40 epochs. Please refer to our Supp.
for more details.

4.2. Comparison with SOTA Methods
We compare our UniHOPE with previous SOTA HPE and
HOPE methods [9, 18, 32, 39, 64] in our unified setting
(trained using their officially-released code). To support



Hand-Object SceneHand-Only Scene

GTGT

(b) DexYCB(a) DexYCB

(d) HO3D(c) FreiHAND

OursOurs HFL-NetHFL-Net H2ONetH2ONet HandOccNetHandOccNet

Figure 5. Qualitative comparison between our method and SOTA HPE/HOPE methods on hand-only/hand-object scenarios across different
datasets. The first and second rows in each example denote the original view and another view, respectively, for better comparison.
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Figure 6. The joint AUC comparison under different thresholds.
UniHOPE achieves better performance than others, consistently.

the unified task, one straightforward solution is to use a
classifier to determine if the hand is grasping any object,
then employ an existing HPE or HOPE method accordingly.
We denote the combination as A + B, where A is the SOTA
HPE method H2ONet [49] or HandOccNet [39], and B is
the SOTA HOPE method, HFL-Net [31].

Evaluation on DexYCB. We present quantitative compar-
isons of hand pose estimation on DexYCB in Tab. 2. Our
UniHOPE achieves the best performance overall, showing
its effectiveness in general hand-object interactions across
various scenarios. The root-relative 3D joint PCK/AUC com-
parison under different thresholds is shown in Fig. 6, further
confirming the comprehensive performance of our approach.

For object pose estimation accuracy, we conduct compar-
isons using per-instance and average ADD-0.5D, as shown
in Tab. 3. Compared with SOTA HOPE methods, our method
achieves the highest average score on the test set with unseen
objects, highlighting its superiority in estimating object pose.
Qualitative comparisons with SOTA methods [31, 39, 49]
are illustrated in Fig. 5. In the hand-only scenario (see Fig. 5
(a)), where the wood block has not been grasped yet, SOTA
HOPE method [31] inevitably produces an extra object pose
due to its inflexibility; in contrast, our method does not,

thanks to our object switcher’s >95% grasping status predic-
tion accuracy. Moreover, our method yields more plausible
hand poses. In the hand-object scenario (see Fig. 5 (b)), our
method produces high-quality hand-object poses, whereas
previous methods fail when the hand experiences moderate
occlusion, indicating our robustness against such challenges.

Evaluation on HO3D. We conduct the same experiment
on HO3D [17]. Tab. 4 shows the root-relative quantitative
comparison. Our method achieves top performance across
all metrics, demonstrating its effectiveness and robustness.
The joint PCK/AUC curve in Fig. 6 also confirms the con-
sistent best results of our approach. In addition, qualitative
comparisons in Fig. 5 (d) clearly illustrate the superiority
of our method in estimating 3D hand and object pose under
partial object-caused occlusion. More quantitative results
are available in the Supp.

Evaluation on FreiHAND. To assess generalization abil-
ity, we perform cross-dataset validation by transferring
models trained on DexYCB to the FreiHAND test set.
As reported in Tab. 5, our method outperforms all SOTA
HPE/HOPE methods, particularly by a substantial margin in
root-relative metrics. The qualitative comparison in Fig. 5
(c) also shows that UniHOPE produces more accurate hand
poses in challenging cases, indicating improved generaliza-
tion to unseen bare-hand scenes.

Evaluation under Different Levels of Occlusion. To
showcase the robustness of our method against object-caused
occlusion, we partition the DexYCB test set into different
occlusion levels based on the ground-truth hand-object oc-
clusion proportion (as detailed in Sec. 3.3) and provide quan-
titative comparisons in Tab. 6. Our UniHOPE exhibits the
best hand pose estimation performance across all occlusion
levels, underscoring the efficacy of our feature enhancement
techniques. Note that test samples where the hand being
absent from the image region are excluded.



Methods Root-relative Procrustes Alignment

J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑ J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
HandOccNet [39] 58.03 29.07 56.06 29.40 14.89 47.75 14.52 71.34 14.09 72.07 40.02 88.08
MobRecon [9] 71.18 22.21 68.50 22.34 10.41 36.67 17.74 65.16 17.32 65.90 32.95 81.35
H2ONet [49] 79.14 19.88 76.29 19.38 9.69 36.71 14.56 71.21 14.25 71.69 38.73 87.69H

PE

SimpleHand [64] 60.82 26.09 58.85 26.34 12.84 43.53 15.79 68.90 15.37 69.61 37.03 85.40

Liu et al. [32] 59.40 28.84 57.39 29.04 14.92 47.76 14.00 72.30 13.59 73.02 41.53 89.11
Keypoint Trans. [18] 96.27 13.60 93.39 12.37 6.99 27.82 16.97 66.66 17.03 66.38 34.31 83.44

H
O

PE

HFL-Net [31] 58.02 29.94 56.08 30.20 15.47 48.83 14.29 71.75 13.85 72.52 40.52 88.63

H2ONet† + HFL-Net† 68.88 24.27 66.49 24.21 12.33 42.38 14.47 71.36 14.10 71.99 39.48 88.14
H2ONet‡ + HFL-Net‡ 68.25 24.49 65.90 24.40 12.30 42.51 14.42 71.47 14.06 72.09 39.54 88.18
HandOccNet† + HFL-Net† 81.79 21.33 78.91 20.56 10.89 36.68 15.40 69.65 14.85 70.58 38.30 86.94
HandOccNet‡ + HFL-Net‡ 80.74 20.30 78.00 19.44 10.52 36.38 16.15 68.29 15.58 69.26 36.92 85.93

U
ni

fie
d

UniHOPE (ours) 50.97 34.31 49.21 34.94 17.83 53.46 13.53 73.24 13.14 73.92 43.23 89.55

Table 5. Cross-dataset validation of hand-pose estimation on FreiHAND.

Methods Occlusion (25%-50%) Occlusion (50%-75%) Occlusion (75%-100%)

J-PE↓ PA-J-PE↓ V-PE ↓ PA-V-PE ↓ J-PE↓ PA-J-PE↓ V-PE ↓ PA-V-PE ↓ J-PE↓ PA-J-PE↓ V-PE ↓ PA-V-PE ↓
HandOccNet [39] 16.40 7.08 15.85 6.83 18.22 7.60 17.67 7.33 28.15 8.71 27.20 8.40
MobRecon [9] 16.67 7.61 15.60 6.77 20.04 8.17 18.80 7.48 31.46 9.64 29.97 9.23
H2ONet [49] 17.07 6.76 16.78 7.09 19.41 7.32 19.07 7.58 31.07 8.82 30.11 8.94
SimpleHand [64] 16.43 7.05 15.78 6.75 19.33 7.55 18.38 7.39 38.52 10.57 36.85 10.40
Liu et al. [32] 16.98 6.92 16.43 6.71 19.72 7.11 19.14 6.91 33.80 8.99 32.64 8.71
Keypoint Trans. [18] 20.95 8.15 20.41 8.31 24.45 8.61 23.88 8.76 38.29 11.21 37.39 11.75
HFL-Net [31] 16.33 7.00 15.81 6.77 18.66 7.33 18.11 7.11 28.95 8.80 27.94 8.53
H2ONet† + HFL-Net† 16.07 6.84 15.57 6.67 19.39 7.40 18.82 7.22 30.32 8.43 29.27 8.28
H2ONet‡ + HFL-Net‡ 16.43 6.93 15.94 6.79 18.76 7.29 18.25 7.14 31.02 8.55 29.91 8.45
HandOccNet† + HFL-Net† 16.04 6.89 15.53 6.65 19.22 7.43 18.64 7.20 29.57 8.58 28.53 8.31
HandOccNet‡ + HFL-Net‡ 16.41 7.00 15.88 6.77 18.64 7.33 18.09 7.10 29.22 8.76 28.20 8.47
UniHOPE (ours) 14.59 6.39 14.13 6.17 16.27 6.51 15.78 6.29 26.42 7.64 25.51 7.40

Table 6. Comparison with SOTA methods across different object-caused occlusion levels on DexYCB.

Models Root-relative Procrustes Align.

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
(a) Baseline 14.09 13.61 5.95 5.75
(b) w/ Grasp-aware Feature Fusion 13.84 13.37 5.79 5.58

(c) w/ Generative De-occluder 13.38 12.92 5.71 5.52

(d) + Image Feature Enhancement 13.23 12.79 5.64 5.44
(e) + RoI Feature Enhancement 13.18 12.73 5.64 5.45
(f) + MANO Feature Enhancement 13.12 12.67 5.63 5.43
(g) + Occlusion-aware Case Filtering 13.03 12.59 5.59 5.40

Table 7. Ablation study on major designs in UniHOPE.

4.3. Ablation Studies
We perform ablation studies on DexYCB to evaluate the ef-
fectiveness of our designs, as shown in Tab. 7. HFL-Net [31]
with our object switcher serves as the simplest baseline.

Grasp-aware Feature Fusion. We first analyze the impact
of the grasp-aware feature fusion module. Comparison of
Rows (a-b) shows performance boosts across all metrics,
indicating that integrating irrelevant object features affects
hand pose estimation and our design alleviates this issue.

Generative De-occluder. Next, we assess the effects of
de-occluded hand images with in-distribution hand poses,
as they provide extra information. Comparing Rows (b-
c), the notable improvement upon incorporating paired data

indicates the effectiveness of synthetic samples. More details
on our adaptive control strength adjustment are in the Supp.

Occlusion-invariant Feature Learning. Further, we show
the individual effects of feature enhancement at various lev-
els. Comparing Row (c) with (d-f), we note a progressive
improvement in root-relative metrics at each level, show-
ing the efficacy of knowledge transferring from de-occluded
hands. Finally, Row (g) reveals that the effects are maximally
realized through our occlusion-aware case filtering.

5. Conclusion

We introduce UniHOPE, the first unified approach for hand-
only and hand-object pose estimation, motivated by the in-
ability of existing methods to handle both scenes. Our tech-
nical innovations are twofold: first, to enable flexibility in
switching between different scenes, we incorporate an ob-
ject switcher to control object-pose estimation and design
a grasping-aware feature fusion module to selectively cap-
ture effective object features; second, to promote robustness
against object-caused occlusion, we propose multi-level fea-
ture enhancement to learn occlusion-invariant hand features
from generated realistic de-occluded hand images. Experi-
mental results on three common benchmarks manifest the
SOTA performance of UniHOPE.
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UniHOPE: A Unified Approach for Hand-Only
and Hand-Object Pose Estimation

Supplementary Material

In this supplementary material, we provide more quali-
tative and quantitative results to show the capabilities and
robustness of UniHOPE (Sec. A). In Sec. B, we present the
implementation details and in Sec. C, we discuss the limita-
tions and future work.

A. More Experimental Results
A.1. Qualitative Results
First of all, we present Figs. A to D, which show that Uni-
HOPE is able to handle both hand-only scenario (left
columns) and hand-object scenario (right columns).

Comparison with SOTA Methods. Next, we provide
more qualitative comparisons on the DexYCB (Fig. E),
HO3D (Fig. F), and FreiHAND datasets (Fig. G).

More De-occluded Examples. Furthermore, we present
more de-occluded samples in Fig. H.

A.2. Quantitative Results
Additional Results of Tab. 1. The additional metrics of
Tab. 1 in the main paper are provided in Tab. A. Both the
metrics before & after PA show an overall performance de-
generation of existing HPE/HOPE models when transfer-
ring to apply to the other scenario or testing in the original
scenario even after re-training on both scenes.

Comparison on Other Splits of DexYCB. We provide
the quantitative results of hand pose estimation on the de-
fault “S0” split (same distribution for the training and test
set) and “S1” split with unseen subjects (train/test: 7/2 sub-
jects) of DexYCB in Tab. B and Tab. C, respectively. Our
method achieves the best overall performance, especially in
root-relative metrics.

Comparison on HO3D. The remaining hand metrics on
HO3D are reported in Tab. D. Though HFL-Net [9] and the
combination of H2ONet + HFL-Net achieve better PA re-
sults, our method outperforms them by a large margin in
the metrics after scale-translation only alignment [4], which
takes both the global rotation and hand shape into consid-
eration. We emphasize the importance of global rotation,
since it better reflects the visualization quality, as indicated
by the qualitative comparison results shown in Fig. F.

A.3. Detailed Analysis on Performance
In this work, we explore a new setting to address HPE and
HOPE at once. Applying prior SOTA of HPE/HOPE is

suboptimal, even re-trained on all scenarios, as they lack
specific designs. For hand-only scenes, HOPE methods
are affected by irrelevant object features, even no object is
grasped, yet HPE methods may fail for unseen hand poses.
For hand-object scenes, HOPE methods lack effective de-
signs to handle severe occlusions, while HPE methods do
not utilize object information to enhance performance. Our
approach works better in each scene type. As Fig. I shows:
(a) when the hand reaches out to grasp an object, our grasp-
aware feature fusion reduces the adverse impact of non-
grasped object; (b) for unseen hand poses from FreiHAND,
our generated de-occluded images introduce richer hand
poses to boost performance; (c) our multi-level feature en-
hancement improves robustness under severe object occlu-
sions; and (d) when grasping objects, our method surpasses
HPE methods by leveraging object information. These ob-
servations are consistent with the quantitative performance
in Tab. 2, 5, 6 in the main paper.

A.4. Additional Ablation Studies
To be consistent with the main paper, we conduct all the
ablation studies presented below on DexYCB.

Additional Results of Tab. 7. Since the RHD [22] and
Static Gestures Dataset [1] are utilized to fine-tune the
ControlNet [12], we also conduct an ablation study of
pre-training on these synthetic datasets before training on
DexYCB, using a network structure identical to our baseline
model with the grasp-aware feature fusion module (Row (b)
of Tab. 7 in the main paper). As shown in Tab. F, directly
incorporating synthetic datasets into training leads to a mi-
nor improvement, indicating the limitation caused by the
domain gap between the synthetic and real-world images.
Conversely, our occlusion-invariant feature learning strat-
egy substantially enhances the model performance through
the foundational data prior provided by ControlNet [20] and
the multi-level feature enhancement.

Ablation on Adaptive Control Strength Adjustment.
Control strength (ranging from 0 to 1) is imposed on the
connections between the ControlNet and Stable Diffusion,
controlling the extent to which the output is consistent with
the control signal. We propose to adaptively adjust its value
with MobRecon [3] pre-trained on DexYCB to avoid te-
dious manual tuning. The default control strength employed
in [12] is 0.55. In our work, we empirically select the candi-
date control strengths from {0.25, 0.4, 0.55, 0.7, 0.85, 1.0},
with a similar number of candidates as in [12].
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Input InputOutput (view 1) Output (view 1)Output (view 2) Output (view 2)

Hand-Object SceneHand-Object SceneHand-Only SceneHand-Only Scene

Figure A. UniHOPE is able to handle both hand-only (left column) and hand-object scenarios (right column). Here, we show more
qualitative results on DexYCB. For each example, the estimation results are rendered from the original (view 1) and another view (view 2)
for clear visualization.
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Figure B. More qualitative results of UniHOPE on DexYCB.
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Figure C. More qualitative results of UniHOPE across hand-only (left column) and hand-object scenarios (right column) on HO3D.
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Figure D. More qualitative results of UniHOPE on HO3D.



HPE Hand-Only Scene Hand-Only → Hand-Object Scene All → Hand-Only Scene All → Hand-Object Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
[14] 12.98 5.21 12.52 5.02 19.60 (-6.62) 7.71 (-2.50) 18.95 (-6.43) 7.42 (-2.40) 13.16 (-0.18) 5.31 (-0.10) 12.70 (-0.18) 5.11 (-0.09) 14.58 6.73 14.10 6.49
[18] 13.34 4.69 13.13 5.05 21.98 (-8.64) 7.13 (-2.44) 21.42 (-8.30) 7.27 (-2.22) 14.14 (-0.80) 4.74 (-0.05) 14.00 (-0.87) 5.35 (-0.30) 15.20 6.35 15.03 6.74
[21] 14.05 5.55 13.51 5.31 18.37 (-4.32) 7.42 (-1.87) 17.54 (-4.03) 6.91 (-1.60) 14.63 (-0.58) 5.62 (-0.07) 13.96 (-0.45) 5.38 (-0.07) 14.88 6.74 14.21 6.45

HOPE Hand-Object Scene Hand-Object → Hand-Only Scene All → Hand-Object Scene All → Hand-Only Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
[5] 17.99 7.68 17.57 7.88 25.10 (-7.11) 7.62 (+0.06) 24.40 (-6.83) 7.88 (-0.00) 18.79 (-1.00) 7.77 (-0.09) 18.35 (-0.78) 7.94 (-0.06) 19.75 7.59 19.26 7.98
[9] 14.61 6.56 14.13 6.33 19.39 (-4.78) 5.96 (+0.60) 18.61 (-4.48) 5.75 (+0.58) 14.77 (-0.16) 6.64 (-0.08) 14.29 (-0.16) 6.41 (-0.08) 13.61 5.20 13.10 5.01

Table A. Full metrics of Tab.1 in the main paper.

Methods All Scenes Hand-Only Scene Hand-Object Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
HandOccNet [14] 13.04 5.85 12.61 5.65 13.42 5.39 12.95 5.20 12.79 6.15 12.39 5.95
MobRecon [3] 14.34 6.50 13.40 5.74 14.57 5.91 13.74 5.29 14.18 6.88 13.19 6.03
H2ONet [18] 13.89 5.38 13.56 5.52 14.10 4.84 13.75 5.02 13.76 5.73 13.43 5.84H

PE

SimpleHand [21] 13.66 6.02 13.14 5.78 14.48 5.67 13.95 5.46 13.13 6.24 12.62 5.99

Liu et al. [11] 14.06 5.75 13.57 5.58 14.87 5.47 14.33 5.30 13.53 5.93 13.08 5.75
Keypoint Trans. [5] 16.61 6.84 16.21 7.05 18.50 7.03 18.00 7.32 15.39 6.71 15.05 6.88

H
O

PE

HFL-Net [9] 13.02 5.58 12.58 5.39 13.41 5.19 12.92 5.00 12.77 5.84 12.35 5.64

H2ONet† + HFL-Net† 13.08 5.47 12.71 5.43 13.81 4.85 13.50 5.06 12.61 5.87 12.20 5.68
H2ONet‡ + HFL-Net‡ 13.30 5.45 12.91 5.40 14.09 4.85 13.74 5.02 12.79 5.83 12.37 5.64
HandOccNet† + HFL-Net† 13.32 5.73 12.87 5.54 14.40 5.50 13.89 5.30 12.63 5.89 12.22 5.69
HandOccNet‡ + HFL-Net‡ 13.43 5.71 12.97 5.51 14.41 5.49 13.90 5.30 12.80 5.85 12.38 5.65U

ni
fie

d

UniHOPE (ours) 12.59 5.54 12.17 5.36 12.84 5.02 12.38 4.85 12.42 5.88 12.03 5.69

Table B. Quantitative comparison on DexYCB “S0” split.

Methods All Scenes Hand-Only scene Hand-Object Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
HandOccNet [14] 18.33 6.95 17.70 6.71 19.70 6.01 18.95 5.81 17.57 7.47 17.02 7.21
MobRecon [3] 18.62 7.18 17.73 6.61 19.36 6.27 18.42 5.75 18.21 7.68 17.36 7.09
H2ONet [18] 18.40 6.40 17.90 6.57 18.92 5.44 18.36 5.70 18.11 6.93 17.64 7.05H

PE

SimpleHand [21] 17.38 6.82 16.81 6.73 18.86 6.02 18.14 5.92 16.57 7.26 16.08 7.17

Liu et al. [11] 17.82 6.46 17.19 6.25 19.12 5.89 18.36 5.69 17.10 6.77 16.54 6.55
Keypoint Trans. [5] 21.61 8.15 21.18 8.36 22.84 7.32 22.24 7.59 20.93 8.61 20.60 8.79

H
O

PE

HFL-Net [9] 17.77 6.58 17.16 6.36 18.42 5.72 17.72 5.52 17.41 7.06 16.86 6.82

H2ONet† + HFL-Net† 17.49 6.36 16.94 6.25 19.24 5.50 18.60 5.59 16.54 6.83 16.02 6.61
H2ONet‡ + HFL-Net‡ 17.96 6.48 17.41 6.42 18.92 5.45 18.35 5.69 17.44 7.05 16.89 6.82
HandOccNet† + HFL-Net† 17.84 6.53 17.22 6.31 20.18 5.95 19.39 5.75 16.55 6.85 16.03 6.62
HandOccNet‡ + HFL-Net‡ 18.63 6.73 17.99 6.50 20.72 6.11 19.91 5.91 17.48 7.06 16.93 6.83U

ni
fie

d

UniHOPE (ours) 16.84 6.42 16.25 6.20 17.80 5.50 17.11 5.30 16.31 6.93 15.79 6.70

Table C. Quantitative comparison on DexYCB “S1” split.

To assess the effectiveness of our adaptive control
strength adjustment, we compare our model (Row (c) of
Tab. 7 in the main paper) with the ones trained with gen-
erated samples under fixed control strengths without incor-
porating the feature enhancement constraints. As shown
in Tab. E, our adaptive strategy achieves the best perfor-
mance in hand pose estimation compared to several control
strengths. The samples generated under all candidate con-
trol strengths are provided in Fig. J, showing the need to
adaptively select control strength for different cases.

Effects of Hyperparameters. The default value of hyper-
parameter α is empirically set to 10 in Eq. (11) of the main
paper. This is to ensure a prediction accuracy over 95%. For
the hyperparameters controlling the feature enhancement at

three different levels, we evaluate their effects on the hand
pose estimation performance in Tab. G. Since the MANO-
level feature is a late-stage feature employed to directly
regress the final hand pose, an adaption layer is deployed
to improve the knowledge transfer. We set a larger value
for γMANO to aim to strongly enforce this feature adaptation
process. In our experiments, the values for γinit, γRoI , and
γMANO are set to 0.1, 0.1, and 0.5, respectively.

A.5. Computational Cost and Efficiency

The training time of our model is 3 days for DexYCB (376k
samples) and 12 hours for HO3D (66k samples), respec-
tively, on eight NVidia RTX 2080Ti GPUs.

Tab. H reports the inference speed (FPS, tested on a sin-



Methods Procrustes Alignment Scale-Translation Aligned

J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑ J-PE ↓ J-AUC ↑
HandOccNet [14] 10.26 7.95 10.21 79.61 50.61 94.47 28.18 49.28
MobRecon [3] 10.47 79.14 10.76 78.54 47.57 93.59 29.36 49.36
H2ONet [18] 9.52 80.97 9.60 80.81 52.62 95.09 29.67 48.53H

PE

SimpleHand [21] 11.28 77.66 11.58 77.05 45.78 91.74 28.41 49.32

Liu et al. [11] 9.46 81.12 9.39 81.25 54.93 95.64 28.44 49.79
Keypoint Trans. [5] 12.00 76.24 12.18 75.83 44.71 91.60 40.00 36.36

H
O

PE

HFL-Net [9] 9.01 82.02 8.92 82.18 57.01 96.19 27.97 51.33

H2ONet† + HFL-Net† 9.49 81.04 9.43 81.16 54.54 95.54 30.60 48.93
H2ONet‡ + HFL-Net‡ 8.97 82.10 8.88 82.26 57.08 96.22 28.00 51.44
HandOccNet† + HFL-Net† 9.56 80.89 9.50 81.02 54.23 95.47 30.29 49.09
HandOccNet‡ + HFL-Net‡ 9.05 81.94 8.96 82.10 56.79 96.14 27.83 51.45U

ni
fie

d

UniHOPE (ours) 9.60 80.82 9.45 81.12 52.57 95.68 25.53 53.70

Table D. Quantitative comparison (Procrustes Alignment & Scale-Translation Aligned) on HO3D.

Control Strength Selection Root-relative Procrustes Align.

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
s = 0.4 13.76 13.30 5.85 5.65
s = 0.55 13.51 13.06 5.78 5.57
s = 0.7 13.43 12.98 5.75 5.55

Adaptive Adjustment (ours) 13.38 12.92 5.71 5.52

Table E. Quantitative results of our adaptive control strength ad-
justment vs. fixed control strengths.

Models Root-relative Procrustes Align.

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
Baseline 13.84 13.37 5.79 5.58w/ Grasp-aware Feature Fusion

w/ RHD [22] & Static Gestures [1] 13.79 13.32 5.73 5.53
Ours 13.03 12.59 5.59 5.40

Table F. Comparison with directly training with synthetic datasets
used by [12].

γinit/ γRoI / γMANO
Root-relative Procrustes Align.

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
0.001 / 0.001 / 0.005 13.17 12.72 5.61 5.41

0.01 / 0.01 / 0.05 13.13 12.69 5.62 5.42
0.1 / 0.1 / 0.5 (ours) 13.03 12.59 5.59 5.40

1.0 / 1.0 / 5.0 13.15 12.70 5.70 5.50
10.0 / 10.0 / 50.0 14.13 13.65 6.08 5.87

Table G. Effects of various hyperparameters of the multi-level fea-
ture constraints.

gle NVidia RTX 2080Ti GPU), FLOPs, and number of pa-
rameters of various models. Thanks to the lightweight ob-
ject switcher in UniHOPE, UniHOPE has similar inference
efficiency and model complexity as HFL-Net [9]. Com-
pared to other SOTA models, UniHOPE has a moderate
model size and running speeds, enabling real-time appli-
cations.

B. Implementation Details

Scene Division. Following [19], the thresholds for RRE
and RTE in grasping label preparation are 5◦ and 10mm,
respectively. An image is categorized into the hand-only
scenes, if determined as non-grasping, otherwise hand-
object scenes. The numbers of samples in the two scenes
are shown in Tab. I. Note that although FreiHAND [23] con-
tains a small number of images interacting with objects in
both training and test sets, it cannot be divided due to the
lack of object annotations.

Generative De-occluder. We adopt the officially-
released pre-trained weights from [12], which fine-tunes
ControlNet with synthetic hand images [1, 22]. The hand-
object mask is obtained by applying dilation on the render
mask of the 3D hand and object to ensure the hand-object
region is covered for repainting. Then, we crop the original
input image in the training set centered on the hand-object
region and resize it to 512×512. The hand-object image
and the hand-object mask are fed into the inpainting Stable
Diffusion model, conditioned by the hand depth map.
Besides, we adopt the positive prompt “a hand grasping
gesture, indoor, in the lab” for image generation from the
two laboratory benchmarks [2, 4], and the negative prompt
is similar to the one in [12]. During inference, the number
of reverse steps for DDIM is set to 50 by default.

Network Structure. (i) Backbone: Following [9], we
adopt ResNet50 [6] as the backbone to extract features from
the input image, in which a dual stream structure is adopted
to relieve the competition between hand features and object
features. (ii) Hand Encoder: The hand encoder takes FOH

as input, first using an hourglass network [13] to regress
a feature map and the heatmap of 2D hand joints. Then,
they are fused via a convolution layer and an element-wise
addition, followed by four residual blocks to yield a 1024-
dimensional vector. (iii) MANO Decoder: It consists of
two fully connected layers to predict the hand pose and



Methods HandOccNet [14] MobRecon [3] H2ONet [18] SimpleHand [21] Liu et al. [11] Keypoint Trans. [5] HFL-Net [9] H2ONet + HFL-Net HandOccNet + HFL-Net Ours

FPS 48 78 62 41 51 33 43 36 30 44

FLOPs 15.48G 0.46G 0.74G 9.96G 39.44G 12.66G 10.01G 0.77G / 10.04G 15.51G / 10.04G 10.04G

# Param. 37.22M 8.23M 25.88M 48.89M 34.48M 52.79M 46.08M 72.26M 83.60M 46.38M

Table H. Efficiency comparison with previous methods. Note that FLOPs for the “A+B” methods depend on the predicted grasping status,
therefore reported as “FLOPs of (classifier + A) / FLOPs of (classifier + B)”.

Datasets (splits) Training Set Test Set

All Scenes Hand-Only Scene Hand-Object Scene All Scenes Hand-Only Scene Hand-Object Scene

DexYCB “S0” 401,507 153,210 248,297 78,768 30,848 47,920
DexYCB “S1” 351,943 138,775 213,168 104,128 36,912 67,216
DexYCB “S3” 376,374 145,051 231,323 76,360 29,912 46,448

HO3D 66,034 5,595 60,439 11,524 2,971 8,553
FreiHAND 130,240 N/A N/A 3,960 N/A N/A

Table I. Number of samples in hand-only/hand-object scenes for different datasets (splits).

shape parameters of the MANO model from the feature pro-
duced by the hand encoder. (iv) Object Decoder: Follow-
ing [9], the feature after RoIAlign from the hand branch is
fused with the one from the object branch through a cross-
attention layer, to enhance the object feature learning. The
fused feature is then forwarded through six convolutional
layers to predict the 2D projections of the 3D object corner
keypoints and corresponding confidence. In testing, the ob-
ject pose is computed by the Perspective-n-Point (PnP) al-
gorithm [8] using the correspondence between the predicted
2D and the original 3D keypoints on the object mesh.

Training Details. Following [9], we perform data aug-
mentation on the training samples, including random scal-
ing (±20%), rotating (±180◦), translating (±10%), and
color jittering (±50%). Our training process consists of two
stages. In the first stage, the de-occluded images are incor-
porated into training without the feature enhancement loss
for 30 epochs to first adapt the model to the domain of the
generated data. In the second stage, the network is addition-
ally supervised by the enhancement constraints between the
image pairs for another 40 epochs under the same setting.

C. Limitations and Future Work

Limitations. Though we are able to predict the grasping
status of unseen objects, the performance of their pose esti-
mation tends to degrade when the object shape/appearance
varies largely, due to the limited object categories in the
training data. Besides, despite being provided in most ex-
isting public benchmarks, the object annotations are lacking
in certain datasets, limiting the applicability of our approach
as they are required for scene division and inpainting masks.

Future Work. To improve the model’s generalizability
towards unseen objects, a promising direction is to utilize
the knowledge prior from the various vision foundation

models [7, 10, 15], which demonstrated remarkable per-
formance in zero-shot scenarios. Another approach that
we are considering for improving the model’s generaliz-
ability is to train on large-scale synthetic data by lever-
aging diffusion models [16, 19] or large language mod-
els [17].
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Figure E. Qualitative comparison between UniHOPE and SOTA HPE/HOPE methods across hand-only/hand-object scenarios in DexYCB
(“S3” split), in which all the grasping objects are unseen during training.
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Figure F. Qualitative comparison between UniHOPE and SOTA HPE/HOPE methods across hand-only/hand-object scenarios in HO3D.
The ground truths are not publicly available.
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Figure G. Qualitative comparison between our method and SOTA HPE/HOPE methods on FreiHAND.
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Figure H. More examples of de-occluded hand images. Note that masks are overlaid on the original image for better visualization, the
actual condition for our generative de-occluder is a binary mask.
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Figure I. Effects of different designs in our pipeline.
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Figure J. The generated images with varying control strengths. Our adaptive strategy (metrics marked in bold) effectively balances fidelity
and consistency.


