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ABSTRACT

We present neural frailty machine (NFM), a powerful and flexible neural model-
ing framework for survival regressions. The NFM framework utilizes the classical
idea of multiplicative frailty in survival analysis to capture unobserved hetero-
geneity among individuals, at the same time being able to leverage the strong
approximation power of neural architectures for handling nonlinear covariate de-
pendence. Two concrete models are derived under the framework that extends
neural proportional hazard models and nonparametric hazard regression models.
Both models allow efficient training under the likelihood objective. Theoretically,
for both proposed models, we establish statistical guarantees of neural function
approximation with respect to nonparametric components via characterizing their
rate of convergence. Empirically, we provide synthetic experiments that verify our
theoretical statements. We also conduct experimental evaluations over 6 bench-
mark datasets of different scales, showing that the proposed NFM models outper-
form state-of-the-art survival models in terms of predictive performance.

1 INTRODUCTION

Regression analysis of time-to-event data (Kalbfleisch & Prentice, 2002) has been among the most
important modeling tools for clinical studies and has witnessed a growing interest in areas like
corporate finance (Duffie et al., 2009), recommendation systems (Jing & Smola, 2017), and com-
putational advertising (Wu et al., 2015). The key feature that differentiates time-to-event data from
other types of data is that they are often incompletely observed, with the most prevailing form of
incompleteness being the right censoring mechanism (Kalbfleisch & Prentice, 2002). In the right
censoring mechanism, the duration time of a sampled subject is (sometimes) only known to be larger
than the observation time instead of being recorded precisely. It is well known in the community of
survival analysis that even in the case of linear regression, naively discarding the censored observa-
tions produces estimation results that are statistically biased (Buckley & James, 1979), at the same
time losses sample efficiency if the censoring proportion is high.

Cox’s proportional hazard (CoxPH ) model (Cox, 1972) using the convex objective of negative
partial likelihood (Cox, 1975) is the de facto choice in modeling right censored time-to-event data
(hereafter abbreviated as censored data without misunderstandings). The model is semiparametric
(Bickel et al., 1993) in the sense that the baseline hazard function needs no parametric assumptions.
The original formulation of CoxPH model assumes a linear form and therefore has limited flexibility
since the truth is not necessarily linear. Subsequent studies extended CoxPH model to nonlinear
variants using ideas from nonparametric regression (Huang, 1999; Cai et al., 2007; 2008), ensemble
learning (Ishwaran et al., 2008), and neural networks (Faraggi & Simon, 1995; Katzman et al., 2018).
While such extensions allowed a more flexible nonlinear dependence structure with the covariates,
the learning objectives were still derived under the proportional hazards (PH) assumption, which
was shown to be inadequate in many real-world scenarios (Gray, 2000). The most notable case was
the failure of modeling the phenomenon of crossing hazards (Stablein & Koutrouvelis, 1985). It is
thus of significant interest to explore extensions of CoxPH that both allow nonlinear dependence
over covariates and relaxations of the PH assumption.
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Frailty models (Wienke, 2010; Duchateau & Janssen, 2007) are among the most important research
topics in modern survival analysis, in that they provide a principled way of extending CoxPH model
via incorporating a multiplicative random effect to capture unobserved heterogeneity. The resulting
parameterization contains many useful variants of CoxPH like the proportional odds model (Bennett,
1983), under specific choices of frailty families. While the theory of frailty models has been well-
established (Murphy, 1994; 1995; Parner, 1998; Kosorok et al., 2004), most of them focused on
the linear case. Recent developments on applying neural approaches to survival analysis (Katzman
et al., 2018; Kvamme et al., 2019; Tang et al., 2022; Rindt et al., 2022) have shown promising results
in terms of empirical predictive performance, with most of them lacking theoretical discussions.
Therefore, it is of significant interest to build more powerful frailty models via adopting techniques
in modern deep learning (Goodfellow et al., 2016) with provable statistical guarantees.

In this paper, we present a general framework for neural extensions of frailty models called the
neural frailty machine (NFM). Two concrete neural architectures are derived under the frame-
work: The first one adopts the proportional frailty assumption, allowing an intuitive interpretation
of the neural CoxPH model with a multiplicative random effect. The second one further relaxes the
proportional frailty assumption and could be viewed as an extension of nonparametric hazard re-
gression (NHR) (Cox & O’Sullivan, 1990; Kooperberg et al., 1995), sometimes referred to as ”fully
neural” models under the context of neural survival analysis (Omi et al., 2019). We summarize our
contributions as follows.

• We propose the neural frailty machine (NFM) framework as a principled way of incorporating
unobserved heterogeneity into neural survival regression models. The framework includes many
commonly used survival regression models as special cases.

• We derive two model architectures based on the NFM framework that extend neural CoxPH mod-
els and neural NHR models. Both models allow stochastic training and scale to large datasets.

• We show theoretical guarantees for the two proposed models via characterizing the rates of con-
vergence of the proposed nonparametric function estimators. The proof technique is different
from previous theoretical studies on neural survival analysis and is applicable to many other types
of neural survival models.

• We conduct extensive studies on various benchmark datasets at different scales. Under standard
performance metrics, both models are empirically shown to perform competitively, matching or
outperforming state-of-the-art neural survival models.

2 RELATED WORKS

2.1 NONLINEAR EXTENSIONS OF COXPH

Most nonlinear extensions of CoxPH model stem from the equivalence of partial likelihood and
semiparametric profile likelihood (Murphy & Van der Vaart, 2000) of CoxPH model, resulting in
nonlinear variants that essentially replaces the linear term in partial likelihood with nonlinear vari-
ants: Huang (1999) used smoothing splines, Cai et al. (2007; 2008) used local polynomial regression
(Fan & Gijbels, 1996). The empirical success of tree-based models inspired subsequent develop-
ments like Ishwaran et al. (2008) that equip tree-based models such as gradient boosting trees and
random forests with losses in the form of negative log partial likelihood. Early developments of
neural survival analysis Faraggi & Simon (1995) adopted similar extension strategies and obtained
neural versions of partial likelihood. Later attempts Katzman et al. (2018) suggest using the suc-
cessful practice of stochastic training which is believed to be at the heart of the empirical success
of modern neural methods (Hardt et al., 2016). However, stochastic training under the partial likeli-
hood objective is highly non-trivial, as mini-batch versions of log partial likelihood Katzman et al.
(2018) are no longer valid stochastic gradients of the full-sample log partial likelihood (Tang et al.,
2022).

2.2 BEYOND COXPH IN SURVIVAL ANALYSIS

In linear survival modeling, there are standard alternatives to CoxPH such as the accelerated failure
time (AFT) model (Buckley & James, 1979; Ying, 1993), the extended hazard regression model
(Etezadi-Amoli & Ciampi, 1987), and the family of linear transformation models (Zeng & Lin,
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2006). While these models allow certain types of nonlinear extensions, the resulting form of (condi-
tional) hazard function is still restricted to be of a specific form. The idea of nonparametric hazard
regression (NHR) (Cox & O’Sullivan, 1990; Kooperberg et al., 1995; Strawderman & Tsiatis, 1996)
further improves the flexibility of nonparametric survival analysis via directly modeling the condi-
tional hazard function by nonparametric regression techniques such as spline approximation. Neural
versions of NHR have been developed lately such as the CoxTime model Kvamme et al. (2019).
Rindt et al. (2022) used a neural network to approximate the conditional survival function and could
be thus viewed as another trivial extension of NHR.

Aside from developments in NHR, Lee et al. (2018) proposed a discrete-time model with its objec-
tive being a mix of the discrete likelihood and a rank-based score; Zhong et al. (2021a) proposed a
neural version of the extended hazard model, unifying both neural CoxPH and neural AFT model;
Tang et al. (2022) used an ODE approach to model the hazard and cumulative hazard functions.

2.3 THEORETICAL JUSTIFICATION OF NEURAL SURVIVAL MODELS

Despite the abundance of neural survival models, assessment of their theoretical properties remains
nascent. In Zhong et al. (2021b), the authors developed minimax theories of partially linear cox
model using neural networks as the functional approximator. Zhong et al. (2021a) provided con-
vergence guarantees of neural estimates under the extended hazard model. The theoretical devel-
opments therein rely on specific forms of objective function (partial likelihood and kernel pseudo-
likelihood) and are not directly applicable to the standard likelihood-based objective which is fre-
quently used in survival analysis.

3 METHODOLOGY

3.1 THE NEURAL FRAILTY MACHINE FRAMEWORK

Let T̃ ≥ 0 be the interested event time with survival function denoted by S(t) = P(T̃ > t) associ-
ated with a feature(covariate) vector Z ∈ Rd. Suppose that T̃ is a continuous random variable and
let f(t) be its density function. Then λ(t) = f(t)/S(t) is the hazard function and Λ(t) =

∫ t
0
λ(s)ds

is the cumulative hazard function. Aside from the covariate Z, we use a positive scalar random
variable ω ∈ R+ to express the unobserved heterogeneity corresponding to individuals, or frailty.
1. In this paper we will assume the following generating scheme of T̃ via specifying its conditional
hazard function:

λ(t|Z, ω) = ων̃(t, Z). (1)

Here ν̃ is an unspecified non-negative function, and we let the distribution of ω be parameterized
by a one-dimensional parameter θ ∈ R. 2 The formulation (1) is quite general and contains several
important models in both traditional and neural survival analysis:

1. When ω follows parametric distributional assumptions, and ν̃(t, Z) = λ(t)eβ
⊤Z , (1) reduces

to the standard proportional frailty model (Kosorok et al., 2004). A special case is when ω is
degenerate, i.e., it has no randomness, then the model corresponds to the classic CoxPH model.

2. When ω is degenerate and ν̃ is arbitrary, the model becomes equivalent to nonparametric hazard
regression (NHR) (Cox & O’Sullivan, 1990; Kooperberg et al., 1995). In NHR, the function
parameter of interest is usually the logarithm of the (conditional) hazard function.

In this paper we construct neural approximations to the logarithm of ν̃, i.e., ν(t, Z) = log ν̃(t, Z).
The resulting models are called Neural Frailty Machines (NFM). Depending on the prior knowl-
edge of the function ν, we propose two function approximation schemes:

1For example in medical biology, it was observed that genetically identical animals kept in as similar an
environment as possible will typically not behave the same upon exposure to environmental carcinogens (Bren-
nan, 2002)

2The choice of one-dimensional frailty family is mostly for simplicity and clearness of theoretical deriva-
tions. Note that there exist multi-dimensional frailty families like the PVF family (Wienke, 2010). Generalizing
our theoretical results to such kinds of families would require additional sets of regularity conditions, and will
be left to future explorations.
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The proportional frailty (PF) scheme assumes the dependence of ν on event time and covariates
to be completely decoupled, i.e.,

ν(t, Z) = h(t) +m(Z). (2)

Proportional-style assumption over hazard functions has been shown to be a useful inductive bias
in survival analysis. We will treat both h and m in (2) as function parameters, and device two
multi-layer perceptrons (MLP) to approximate them separately.

The fully neural (FN) scheme imposes no a priori assumptions over ν and is the most general
version of NFM. It is straightforward to see that the most commonly used survival models, such as
CoxPH , AFT, EH, or PF models are included in the proposed model space as special cases. We treat
ν = ν(t, Z) as the function parameter with input dimension d+ 1 and use a multi-layer perceptron
(MLP) as the function approximator to ν. Similar approximation schemes with respect to the hazard
function have been proposed in some recent works (Omi et al., 2019; Rindt et al., 2022), referred to
as ”fully neural approaches” without theoretical characterizations.

The choice of frailty family There are many commonly used families of frailty distributions
(Kosorok et al., 2004; Duchateau & Janssen, 2007; Wienke, 2010), among which the most popu-
lar one is the gamma frailty, where ω follows a gamma distribution with mean 1 and variance θ. We
briefly introduce some other types of frailty families in appendix A.

3.2 PARAMETER LEARNING UNDER CENSORED OBSERVATIONS

In time-to-event modeling scenarios, the event times are typically observed under right censoring.
LetC be the right censoring time which is assumed to be conditionally independent of the event time
T̃ given Z, i.e., T̃ ⊥⊥ C|Z. In data collection, one can observe the minimum of the survival time and
the censoring time, that is, observe T = T̃ ∧ C as well as the censoring indicator δ = I(T̃ ⩽ C),
where a∧ b = min(a, b) for constants a and b and I(·) stands for the indicator function. We assume
n independent and identically distributed (i.i.d.) copies of (T, δ, Z) are used as the training sample
(Ti, δi, Zi), i ∈ [n], where we use [n] to denote the set {1, 2, . . . , n}. Additionally, we assume the
unobserved frailties are independent and identically distributed, i.e., ωi

i.i.d.∼ fθ(ω), i ∈ [n]. Next,
we derive the learning procedure based on the observed log-likelihood (OLL) objective under both
PF and FN scheme. To obtain the observed likelihood, we first integrate the conditional survival
function given the frailty:

S(t|Z) = Eω∼fθ
[
e−ω

∫ t
0
eν(s,Z)ds

]
=: e−Gθ(

∫ t
0
eν(s,Z)ds). (3)

Here the frailty transformGθ(x) = − log (Eω∼fθ [e−ωx]) is defined as the negative of the logarithm
of the Laplace transform of the frailty distribution. The conditional cumulative hazard function is
thus Λ(t|Z) = Gθ(

∫ t
0
eν(s,Z)ds). For the PF scheme of NFM, we use two MLPs ĥ = ĥ(t;Wh,bh)

and m̂ = m̂(Z;Wm,bm) as function approximators to ν and m, parameterized by (Wh,bh) and
(Wm,bm), respectively. 3 According to standard results on censored data likelihood (Kalbfleisch
& Prentice, 2002), we write the learning objective under the PF scheme as:

L(Wh,bh,Wm,bm, θ) =
1

n

∑
i∈[n]

δi log gθ

(
em̂(Zi)

∫ Ti

0

eĥ(s)ds

)
+ δiĥ(Ti) + δim̂(Zi)

−Gθ

(
em̂(Zi)

∫ Ti

0

eĥ(s)ds

)]
.

(4)

Here we define gθ(x) = ∂
∂xGθ(x). Let (Ŵh

n, b̂
h
n,Ŵ

m
n , b̂

m
n , θ̂n) be the maximizer of (4) and fur-

ther denote ĥn(t) = ĥ(t;Ŵh
n, b̂

h
n) and m̂n(Z) = m̂(Z;Ŵm

n , b̂
m
n ). The resulting estimators for

conditional cumulative hazard and survival functions are:

Λ̂PF(t|Z) = Gθ̂n

(∫ t

0

eĥn(s)+m̂n(Z)ds

)
, ŜPF(t|Z) = e−Λ̂PF(t|Z), (5)

3Here we adopt the conventional notation that W is the collection of the weight matrices of the MLP in all
layers, and b corresponds to the collection of the bias vectors in all layers.
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For the FN scheme, we use ν̂ = ν̂(t, Z;Wν ,bν) to approximate ν(t, Z) parameterized by
(Wν ,bν). The OLL objective is written as:

L(Wν ,bν , θ) =
1

n

∑
i∈[n]

δi log gθ

(∫ Ti

0

eν̂(s,Zi;W
ν ,bν)ds

)
+ δiν̂(Ti, Zi;W

ν ,bν)

−Gθ

(∫ Ti

0

eν̂(s,Zi;W
ν ,bν)ds

)]
.

(6)

Let (Ŵν
n, b̂

ν
n, θ̂n) be the maximizer of (6), and further denote ν̂n(t, Z) = ν̂(t, Z;Ŵν

n, b̂
ν
n). The

conditional cumulative hazard and survival functions are therefore estimated as:

Λ̂FN(t|Z) = Gθ̂n

(∫ t

0

eν̂n(s,Z)ds

)
, ŜFN(t|Z) = e−Λ̂FN(t|Z). (7)

The evaluation of objectives like (6) and its gradient requires computing a definite integral of an
exponentially transformed MLP function. Instead of using exact computations that are available for
only a restricted type of activation functions and network structures, we use numerical integration for
such kinds of evaluations, using the method of Clenshaw-Curtis quadrature (Boyd, 2001), which has
shown competitive performance and efficiency in recent applications to monotonic neural networks
(Wehenkel & Louppe, 2019).
Remark 1. The interpretation of frailty terms differs in the two schemes. In the PF scheme, intro-
ducing the frailty effect strictly increases the modeling capability (i.e., the capability of modeling
crossing hazard) in comparison to CoxPH or neural variants of CoxPH (Kosorok et al., 2004). In the
FN scheme, it is arguable that in the i.i.d. case, the marginal hazard function is a reparameterization
of the hazard function in the context of NHR. Therefore, we view the incorporation of frailty effect
as injecting a domain-specific inductive bias that has proven to be useful in survival analysis and
time-to-event regression modeling and verify this claim empirically in section 5.2. Moreover, frailty
becomes especially helpful when handling correlated or clustered data where the frailty term is as-
sumed to be shared among certain groups of individuals (Parner, 1998). Extending NFM to such
scenarios is valuable and we left it to future explorations.

4 THEORETICAL RESULTS

In this section, we present theoretical properties of both NFM estimates by characterizing their rates
of convergence when the underlying event data follows corresponding model assumptions. The
proof technique is based on the method of sieves (Shen & Wong, 1994; Shen, 1997; Chen, 2007)
that views neural networks as a special kind of nonlinear sieve (Chen, 2007) that satisfies desirable
approximation properties (Yarotsky, 2017). Since both models produce estimates of function pa-
rameters, we need to specify a suitable function space to work with. Here we choose the following
Hölder ball as was also used in previous works on nonparametric estimation using neural networks
(Schmidt-Hieber, 2020; Farrell et al., 2021; Zhong et al., 2021b)

Wβ
M (X ) =

{
f : max

α:|α|≤β
esssup
x∈X

|Dα(f(x))| ≤M

}
, (8)

where the domain X is assumed to be a subset of d-dimensional euclidean space. α = (α1, . . . , αd)
is a d-dimensional tuple of nonnegative integers satisfying |α| = α1 + · · · + αd and Dαf =

∂|α|f

∂x
α1
1 ···xαd

d

is the weak derivative of f . Now assume that M is a reasonably large constant, and let Θ
be a closed interval over the real line. We make the following assumptions for the true parameters
under both schemes:
Condition 1 (True parameter, PF scheme). The euclidean parameter θ0 ∈ Θ ⊂ R, and the two
function parameters m0 ∈ Wβ

M ([−1, 1]d), h0 ∈ Wβ
M ([0, τ ]), and τ > 0 is the ending time of the

study duration, which is usually adopted in the theoretical studies in survival analysis (Van der Vaart,
2000).
Condition 2 (True parameter, FN scheme). The euclidean parameter θ0 ∈ Θ ⊂ R, and the function
parameter ν0 ∈ Wβ

M ([0, τ ]× [−1, 1]d),
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Next, we construct sieve spaces for function parameter approximation via restricting the complexity
of the MLPs to ”scale” with the sample size n.
Condition 3 (Sieve space, PF scheme). The sieve space Hn is constructed as a set of MLPs
satisfying ĥ ∈ Wβ

Mh
([0, τ ]), with depth of order O(log n) and total number of parameters

of order O(n
1

β+d log n). The sieve space Mn is constructed as a set of MLPs satisfying
m̂ ∈ Wβ

Mm
([−1, 1]d), with depth of order O(log n) and total number of parameters of order

O(n
d

β+d log n). Here Mh and Mm are sufficiently large constants such that every function in
Wβ
M ([−1, 1]d) and Wβ

M ([0, τ ]) could be accurately approximated by functions inside Hn and Mn,
according to (Yarotsky, 2017, Theorem 1).
Condition 4 (Sieve space, FN scheme). The sieve space Vn is constructed as a set of MLPs sat-
isfying ν̂ ∈ Wβ

Mν
([0, τ ]), with depth of order O(log n) and total number of parameters of order

O(n
d+1

β+d+1 log n). Here Mν is a sufficiently large constant such that Vn satisfies approximation
properties, analogous to condition 3.

For technical reasons, we will assume the nonparametric function estimators are constrained to fall
inside the corresponding sieve spaces, i.e., ĥn ∈ Hn, m̂n ∈ Mn and ν̂ ∈ Vn. This will not affect
the implementation of optimization routines as was discussed in Farrell et al. (2021). Furthermore,
we restrict the estimate θ̂n ∈ Θ in both PF and FN schemes.

Additionally, we need the following regularity condition on the function Gθ(x):
Condition 5. Gθ(x) is viewed as a bivariate function G : Θ×B 7→ R, where B is a compact set on
R. The functions Gθ(x), ∂∂θGθ(x),

∂
∂xGθ(x),log gθ(x),

∂
∂θ log gθ(x),

∂
∂x log gθ(x) are bounded on

Θ× B.

We define two metrics that measures convergence of parameter estimates: For the PF scheme, let
ϕ0 = (h0,m0, θ0) be the true parameters and ϕ̂n = (ĥn, m̂n, θ̂n) be the estimates. We abbreviate
Pϕ0,Z=z as the conditional probability distribution of (T, δ) given Z = z under the true parameter,
and Pϕ̂n,Z=z as the conditional probability distribution of (T, δ) given Z = z under the estimates.
Define the following metric

dPF

(
ϕ̂n, ϕ0

)
=

√
Ez∼PZ

[
H2(Pϕ̂n,Z=z ∥ Pϕ0,Z=z)

]
, (9)

where H2(P ∥ Q) =
∫ (√

dP−
√
dQ
)2

is the squared Hellinger distance between probability
distributions P and Q. The case for the FN scheme is similar: Let ψ0 = (ν0, θ0) be the parameters
and ν̂n = (ν̂n, θ̂n) be the estimates. Analogous to the definitions above, we define Pψ0,Z=z as the
true conditional distribution given Z = z, and Pψ̂n,Z=z be the estimated conditional distribution,
we will use the following metric in the FN scheme:

dFN

(
ψ̂n, ψ0

)
=

√
Ez∼PZ

[
H2(Pψ̂n,Z=z ∥ Pψ0,Z=z)

]
. (10)

Now we state our main theorems. We denote P as the data generating distribution and use Õ to hide
poly-logarithmic factors in the big-O notation.
Theorem 1 (Rate of convergence, PF scheme). In the PF scheme, under condition 1, 3, 5, we have
that dPF

(
ϕ̂n, ϕ0

)
= ÕP

(
n−

β
2β+2d

)
.

Theorem 2 (Rate of convergence, FN scheme). In the FN scheme, under condition 2, 4, 5, we have
that dFN

(
ψ̂n, ψ0

)
= ÕP

(
n−

β
2β+2d+2

)
.

Remark 2. The idea of using Hellinger distance to measure the convergence rate of sieve MLEs was
proposed in Wong & Shen (1995). Obtaining rates under a stronger topology such as L2 is possible
if the likelihood function satisfies certain conditions such as the curvature condition (Farrell et al.,
2021). However, such kind of conditions are in general too stringent for likelihood-based objectives,
instead, we use Hellinger convergence that has minimal requirements. Consequently, our proof
strategy is applicable to many other survival models that rely on neural function approximation such
as Rindt et al. (2022), with some modification to the regularity conditions. For proper choices of
metrics in sieve theory, see also the discussion in Chen (2007, Chapter 2).
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Figure 1: Visualizations of synthetic data results under the NFM framework. The plots in the first
row compare the empirical estimates of the nonparametric component ν(t, Z) against its true value
evaluated on 100 hold-out points, under the PF scheme. The plots in the second row are obtained
using the FN scheme, with analogous semantics to the first row.

5 EXPERIMENTS

In this section, we assess the empirical performance of NFM. We first conduct synthetic experiments
for verifying the theoretical convergence guarantees developed in section 4. To further illustrate
the empirical efficacy of NFM, we evaluate the predictive performance of NFM over 6 benchmark
datasets ranging from small scale to large scale, against state-of-the-art baselines.

5.1 SYNTHETIC EXPERIMENTS

We conduct synthetic experiments to validate our proposed theory. The underlying data generating
scheme is as follows: First, we generate a 5-dimensional feature Z that is independently sampled
from the uniform distribution over the interval [0, 1]. The (true) conditional hazard function of
the event time takes the form of the proportional frailty model (2), with h(t) = t and m(Z) =
sin(⟨Z, β⟩) + ⟨sin(Z), β⟩, where β = (0.1, 0.2, 0.3, 0.4, 0.5). The frailty ω is generated according
to a gamma distribution with mean and variance equal to 1. We use this generating model to assess
the recovery guarantee of both NFM modeling schemes via inspecting the empirical recovery of
ν(t, Z). For the PF scheme, we have more underlying information about the generating model, and
we present an additional assessment regarding the recovery of m(Z) in appendix D.1. We generate
three training datasets of different scales, with n ∈ {1000, 5000, 10000}. A censoring mechanism
is applied such that the censoring ratio is around 40% for each dataset. The assessment will be made
on a fixed test sample of 100 hold-out points that are independently drawn from the generating
scheme of the event time. We report a more detailed description of the implementation of the data
generating scheme and model architectures in appendix C.2. We present the results of our synthetic
data experiments in figure 1. The evaluation results suggest that both NFM schemes are capable of
approximating complicated nonlinear functions using a moderate amount of data, i.e., n ≥ 1000.
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Table 1: Survival prediction results measured in IBS and INBLL metric (%) on four small-scale
survival datasets. In each column, the boldfaced score denotes the best result and the underlined
score represents the second-best result.

Model METABRIC RotGBSG FLCHAIN SUPPORT

IBS INBLL IBS INBLL IBS INBLL IBS INBLL

CoxPH 16.46±0.90 49.57±2.66 18.25±0.44 53.76±1.11 10.05±0.38 33.18±1.16 20.54±0.38 59.58±0.86

GBM 16.61±0.82 49.87±2.44 17.83±0.44 52.78±1.11 9.98±0.37 32.88±1.05 19.18±0.39 56.46±0.10

RSF 16.62±0.64 49.61±1.54 17.89±0.42 52.77±1.01 9.96±0.37 32.92±1.05 19.11±0.40 56.28±1.00
DeepSurv 16.55±0.93 49.85±3.02 17.80±0.49 52.62±1.25 10.09±0.38 33.28±1.15 19.20±0.41 56.48±1.08

CoxTime 16.54±0.83 49.67±2.67 17.80±0.58 52.56±1.47 10.28±0.45 34.18±1.53 19.17±0.40 56.45±1.10

DeepHit 17.50±0.83 52.10±2.16 19.61±0.38 56.67±1.10 11.83±0.39 37.72±1.02 20.66±0.32 60.06±0.72

DeepEH 16.56±0.65 49.42±1.53 17.62±0.52 52.08±1.27 10.11±0.37 33.30±1.10 19.30±0.39 56.67±0.94

SuMo-net 16.49±0.83 49.74±2.21 17.77±0.47 52.62±1.11 10.07±0.40 33.20±1.10 19.40±0.38 56.87±0.96

SODEN 16.52±0.63 49.39±1.97 17.05±0.63 50.45±1.97 10.13±0.24 33.37±0.57 19.07±0.50 56.15±1.35

NFM-PF 16.33±0.75 49.07±1.96 17.60±0.55 52.12±1.34 9.96±0.39 32.84±1.15 19.14±0.39 56.35±1.00

NFM-FN 16.11±0.81 48.21±2.04 17.66±0.52 52.41±1.22 10.05±0.39 33.11±1.10 18.97±0.60 55.87±1.50

5.2 REAL-WORLD DATA EXPERIMENTS

Datasets We use five survival datasets and one non-survival dataset for evaluation. The survival
datasets include the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
(Curtis et al., 2012), the Rotterdam tumor bank and German Breast Cancer Study Group (RotG-
BSG)(Knaus et al., 1995), the Assay Of Serum Free Light Chain (FLCHAIN) (Dispenzieri et al.,
2012), the Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUP-
PORT) (Knaus et al., 1995), and the Medical Information Mart for Intensive Care (MIMIC-III)
(Johnson et al., 2016). For all the survival datasets, the event of interest is defined as the mortality
after admission. In our experiments, we view METABRIC, RotGBSG, FLCHAIN, and SUPPORT
as small-scale datasets and MIMIC-III as a moderate-scale dataset. We additionally use the KKBOX
dataset (Kvamme et al., 2019) as a large-scale evaluation. In this dataset, an event time is observed if
a customer churns from the KKBOX platform. We summarize the basic statistics of all the datasets
in table 3.

Baselines We compare NFM with 9 baselines. The first one is the linear CoxPH model (Cox, 1972).
Gradient Boosting Machine (GBM) (Friedman, 2001; Chen & Guestrin, 2016) and Random Survival
Forests (RSF) (Ishwaran et al., 2008) are two tree-based nonparametric survival regression methods.
DeepSurv (Katzman et al., 2018) and CoxTime (Kvamme et al., 2019) are two models that adopt
neural variants of partial likelihood as objectives. SuMo-net (Rindt et al., 2022) is a neural variant
of NHR. We additionally chose three latest state-of-the-art neural survival models: DeepHit (Lee
et al., 2018), DeepEH (Zhong et al., 2021a), and SODEN (Tang et al., 2022). Among the chosen
baselines, DeepSurv and SuMo-net are viewed as implementations of neural CoxPH and neural
NHR and are therefore of particular interest for the empirical verification of the efficacy of frailty. A
more thorough performance comparison with a larger set of baselines is provided in appendix D.3.

Evaluation strategy We use two standard metrics in survival predictions for evaluating model per-
formance: integrated Brier score (IBS) and integrated negative binomial log-likelihood (INBLL).
Both metrics are derived from the following:

S(ℓ, t1, t2) =
∫ t1

t2

1

n

n∑
i=1

[
ℓ(0, Ŝ(t|Zi))I(Ti ≤ t, δi = 1)

ŜC(Ti)
+
ℓ(1, Ŝ(t|Zi))I(Ti > t)

ŜC(t)

]
dt. (11)

Where ŜC(t) is an estimate of the survival function SC(t) of the censoring variable, obtained by
the Kaplan-Meier estimate (Kaplan & Meier, 1958) of the censored observations on the test data.
ℓ : {0, 1} × [0, 1] 7→ R+ is some proper loss function for binary classification (Gneiting & Raftery,
2007). The IBS metric corresponds to ℓ being the square loss, and the INBLL metric corresponds to
ℓ being the negative binomial (Bernoulli) log-likelihood (Graf et al., 1999). Both IBS and INBLL
are proper scoring rules if the censoring times and survival times are independent. 4 We additionally

4Otherwise, one may pose a covariate-dependent model on the censoring time and use ŜC(t|Z) instead of
ŜC(t). We adopt the Kaplan-Meier approach since it’s still the prevailing practice in evaluations of survival
predictions.
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Table 2: Survival prediction results measured in IBS and INBLL metric (%) on two larger datasets.
In each column, the boldfaced score denotes the best result and the underlined score represents
the second-best result. Two models are not reported, namely SODEN and DeepEH, as we found
empirically that their computational/memory cost is significantly worse than the rest, and we fail to
obtain reasonable performances over the two datasets for these two models.

Model MIMIC-III KKBOX

IBS INBLL IBS INBLL

CoxPH 20.40±0.00 60.02±0.00 12.60±0.00 39.40±0.00

GBM 17.70±0.00 52.30±0.00 11.81±0.00 38.15±0.00

RSF 17.79±0.19 53.34±0.41 14.46±0.00 44.39±0.00

DeepSurv 18.58±0.92 55.98±2.43 11.31±0.05 35.28±0.15

CoxTime 17.68±1.36 52.08±3.06 10.70±0.06 33.10±0.21

DeepHit 19.80±1.31 59.03±4.20 16.00±0.34 48.64±1.04

SuMo-net 18.62±1.23 54.51±2.97 11.58±0.11 36.61±0.28

NFM-PF 16.28±0.36 49.18±0.92 11.02±0.11 35.10±0.22

NFM-FN 17.47±0.45 51.48±1.23 10.63±0.08 32.81±0.14

report the result of another widely used metric, the concordance index (C-index), in appendix D.
Since all the survival datasets do not have standard train/test splits, we follow previous practice
(Zhong et al., 2021a) that uses 5-fold cross-validation (CV): 1 fold is for testing, and 20% of the rest
is held out for validation. In our experiments, we observed that a single random split into 5 folds
does not produce stable results for most survival datasets. Therefore we perform 10 different CV
runs for each survival dataset and report average metrics as well as their standard deviations. For the
KKBOX dataset, we use the standard train/valid/test splits that are available via the pycox package
(Kvamme et al., 2019) and report results based on 10 trial runs.

Experimental setup We follow standard preprocessing strategies (Katzman et al., 2018; Kvamme
et al., 2019; Zhong et al., 2021a) that standardize continuous features into zero mean and unit vari-
ance, and do one-hot encodings for all categorical features. We adopt MLP with ReLU activation for
all function approximators, including ĥ, m̂ in PF scheme, and ν̂ in FN scheme, across all datasets,
with the number of layers (depth) and the number of hidden units (width) within each layer being
tunable. We tune the frailty transform over several standard choices detailed in appendix C.3. We
find that the gamma frailty configuration performs reasonably well across all tasks and is recom-
mended to be the default choice. A more detailed description of the tuning procedure, as well as
training configurations for baseline models, are reported in appendix C.3.

Results we report experimental results of small-scale datasets in table 1, and results of two larger
datasets in table 2. The proposed NFM framework achieves the best performance on 5 of the 6
datasets. The improvement over baselines is particularly evident in METABRIC, SUPPORT, and
MIMIC-III datasets.

Benefits of frailty to better understand the additional benefits of introducing the frailty formulation,
we compute the (relative) performance gain of NFM-PF and NFM-FN, against their non-frailty
counterparts, namely DeepSurv (Katzman et al., 2018) and SuMo-net (Rindt et al., 2022). The
evaluation is conducted for all three metrics mentioned in this paper. The results are shown in
table 7. The results suggest a solid improvement in incorporating frailty, as the relative increase in
performance could be over 10% for both NFM models. A more detailed discussion is presented in
section D.5.

6 CONCLUSION

In this paper, we make principled explorations on applying the idea of frailty models in modern
survival analysis to neural survival regressions. A flexible and scalable framework called NFM is
proposed that includes many useful survival models as special cases. Under the framework, we
study two derived model architectures both theoretically and empirically. Theoretically, we obtain
the rates of convergences of the nonparametric function estimators based on neural function approx-
imation. Empirically, we demonstrate the superior predictive performance of the proposed models
by evaluating several benchmark datasets.
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A EXAMPLES OF FRAILTY SPECIFICATIONS

We list several commonly used frailty models, and specify their corresponding characteristics via
their frailty transform Gθ:

Gamma frailty: Arguably the gamma frailty is the most widely used frailty model Murphy (1994;
1995); Parner (1998); Wienke (2010); Duchateau & Janssen (2007), with

Gθ(x) =
1

θ
log(1 + θx), θ ≥ 0. (12)

When θ = 0, G0(x) = limθ→0Gθ(x) is defined as the (pointwise) limit. A notable fact of the
gamma frailty specification is that when the proportional frailty (PF) assumption (2) is met, if θ = 0,
the model degenerates to CoxPH . Otherwise if θ = 1, the model corresponds to the proportional
odds (PO) model (Bennett, 1983).
Box-Cox transformation frailty: Under this specification, we have

Gθ(x) =
(1 + x)θ − 1

θ
, θ ≥ 0. (13)

The case of θ = 0 is defined analogously to that of gamma frailty, which corresponds to the PO
model under the PF assumption. When θ = 1, the model reduces to CoxPH under the PF assump-
tion.
IGG(α) frailty: This is an extension of gamma frailty (Kosorok et al., 2004) and includes other
types of frailty specifications like the inverse gaussian frailty Hougaard (1984), with

Gθ(x) =
1− α

αθ

[(
1 +

θx

1− α

)α
− 1

]
, θ ≥ 0, α ∈ [0, 1). (14)

In the one-dimensional parameter paradigm, the parameter α is assumed known instead of being
learnable. When α = 1/2, we obtain the gamma frailty model. When α→ 0, the limit corresponds
to the inverse Gaussian frailty.

Satistiability of regularity condition 5 In Kosorok et al. (2004, Proposition 1), the authors verified
the regularity condition of gamma and IGG(α) frailties. Using a similar argument, it is straightfor-
ward to verify the regularity of Box-Cox transformation frailty.

B PROOFS OF THEOREMS

B.1 PRELIMINARY

Additional definitions The theory of empirical processes (van der Vaart et al., 1996) will be in-
volved heavily in the proof. Therefore we briefly introduce some common notations: For a function
class F , defineN (ϵ,F , ∥ · ∥) to be the covering number of F with respect to norm ∥·∥ under radius
ϵ, and define N[] (ϵ,F , ∥ · ∥) to be the bracketing number of F with respect to norm ∥ · ∥ under
radius ϵ. We use VC (F) to denote the VC-dimension of F . Moreover, we use the notation a ≲ b to
denote a ≤ Cb for some positive constant C.

Before proving theorem 1 and 2, we introduce some additional notations that will be useful through-
out the proof process.

In the PF scheme, define

l(T, δ, Z;h,m, θ) =δ log gθ

(
em(Z)

∫ T

0

eh(s)ds

)
+ δh(T ) + δm(Z)

−Gθ

(
em(Z)

∫ T

0

eh(s)ds

)
,

where we denote gθ = G′(θ). Under the definition of the sieve space stated in condition 3, we
restate the parameter estimates as(

ĥn, m̂n, θ̂n

)
= argmax
ĥ∈Hn,m̂∈Mn,θ∈Θ

1

n

∑
i∈[n]

l(Ti, δi, Zi; ĥ, m̂, θ).
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Similarly, in the FN scheme, we define

l(T, δ, Z; ν, θ) = δ log gθ

(∫ T

0

eν(s,Z)ds

)
+ δν(T,Z)−Gθ

(∫ T

0

eν(s,Z)ds

)
Under the definition of the sieve space stated in condition 4, we restate the parameter estimates as(

ν̂n(t, z), θ̂n

)
= argmax
ν̂∈Vn,θ∈Θ

1

n

∑
i∈[n]

l(Ti, δi, Zi; ν̂, θ).

We denote the conditional density function and survival function of the event time T̃ given Z by
fT̃ |Z(t) and ST̃ |Z(t), respectively. Similarly, we denote the conditional density function and survival
function of the censoring time C given Z by fC|Z(t) and SC|Z(t). Under the assumption that
T̃ ⊥⊥ C | Z, the joint conditional density of the observed time T and the censoring indicator δ given
Z can be expressed as the following:

p(T, δ | Z) = fT̃ |Z(T )
δST̃ |Z(T )

1−δfC|Z(T )
1−δSC|Z(T )

δ

= λT̃ |Z(T )
δST̃ |Z(T )fC|Z(T )

1−δSC|Z(T )
δ,

where λT̃ |Z(T ) is the conditional hazard function of the survival time T̃ given Z.

Under the model assumption of PF scheme, p(T, δ | Z) can be expressed by

p(T, δ | Z;h,m, θ) = exp (l(T, δ, Z;h,m, θ)) fC|Z(T )
1−δSC|Z(T )

δ.

For ϕ0 = (h0,m0, θ0) and an estimator ϕ̂ = (ĥ, m̂, θ̂), the defined distance dPF

(
ϕ̂, ϕ0

)
can be

explicitly expresses by

dFN

(
ψ̂, ψ0

)
=

√√√√EZ

[∫ ∣∣∣∣√p(T, δ | Z; ĥ, m̂, θ̂)−√p(T, δ | Z;h0,m0, θ0)

∣∣∣∣2 µ(dT × dδ)

]
.

Here the dominating measure µ is defined such that for any (measurable) function r(T, δ)∫
r(T, δ)µ(dT × dδ) =

∫ τ

0

r(T, δ = 1)dT +

∫ τ

0

r(T, δ = 0)dT

Under the model assumption of FN scheme, p(T, δ | Z) can be expressed by

p(T, δ | Z; ν, θ) = exp (l(T, δ, Z; ν, θ)) fC|Z(T )
1−δSC|Z(T )

δ.

For ψ0 = (ν0, θ0) and an estimator ψ̂ = (ν̂, θ̂), the defined distance dFN

(
ψ̂, ψ0

)
can be explicitly

expresses by

dFN

(
ψ̂, ψ0

)
=

√√√√EZ

[∫ ∣∣∣∣√p(T, δ | Z; ν̂, θ̂)−√p(T, δ | Z; ν0, θ0)∣∣∣∣2 µ(dT × dδ)

]
.

B.2 TECHNICAL LEMMAS

The following lemmas are needed for the proof of Theorem 1 and 2. Hereafter for notational conve-
nience, we will use ĥ, m̂ for arbitrary elements in the corresponding sieve space listed in condition
3, ν̂ for an arbitrary element in the sieve space listed in condition 4, and θ̂ for an arbitrary element
in Θ.
Lemma 1. Under condition 1, 3, 5, for (T, δ, Z) ∈ [0, τ ] × {0, 1} × [−1, 1]d, the following terms
are bounded:
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1. l(T, δ, Z;h0,m0, θ0) with true parameter (h0,m0, θ0)

2. l(T, δ, Z; ĥ, m̂, θ̂) with parameter estimates (ĥ, m̂, θ̂) in any sieve space listed in condition 3.
Lemma 2. Under condition 2, 4, 5, for (T, δ, Z) ∈ [0, τ ] × {0, 1} × [−1, 1]d, the following terms
are bounded:

1. l(T, δ, Z; ν0, θ0) with true parameter (ν0, θ0)

2. l(T, δ, Z; ν̂, θ̂) with parameter estimates (ν̂, θ̂) in any sieve space listed in condition 4.

Lemma 3. Under condition 1, 3, 5, let (ĥ, m̂, θ̂), (ĥ1, m̂1, θ̂1), and (ĥ2, m̂2, θ̂2) be arbitrary three
parameter triples inside the sieve space defined in condition 3, the following two inequalities hold.

∥l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)∥∞ ≲ |θ0 − θ̂|+ ∥h0 − ĥ∥∞ + ∥m0 − m̂∥∞
∥l(T, δ, Z; ĥ1, m̂1, θ̂1)− l(T, δ, Z; ĥ2, m̂2, θ̂2)∥∞ ≲ |θ̂1 − θ̂2|+ ∥ĥ1 − ĥ2∥∞ + ∥m̂1 − m̂2∥∞.

Lemma 4. Under condition 2, 4, 5, let (ν̂, θ̂), (ν̂1, θ̂1), and (ν̂2, θ̂2) be arbitrary three parameter
tuples inside the sieve space defined in condition 4,, the following inequalities hold.

∥l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)∥∞ ≲ |θ0 − θ̂|+ ∥ν0 − ν̂∥∞
∥l(T, δ, Z; ν̂1, θ̂1)− l(T, δ, Z; ν̂2, θ̂2)∥∞ ≲ |θ̂1 − θ̂2|+ ∥ν̂1 − ν̂2∥∞.

Lemma 5 (Approximating error of PF scheme). In the PF scheme, for any n, there exists an ele-
ment in the corresponding sieve space πnϕ0 = (πnh0, πnm0, πnθ0), satisfying dPF (πnϕ0, ϕ0) =

O
(
n−

β
β+d

)
.

Lemma 6 (Approximating error of FN scheme). In the FN scheme, for any n, there exists an element
in the corresponding sieve space πnψ = (πnν0, πnθ0) satisfying dFN (πnψ0, ψ0) = O

(
n−

β
β+d+1

)
.

Lemma 7. Suppose F is a class of functions satisfying that N(ε,F , ∥ · ∥) < ∞ for ∀ε > 0. We
define Ñ(ε,F , ∥ · ∥) to be the minimal number of ε-balls B(f, ε) = {g : ∥g − f∥ < ε} needed to
cover F with radius ε and further constrain that f ∈ F . Then we have

N(ε,F , ∥ · ∥) ≤ Ñ(ε,F , ∥ · ∥) ≤ N(
ε

2
,F , ∥ · ∥).

Lemma 8. Suppose F is a class of functions satisfying that N[](ε,F , ∥ · ∥∞) < ∞ for ∀ε > 0.
We define Ñ[](ε,F , ∥ · ∥∞) to be the minimal number of brackets [l, u] needed to cover F with
∥l − u∥∞ < ε and further constrain that f ∈ F , l = f − ε

2 and u = f + ε
2 . Then we have

N[](ε,F , ∥ · ∥∞) ≤ Ñ[](ε,F , ∥ · ∥∞) ≤ N[](
ε

2
,F , ∥ · ∥∞)

Furthermore, we have Ñ[](ε,F , ∥ · ∥∞) = Ñ( ε2 ,F , ∥ · ∥∞).

Lemma 9 (Model capacity of PF scheme). Let Fn = {l(T, δ, Z; ĥ, m̂, θ̂) : ĥ ∈ Hn, m̂ ∈ Mn, θ̂ ∈
Θ}. Under condition 5, with sh = 2β

2β+1 and sm = 2β
2β+d , there exist constants ch and cm > 0 such

that

N[](ε,Fn, ∥ · ∥∞) ≲
1

ε
N(chε

1/sh ,Hn, ∥ · ∥2)×N(cmε
1/sm ,Mn, ∥ · ∥2).

Lemma 10 (Model capacity of FN scheme). Let Gn = {l(T, δ, Z; ν̂, θ̂) : ν̂ ∈ Vn, θ̂ ∈ Θ}. Under
condition 5, with sν = 2β

2β+d+1 , there exists a constant cν > 0 such that

N[](ε,Gn, ∥ · ∥∞) ≲
1

ε
N(cνε

1/sν ,Vn, ∥ · ∥2).

B.3 PROOFS OF THEOREM 1 AND 2

Proof of theorem 1. The proof is divided into four steps.
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Step 1 We denote ϕ0 = (h0,m0, θ0) and ϕ̂ = (ĥ, m̂, θ̂), where ĥ ∈ Hn,m̂ ∈ Mn and θ̂ ∈ Θ. For
arbitrary small ε > 0, we have that

inf
dPF(ϕ̂,ϕ0)≥ε

E
[
l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)

]
= inf
dPF(ϕ̂,ϕ0)≥ε

EZ
[
ET,δ|Z

[
log p(T, δ | Z;h0,m0, θ0)− log p(T, δ | Z; ĥ, m̂, θ̂)

]]
= inf
dPF(ϕ̂,ϕ0)≥ε

EZ
[
DKL

(
Pϕ̂,Z ∥ Pϕ0,Z

)]
Using the fact that DKL

(
Pϕ̂,Z ∥ Pϕ0,Z

)
≥ 2H2(Pϕ̂,Z ∥ Pϕ0,Z). Thus, we further obtain that

inf
dPF(ϕ̂,ϕ0)≥ε

E
[
l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)

]
≥ inf
dPF(ϕ̂,ϕ0)≥ε

2EZ
[
H2(Pϕ̂,Z ∥ Pϕ0,Z)

]
= 2 inf

dPF(ϕ̂,ϕ0)≥ε
d2PF

(
ϕ̂, ϕ0

)
≥ 2ε2.

Step 2 Consider the following derivation.

sup
dPF(ϕ̂,ϕ0)≤ε

Var
[
l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)

]
≤ sup
dPF(ϕ̂,ϕ0)≤ε

E
[(
l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)

)2]
= sup
dPF(ϕ̂,ϕ0)≤ε

EZET,δ|Z
[
log p(T, δ, Z;h0,m0, θ0)− log p(T, δ, Z; ĥ, m̂, θ̂)

]2

= 4 sup
dPF(ϕ̂,ϕ0)≤ε

EZ

∫ p(T, δ, Z;h0,m0, θ0)

(
log

√
p(T, δ, Z;h0,m0, θ0)

p(T, δ, Z; ĥ, m̂, θ̂)

)2
µ(dT × dδ)


By Taylor’s expansion on log x, there exists ξ(T, δ, Z) between p

1
2 (T, δ, Z;h0,m0, θ0) and

p
1
2 (T, δ, Z; ĥ, m̂, θ̂) pointwisely such that

p(T, δ, Z;h0,m0, θ0)

(
log

√
p(T, δ, Z;h0,m0, θ0)

p(T, δ, Z; ĥ, m̂, θ̂)

)2

= p(T, δ, Z;h0,m0, θ0)

(
log
√
p(T, δ, Z;h0,m0, θ0)− log

√
p(T, δ, Z; ĥ, m̂, θ̂)

)2

=
p(T, δ, Z;h0,m0, θ0)

ξ(T, δ, Z)2

(√
p(T, δ, Z;h0,m0, θ0)−

√
p(T, δ, Z; ĥ, m̂, θ̂)

)2

Since

p(T, δ, Z;h0,m0, θ0)

p(T, δ, Z; ĥ, m̂, θ̂)
= el(T,δ,Z;h0,m0,θ0)−l(T,δ,Z;ĥ,m̂,θ̂)

by lemma 1, l(T, δ, Z;h0,m0, θ0) and l(T, δ, Z; ĥ, m̂, θ̂) are bounded among[0, τ ] × {0, 1} ×
[−1, 1]d uniformly on all ϕ̂ = (ĥ, m̂, θ̂). Thus, there exist constants C1 and C2 such that
0 < C1 ≤ p(T, δ, Z;h0,m0, θ0)/p(T, δ, Z; ĥ, m̂, θ̂) ≤ C2. This leads to the fact that
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p(T, δ, Z;h0,m0, θ0)
1

ξ(T,δ,Z)2 is bounded. We further obtained that

p(T, δ, Z;h0,m0, θ0)

(
log
√
p(T, δ, Z;h0,m0, θ0)− log

√
p(T, δ, Z; ĥ, m̂, θ̂)

)2

≲

∣∣∣∣√p(T, δ, Z;h0,m0, θ0)−
√
p(T, δ, Z; ĥ, m̂, θ̂)

∣∣∣∣2 .
Thus, we have that

sup
dPF[ϕ̂,ϕ0]≤ε

Var(l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂))

≲ sup
dPF(ϕ̂,ϕ0)≤ε

EZ

[∫ ∣∣∣∣√p(T, δ, Z;h0,m0, θ0)−
√
p(T, δ, Z; ĥ, m̂, θ̂)

∣∣∣∣2 µ(dT × dδ)

]

= sup
dPF(ϕ̂,ϕ0)≤ε

d2PF

(
ϕ̂, ϕ0

)
≤ ε2.

Step 3 We define that F̃n = {l(T, δ, Z; ĥ, m̂, θ̂) − l(T, δ, Z;πnh0, πnm0, πnθ0) : ĥ ∈ Hn, m̂ ∈
Mn, θ̂ ∈ Θ}. Here (πnh0, πnm0, πnθ0) have been defined in lemma 5. Obviously, we have that
logN[](ε, F̃n, ∥ · ∥∞) = logN[](ε,Fn, ∥ · ∥∞), where F is defined in lemma 9. By lemma 9, we
further have that

logN[](ε,Fn, ∥ · ∥∞) ≲ log
1

ε
+ logN(chε

1/sh ,Hn, ∥ · ∥2) + logN(cmε
1/sm ,Mn, ∥ · ∥2).

According to Bartlett et al. (2019, Theorem 7), under condition 3, we have that the VC-dimension of
Hn and Mn satisfy that VC (Hn) ≲ n

1
β+d log3 n and VC (Mn) ≲ n

d
β+d log3 n. Thus, we obtain

that

logN(chε
1/sh ,Hn, ∥ · ∥2) ≲

VC (Hn)

sh
log

1

ε
≲ n

1
β+d log3 n log

1

ε
,

and

logN(cmε
1/sm ,Mn, ∥ · ∥2) ≲

VC (Mn)

sν
log

1

ε
≲ n

d
β+d log3 n log

1

ε
.

Thus, we obtain that logN[](ε, F̃n, ∥ · ∥∞) ≲ n
d

β+d log3 n log 1
ε .

Step 4 By the Cauchy-Schwartz inequality, we have that√
E [l(T, δ, Z;πnh0, πnm0, πnθ0)− l(T, δ, Z;h0,m0, θ0)]

≤
[
E(l(T, δ, Z;πnh0, πnm0, πnθ0)− l(T, δ, Z;h0,m0, θ0))

2
] 1

4 .

Similar to the second part and by lemma 5, we further have that√
E [l(T, δ, Z;πnh0, πnm0, πnθ0)− l(T, δ, Z;h0,m0, θ0)] ≲

√
dPF (πnϕ0, ϕ0) ≲ n−

β
2β+2d .

Now let

τ =
β

2β + 2d
− 2

log log n

log n
By Step 1,2,3 and Shen & Wong (1994, Theorem 1), we have

dPF

(
ϕ̂n, ϕ0

)
= max

(
n−τ , dPF (πnϕ0, ϕ0) ,√

E [l(T, δ, Z;πnh0, πnm0, πnθ0)− l(T, δ, Z;h0,m0, θ0)]
)

By lemma 5, dPF (πnϕ0, ϕ0) = O(n−
β

β+d ).

By Step 4,
√

E [l(T, δ, Z;πnh0, πnm0, πnθ0)− l(T, δ, Z;h0,m0, θ0)] = O
(
n−

β
2β+2d

)
. Thus, we

have dPF

(
ϕ̂n, ϕ0

)
= O(n−

β
2β+2d log2 n) = Õ(n−

β
2β+2d ).

Proof of theorem 2. The proof is divided into four steps.
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Step 1 We denote ψ0 = (ν0, θ0) and ψ̂ = (ν̂, θ̂), where ν̂ ∈ Vn and θ̂ ∈ Θ. For arbitrary
0 < ε ≤ 1, we have that

inf
dFN(ψ̂,ψ0)≥ε

E
[
l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)

]
= inf
dFN(ψ̂,ψ0)≥ε

EZ
[
ET,δ|Z

[
log p(T, δ | Z; ν0, θ0)− log p(T, δ | Z; ν̂, θ̂)

]]
= inf
dFN(ψ̂,ψ0)≥ε

EZ
[
DKL

(
Pψ̂,Z ∥∥ Pψ0,Z

)]
Using the fact that KL(Pψ̂,Z ∥ Pψ0,Z) ≥ 2H2(Pψ̂,Z ∥ Pψ0,Z). Thus, we further obtain that

inf
dFN(ψ̂,ψ0)≥ε

E
[
l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)

]
≥ inf
dFN(ψ̂,ψ0)≥ε

2EZ
[
H2(Pψ̂,Z ∥ Pψ0,Z)

]
= 2 inf

dFN(ψ̂,ψ0)≥ε
d2FN

(
ψ̂, ψ0

)
≥ 2ε2.

Step 2 We consider the following derivation.

sup
dFN(ψ̂,ψ0)≤ε

Var
[
l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)

]
≤ sup
dFN(ψ̂,ψ0)≤ε

E
[(
l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)

)2]

= sup
dFN(ψ̂,ψ0)≤ε

EZ
[
ET,δ|Z

[(
log p(T, δ, Z; ν0, θ0)− log p(T, δ, Z; ν̂, θ̂)

)2]]

= 4 sup
dFN(ψ̂,ψ0)≤ε

EZ

[∫ (
p(T, δ, Z; ν0, θ0)(log

√
p(T, δ, Z; ν0, θ0)

p(T, δ, Z; ν̂, θ̂)
)2

)
µ(dT × dδ)

]

By Taylor’s expansion on log x, there exists η(T, δ, Z) between
√
p(T, δ, Z; ν0, θ0) and√

p(T, δ, Z; ν̂, θ̂) pointwisely such that

p(T, δ, Z; ν0, θ0)(log

√
p(T, δ, Z; ν0, θ0)

p(T, δ, Z; ν̂, θ̂)
)2

= p(T, δ, Z; ν0, θ0)

(
log
√
p(T, δ, Z; ν0, θ0)− log

√
p(T, δ, Z; ν̂, θ̂)

)2

=
p(T, δ, Z; ν0, θ0)

η(T, δ, Z)2

(√
p(T, δ, Z; ν0, θ0)−

√
p(T, δ, Z; ν̂, θ̂)

)2

Since p(T, δ, Z; ν0, θ0)/p(T, δ, Z; ν̂, θ̂) = el(T,δ,Z;ν0,θ0)−l(T,δ,Z;ν̂,θ̂), by lemma 2, l(T, δ, Z; ν0, θ0)
and l(T, δ, Z; ν̂, θ̂) are bounded on [0, τ ] × {0, 1} × [−1, 1]d uniformly for all ψ̂ = (ν̂, θ̂). Thus
there exist constants C3 and C4 such that 0 < C3 ≤ p(T, δ, Z; ν0, θ0)/p(T, δ, Z; ν̂, θ̂) ≤ C4. This
leads to the fact that p(T, δ, Z; ν0, θ0) 1

η(T,δ,Z)2 is bounded. We further have that

p(T, δ, Z; ν0, θ0)

(
log
√
p(T, δ, Z; ν0, θ0)− log

√
p(T, δ, Z; ν̂, θ̂)

)2

≲

∣∣∣∣√p(T, δ, Z; ν0, θ0)−√p(T, δ, Z; ν̂, θ̂)∣∣∣∣2 .
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Thus, we have that

sup
dFN(ψ̂,ψ0)≤ε

Var
[
l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)

]

≲ sup
dFN(ψ̂,ψ0)≤ε

EZ

[∫ ∣∣∣∣√p(T, δ, Z; ν0, θ0)−√p(T, δ, Z; ν̂, θ̂)∣∣∣∣2 µ(dT × dδ)

]

= sup
dFN(ψ̂,ψ0)≤ε

d2FN

(
ψ̂, ψ0

)
≤ ε2.

Step 3 We define that G̃n = {l(T, δ, Z; ν̂, θ̂) − l(T, δ, Z;πnν0, πnθ0) : ν̂ ∈ Vn, θ ∈ Θ}. Here
(πnν0, πnθ0) have been defined in lemma 6. Obviously, we have that logN[](ε, G̃n, ∥ · ∥∞) =
logN[](ε,Gn, ∥ · ∥∞), where G is defined in lemma 10. By lemma 10, we further obtain that

logN[](ε,Gn, ∥ · ∥∞) ≲ log
1

ε
+ logN(cνε

1/sν ,Vn, ∥ · ∥2).

According to Bartlett et al. (2019, Theorem 7), under condition 4, we have that the VC-dimension
of Vn satisfies that VC (Vn) ≲ n

d+1
β+d+1 log3 n. Thus, we obtain that

logN(chε
1/sν ,Vn, ∥ · ∥2) ≲

VC (Vn)
sν

log
1

ε
≲ n

d+1
β+d+1 log3 n log

1

ε
.

Furthermore, we get that logN[](ε, G̃n, ∥ · ∥∞) ≲ n
d+1

β+d+1 log3 n log 1
ε .

Step 4 By the Cauchy-Schwartz inequality, we have that√
E[l(T, δ, Z;πnν0, πnθ0)− l(T, δ, Z; ν0, θ0)] ≤

[
E (l(T, δ, Z;πnν0, πnθ0)− l(T, δ, Z; ν0, θ0))

2
] 1

4

.

Similar to the second part and by lemma 6, we further obtain that√
E[l(T, δ, Z;πnν0, πnθ0)− l(T, δ, Z; ν0, θ0)] ≲

√
dFN (πnψ0, ψ0) ≲ n−

β
2β+2d+2

Now let

τ =
β

2β + 2d+ 2
− 2

log log n

log n
.

By step 1,2,3 and Step 1,2,3 and Shen & Wong (1994, Theorem 1),

dFN

(
ψ̂n, ψ0

)
= max

(
n−τ , dFN (πnψ0, ψ0) ,√

E[l(T, δ, Z;πnν0, πnθ0)− l(T, δ, Z; ν0, θ0)]
)

By lemma6, dFN (πnψ0, ψ0) = O(n−
β

β+d+1 )

By Step 4,
√
E[l(T, δ, Z;πnν0, πnθ0)− l(T, δ, Z; ν0, θ0)] = O(n−

β
2β+2d+2 ). Thus, we have

dFN

(
ψ̂n, ψ0

)
= O(n−

β
2β+2d+2 log2 n) = Õ(n−

β
2β+2d+2 ).

B.4 PROOFS OF TECHNICAL LEMMAS

Proof of lemma 1. Since h0(T ) ∈ Wβ
M ([0, τ ]) and m0(Z) ∈ Wβ

M ([−1, 1]d), we have that h0(T ) ≤
M , m0(Z) ≤M and em0(Z)

∫ T
0
h0(s)ds ≤ τe2M . Let B = [0, τe2M ], we have that

|l(T, δ, Z;h0,m0, θ0)|

≤

∣∣∣∣∣log gθ0
(
em0(Z)

∫ T

0

eh0(s)ds

)∣∣∣∣∣+ |h0(T )|+ |m0(Z)|+

∣∣∣∣∣Gθ0
(
em0(Z)

∫ T

0

eh0(s)ds

)∣∣∣∣∣
≤ 2M + sup

x∈B
|log gθ0(x)|+ sup

x∈B
|Gθ0(x)|

By condition 5, we have that l(T, δ, Z;h0,m0, θ0) is bounded for (T, δ, Z) ∈ [0, τ ] × {0, 1} ×
[−1, 1]d. The proof of the boundness of l(T, δ, Z; ĥ, m̂, θ̂) is similar.
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Proof of lemma 2. Since ν0(T,Z) ∈ Wβ
M ([0, τ ] × [−1, 1]d), we have ν0(T,Z) ≤ M and∫ T

0
eν(s,Z)ds ≤ τeM . Let B = [0, τeM ], we have that

|l(T, δ, Z; ν0, θ0)|

≤

∣∣∣∣∣logG′
θ0

(∫ T

0

eν0(s,Z)ds

)∣∣∣∣∣+ |ν0(T,Z)|+

∣∣∣∣∣Gθ0
(∫ T

0

eν0(s,Z)ds

)∣∣∣∣∣
≤M + sup

x∈B

∣∣logG′
θ0(x)

∣∣+ sup
x∈B

|Gθ0(x)| .

By condition 5, we have that l(T, δ, Z; ν0, θ0) is bounded among (T, δ, Z) ∈ [0, τ ]×{0, 1}×[−1, 1]d

The proof of the boundness of l(T, δ, Z; ν̂, θ̂) is similar.

Proof of lemma 3. By definition, we have that

|l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)|

≤

∣∣∣∣∣log gθ0
(
em0(Z)

∫ T

0

eh0(s)ds

)
− log gθ̂

(
em̂(Z)

∫ T

0

eĥ(s)ds

)∣∣∣∣∣+ ∣∣∣h0(T )− ĥ(T )
∣∣∣

+|m0(Z)− m̂(Z)|+

∣∣∣∣∣Gθ0
(
em0(Z)

∫ T

0

eh0(s)ds

)
−Gθ̂

(
em̂(Z)

∫ T

0

eĥ(s)ds

)∣∣∣∣∣ .
Let B = [0, τ max(e2M , eMh+Mm)]. By Taylor’s expansion, we can further show that

|l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)|

≤ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂θ̃

∣∣∣∣ · ∣∣∣θ0 − θ̂
∣∣∣

+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂x̃

∣∣∣∣ ·
∣∣∣∣∣em0(Z)

∫ T

0

eh0(s)ds− em̂(Z)

∫ T

0

eĥ(s)ds

∣∣∣∣∣
+|h0(T )− ĥ(T )|+ |m0(Z)− m̂(Z)|+ sup

θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂θ̃

∣∣∣∣ · ∣∣∣θ0 − θ̂
∣∣∣

+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂x̃

∣∣∣∣ ·
∣∣∣∣∣em0(Z)

∫ T

0

eh0(s)ds− em̂(Z)

∫ T

0

eĥ(s)ds

∣∣∣∣∣ .
Again, by Taylor’s expansion, we have that∣∣∣∣∣em0(Z)

∫ T

0

eh0(s)ds− em̂(Z)

∫ T

0

eĥ(s)ds

∣∣∣∣∣
≤

∣∣∣∣∣em0(Z)

∫ T

0

(eh0(s) − eĥ(s))ds

∣∣∣∣∣+
∣∣∣∣∣(em0(Z) − em̂(Z))

∫ T

0

eĥ(s)ds

∣∣∣∣∣
≤ eM · τemax(M,Mh)

∥∥∥h0 − ĥ
∥∥∥
∞

+ τeMh · emax(M,Mm)∥m0 − m̂∥∞.

Finally, we obtain that

|l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)|

≤ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂x̃

∣∣∣∣ · [eM · τemax(M,Mh)∥h0 − ĥ∥∞ + τeMh · emax(M,Mm)∥m0 − m̂∥∞
]

+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂θ̃

∣∣∣∣ · ∣∣∣θ0 − θ̂
∣∣∣+ ∣∣∣h0(T )− ĥ(T )

∣∣∣+ |m0(Z)− m̂(Z)|

+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂θ̃

∣∣∣∣ · ∣∣∣θ0 − θ̂
∣∣∣

+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂x̃

∣∣∣∣ · [eM · τemax(M,Mh)∥h0 − ĥ∥∞ + τeMh · emax(M,Mm)∥m0 − m̂∥∞
]
.
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Taking supremum on both sides, we conclude that

∥l(T, δ, Z;h0,m0, θ0)− l(T, δ, Z; ĥ, m̂, θ̂)∥∞ ≲ |θ0 − θ̂|+ ∥h0 − ĥ∥∞ + ∥m0 − m̂∥∞.

The proof of the second inequality is similar.

Proof of lemma 4. By definition, we have that

|l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)|

≤

∣∣∣∣∣log gθ0
(∫ T

0

eν0(s,Z)ds

)
− log gθ̂

(∫ T

0

eν̂(s,Z)ds

)∣∣∣∣∣+ |ν0(T,Z)− ν̂(T,Z)|

+

∣∣∣∣∣Gθ0
(∫ T

0

eν0(s,Z)ds

)
−Gθ̂

(∫ T

0

eν̂(s,Z)ds

)∣∣∣∣∣ .
Let B = [0, τ max(eM , eMν )]. By Taylor’s expansion, we can further show that

|l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)|

≤ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂θ̃

∣∣∣∣ · ∣∣∣θ0 − θ̂
∣∣∣+ sup

θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂x̃

∣∣∣∣ ·
∣∣∣∣∣
∫ T

0

eν0(s,Z)ds−
∫ T

0

eν̂(s,Z)ds

∣∣∣∣∣
+|ν0(T,Z)− ν̂(T,Z)|+ sup

θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂θ̃

∣∣∣∣ · |θ0 − θ̂|

+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂x̃

∣∣∣∣ ·
∣∣∣∣∣
∫ T

0

eν0(s,Z)ds−
∫ T

0

eν̂(s,Z)ds

∣∣∣∣∣ .
Again, by Taylor’s expansion,∣∣∣∣∣

∫ T

0

eν0(s,Z)ds−
∫ T

0

eν̂(s,Z)ds

∣∣∣∣∣ ≤ τemax(M,Mν)∥ν0 − ν̂∥∞,

Finally, we obtain that∣∣∣l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)
∣∣∣

≤ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂θ̃

∣∣∣∣ · ∣∣∣θ0 − θ̂
∣∣∣+ sup

θ̃∈Θ,x̃∈B

∣∣∣∣∂ log gθ̃(x̃)∂x̃

∣∣∣∣ · τemax(M,Mν) ∥ν0 − ν̂∥∞

+|ν0(T,Z)− ν̂(T,Z)|+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂θ̃

∣∣∣∣ · ∣∣∣θ0 − θ̂
∣∣∣

+ sup
θ̃∈Θ,x̃∈B

∣∣∣∣∂Gθ̃(x̃)∂x̃

∣∣∣∣ · τemax(M,Mν) ∥ν0 − ν̂∥∞ .

Taking supremum on both sides, we conclude that

∥l(T, δ, Z; ν0, θ0)− l(T, δ, Z; ν̂, θ̂)∥∞ ≲ |θ0 − θ̂|+ ∥ν0 − ν̂∥∞,

The proof of the second inequality is similar.

Proof of lemma 5. According to Yarotsky (2017, Theorem 1), there exist approximating functions
ĥ∗ and m̂∗ such that ∥ĥ∗−h0∥∞ = O

(
n−

β
β+d

)
and ∥m̂∗−m0∥∞ = O

(
n−

β
β+d

)
. Let πnh0 = ĥ∗,
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πnm0 = m̂∗, and πnθ = θ0. We have that

dPF (πnϕ0, ϕ0)

=

√
EZ
[∫

|
√
p(T, δ | Z;πnh0, πnm0, πnθ0)−

√
p(T, δ | Z;h0,m0, θ0)|2µ(dT × dδ)

]

=

√
EZ
[∫

[e
1
2 l(T,δ,Z;πnh0,πnm0,πnθ0) − e

1
2 l(T,δ,Z;h0,m0,θ0)]2fC|Z(T )1−δSC|Z(T )δµ(dT × dδ)

]
≤
∥∥∥e 1

2 l(T,δ,Z;πnh0,πnm0,πnθ0) − e
1
2 l(T,δ,Z;h0,m0,θ0)

∥∥∥
∞

×

√
EZ
[∫

fC|Z(T )1−δSC|Z(T )δµ(dT × dδ)

]
.

By lemma 1 and 3, we have that

∥e 1
2 l(T,δ,Z;πnh0,πnm0,πnθ0) − e

1
2 l(T,δ,Z;h0,m0,θ0)∥∞

≲ ∥πnθ0 − θ0∥+ ∥πnh0 − h0∥∞ + ∥πnm0 −m0∥∞
= O

(
n−

β
β+d

)
.

Since fC|Z(T )
1−δ ≤ fC|Z(T ) + 1 and SC|Z(T )

δ ≤ 1, we also have that√
EZ
[∫

fC|Z(T )1−δSC|Z(T )δµ(dT × dδ)

]
≤

√
EZ
[∫

(1 + fC|Z(T ))µ(dT × dδ)

]
≤

√
2 + 2τ .

Thus, we obtain that dPF (πnϕ0, ϕ0) = O
(
n−

β
β+d

)
.

Proof of lemma 6. According to Yarotsky (2017, Theorem 1), there exists an approximating func-
tion ν̂∗ such that ∥ν̂∗ − ν0∥∞ = O

(
n−

β
β+d+1

)
. Let πnν0 = ν̂∗ and πnθ0 = θ0. We have that

dFN (πnψ0, ψ0)

=

√
EZ
[∫ ∣∣∣√p(T, δ | Z;πnν0, πnθ0)−√p(T, δ | Z; ν0, θ0)∣∣∣2 µ(dT × dδ)

]

=

√
EZ
[∫ [

e
1
2 l(T,δ,Z;πnν0,πnθ0) − e

1
2 l(T,δ,Z;ν0,θ0)

]2
fC|Z(T )1−δSC|Z(T )δµ(dT × dδ)

]

≤
∥∥∥∥12el(T,δ,Z;πnν0,πnθ0) − 1

2
el(T,δ,Z;ν0,θ0)

∥∥∥∥
∞

√
EZ
[∫

fC|Z(T )1−δSC|Z(T )δµ(dT × dδ)

]
.

By lemma 2 and 4, we have that
∥∥∥e 1

2 l(T,δ,Z;πnν0,πnθ0) − e
1
2 l(T,δ,Z;ν0,θ0)

∥∥∥
∞

≲ ∥πnθ0 − θ0∥ +

∥πnν0 − ν0∥∞
= O

(
n−

β
β+d+1

)
. Since fC|Z(T )

1−δ ≤ fC|Z(T ) + 1 and SC|Z(T )
δ ≤ 1, we also have that√

EZ
[∫

fC|Z(T )1−δSC|Z(T )δµ(dT × dδ)

]
≤

√
EZ
[∫

(1 + fC|Z(T ))µ(dT × dδ)

]
≤

√
2 + 2τ .

Thus, we obtain that dFN (πnψ0, ψ0) = O
(
n−

β
β+d+1

)
.

Proof of lemma 7. The left inequality is trivial according to the definition of covering number. We
need to show that the correctness of the right inequality.
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Suppose that we have {B(gi,
ε
2 )}, i = 1 . . . , N , where N = N( ε2 ,F , ∥ · ∥), are the minimal number

of ε
2 -ball that covers F . Then there exists at least one fi ∈ F such that fi ∈ B(gi, ε). Consider

the following ε − balls {B(fi, ε)}, i = 1 . . . , N . For arbitrary f ∈ F ∩ B(gi,
ε
2 ), we have that

∥f − fi∥ ≤ ∥f − gi∥+ ∥fi − gi∥ ≤ ε. Thus {B(fi, ε)}, i = 1 . . . , N forms a ε-covering of F . By
definition, we have that Ñ(ε,F , ∥ · ∥) ≤ N( ε2 ,F , ∥ · ∥).

Proof of lemma 8. The proof of the first two inequalities follows exactly the same steps of lemma 7.
Here we just need to mention the rest of the statement that Ñ[](ε,F , ∥ · ∥∞) = Ñ( ε2 ,F , ∥ · ∥∞). We
first choose a set of ε2 -covering balls {B(fi,

ε
2 )}, i = 1, . . . , N1, whereN1 = Ñ( ε2 ,F , ∥·∥∞). Now

we construct a set of brackets {[li, ui]}, i = 1 . . . , N1, where li = fi − ε
2 and ui = fi +

ε
2 . Noting

that the bracket {[li, ui]} is exactly the same as B(fi,
ε
2 ), The set {[li, ui]}, i = 1, . . . , N1 covers

F , which leads to Ñ[](ε,F , ∥ · ∥∞) ≤ Ñ( ε2 ,F , ∥ · ∥∞). Likewise, we have that Ñ[](ε,F , ∥ · ∥∞) ≥
Ñ( ε2 ,F , ∥ · ∥∞). Consequently, we have that Ñ[](ε,F , ∥ · ∥∞) = Ñ( ε2 ,F , ∥ · ∥∞).

Proof of lemma 9. By lemma 8, first we have thatN[](ε,Fn, ∥·∥∞) ≤ Ñ[](ε,Fn, ∥·∥∞). By lemma
3, there exists a constant c1 > 0 such that for arbitrary ĥ1, ĥ2 ∈ Hn,m̂1, m̂2 ∈ Mn and θ̂1, θ̂2 ∈ Θ,
we have that

∥l(T, δ, Z; ĥ1, m̂1, θ1)− l(T, δ, Z; ĥ2, m̂2, θ2)∥∞ ≤ c1[|θ̂1 − θ̂2|+ ∥ĥ1 − ĥ2∥∞ + ∥m̂1 − m̂2∥∞],

which indicates that as long as |θ̂1 − θ̂2| ≤ ε
3c1

, ∥ĥ1 − ĥ2∥∞ ≤ ε
3c1

and ∥m̂1 − m̂2∥∞ ≤ ε
3c1

, we

have that ∥l(T, δ, Z; ĥ1, m̂1, θ1)− l(T, δ, Z; ĥ2, m̂2, θ2)∥∞ ≤ ε. Consequently, we have that

Ñ[](ε,Fn, ∥ · ∥∞) ≤ Ñ[](
ε

3c1
,Θ, ∥ · ∥∞)× Ñ[](

ε

3c1
,Hn, ∥ · ∥∞)× Ñ[](

ε

3c1
,Mn, ∥ · ∥∞).

Since Θ is a compact set on R, by lemma 8 and traditional volume argument, we have that
Ñ[](

ε
3c1
,Θ, ∥ · ∥∞) ≤ N[](

ε
6c1
,Θ, ∥ · ∥∞) ≲ 1

ε .

For Ñ[](
ε

3c1
,Hn, ∥ · ∥∞), by lemma 8, we have that Ñ[](

ε
3c1
,Hn, ∥ · ∥∞) = Ñ( ε

3c1
,Hn, ∥ · ∥∞).

By Chen & Shen (1998, Lemma 2), there exists a constant c2 > 0 such that ∥ĥ1 − ĥ2∥∞ ≤
c2∥ĥ1 − ĥ2∥sh2 , which leads to Ñ( ε

3c1
,Hn, ∥ · ∥∞) ≤ Ñ( ε1/sh

(3c1c2)
1/sh

,Hn, ∥ · ∥2). By lemma 7 we

further have that Ñ( ε1/sh

(3c1c2)
1/sh

,Hn, ∥ · ∥2) ≤ N( ε1/sh

2(3c1c2)
1/sh

,Hn, ∥ · ∥2). Let ch = 1
2(3c1c2)

1/sh
.

We have that Ñ[](
ε

3c1
,Hn, ∥ · ∥∞) ≤ N(chε

1/sh ,Hn, ∥ · ∥2).

Similarly, there exists a constant cm > 0 such that Ñ[](
ε

3c1
,Mn, ∥·∥∞) ≤ N(cmε

1/sm ,Mn, ∥·∥2).

Thus, finally we can obtain that

N[](ε,Fn, ∥ · ∥∞) ≲
1

ε
N(chε

1/sh ,Hn, ∥ · ∥2)×N(cmε
1/sm ,Mn, ∥ · ∥2).

Proof of lemma 10. By lemma 8, first we have N[](ε,Gn, ∥ · ∥∞) ≤ Ñ[](ε,Gn, ∥ · ∥∞). By lemma
4, there exists a constant c3 > 0 such that for arbitrary ν̂1, ν̂2 ∈ Vn and θ̂1, θ̂2 ∈ Θ, we have that

∥l(T, δ, Z; ν̂1, θ̂1)− l(T, δ, Z; ν̂2, θ̂2)∥∞ ≤ c3[|θ̂1 − θ̂2|+ ∥ν̂1 − ν̂2∥∞],

which indicates that as long as |θ̂1 − θ̂2| ≤ ε
2c3

and ∥ν̂1 − ν̂2∥∞ ≤ ε
2c3

, we have that

∥l(T, δ, Z; ν̂1, θ̂1)− l(T, δ, Z; ν̂2, θ̂2)∥∞ ≤ ε. Thus, we have:

Ñ[](ε,Gn, ∥ · ∥∞) ≤ Ñ[](
ε

2c3
,Θ, ∥ · ∥∞)× Ñ[](

ε

2c3
,Vn, ∥ · ∥∞).

Since Θ is a compact set on R, by lemma 8 and traditional volume argument, we have that
Ñ[](

ε
2c3
,Θ, ∥ · ∥∞) ≤ N[](

ε
4c3
,Θ, ∥ · ∥∞) ≲ 1

ε .
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Table 3: Descriptive statistics of benchmark datasets

METABRIC RotGBSG FLCHAIN SUPPORT MIMIC-III KKBOX

Size 1904 2232 6524 8873 35953 2646746
Censoring rate 0.423 0.432 0.699 0.320 0.901 0.280
Features 9 7 8 14 26 15

For Ñ[](
ε

2c3
,Vn, ∥ · ∥∞), by lemma 8, we have that Ñ[](

ε
2c3
,Vn, ∥ · ∥∞) = Ñ( ε

2c3
,Vn, ∥ · ∥∞). By

Chen & Shen (1998, Lemma 2), there exists a constant c4 > 0 such that ∥ν̂1 − ν̂2∥∞ ≤ c4∥ν̂1 −
ν̂2∥sh2 , which leads to Ñ( ε

2c3
,Vn, ∥ · ∥∞) ≤ Ñ( ε1/sν

(2c3c4)1/sν
,Vn, ∥ · ∥2). By lemma 7 we further

have Ñ( ε1/sν

(2c3c4)1/sν
,Vn, ∥ · ∥2) ≤ N( ε1/sν

2(2c3c4)1/sν
,Vn, ∥ · ∥2). Let cν = 1

2(2c3c4)1/sν
, we have that

Ñ[](
ε

2c3
,Vn, ∥ · ∥∞) ≤ N(cνε

1/sν ,Vn, ∥ · ∥2).

Thus, finally we can obtain that

N[](ε,Gn, ∥ · ∥∞) ≲
1

ε
N(cνε

1/sν ,Vn, ∥ · ∥2).

C EXPERIMENTAL DETAILS

C.1 DATASET SUMMARY

We report summaries of descriptive statistics of the 6 benchmark datasets used in section 5.2 in table
3.

C.2 DETAILS OF SYNTHETIC EXPERIMENTS

Since the true model is assumed to be of PF form, we generate event time according to the following
transformed regression model (Dabrowska & Doksum, 1988):

logH(T̃ ) = −m(Z) + ϵ, (15)

where H(t) =
∫ t
0
eh(s)ds with h defined in (2). The error term ϵ is generated such that eϵ has

cumulative hazard function Gθ. The formulation (15) is the equivalent to (2) (Dabrowska & Dok-
sum, 1988; Cuzick, 1988; Kosorok et al., 2004). In our experiments, the covariates are of dimension
5, sampled independently from the uniform distribution over [0, 1]. We set h(t) = t and hence
H(t) = et. The function form of m(Z) is set to be m(Z) = sin(⟨Z, β⟩) + ⟨sin(Z), β⟩, where
β = (0.1, 0.2, 0.3, 0.4, 0.5). Then censoring time C is generated according to

logH(C) = −m(Z) + ϵC , (16)

which reuses covariate Z, and draws independently a noise vector ϵC such that the censoring ratio
is controlled at around 40%. We generate three datasets with n ∈ {1000, 5000, 10000} respectively.

Hyperparameter configurations We specify below the network architectures and optimization con-
figurations used in all the tasks:

PF scheme: For both m̂ and ĥ, we use 64 hidden units for n = 1000, 128 hidden units for n =
5000 and 256 hidden units for n = 10000. We train each model for 100 epochs with batch size 128,
optimized using Adam with learning rate 0.0001, and no weight decay.

FN scheme: For both ν̂, we use 64 hidden units for n = 1000, 128 hidden units for n = 5000 and
256 hidden units for n = 10000. We train each model for 100 epochs with batch size 128, optimized
using Adam with learning rate 0.0001, and no weight decay.
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C.3 DETAILS OF PUBLIC DATA EXPERIMENTS

Dataset preprocessing For METABRIC, RotGBSG, FLCHAIN, SUPPORT and KKBOX dataset,
we take the version provided in the pycox package (Kvamme et al., 2019). We standardize contin-
uous features into zero mean and unit variance and do one-hot encodings for all categorical features.
For the MIMIC-III dataset, we follow the preprocessing routines in Purushotham et al. (2018) which
extracts 26 features. The event of interest is defined as the mortality after admission, and the cen-
sored time is defined as the last time of being discharged from the hospital. The definition is similar
to that in Tang et al. (2022). But since the dataset is not open sourced, according to our implemen-
tation the resulting dataset exhibits a much higher censoring rate (90.2% as compared to 61.0% as
reported in the SODEN paper (Tang et al., 2022)). Since the major purpose of this paper is for the
proposal of the NFM framework, We use our own version of the processed dataset to further verify
the predictive performance of NFM.

Hyperparameter configurations We follow the general training template that uses MLP as all
nonparametric function approximators (i.e., m̂ and ĥ in the PF scheme, and ν̂ in the FN scheme),
and train for 100 epochs across all datasets using Adam as the optimizer. The tunable parameters
and their respective tuning ranges are reported as follows:

Number of layers (network depth) We tune the network depth L ∈ {2, 3, 4}. Typically, the per-
formance of two-layer MLPs is sufficiently satisfactory.
Number of hidden units in each layer (network width) We tune the network width W ∈
{2k, 5 ≤ k ≤ 10}.
Optional dropout We optionally apply dropout with probability p ∈ {0.1, 0.2, 0.3, 0.5, 0.7}.
Batch size We tune batch size within the range {128, 256, 512}, in the KKBOX dataset, we also
tested with larger batch sizes {1024}.
Learning rate and weight decay We tune both the learning rate and weight decay coefficient of
Adam within range {0.01, 0.001, 0.0001}.
Frailty specification We tested gamma frailty, Box-Cox transformation frailty, and IGG(α) frailty
with α ∈ {0, 0.25, 0.75}. Here note that IGG(0.5) is equivalent to gamma frailty. We also empiri-
cally tried to set α to be a learnable parameter and found that this additional flexibility provides little
performance improvement regarding the datasets used for evaluation.

C.4 IMPLEMENTATIONS

We use pytorch to implement NFM. The source code is provided in the supplementary mate-
rial. For the baseline models:

• We use the implementations of CoxPH , GBM, and RSF from the sksurv package Pölsterl
(2020), for the KKBOX dataset, we use the XGBoost library (Chen & Guestrin, 2016) to imple-
ment GBM and RSF, which might yield some performance degradation.

• We use the pycox package to implement DeepSurv, CoxTime, and DeepHit models.
• We use the official code provided in the SODEN paper (Tang et al., 2022) to implement SODEN.
• We obtain results of SuMo and DeepEH based on our re-implementations.

D ADDITIONAL EXPERIMENTS

D.1 RECOVERY ASSESSMENT OF m(Z) IN PF SCHEME

We plot empirical recovery results targeting them function in (2) in figure 2. The result demonstrates
satisfactory recovery with a moderate amount of data, i.e., n ≥ 1000.

D.2 RECOVERY ASSESSMENT OF SURVIVAL FUNCTIONS

To assess the recovery performance of NFM with respect to survival functions, we consider the
following setup: under the same data generation framework as in section C.2, we compute the test
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Figure 2: Visualizations of synthetic data results under the PF scheme of NFM framework, regarding
empirical recovery of the m function in (2)
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Figure 3: Visualizations of synthetic data results under the NFM framework. The plots in the first
row compare the empirical estimates of the survival function S(t|Z̄) against its true value with Z̄
being the average of the features of the 100 hold-out points, under the PF scheme. The plots in the
second row are obtained using the FN scheme, with analogous semantics to the first row.

feature Z̄ as the sample mean of all the 100 hold-out test points. And plot Ŝ(t|Z̄) against the ground
truth S(t|Z̄) regarding both PF and FN schemes. The results are shown in figure 3. The results
suggest that both scheme provides accurate estimation of survival functions when the sample size is
sufficiently large.

D.3 PERFORMANCE EVALUATION UNDER IBS AND INBLL

In this subsection we augment the experimental results in section 5 with three recent state-of-the-art
baseline models: SurvNode Groha et al. (2020), DCM (Nagpal et al., 2021) and DeSurv (Danks &
Yau, 2022). The results are demonstrated in table 4 for four small scale datasets, and table 5 for two
larger datasets. The proposed NFM framework achieves the best performance on 5 of the 6 datasets,
which is consistent with the findings in table 1.
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Table 4: Survival prediction results measured in IBS and INBLL metric (%) on four small-scale
survival datasets. In each column, the boldfaced score denotes the best result and the underlined
score represents the second-best result.

Model METABRIC RotGBSG FLCHAIN SUPPORT

IBS INBLL IBS INBLL IBS INBLL IBS INBLL

CoxPH 16.46±0.90 49.57±2.66 18.25±0.44 53.76±1.11 10.05±0.38 33.18±1.16 20.54±0.38 59.58±0.86

GBM 16.61±0.82 49.87±2.44 17.83±0.44 52.78±1.11 9.98±0.37 32.88±1.05 19.18±0.39 56.46±0.10

RSF 16.62±0.64 49.61±1.54 17.89±0.42 52.77±1.01 9.96±0.37 32.92±1.05 19.11±0.40 56.28±1.00
DeepSurv 16.55±0.93 49.85±3.02 17.80±0.49 52.62±1.25 10.09±0.38 33.28±1.15 19.20±0.41 56.48±1.08

CoxTime 16.54±0.83 49.67±2.67 17.80±0.58 52.56±1.47 10.28±0.45 34.18±1.53 19.17±0.40 56.45±1.10

DeepHit 17.50±0.83 52.10±2.16 19.61±0.38 56.67±1.10 11.83±0.39 37.72±1.02 20.66±0.32 60.06±0.72

DeepEH 16.56±0.65 49.42±1.53 17.62±0.52 52.08±1.27 10.11±0.37 33.30±1.10 19.30±0.39 56.67±0.94

SuMo-net 16.49±0.83 49.74±2.21 17.77±0.47 52.62±1.11 10.07±0.40 33.20±1.10 19.40±0.38 56.87±0.96

SODEN 16.52±0.63 49.39±1.97 17.05±0.63 50.45±1.97 10.13±0.24 33.37±0.57 19.07±0.50 56.15±1.35

SurvNode 16.67±1.32 49.73±3.89 17.42±0.53 51.70±1.16 10.40±0.29 34.37±1.03 19.58±0.34 57.49±0.84

DCM 16.58±0.87 49.48±2.23 17.66±0.54 52.26±1.23 10.13±0.50 33.40±1.38 19.29±0.42 56.68±1.09

DeSurv 16.71±0.75 49.61±2.15 17.98±0.46 53.23±1.15 10.06±0.62 33.18±1.93 19.50±0.40 57.28±0.89

NFM-PF 16.33±0.75 49.07±1.96 17.60±0.55 52.12±1.34 9.96±0.39 32.84±1.15 19.14±0.39 56.35±1.00

NFM-FN 16.11±0.81 48.21±2.04 17.66±0.52 52.41±1.22 10.05±0.39 33.11±1.10 18.97±0.60 55.87±1.50

Table 5: Survival prediction results measured in IBS and INBLL metric (%) on two larger datasets.
In each column, the boldfaced score denotes the best result and the underlined score represents
the second-best result. Two models are not reported, namely SODEN and DeepEH, as we found
empirically that their computational/memory cost is significantly worse than the rest, and we fail to
obtain reasonable performances over the two datasets for these two models.

Model MIMIC-III KKBOX

IBS INBLL IBS INBLL

CoxPH 20.40±0.00 60.02±0.00 12.60±0.00 39.40±0.00

GBM 17.70±0.00 52.30±0.00 11.81±0.00 38.15±0.00

RSF 17.79±0.19 53.34±0.41 14.46±0.00 44.39±0.00

DeepSurv 18.58±0.92 55.98±2.43 11.31±0.05 35.28±0.15

CoxTime 17.68±1.36 52.08±3.06 10.70±0.06 33.10±0.21

DeepHit 19.80±1.31 59.03±4.20 16.00±0.34 48.64±1.04

SuMo-net 18.62±1.23 54.51±2.97 11.58±0.11 36.61±0.28

DCM 18.02±0.49 52.83±0.94 10.71±0.11 33.24±0.06

DeSurv 18.19±0.65 54.69±2.83 10.77±0.21 33.22±0.10

NFM-PF 16.28±0.36 49.18±0.92 11.02±0.11 35.10±0.22

NFM-FN 17.47±0.45 51.48±1.23 10.63±0.08 32.81±0.14
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Table 6: Survival prediction results measured in C-index (%) on all the 6 benchmark datasets. In
each column, the boldfaced score denotes the best result and the underlined score represents the
second-best result. The average rank of each model is reported in the rightmost column. We did not
manage to obtain reasonable results for DeepEH and SODEN on two larger datasets MIMIC-III and
KKBOX, and we set corresponding ranks to be the worst on those datasets.

Model METABRIC RotGBSG FLCHAIN SUPPORT MIMIC-III KKBOX Ave. Rank

CoxPH 63.42±1.81 66.14±1.46 79.09±1.11 56.89±0.91 74.91±0.00 83.01±0.00 11.33
GBM 64.02±1.79 67.35±1.16 79.47±1.08 61.46±0.80 75.20±0.00 85.84±0.00 7.17
RSF 64.47±1.82 67.33±1.34 78.75±1.07 61.63±0.84 75.47±0.17 85.79±0.00 8.00
DeepSurv 63.95±2.12 67.20±1.22 79.04±1.14 60.91±0.85 80.08±0.44 85.59±0.08 8.50
CoxTime 66.22±1.69 67.41±1.35 78.95±1.01 61.54±0.87 78.78±0.62 87.31±0.24 5.00
DeepHit 66.33±1.61 66.38±1.07 78.48±1.09 63.20±0.85 79.16±0.59 86.12±0.26 6.50
DeepEH 66.59±2.00 67.93±1.28 78.71±1.44 61.51±1.04 − − 6.33
SuMo-net 64.82±1.80 67.20±1.31 79.28±1.02 62.18±0.78 76.23±1.06 84.77±0.02 7.00
SODEN 64.82±1.05 66.97±0.75 79.00±0.96 61.10±0.59 − − 10.17
SurvNode 64.64±4.91 67.30±1.65 76.11±0.98 55.37±0.77 − − 11.50
DCM 65.76±1.25 66.75±1.35 78.61±0.79 62.19±0.95 76.45±0.34 83.48±0.07 8.33
DeSurv 65.88±2.02 67.30±1.45 78.97±1.64 61.47±0.97 80.97±0.30 86.11±0.05 5.67

NFM-PF 64.98±1.87 67.77±1.35 79.45±1.03 61.33±0.83 79.56±0.15 86.23±0.01 4.67
NFM-FN 66.63±1.82 67.73±1.29 79.29±0.93 62.21±0.41 80.18±0.20 86.61±0.01 2.16

Table 7: Relative improvement of NFM models in comparison to their non-frailty counterparts,
measured in IBS, INBLL, and C-index.

Dataset NFM-PF vs DeepSurv NFM-FN vs SuMo-net
IBS INBLL C-index IBS INBLL C-index

METABRIC +1.33% +1.56% +1.61% +2.30% +3.08% +2.79%
RotGBSG +1.11% +0.95% +0.84% +0.62% +0.40% +0.79%
FLCHAIN +1.29% +1.32% +0.52% +0.20% +0.27% +0.01%
SUPPORT +0.31% +0.23% +0.69% +2.22% +1.76% +0.05%
MIMIC-III +12.38% +12.15% −0.64% +6.18% +5.56% +5.18%
KKBOX +2.56% +0.51% +0.75% +8.20% +10.38% +2.17%

D.4 PERFORMANCE EVALUATIONS UNDER THE CONCORDANCE INDEX (C-INDEX)

The concordance index (C-index) (Antolini et al., 2005) is yet another evaluation metric that is
commonly used in survival analysis. The C-index estimates the probability that, for a random pair
of individuals, the predicted survival times of the two individuals have the same ordering as their
true survival times. Formally, C-index is defined as

C = P
[
Ŝ(Ti | Zi) < Ŝ(Tj | Zj) | Ti < Tj , δi = 1

]
. (17)

We report performance evaluations based on C-index over all the 6 benchmark datasets in table
6. From table 6, it appears that there’s no clear winner regarding the C-index metric across the
6 selected datasets. We conjecture this phenomenon to be closely related to the loose correlation
between the C-index and the likelihood-based learning objective, as was observed in Rindt et al.
(2022). Therefore we compute the average rank of each model as an overall assessment of perfor-
mance, as illustrated in the last column in table 6. The results suggest that the two NFM models
perform better on average.

D.5 BENEFITS OF FRAILTY

We compute the (relative) performance gain of NFM-PF and NFM-FN, against their non-frailty
counterparts, namely DeepSurv (Katzman et al., 2018) and SuMo-net (Rindt et al., 2022) based on
results in table 1, table 2 and table 6. The results are shown in table 7 The results suggest solid
improvement in incorporating frailty, especially for IBS and INBLL metrics, as the relative increase
in performance could be over 10% for both NFM models. For the IBS and INBLL metrics, the per-
formance improvement is consistent across all datasets. The only performance degradation appears
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on the MIMIC-III dataset evaluated under C-index. This phenomenon is also understandable: Since
the DeepSurv model utilized a variant of partial likelihood (PL) for model training, as previous
works (Steck et al., 2007) pointed out that PL type objective is closely related to the ranking prob-
lem. As C-index could be considered a certain type of ranking measure, it is possible that DeepSurv
obtains better ranking performance than NFM-type models which are trained using scale-sensitive
likelihood objective.
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