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ABSTRACT

This paper studies the use of Softmax prediction probabilities to assess model
generalization under distribution shift. Specifically, given an out-of-distribution
(OOD) test set and a pool of classifiers, we aim to develop a prediction probability-
based measure which has a monotonic relationship with OOD generalization per-
formance. We first show existing uncertainty measures (e.g., entropy and max-
imum Softmax prediction probability) are fairly useful of predicting generaliza-
tion in some OOD scenarios. We then move ahead with proposing a new measure,
Softmax Correlation (SoftmaxCorr). To obtain the SoftmaxCorr score for a classi-
fier, we compute the class-class correlation matrix from all the Softmax vectors in
a test set, and then its cosine similarity with an identity matrix. We show that the
class-class correlation matrix reveals significant knowledge about the confusion
matrix: its high similarity with the identity matrix means predictions have low
confusion (uncertainty) and evenly cover all classes, and vice versa. Across three
setups including ImageNet, CIFAR-10, and WILDS, we show that SoftmaxCorr
is well predictive of model accuracy on both in-distribution and OOD datasets.

1 INTRODUCTION

Understanding the generalization of deep neural networks is an essential problem in deep learning.
There is substantial interest in predicting ID generalization gap via complexity measures (Jiang
et al., 2020a; Neyshabur et al., 2015; Bartlett et al., 2017; Keskar et al., 2017; Nagarajan & Kolter,
2019; Neyshabur et al., 2017; Chuang et al., 2021; Jiang et al., 2020b; Smith & Le, 2018; Arora
et al., 2018; Dziugaite & Roy, 2017; Dinh et al., 2017). Although significant, developing measures
to characterize OOD generalization remains under-explored. In fact, the test environment in the real
world often undergoes distribution shift due to factors like sample bias and non-stationarity. Ignoring
the potential distribution shift can lead to serious safety concerns in self-driving cars (Kuutti et al.,
2020) and histopathology (Bandi et al., 2018), etc.

Softmax prediction probability is found to be useful to analyze the test environment (Hendrycks
& Gimpel, 2016; Guillory et al., 2021; Deng et al., 2022a; Liang et al., 2018; Garg et al., 2022).
For example, Hendrycks & Gimpel (2016); Liang et al. (2018) utilize maximum Softmax prediction
probability to identify samples from open-set classes. This gives us a hint: models’ prediction
probabilities may be informative to reflect their OOD performance. Therefore, we are interested
in measures based on prediction probability and conduct large-scale correlation study to explore
whether they are useful to characterize generalization of various models under distribution shift.
Concretely, given various deep models, we aim to study and develop prediction probability-based
measures which monotonically relate to model generalization.

To this end, we construct a catalog of empirical prediction probability-based measures and create
a wide range of experimental setups. We collect 502 different classification models ranging from
standard convolutional neural network to Vision Transformers. We cover 19 ID and OOD datasets
with various types of distribution shift, such as ImageNet-V2 (Recht et al., 2019) with dataset repro-
duction shift and stylized-ImageNet (Geirhos et al., 2019) with style shift.

Based on experimental results, we observe that empirical uncertainty measures based on prediction
probabilities (e.g., entropy) are useful in characterizing OOD generalization to some extent. How-
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ever, they are limited in leveraging class-wise relationship encoded in prediction probabilities. We
thus further propose Softmax correlation (SoftmaxCorr), an effective prediction probability-based
measure describing for each classifier to what extent classes correlate with each other. Specifically,
for each classifier we compute a class correlation matrix from all prediction vectors in a test set.
Then, we calculate its cosine similarity with an identity matrix to evaluate whether this classifier
makes diverse and certain predictions. We show that class-class correlation effectively uncovers
knowledge of confusion matrix, thus better reflecting overall accuracy on OOD test set. The broad
correlation study shows the efficacy of SoftmaxCorr. Our contributions are summarized below.

• We observe that Softmax prediction probability-based measures generally give good base-
line indicators of the OOD accuracy of various classification models.

• Furthering this finding, we propose SoftmaxCorr which assesses model generalization by
explicitly calculating class-class correlation, a new angle to leverage the prediction proba-
bility. A wide range of experiment suggests the effectiveness of this method.

2 RELATED WORK

Predicting generalization in deep learning studies the ID generalization gap (i.e., the difference
between training and test accuracy) of deep neural networks. Representative methods develop com-
plexity measures based on model parameters and training set (Jiang et al., 2020a;b; Neyshabur et al.,
2015; Keskar et al., 2017; Bartlett et al., 2017; Neyshabur et al., 2018; Liang et al., 2019; Chuang
et al., 2021; Smith & Le, 2018; Arora et al., 2018; Dziugaite & Roy, 2017; Dinh et al., 2017), such
as distance of training weights from initialization (Nagarajan & Kolter, 2019), the product of norms
of weights across layers (Neyshabur et al., 2017) and the change of model accuracy with respect to
different perturbation levels in training data (Schiff et al., 2021). These methods assume that training
and test data come from the same distribution and do not incorporate characteristics of test data, so
we can unlikely make reasonable predictions on a different distribution. To mitigate this limitation,
we investigate the model generalization under distribution shift by developing measures that reflect
models’ generalization property on OOD datasets.

OOD generalization. Machine learning models should generalize from training distribution to
OOD datasets (Djolonga et al., 2021; Koh et al., 2021). To study the problem of OOD generaliza-
tion, several benchmarks are proposed (Hendrycks & Dietterich, 2019; Koh et al., 2021; Gulrajani
& Lopez-Paz, 2021), such as corruption benchmark (Hendrycks & Dietterich, 2019) and domain
generalization testbed (Gulrajani & Lopez-Paz, 2021). Moreover, several methods are proposed to
improve model OOD generalization (Volpi et al., 2018; Zhao et al., 2020; Sagawa et al., 2020; Liu
et al., 2021a; Mansilla et al., 2021; Shi et al., 2021), such as adversarial domain augmentation (Volpi
et al., 2018; Qiao & Peng, 2021) and inter-domain gradient matching (Shi et al., 2021).

There are few works study the characterization of model OOD generalization. Ben-David et al.
(2006; 2010) provide upper bounds of OOD generalization error for domain adaptation. Some works
further bound the OOD generalization error based on the divergence between the two distributions
(Acuna et al., 2021; Zhang et al., 2019; Tachet des Combes et al., 2020). However, as suggested by
Miller et al. (2021), when the shift becomes larger, the above bounds on OOD performance become
looser. Moreover, Vedantam et al. (2021) report that the adapting theory from domain adaptation
is limited in predicting OOD generalization. In this work, we aim to assess model generalization
under distribution shift by OOD measures.

Out-of-distribution detection aim to detect test data that do not belong to any of classes modeled in
training distribution (Hendrycks & Gimpel, 2016; Yang et al., 2021a). Many methods are developed
based on model outputs (Hendrycks & Gimpel, 2016; Liang et al., 2018; Hendrycks et al., 2022).
For example, Hendrycks & Gimpel (2016) use maximum prediction probability to identify OOD
samples. Hendrycks et al. (2022) further show that, without being normalized by Softmax function,
maximal model logit is also a strong baseline for OOD detection. Liu et al. (2020b) calculate an
energy score based on Softmax probability, which is regarded as a simple yet effective replacement
for maximum prediction probability. Other methods investigate the predictive uncertainty (Liu et al.,
2020a; Van Amersfoort et al., 2020). Different from the above works, this research does not aim to
detect OOD data, but to explore Softmax-based measures to assess model generalization.
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3 TASK FORMULATION

Task definition. We consider a K-way classification task, and let Y = {1, ...,K} denote the
label space and X ∈ Rd denote the input space. We are given a labeled training set DS :=
{(xs

i , y
s
i )}

Ns
i=1 that contains Ns data i.i.d drawn from a source distribution PS , and an OOD test set

DT := {(xi, yi)}Ni=1 that contains N data i.i.d drawn from another distribution PT (PS ̸= PT ). We
train M neural network classifiers {ϕm}Mm=1 on DS . Given a sample (x, y) from DT , the classifier
ϕm : X → ∆K generates Softmax prediction probabilities for x on K classes, where ∆K denote
K − 1 dimensional unit simplex. By testing on DT , ϕm yields a prediction matrix P ∈ RN×K ,
whose each row represents prediction probabilities of a test data. Specifically, the prediction matrix
satisfies

∑k
j=1 Pi,j = 1 ∀i ∈ 1 . . . N and Pi,j ≥ 0 ∀i ∈ 1 . . . N, j ∈ 1 . . .K, where Pi,j indicates

the probability that i-th sample is predicted to the j-th class.

The dataset has an evaluation metric (e.g., accuracy) to obtain ground-truth generalization Gm of
classifier ϕm. The goal is to design a measure to calculate a score Sm for each classifier ϕm with-
out access to data annotations. The calculated scores {Sm}Mm=1 ideally should well correlate with
{Gm}Mm=1, so that we can assess the OOD generalization of models based on the scores.

Evaluation metrics. We use Spearman’s Rank Correlation coefficient ρ (Kendall, 1948) to measure
monotonicity between calculated scores and model generalization. We additionally use the weighted
variant of Kendall’s rank correlation τw, which is shown to be useful when selecting the best ranked
item is of interest (You et al., 2021). Both coefficients range from [−1, 1]. A value closer to −1
or 1 indicates a strong negative or positive correlation, respectively, and 0 means no correlation.
Similar to Miller et al. (2021); Baek et al. (2022), we apply the same probit scale to both accuracy
and SoftmaxCorr in our experiment for better linear fit.

4 SOFTMAX PREDICTION PROBABILITY-BASED OOD MEASURES

4.1 WHY USE SOFTMAX PREDICTION PROBABILITY?

Deep neural networks tend to make over-confident predictions (Ovadia et al., 2019; Minderer et al.,
2021; Guo et al., 2017; Hein et al., 2019), which at the first look makes it less reliable to use Softmax
Prediction as an uncertainty measure on the test data. However, existing works show that it is indeed
informative in analyzing test environments. For example, Hendrycks & Gimpel (2016) show that
the maximum Softmax prediction probability (MaxPred) of correct samples tends to be higher than
that of incorrect or OOD samples. Guillory et al. (2021); Garg et al. (2022) suggest it is useful to
estimate accuracy of a trained classifier by calculating its MaxPred on test samples.
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Maximum prediction probability

ImageNet-R
𝜌 = 0.613
𝜏!= 0.776

Figure 1: Correlation study
between MaxPred and accu-
racy (%) on ImageNet-R.

Proof of concept. The above works imply the prediction probabil-
ity is likely to be effective in measuring OOD performance of a pool
of models. Given an OOD test set (ImageNet-R) and various Ima-
geNet models, we conduct correlation study between MaxPred and
classification accuracy. In Fig. 1, we show that there is a moderate
correlation between MaxPred and model accuracy (ρ = 0.613 and
τw = 0.776) on ImageNet-R. This indicates that MaxPred is feasi-
ble in assessing OOD performance. Based on this observation, we
further explore more empirical prediction probability-based mea-
sures and develop a more effective measure which exploits more
semantics reflected in the prediction probability.

4.2 EXPLORING MORE EMPIRICAL MEASURES

In addition to MaxPred, we investigate other empirical measures below.

Softmax Gap (SoftGap). MaxPred only utilizes the maximal value of Softmax vectors while disre-
garding values on other entries. We introduce SoftGap based on MaxPred which further considers
the second largest entry in a prediction vector. Specifically, it calculates the average of difference
between the largest and second largest Softmax prediction probabilities over all samples. A larger
Softgap indicates prediction is more certain, suggesting better generalization.
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correlation matrix confusion matrix

SimpleDLA accuracy: 65.94%
𝑟! = 0. 851

confusion matrixcorrelation matrix

LeNet accuracy: 56.68%
𝑟! = 0. 915

correlation matrix confusion matrix

MobileNet accuracy: 71.35%
𝑟! =  0. 917

Figure 2: Comparison between the correlation matrix computed from Softmax vectors and confusion
matrix. We show comparisons obtained by four classifiers: LeNet, SimpleDLA and MobileNet.
The test set is CINIC. For each pair of matrices, we use representational similarity analysis (rs)
to measure their similarity. The high rs > 0.85 indicate that the class correlation matrix reveals
knowledge of confusion matrix and therefore model accuracy.

Negative Predictive Entropy (Entropy) (Pereyra et al., 2017; Vedantam et al., 2021). This computes
negative entropy of P by − 1

N

∑N
i=1 H(Pi,:), where H(·) is Shannon entropy (Shannon, 1948). A

larger Entropy means a model makes more confident predictions.

Information Maximization (InfoMax). It is a loss function used in unsupervised domain adaptation
algorithms (Shi & Sha, 2012; Liang et al., 2020). Its formula is H( 1

N

∑N
i=1 Pi,:)− 1

N

∑N
i=1 H(Pi,:).

The idea is that a well-generalized model has diverse predictions over all samples (first term) while
being certain on individuals (second term). Specifically, an accurate model tends to have a large
entropy of the average prediction probability of all samples and a small entropy on each data point.

4.3 OUR METHOD: SOFTMAX CORRELATION (SOFTMAXCORR)

Given the prediction matrix P ∈ RN×K predicted by ϕm, a class correlation matrix C ∈ RK×K can
be computed by C = P ⊺P . An entry Ci,j indicates the correlation between prediction probabilities
of class i and class j over all samples, and is computed by Ci,j =

∑N
n=1 Pn,iPn,j . We define

the sum of diagonal entries of the correlation matrix as intra-class correlation (IntraCorr) and off-
diagonal elements as inter-class correlation (InterCorr). Note that, the sum of C is N .

Based on class correlation matrix C, we develop SoftmaxCorr to take into account the two char-
acteristics. First, whether the model produces confident predictions and thus its computed class
correlation matrix C has a high intra-class correlation. Second, whether the model gives diverse
predictions where all classes are predicted. This detects the trivial model solution where all data are
confidently predicted as the same class. To achieve this, we define SoftmaxCorr as the cosine simi-
larity between the class-class correlation matrix C and an identity matrix IK : cos(C, I) = P ·I

∥C∥·∥I∥ .
A higher similarity score means that model gives 1) high prediction certainty (intra-class correla-
tion) and 2) high prediction diversity (the diagonal elements of class correlation matrix is uniformly
distributed). We note that existing studies (Yang et al., 2021b; Wang & Isola, 2020; Asano et al.,
2019) also report that the two characteristics are important for learning discriminative features.

In Fig. 2, we compare the computed class correlation matrices and ground-truth confusion matrices
of LeNet (LeCun et al., 1998), SimpleDLA (Yu et al., 2018) and MobileNet (Howard et al., 2017) on
CINIC. We use representational similarity analysis (rs) (Kriegeskorte et al., 2008; Dwivedi & Roig,
2019) to calculate the similarity between each pair of class correlation and confusion matrices. We
observe that rs scores are high (rs > 0.85). This suggests that correlation matrix encodes critical and
informative knowledge of the level of confusion between classes, thus directly relating to accuracy.

5 EXPERIMENT

In this section, we first describe the ImageNet, CIFAR-10 and WILDS setups. Then, we analyze the
experiment results of prediction probability-based measures on three setups. After that, we compare
SoftmaxCorr with other characterizations of correlation matrix. Moreover, we test whether Soft-
maxCorr can model checkpoints along the training trajectory and assess models trained by different
domain adaption algorithms. Lastly, we study the correlation between SoftmaxCorr and accuracy of
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Table 1: Method comparison on ImageNet, CIFAR-10, WILDS and DomainNet. We compare our
SoftmaxCorr with four empirical Softmax prediction probability-based measures: MaxPred, Soft-
Gap, Entropy and InfoMax. We use Spearman’s rank correlation (ρ) and weighted Kendall’s corre-
lation (τw) for comparison. The highest correlation in each row is highlighted in bold. We show that
our method is stable and yields the highest average correlation on ImageNet, CIFAR-10 and WILDS
setup and competitive correlation on DomainNet setup.

Setup Dataset MaxPred SoftGap Entropy InfoMax SoftmaxCorr

ρ τw ρ τw ρ τw ρ τw ρ τw

ImageNet

ImageNet-Val 0.542 0.515 0.665 0.568 0.142 0.286 0.145 0.288 0.919 0.752
ImageNet-V2-A 0.645 0.574 0.747 0.622 0.217 0.327 0.222 0.330 0.922 0.792
ImageNet-V2-B 0.506 0.483 0.636 0.554 0.109 0.256 0.113 0.266 0.912 0.785
ImageNet-V2-C 0.577 0.528 0.699 0.594 0.169 0.303 0.173 0.306 0.917 0.795

ImageNet-R 0.613 0.776 0.797 0.839 0.295 0.623 0.423 0.688 0.925 0.880
ImageNet-S 0.784 0.798 0.839 0.825 0.471 0.652 0.614 0.730 0.875 0.883

Stylized-ImageNet 0.580 0.609 0.661 0.656 0.233 0.431 0.512 0.613 0.828 0.834
ObjectNet 0.912 0.814 0.934 0.848 0.820 0.735 0.836 0.761 0.927 0.897

ImageNet-Blur 0.877 0.828 0.898 0.843 0.780 0.702 0.850 0.807 0.967 0.929

Average 0.671 0.665 0.764 0.705 0.361 0.480 0.433 0.520 0.910 0.839

CIFAR-10

CIFAR-10-Val 0.860 0.512 0.871 0.551 0.844 0.494 0.844 0.494 0.865 0.536
CIFAR-10.2 0.857 0.696 0.868 0.705 0.826 0.663 0.832 0.669 0.884 0.694

CINIC 0.753 0.375 0.777 0.402 0.722 0.331 0.735 0.348 0.844 0.578
CIFAR-10-Noise 0.032 -0.082 0.041 -0.077 0.035 -0.090 0.896 0.750 0.813 0.771

Average 0.626 0.375 0.639 0.395 0.607 0.350 0.827 0.565 0.851 0.645

WILDS

iWildCam-ID 0.972 0.889 0.969 0.887 0.967 0.885 0.960 0.810 0.945 0.792
iWildCam-OOD 0.917 0.840 0.936 0.846 0.853 0.798 0.883 0.792 0.916 0.839
Camelyon17-ID 0.847 0.718 0.847 0.718 0.728 0.611 0.833 0.653 0.893 0.746

Camelyon17-OOD 0.192 0.320 0.192 0.320 0.167 0.299 0.695 0.635 0.689 0.492

Average 0.732 0.691 0.736 0.692 0.679 0.647 0.842 0.725 0.861 0.717

DomainNet
DomainNet-ID 0.725 0.570 0.744 0.597 0.677 0.523 0.698 0.539 0.747 0.607

DomainNet-OOD 0.403 0.274 0.407 0.258 0.386 0.253 0.763 0.721 0.693 0.566

Average 0.564 0.422 0.576 0.428 0.532 0.388 0.731 0.630 0.720 0.587

a single model on various OOD test sets. We note that for the completeness of experiment, we also
include the performance of Softmax measures on ID test sets.

5.1 EXPERIMENTAL SETUP

ImageNet setup. We collect 173 models publicly accessible from TIMM (Wightman, 2019). They
are trained or fine-tuned on ImageNet (Deng et al., 2009) and vary in architectures and training
strategies. We use both ID and OOD datasets for correlation study. Specifically, ImageNet-Val is ID
test set. OOD datasets are: (1) ImageNet-V2 (Recht et al., 2019); (2) ObjectNet (Barbu et al., 2019);
(3) ImageNet-S(ketch) (Wang et al., 2019); (4) ImageNet-Blur severity 5 (Hendrycks & Dietterich,
2019); (5) ImageNet-R(endition) (Hendrycks et al., 2021); (6) Stylized-ImageNet (Geirhos et al.,
2019). Note that, ImageNet-V2 has three versions (ImageNet-V2-A/B/C) resulting from different
sampling strategies. ImageNet-R and ObjectNet contain 200 and 113 ImageNet classes respectively.

CIFAR-10 setup. We collect 65 networks trained with the scheme provided by Wightman (2017)
on CIFAR-10 training set (Krizhevsky et al., 2009). CIFAR-10-Val(idation) is the ID test set. For
OOD datasets, we use (1) CIFAR-10.2 (Recht et al., 2018) (2) CINIC (Darlow et al., 2018) (3)
CIFAR-10-Noise with severity 5 (Hendrycks & Dietterich, 2019).

WILDS setup. We follow the same training scheme provided by Koh et al. (2021) to train or fine-
tune models for Camelyon17 (Bandi et al., 2018) and iWildCam (Beery et al., 2021). Camelyon17
is a binary classification dataset where the objective is to classify whether a slide contains tumor
issue. We use 45 models varying in architectures and random seeds. iWildCam is a 182-way
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Figure 3: SoftmaxCorr vs. model generalization under ImageNet, CIFAR-10 and WILDS se-
tups. For ImageNet setup, ID test set is ImageNet-Val; OOD test sets are ImageNet-V2-A and
ImageNet-R. For CIFAR-10 setup, ID test set is CIFAR-10-Val; OOD test sets are CIFAR-10.2 and
CIFAR-10-Noise. For WILDS, ID test set is iWildCam-ID; OOD test sets are iWildCam-OOD and
Camelyon17-OOD. The y-axis is top-1 accuracy, top-1 accuracy and macro-F1 for the three se-
tups, respectively. In each subfigure, each point denotes a model trained for the corresponding task.
Straight lines are fit with robust linear regression (Huber, 2011). Axes are probit scaled as described
in Section 3. We observe that SoftmaxCorr is a reliable and effective metric. Particularly on Ima-
geNet, SoftmaxCorr is predictive of model generalization with strong performance (ρ > 0.92).

animal classification dataset. We collect 66 models the variations of which results from different
network architectures and learning rates. Model performance is measured by macro-F1 score.

5.2 MAIN OBSERVATIONS

SoftmaxCorr exhibits a strong correlation with model generalization. In Fig. 3 and Table 1, we
observe that SoftmaxCorr is indicative of model performance under the three setups. Particularly
on the ImageNet setup, SoftmaxCorr has consistently stronger correlations than the other empirical
measures. For example, the average Spearman’s Rank Correlation coefficient ρ is 0.910, 0.671 and
0.764, and 0.361, and 0.433 for our method, MaxPred, SoftGap, Entropy and InfoMax, respectively.
On CIFAR-10 and WILDS, while on some test sets it does not present the strongest correlation, we
still think that SoftmaxCorr is a preferred measure because it has higher or very competitive average
correlation scores (ρ = 0.851, 0.861 and τw = 0.645, 0.717).

SoftmaxCorr gives more stable correlation, while the other four measures have mixed per-
formance on different test sets. On CIFAR-10-Noise, we find that SoftmaxCorr correlates well
with model performance (ρ = 0.813 and τw = 0.771). In contrast, Entropy, MaxPred and Soft-
Gap show no correlation (ρ < 0.05 and τw < 0). Although InfoMax has higher rank correlation
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Dataset Diag-sum Diag-std SoftmaxCorr

ImageNet-V2-A 0.503 0.099 0.922
ImageNet-R 0.669 0.314 0.925
CIFAR-10.2 0.854 0.688 0.884
CINIC 0.752 0.781 0.844
iWildCam-OOD 0.916 -0.696 0.916
Camelyon17-OOD 0.174 0.581 0.689

average 0.645 0.294 0.863

Table 2: Comparison between SoftmaxCorr and
two variants (Diag-sum and Diag-std). Rank cor-
relation (ρ) is used as the metric.

Dataset 1% 5% 10% 30% 100%

ImageNet-V2-A 0.820 0.853 0.865 0.901 0.922
ImageNet-R 0.873 0.928 0.925 0.926 0.925
CIFAR-Noise 0.734 0.785 0.814 0.813 0.813
CINIC 0.655 0.777 0.827 0.857 0.844
iWildCam-OOD 0.826 0.874 0.896 0.903 0.916
Camelyon17-OOD 0.708 0.701 0.690 0.694 0.689

Table 3: Sensitivity analysis of SoftmaxCorr
on test set sizes. We test four sampling ratios
and report ρ on six datasets. We show that
SoftmaxCorr is relatively stable given a rea-
sonable number of samples.

than SoftmaxCorr (ρ = 0.896 vs. 0.813), it does not correlate with accuracy on ImageNet-Val,
ImageNet-V2-A/B/C (ρ < 0.25 and τw < 0.35). On ID and OOD sets of iWildCam, SoftGap and
MaxPred have higher correlations than SoftmaxCorr. However, they fail to measure the macro-F1
on Camelyon17-OOD (ρ = 0.192). While in some cases SoftmaxCorr does not present the highest
correlation, we emphasize that it overall gives more stable and stronger correlations. Thus, we think
that SoftmaxCorr is generally more indicative of model generalization than other measures.

Compared to SoftGap and InfoMax, SoftmaxCorr better utilizes Softmax prediction prob-
abilities. We use SoftGap on top of MaxPred as a simple approach to explicitly consider more
entries (the second largest probability) in Softmax predictions. Based on the entropy, InfoMax fur-
ther considers the prediction diversity (its first term) and thereby it also leverages more information
of Softmax predictions. As shown in Table 1, both methods achieve higher correlation results than
MaxPred. This indicates that using more information of Softmax predictions is useful. Compared
with SoftGap and InfoMax, the class-wise correlation considered in our SoftmaxCorr better reveals
the knowledge encoded by Softmax predictions. This is supported by the higher average correlation
and more stable performance of SoftmaxCorr under three setups.

5.3 DISCUSSION ON THE CHARACTERIZATION OF CORRELATION MATRIX

To investigate the importance of prediction diversity and certainty for predicting OOD generaliza-
tion, we compare SoftmaxCorr with two variants: (1) the sum of diagonal entries in the class cor-
relation matrix (Diag-sum); (2) the negative of standard deviation of diagonal elements in the class
correlation matrix (Diag-std). In Table 2, we present Spearman’s rank correlation of three methods
on six datasets from three setups. We see that SoftmaxCorr is more predictive of OOD generaliza-
tion than Diag-sum and Diag-std (ρ = 0.863 vs. 0.645 vs. 0.294). This means that it is important to
measure both prediction diversity and certainty for OOD generalization assessment.

5.4 SENSITIVITY ANALYSIS ON TEST SET SIZE

We study the sensitivity of SoftmaxCorr to test set size. Specifically, we reduce the dataset size by
randomly sampling 1%, 5%, 10% and 30% of the original data. We report the averaged Spearman’s
correlation of three random runs on six datasets (e.g., ImageNet-V2-A, ImageNet-R, CINIC and
iWildCam-OOD). As shown in Table 3, we observe that when the number of test data is very small
(1%), the correlation of SoftmaxCorr drops. When the dataset size increases (≥ 5%), Softmax-
Corr exhibits stable and high correlation with model performance. This suggests that SoftmaxCorr
requires a reasonable number of samples to capture the model OOD generalization.

5.5 EVALUATING GENERALIZATION ALONG A TRAINING TRAJECTORY

In previous sections, SoftmaxCorr is utilized to measure the performance of models varying in
different architectures and training strategies. In practice, we are sometimes interested in evaluating
the models at different training check points. Hence, we also analyze whether SoftmaxCorr is helpful
in this case. We collect prediction probabilities of CINIC every 10 epochs along the training process
of ResNet-20, DenseNet-121 (Huang et al., 2017), VGG11 (Simonyan & Zisserman, 2014) and
MobileNet (Howard et al., 2017) trained on the CIFAR-10. In Fig. 4, we observe that SoftmaxCorr

7



Under review as a conference paper at ICLR 2023

ResNet-20
𝜌 = 0.940
𝜏!= 0.831

DenseNet-121
𝜌 = 0.968
𝜏!= 0.859

VGG-11
𝜌 = 0.958
𝜏!= 0.915

Ac
cu

ra
cy

 (%
)

SoftmaxCorr SoftmaxCorr SoftmaxCorr

MobileNet
𝜌 = 0.937
𝜏!= 0.927

SoftmaxCorr

Figure 4: Correlation analysis: SoftmaxCorr and accuracy on CINIC. Each point represents a check-
point. We consider CIFAR-10 models: ResNet-20, DenseNet-121, VGG-11 and MobileNet. Axes
are probit scaled as in Section 3. In each subfigure, every point means a checkpoint of the model
along the training process. For four models, we see strong correlations (ρ > 0.93). This suggests
that SoftmaxCorr is helpful in assessing checkpoints along the training process.

ConvNeXt-Base
𝑟 = 0.857
𝜌= 0.915

Ac
cu

ra
cy

 (%
)

SoftmaxCorr SoftmaxCorr SoftmaxCorr SoftmaxCorr

EfficientNet-B2
𝑟 = 0.961
𝜌 = 0.978

ViT-Base
𝑟 = 0.942
𝜌 = 0.974

Swin-Small
𝑟 = 0.867
𝜌 = 0.884

Figure 5: SoftmaxCorr v.s. accuracy on ImageNet-C benchmark. In every subfigure, each dot
indicates a dataset of ImageNet-C. We observe strong linear and rank correlation for ImageNet
models: ConvNext-Base, Swin-Small, EfficientNet-B2 and ViT-Base.

has high rank correlation (ρ > 0.93) with model performance for four networks. This means that
we can potentially apply SoftmaxCorr to assay model generalization along the training process.

5.6 ASSESSING PREDICTIVE ABILITY OF SOFTMAXCORR UNDER DOMAIN ADAPTATION.

On ImageNet, CIFAR and WILDS setups, all models are trained by standard empirical risk min-
imization and do not use the unlabeled OOD samples for training. In some scenarios, domain
adaptation (DA) algorithms are employed for learning target-adaptive models with additional unla-
beled OOD samples (Kouw & Loog, 2019; Zhou et al., 2022). To explore whether SoftmaxCorr
is still effective to assess the generalization of these models, we conduct correlation study under
DomainNet setup (Peng et al., 2019; Sagawa et al., 2021). The models are trained by 9 different DA
algorithms (e.g., DeepCORAL (Sun & Saenko, 2016), DANN (Ganin et al., 2016)). In Table 1, we
observe that SoftmaxCorr performs reasonably on DomainNet-ID and DomainNet-OOD. We also
notice that InfoMax is better than SoftmaxCorr on DomainNet-OOD. InfoMax is commonly used
as a regularization in DA (Shi & Sha, 2012; Liang et al., 2020). We speculate it might better reflect
models’ target-adaptation ability and exhibit higher correlation on DomainNet-OOD.

5.7 SOFTMAXCORR V.S. GENERALIZATION ON VARIOUS OOD TEST SETS

We investigate how a given trained model generalize to various OOD datasets. In detail, we eval-
uate a single model on all test sets of ImageNet-C benchmark (Hendrycks & Dietterich, 2019) and
conduct correlation study between accuracy and SoftmaxCorr. We additionally use Pearson’s corre-
lation (r) to measure overall linear trend. This coefficient varies in [−1, 1]. A value closer to −1/1
indicates better negative/positive linearity and 0 means no correlation. We use ImageNet networks:
ConvNeXt-Base (Liu et al., 2022), Swin-Small (Liu et al., 2021b), EfficientNet-B2 (Tan & Le, 2019)
and ViT-Base (Dosovitskiy et al., 2020). Figure 5 shows a strong linear relationship and high rank
correlation (r > 0.85 and ρ > 0.91). It indicates that with a linear regressor SoftmaxCorr can also
help estimate the accuracy of a given model on various test sets.
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6 DISCUSSION AND POTENTIAL DIRECTIONS

What makes OOD measures interesting? Miller et al. (2021) report an accuracy-on-the-line phe-
nomenon where there exists a very strong linear correlation between probit-scaled ID and OOD
generalization. It means ID generalization is a good predictor of OOD generalization. There are
three reasons that make it meaningful to investigate OOD measures. First, Softmax prediction prob-
ability can be obtained with just unlabeled data. This makes prediction probability-based measures
of important practical value as indicators of OOD generalization. Second, Miller et al. (2021) show
that accuracy-on-the-line is not universal. That is, on some datasets, ID and OOD generalization do
not show a clear positive correlation. This finding is further discussed in recent work (Wenzel et al.,
2022). Specifically, Wenzel et al. (2022) suggest two patterns preventing this phenomenon: (1) un-
derspecification (e.g., Camelyon17) where same ID performance leads to different OOD behavior;
(2) models do not transfer information from ID to OOD domains (e.g., DomainNet). That is, despite
of various ID performance, all models perform poorly on OOD datasets. Paradoxically, identifying
the patterns itself requires labeled OOD data. Therefore, while ID performance is indicative in some
scenarios, we think that SoftmaxCorr is overall a good alternative when labeled ID data is inaccessi-
ble or accuracy-on-the-line does not hold. Third, it is demanding and sophisticated to design ID test
sets (Engstrom et al., 2020), which are expected to be unbiased and representative of distribution to
effectively measure model ID accuracy. Further, it is a trade-off to split a full dataset into training,
validation and test sets in terms of training and evaluation quality. Last, since SoftmaxCorr requires
no held-out validation set, we can use all available data for training models.

Discussion on imbalanced test sets. SoftmaxCorr is defined as the cosine similarity between cor-
relation matrix C and an identity matrix IK . This implicitly assumes the test set is balanced: the
number of samples in each class is roughly equal. This definition may not optimal when the test set
is extremely imbalanced (e.g., some classes may only have one image being predicted into). For this
point, we note that some test sets in our study are moderately imbalanced, such as ImageNet-R, Ob-
jectNet, iWildCam and DomainNet. We empirically observe that SoftmaxCorr still maintains a high
correlation on these datasets. Under extremely imbalanced case, the definition needs to consider the
importance weighting of each class. It would be helpful to use techniques of label shift estimation
(Lipton et al., 2018; Garg et al., 2020; Sun et al., 2022), and we leave it as our future work.

Potential OOD measures. This work proposes SoftmaxCorr to use class-wise relationship encoded
by Softmax prediction probabilities. Here, we discuss other potential ways. First, SoftGap com-
putes the difference of largest and second largest prediction probabilities. We show that SoftGap
exhibits a stronger correlation with performance compared to MaxPred. It would be interesting to
improve SoftGap by utilizing more probabilities (e.g., top five probabilities). Second, for a per-
fectly calibrated model, its MaxPred over a test set corresponds to its accuracy. Yet, calibration
methods seldom exhibit desired calibration performance under the distribution shift (Ovadia et al.,
2019). That said, it would be promising to study post-hoc calibration methods for OOD datasets,
which benefits MaxPred for assessing model generalization. Third, in some application scenarios,
we might able to obtain a small number of labeled test data. It would be helpful to study the way
of using them to improve the OOD generalization assessment. Last, this work focuses on Softmax
prediction probability. We tested our method based on logits but no obvious correlation is exhibited.
This may be because the logits of different models vary in significantly different ranges. Moreover,
studying other model statistics (e.g., weights and feature representations) would be interesting.

7 CONCLUSION

This paper studies an under-explored problem of assaying model generalization under distribution
shift. To this end, we explore the use of Softmax prediction probability for developing OOD mea-
sures. We start by finding that maximum Softmax prediction probability is to some extent useful to
measure the OOD performance. We then propose Softmax Correlation (SoftmaxCorr) which lever-
ages class confusion encoded by class-class correlation matrix and thus better reflects the overall
quality of the classifier predictions. To validate the usefulness of SoftmaxCorr, we compare with
four other empirical measures across 19 datasets under ImageNet, CIFAR-10 and WILDS setups.
We observe SoftmaxCorr generally presents more stable and higher correlation with model gener-
alization on both ID and OOD datasets. This paper establishes some baseline usage of Softmax
prediction probability and a specific improvement, and more investigation will be made in future.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on Challenges in Representation Learning, number 2, pp.
896, 2013.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning, pp. 6028–6039, 2020.

12



Under review as a conference paper at ICLR 2023

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. In International Conference on Learning Representations,
2018.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, ge-
ometry, and complexity of neural networks. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 888–896, 2019.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift
with black box predictors. In International Conference on Machine Learning, pp. 3122–3130,
2018.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781–6792, 2021a.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. In Advances in Neural Information Processing Systems, pp. 7498–7512,
2020a.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. In Advances in Neural Information Processing Systems, pp. 21464–21475, 2020b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Lucas Mansilla, Rodrigo Echeveste, Diego H Milone, and Enzo Ferrante. Domain generalization
via gradient surgery. In Proceedings of the IEEE International Conference on Computer Vision,
2021.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar,
Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation
between out-of-distribution and in-distribution generalization. In International Conference on
Machine Learning, pp. 7721–7735, 2021.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. In Advances
in Neural Information Processing Systems, pp. 15682–15694, 2021.

Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of distance from
initialization. arXiv preprint arXiv:1901.01672, 2019.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pp. 1376–1401, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in Neural Information Processing systems, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learn-
ing Representations, 2018.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. In Advances in Neural Information Process-
ing Systems, 2019.

13



Under review as a conference paper at ICLR 2023

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1406–1415, 2019.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. In International Conference on
Learning Representations, 2017.

Fengchun Qiao and Xi Peng. Uncertainty-guided model generalization to unseen domains. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6790–
6800, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400, 2019.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. In International Conference on Learning Representations, 2020.

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya
Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, et al. Extending the wilds benchmark
for unsupervised adaptation. arXiv preprint arXiv:2112.05090, 2021.

Yair Schiff, Brian Quanz, Payel Das, and Pin-Yu Chen. Predicting deep neural network generaliza-
tion with perturbation response curves. In Advances in Neural Information Processing Systems,
pp. 21176–21188, 2021.

Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948.

Yuan Shi and Fei Sha. Information-theoretical learning of discriminative clusters for unsupervised
domain adaptation. In International Conference on Machine Learning, 2012.

Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel
Synnaeve. Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations, 2018.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk,
Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. arXiv preprint arXiv:2001.07685, 2020.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European Conference on Computer Vision, pp. 443–450, 2016.

Tao Sun, Cheng Lu, and Haibin Ling. Prior knowledge guided unsupervised domain adaptation. In
European Conference on Computer Vision, 2022.

Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon. Domain adapta-
tion with conditional distribution matching and generalized label shift. In Advances in Neural
Information Processing Systems, pp. 19276–19289, 2020.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, pp. 6105–6114, 2019.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a
single deep deterministic neural network. In International Conference on Machine Learning, pp.
9690–9700, 2020.

14



Under review as a conference paper at ICLR 2023

Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in Neural Infor-
mation Processing Systems, 1991.

Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation of
domain generalization with empirical risk minimizers. In Advances in Neural Information Pro-
cessing Systems, pp. 28131–28143, 2021.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. In Advances in
Neural Information Processing Systems, 2018.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. In Advances in Neural Information Processing Sys-
tems, 2019.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939, 2020.

Florian Wenzel, Andrea Dittadi, Peter Vincent Gehler, Carl-Johann Simon-Gabriel, Max Horn, Do-
minik Zietlow, David Kernert, Chris Russell, Thomas Brox, Bernt Schiele, et al. Assaying out-
of-distribution generalization in transfer learning. In Advances in Neural Information Processing
Systems, 2022.

Ross Wightman. Train cifar10 with pytorch. https://github.com/kuangliu/
pytorch-cifar, 2017.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10687–10698, 2020.

Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger norm more transferable: An adaptive fea-
ture norm approach for unsupervised domain adaptation. In The IEEE International Conference
on Computer Vision, 2019.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. arXiv preprint arXiv:2110.11334, 2021a.

Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling Jui, et al. Exploiting the intrinsic neighbor-
hood structure for source-free domain adaptation. In Advances in Neural Information Processing
Systems, pp. 29393–29405, 2021b.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of
pre-trained models for transfer learning. In International Conference on Machine Learning, pp.
12133–12143, 2021.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412,
2018.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
for domain adaptation. In International Conference on Machine Learning, pp. 7404–7413, 2019.

Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data augmen-
tation for improved generalization and robustness. In Advances in Neural Information Processing
Systems, 2020.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

15

https: //github.com/kuangliu/pytorch-cifar
https: //github.com/kuangliu/pytorch-cifar
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 IMAGENET SETUP

(1) ImageNet Models

There are 173 models used in experiment. All of models are trained or fine-tuned on ImageNet-
1k (Deng et al., 2009). The weights of the models are publicly avaiable via TIMM-1.5 (Wight-
man, 2019). For the choice of the models, we refer to the supplementary materials of Deng
et al. (2022b); Miller et al. (2021); Baek et al. (2022). Moreover, we additionally include fol-
lowing models: { ’resnet10t’, ’resnet14t’, ’darknet53’, ’cs3darknet m’, ’cs3darknet focus m’,
’cs3darknet l’, ’cs3darknet focus l’, ’regnety 040’, ’regnety 064’, ’regnety 080’, ’regnetv 040’,
’regnetv 064’, ’regnetz 040’, ’regnetz 040h’ }
(2) ImageNet Datasets

The datasets we use are publicly available standard benchmarks. We have double checked their
license. We list their open-source as follows:

ImageNet-Validation (Deng et al., 2009) (https://www.image-net.org);
ImageNet-V2-A/B/C (Recht et al., 2019) (https://github.com/modestyachts/ImageNetV2);
ImageNet-Corruption (Hendrycks & Dietterich, 2019) (https://github.com/hendrycks/robustness);
ImageNet-Sketch (Wang et al., 2019) (https://github.com/HaohanWang/ImageNet-Sketch);
ImageNet-Rendition (Hendrycks et al., 2021) (https://github.com/hendrycks/imagenet-r);
ObjectNet (Barbu et al., 2019) (https://objectnet.dev);
Stylized-ImageNet (Geirhos et al., 2019) (https://github.com/rgeirhos/Stylized-ImageNet).

A.1.2 CIFAR-10 SETUP

(1) CIFAR-10 Models

Follow the practice in (Miller et al., 2021), we train 65 CIFAR models using the imple-
mentations from https: //github.com/kuangliu/pytorch-cifar. The models span a range of
manually designed architectures and the results of automated architecture searches. Specif-
ically, we use: {‘DenseNet-121/169/201/161/201’, ‘Densenet-cifar’, ‘DLA’, ‘DPN26/92’, ‘Ef-
ficientNetB0’, ‘GoogLeNet’, ‘LeNet’, ‘MobileNet’, ‘MobileNetV2’, ‘PNASNetA/B’, ‘PreActRes-
Net18/34/50/101/152’, ‘RegNetX-200MF/400MF’, ‘RegNetY-400MF’, ‘ResNet-18/34/50/101/152’,
‘ResNeXt29-8x64d/32x4d/4x64d/2x64d’, ‘SENet18’, ‘ShuffleNetV2’, ‘ShuffleNetG2/G3’, ‘Sim-
pleDLA’, ‘VGG-11/13/16/19’}.

Furthermore, we use the trained models publicly provided by https://github.com/chenyaofo/pytorch-
cifar-models. They are {‘cifar10-mobilenetv2-x0-5’, ‘cifar10-mobilenetv2-x0-75’, ‘cifar10-
mobilenetv2-x1-0’, ‘cifar10-mobilenetv2-x1-4’, ‘cifar10-repvgg-a0’, ‘cifar10-repvgg-a1’, ‘cifar10-
repvgg-a2’, ‘cifar10-resnet20’, ‘cifar10-resnet32’, ‘cifar10-resnet44’, ‘cifar10-resnet56’, ‘cifar10-
shufflenetv2-x0-5’, ‘cifar10-shufflenetv2-x1-0’, ‘cifar10-shufflenetv2-x1-5’, ‘cifar10-shufflenetv2-
x2-0’, ‘cifar10-vgg11-bn’, ‘cifar10-vgg13-bn’, ‘cifar10-vgg16-bn’, ‘cifar10-vgg19-bn’} .

(2) CIFAR-10 Datasets

The datasets are publicly available benchmarks. Their source are as follows:

CIFAR-10 (Krizhevsky et al., 2009) (https://www.cs.toronto.edu/ kriz/cifar.html);
CIFAR-10-C (Hendrycks & Dietterich, 2019) (https://github.com/hendrycks/robustness);
CIFAR-10.1 (Recht et al., 2018) (https://github.com/modestyachts/CIFAR-10.1);
CINIC (Darlow et al., 2018) (https://github.com/BayesWatch/cinic-10).

A.1.3 WILDS SETUP

(1) iWildCam Models

We use the publicly available code (https://github.com/p-lambda/wilds) to finetune 66 models that
are pretrained on ImageNet. Following the practice in (Miller et al., 2021), model variation results
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from model architecture and learning rate. We train for 12 epochs with batch size 16 using Adam
and sweep over learning rate in the grid {1e−3, 1e−2}. The other Adam parameters were set to the
Pytorch defaults. The models are: { ’alexnet’, ’mobilenet v2’, ’resnet18’, ’resnet34’, ’resnet50’,
’vgg11’, ’densenet121’, efficientne b0, efficientnet b1, ’regnet y 400mf’, ’regnet y 800mf’, ’shuf-
flenet v2 x0 5’ ’shufflenet v2 x1 0’ }.

(2) Camelyon17 Models

We use the publicly available code (https://github.com/p-lambda/wilds) to finetune 45 models that
are pretrained on ImageNet. Models vary in model architecture and random seed. The model archi-
tectures are: { ’alexnet’, ’vgg11’, ’densenet121’, ’resnet18’, ’resnet34’, ’resnet50’, ’resnet101’,
’resnext50 32x4d’ ’wide resnet50 2’ ’mobilenet v3 large’, ’regnet y 1 6gf’, ’shufflenet v2 x0 5’,
’shufflenet v2 x1 5’, ’shufflenet v2 x2 0’, ’regnet y 400mf’, ’regnet y 800mf’, }.

(3) WILDS Datasets

iWildCam (Beery et al., 2021) https://www.kaggle.com/c/iwildcam-2020-fgvc7;
Camelyon17 (Bandi et al., 2018) https://camelyon17.grand-challenge.org/

A.1.4 DOMAINNET

Domain adaptation algorithms. We use publicly accessible weights provided in:
https://worksheets.codalab.org/worksheets/0x52cea64d1d3f4fa89de326b4e31aa50a. These models
are trained by following optimization algorithms: ERM (Vapnik, 1991), DeepCORAL (Sun &
Saenko, 2016), DANN (Ganin et al., 2016), AFN (Xu et al., 2019), PseudoLabel (Lee et al., 2013),
NoisyStudent (Xie et al., 2020), FixMatch (Sohn et al., 2020), SwAV (Caron et al., 2020).

DomainNet Dataset (Peng et al., 2019) http://ai.bu.edu/M3SDA/.

A.2 COMPUTATION RESOURCES

All experiment is run on one 2080Ti and the CPU AMD Ryzen Threadripper 2950X 16-Core Pro-
cessor. We use PyTorch (1.10.2+cu102) for all the experiments.

A.3 DISCUSSION ON LOW PERFORMANCE OF SOFTMAXCORR ON CAMELYON17-OOD

Camelyon17 is a binary image classification task where each example is a tissue patch. Its images
are metastasized breast cancer tissue samples collected from different hospitals. As noted by Koh
et al. (2021), the held-out OOD test set contains tissue samples from a hospital not seen in the
training set. The distribution shift largely arises from differences in staining and imaging protocols
across hospitals.

In our study, we observe a similar underspecification phenomenon as Miller et al. (2021); Wenzel
et al. (2022): very similar ID performances lead to very different OOD performances. This indicates
that the models cannot learn robust patterns that can be transferred to OOD data. Moreover, the
similarity between images from the same slide or hospital is very high. This probably exacerbates the
underspecification. Based on the above, we speculate that Softmaxcorr is less effective in detecting
the underspecification issue on Camelyon17-OOD and thus has low correlation. That said, it would
be interesting to further study this phenomenon in future research.

A.4 COMPARED WITH MORE BASELINES

We additionally add three baselines: MaxLogit(Hendrycks et al., 2022), Energy(Liu et al., 2020b)
and Adversarial Input Margin(Baldock et al., 2021).

MaxLogits calculates the average of maximal unnormalized logits of all test samples.

Energy calculates the average of energy scores of all samples. Its formula for a single input x is
E = −T ·log

∑K
j eϕ

j(x)/T , where T is the temperature scaling hyper-parameter and ϕj(x) indicates
the logit returned by ϕ(x) corresponding to jth class.
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Table 4: Method comparison on three OOD test sets. We compare our SoftmaxCorr with three
measures: MaxLogit, Energy and Complexity. We use Spearman’s rank correlation (ρ) and weighted
Kendall’s correlation (τw) for comparison. We show that our method is stable and yields the highest
average correlation across four datasets.

Dataset MaxLogit Energy Complexity SoftmaxCorr

ρ τw ρ τw ρ τw ρ τw

ImageNet-V2-A -0.267 -0.237 0.350 0.158 0.341 0.282 0.922 0.792
ImageNet-S 0.024 0.422 0.087 -0.180 0.329 0.417 0.875 0.883

CIFAR-10.2 0.210 -0.032 -0.180 -0.180 0.680 0.524 0.884 0.694

Adversarial Input Margin (Complexity) is proposed to measure the model complexity. It computes
the smallest norm required for an adversarial perturbation in the input to change the model’s class
predictions. It estimates adversarial input margin γ by a linear approximation. Its formula is given
by: γ ≃ minj ̸=i

|zi−zj |
|▽x(zi−zj)| , where x is the input, i means predicted class and zj denotes the logit

returned by the network for class j. We then take the average of γ over all data.

As shown in Table 4, we observe that MaxLogit and Energy exhibit weak correlation. While model
complexity achieves some correlation on three datasets, it is still inferior to SoftmaxCorr.

A.5 COMPARE SOFTMAXCORR WITH ACCURACY-ON-THE-LINE

We report the Spearman’s rank correlations of accuracy-on-the-line and SoftmaxCorr in Table 5.
We observe that accuracy-on-the-line shows strong correlations on many datasets. However, we
have similar observations as the authors of accuracy-on-the-line report: it exhibits weak correlation
or even no correlation on CIFAR-10-Noise, Camelyon17-OOD and DomainNet-OOD (ρ = 0.003,
−0.021 and 0.350). In comparison, SoftmaxCorr remains relatively informative and exhibits mod-
erately high correlation (ρ = 0.813, 0.689 and 0.693) on the three test sets.

We further note that when accuracy-on-the-line shows very strong correlations, SoftmaxCorr is also
competitive. Therefore, we think that SoftmaxCorr is overall a good alternative when labeled ID
data is inaccessible or accuracy-on-the-line does not hold.

A.6 AN ORACLE BASELINE: CONFUSION MATRIX

We may label a small number of OOD test data and compute the confusion matrix. Then, we
calculate the cosine similarity between the computed confusion matrix and an identity matrix to
assess model OOD generalization on the whole dataset. Specifically, we randomly label 1%, 5% and
10% of data and compute the cosine similarity between the confusion matrix and identity matrix.
We report the average of Spearman’s rank correlation over three random runs in Table 6

This oracle exhibits a strong correlation given 5% of labeled test data. This suggests that exploring
class confusion information for OOD generalization assessment is feasible. Specifically, if the cal-
culated class-class correlation matrix ideally matches the true confusion matrix, then OOD general-
ization can be perfectly predicted. Yet, we would like to discuss that this oracle may be impractical
in some scenarios. First, data annotation could be very expensive and challenging. For example,
precisely labeling wildlife categorization of iWildCam images is laborious and requires expert-level
knowledge; annotating cancer tissue images of Camelyon17 also requires expert-level knowledge.
Second, when the test distribution is changed, we need to label data again which is also laborious.

A.7 SENSITIVITY ANALYSIS ON TEST SET SIZE OF ALL METHODS

We conducted a stratified analysis of all five methods on four OOD datasets: ImageNet-R,
ImageNet-Blur, CINIC and iWildCam-OOD. Specifically, we test different size of OOD datasets
by randomly sampling 1%, 5%, 10%, 30% of test data. For each method under each test set size, we
report the Spearman’s rank correlation (ρ) of the average results of three random runs.
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Dataset ID-Acc SoftmaxCorr

ImageNet-R 0.932 0.925
ImageNet-v2-A 0.995 0.922
ImageNet-v2-B 0.994 0.912
ImageNet-v2-C 0.995 0.917
ImageNet-S 0.934 0.875
Stylized-ImageNet 0.800 0.828
ObjectNet 0.976 0.927
ImageNet-Blur 0.902 0.967

CIFAR-10.2 0.958 0.884
CINIC 0.917 0.844
CIFAR-10-Noise 0.003 0.813

iWildCam-OOD 0.944 0.916
Camelyon17-OOD -0.021 0.689

DomainNet-OOD 0.350 0.693

Table 5: Comparison between Accuracy-on-
the-line (ID-Acc) and SoftmaxCorr. Rank cor-
relation (ρ) is the metric.

Dataset 1% 5% 10%

ImageNet-R 0.984 0.993 0.993
ImageNet-v2-A 0.947 0.981 0.990
ImageNet-v2-B 0.857 0.956 0.974
ImageNet-v2-C 0.922 0.979 0.986
ImageNet-S 0.990 0.997 0.998
Stylized-ImageNet 0.986 0.996 0.998
ObjectNet 0.972 0.981 0.984
ImageNet-Blur 0.989 0.993 0.995

CIFAR-10.2 0.350 0.617 0.706
CINIC 0.842 0.928 0.943
CIFAR-10-Noise 0.842 0.950 0.956

iWildCam-OOD 0.848 0.870 0.868
Camelyon17-OOD 0.936 0.945 0.949

DomainNet-OOD 0.955 0.977 0.968

Table 6: Results of Confusion matrix. Rank cor-
relation (ρ) is the metric.

ImageNet-R 1% 5% 10% 30% 100%

MaxPred 0.618 0.623 0.612 0.615 0.613
SoftGap 0.798 0.803 0.794 0.799 0.797
Entropy 0.302 0.305 0.295 0.296 0.295
InfoMax 0.407 0.431 0.426 0.426 0.423
SoftmaxCorr 0.873 0.928 0.925 0.926 0.925

Table 7: Sensitivity analysis of all methods
on test set sizes. We report r and find that
SoftmaxCorr is relatively stable.

ImageNet-Blur 1% 5% 10% 30% 100%

MaxPred 0.863 0.877 0.878 0.878 0.877
SoftGap 0.883 0.895 0.897 0.898 0.898
Entropy 0.767 0.778 0.779 0.780 0.780
InfoMax 0.830 0.848 0.850 0.851 0.850
SoftmaxCorr 0.948 0.966 0.967 0.967 0.967

Table 8: Sensitivity analysis of all methods on test
set sizes. We report r and find that SoftmaxCorr
is relatively stable.

CINIC 1% 5% 10% 30% 100%

MaxPred 0.764 0.750 0.755 0.747 0.753
SoftGap 0.780 0.772 0.781 0.772 0.777
Entropy 0.749 0.733 0.733 0.717 0.722
InfoMax 0.753 0.740 0.745 0.732 0.735
SoftmaxCorr 0.655 0.777 0.827 0.857 0.844

Table 9: Sensitivity analysis of all methods
on test set sizes. We report r and find that
SoftmaxCorr is relatively stable.

iWildCam-OOD 1% 5% 10% 30% 100%

MaxPred 0.820 0.873 0.893 0.906 0.917
SoftGap 0.850 0.902 0.918 0.926 0.936
Entropy 0.734 0.793 0.821 0.839 0.853
InfoMax 0.784 0.832 0.859 0.869 0.883
SoftmaxCorr 0.826 0.874 0.896 0.903 0.916

Table 10: Sensitivity analysis of all methods on
test set sizes. We report r and find that Softmax-
Corr is relatively stable.

In Tables 7, 8, 9 and 10, we observe that 1) when test size is very small (≥ 5%), all methods
have slightly lower correlation strength. For example, on ImageNet-R, InfoMax and SoftmaxCorr
drop 0.024 and 0.055, respectively; 2) all methods have stable correlation results when test data is
moderately sufficient. Specifically, when the correlation of all methods becomes robust when the
sampled ratio is larger than 10%.
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A.8 RESULTS OF SOFTMAX CORRELATION

ImageNet-Val
𝜌 = 0.919
𝜏!= 0.752

ImageNet-S
𝜌 = 0.875
𝜏!= 0.883

ImageNet-R
𝜌 = 0.925
𝜏!= 0.880

ImageNet-V2-C
𝜌 = 0.917
𝜏!= 0.795

ImageNet-V2-B
𝜌 = 0.912
𝜏!= 0.785

ImageNet-V2-A
𝜌 = 0.922
𝜏!= 0.792

CINIC
𝜌 = 0.844
𝜏!= 0.578

CIFAR-10.2
𝜌 = 0.884
𝜏!= 0.694

ImageNet-Blur
𝜌 = 0.967
𝜏!= 0.929

CIFAR-10-Val
𝜌 = 0.865
𝜏!= 0.536

ObjectNet
𝜌 = 0.927
𝜏!= 0.897

Stylized-ImageNet
𝜌 = 0.828
𝜏!= 0.834

CIFAR-10-Noise
𝜌 = 0.813
𝜏!= 0.771

iWIldCam-OOD
𝜌 = 0.916
𝜏!= 0.839

Camelyon17-OOD
𝜌 = 0.689
𝜏!= 0.492

Camelyon17-ID
𝜌 = 0.893
𝜏!= 0.746

iWIldCam-ID
𝜌 = 0.945
𝜏!= 0.792

DomainNet-ID
𝜌 = 0.747
𝜏!= 0.607

DomainNet-OOD
𝜌 = 0.693
𝜏!= 0.566

Figure 6: SoftmaxCorr vs. model generalization under ImageNet, CIFAR-10 and WILDS setups.
The y-axis is accuracy, accuracy and macro-F1 for three setups, respectively. The straight lines are
fit with robust linear regression (Huber, 2011). Axes are probit scaled as described in Section 3.
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A.9 RESULTS OF MAXIMUM PREDICTION PROBABILITY

ImageNet-Val
𝜌 = 0.542
𝜏!= 0.515

ImageNet-S
𝜌 = 0.784
𝜏!= 0.798

ImageNet-R
𝜌 = 0.613
𝜏!= 0.776

ImageNet-V2-C
𝜌 = 0.577
𝜏!= 0.528

ImageNet-V2-B
𝜌 = 0.506
𝜏!= 0.483

ImageNet-V2-A
𝜌 = 0.645
𝜏!= 0.574

CINIC
𝜌 = 0.753
𝜏!= 0.375

CIFAR-10.2
𝜌 = 0.857
𝜏!= 0.696

ImageNet-Blur
𝜌 = 0.877
𝜏!= 0.828
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𝜌 = 0.860
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𝜌 = 0.912
𝜏!= 0.814
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𝜏!= 0.840
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𝜏!= 0.320

Camelyon17-ID
𝜌 = 0.847
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𝜏!= 0.889
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𝜌 = 0.725
𝜏!= 0.570

DomainNet-OOD
𝜌 = 0.403
𝜏!= 0.274

Figure 7: MaxPred vs. model generalization under ImageNet, CIFAR-10 and WILDS setups. The
y-axis is accuracy, accuracy and macro-F1 for three setups, respectively. The straight lines are fit
with robust linear regression (Huber, 2011). Axes are probit scaled as described in Section 3.
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A.10 RESULTS OF SOFTMAX GAP
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ImageNet-Blur
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𝜏!= 0.843
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𝜌 = 0.871
𝜏!= 0.551
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𝜌 = 0.934
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𝜌 = 0.407
𝜏!= 0.258

Figure 8: SoftGap vs. model generalization under ImageNet, CIFAR-10 and WILDS setups. The
y-axis is accuracy, accuracy and macro-F1 for three setups, respectively. The straight lines are fit
with robust linear regression (Huber, 2011). Axes are probit scaled as described in Section 3.
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A.11 RESULTS OF NEGATIVE PREDICTION ENTROPY
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𝜌 = 0.142
𝜏!= 0.286
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𝜌 = 0.471
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ImageNet-R
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CINIC
𝜌 = 0.722
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𝜌 = 0.826
𝜏!= 0.663

ImageNet-Blur
𝜌 = 0.780
𝜏!= 0.702
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𝜌 = 0.844
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𝜏!= 0.735
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Figure 9: Entropy vs. model generalization under ImageNet, CIFAR-10 and WILDS setups. The
y-axis is accuracy, accuracy and macro-F1 for three setups, respectively. The straight lines are fit
with robust linear regression (Huber, 2011). Axes are probit scaled as described in Section 3.
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A.12 RESULTS OF INFORMATION MAXIMIZATION
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𝜌 = 0.833
𝜏!= 0.653

iWIldCam-ID
𝜌 = 0.960
𝜏!= 0.810

DomainNet-ID
𝜌 = 0.698
𝜏!= 0.539

DomainNet-OOD
𝜌 = 0.763
𝜏!= 0.721

Figure 10: InfoMax vs. model generalization under ImageNet, CIFAR-10 and WILDS setups. The
y-axis is accuracy, accuracy and macro-F1 for three setups, respectively. The straight lines are fit
with robust linear regression (Huber, 2011). Axes are probit scaled as described in Section 3.
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