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Abstract
Fine-tuning large language models (LLMs) is in-
tended to improve their reasoning capabilities, yet
we uncover a counterintuitive effect: models of-
ten forget how to solve problems they previously
answered correctly during training. We term this
phenomenon Temporal Forgetting and show that
it is widespread across model sizes, fine-tuning
methods (both Reinforcement Learning and Su-
pervised Fine-Tuning), and multiple reasoning
benchmarks. Our analysis reveals that 6.4% to
56.1% of final errors were once solved correctly
at an earlier checkpoint. Inspired by the phe-
nomenon of Temporal Forgetting, we proposed
Temporal Sampling, a simple decoding strategy
that draws outputs from multiple checkpoints
along the training trajectory. This approach recov-
ers forgotten solutions and leads to significant im-
provements in reasoning performance than final-
ckpt-sampling only, gains from 4 to 19 points in
Pass@k and consistent gains for majority-voting
and Best-of-N across several benchmarks. To
make Temporal Sampling deployment-friendly,
we extend it to LoRA-adapted models. By lever-
aging the temporal diversity inherent in training,
Temporal Sampling offers a practical, compute-
efficient way to surface hidden reasoning ability
and rethink how we evaluate LLMs.

1. Introduction
Fine-tuning large language models (LLMs) is expected to
improve their reasoning ability (Luo et al., 2025; DeepSeek-
AI et al., 2025; Zeng et al., 2025; Muennighoff et al., 2025;
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Figure 1. (a) We observed that during RL training process of
Deepseek-R1-1.5B model, 76.7% of AIME problems were solved
correctly at least once by some intermediate checkpoint, yet only
30% remained correct in the final model. This indicates that many
problems answered correctly during training were ultimately in-
correct in the final checkpoint. We term this phenomenon as
Temporal Forgetting. (b) We proposed Temporal Sampling:
This method utilizes training dynamics as a source of answer di-
versity by distributing inference samples across multiple distinct
checkpoints from the training trajectory, rather than relying solely
on the single final checkpoint.

NovaSky, 2025; Jin et al., 2025). Yet, we uncover a surpris-
ing phenomenon: models often forget how to solve problems
they previously solved correctly during fine-tuning. We refer
to this systematic behavior as Temporal Forgetting.

Temporal Forgetting is not rare or model-specific. To quan-
tify this phenomenon, we introduce a new metric: the Tem-
poral Forgetting Score (PTFS). PTFS captures the per-
centage of questions in the benchmark that were answered
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correctly by some checkpoint during RL/ SFT but were
ultimately answered incorrectly by the final checkpoint.
Across Supervised Fine-Tuning (SFT) and Reinforcement
Learning (RL) fine-tuning (Shao et al., 2024a; DeepSeek-AI
et al., 2025; Zeng et al., 2025) of Qwen2.5 models (1.5B
and 7B) on multiple reasoning benchmarks (AIME, AMC,
OlympiadBench (He et al., 2024), MATH-500 (Hendrycks
et al., 2021a), GPQA (Rein et al., 2024)), we find that from
6.4% to 56.1% of final errors were once solved correctly at
an earlier checkpoint. This pattern persists across different
model sizes, architectures, and training approaches.

This metrics highlight a fundamental limitation in current
evaluation methodologies. Standard metrics like Pass@k
(Chen et al., 2021) and Majority@k (Wang et al., 2023b),
computed only on the final model, implicitly assume that
checkpoint to be the model’s most capable state. However,
our findings reveal that many correct reasoning paths are
transient, making final-checkpoint-only evaluation a narrow
and often misleading lens. The significant Temporal Forget-
ting Score suggests that the reasoning potential of fine-tuned
models are substantially underestimated when using only
the final checkpoint.

Inspired by this, we proposed Temporal Sampling, a simple
decoding strategy that samples completions across multiple
checkpoints rather than just the final one, which is shown in
Figure 1 (b). By spreading the sample budget across time,
Temporal Sampling recovers forgotten solutions without
retraining or ensembling.

Temporal Sampling yields substantial improvements across
diverse reasoning tasks. On benchmarks such as AIME2024,
AMC, and AIME2025, we observe gains from 4 to 19 points
in Pass@k compared to final-checkpoint-only sampling, and
consistent improvements in Majority@k and Best-of-N. To
make Temporal Sampling deployment-friendly, we extend
it to LoRA-adapted models (Hu et al., 2021). This reduces
storage requirements, enabling efficient use of Temporal
Sampling in storage-resource constrained settings.

These findings suggest that true model competence may
not reside in a single parameter snapshot, but rather in the
collective dynamics of training itself. Temporal Sampling
offers a practical and powerful way to reclaim lost reasoning
ability, challenging the standard paradigm of using only the
final model checkpoint for evaluation and deployment.

2. Temporal Forgetting: Correct Answers
Emerge and Vanish in Training

2.1. Overall Performance Score cannot Tell Everything

To understand how RL or SFT alters a model’s ability to cor-
rectly answer reasoning problems, we investigate instances
where base models succeeded on questions but failed after

Figure 2. Overall performance score cannot tell everything. Fine-
tuned models like DeepscaleR-1.5B (Luo et al., 2025) outperform
the base model, R1-1.5B (DeepSeek-AI, 2025), overall but also
forget many questions the base model answered correctly.

fine-tuning. To quantify this, we introduce the Lost Score:

• PLost (Lost Score): The percentage of questions in a
benchmark that were answered correctly by the base
model but incorrectly by the model after fine-tuning.

This score specifically highlights the phenomenon where a
model, despite any overall performance changes after fine-
tuning, loses its correctness on certain problems it previ-
ously solved correctly. Note that overall performance scores
cannot capture the statistical pattern reflected by PLost.

Experiment Setup. We consider various existing SOTA
model such as DeepScaleR-1.5B (Luo et al., 2025), OpenR1-
7B (Face, 2025) and S1-32B (Muennighoff et al., 2025).
Please see Appendix E.2 for the full list of evaluated models
and their base models. We calculate the overall performance
of various SOTA models after fine-tuning (denoted PFT), the
performance of their corresponding base model (denoted
PBase), and our proposed Lost Score (PLost). These evalu-
ations were conducted on the OlympiadBench (He et al.,
2024), MATH-500 (Hendrycks et al., 2021b), and GPQA
(Rein et al., 2024) benchmarks. We excluded AIME2024
and AMC2023 from this particular analysis because the
number of questions available in these datasets was insuffi-
cient for a meaningful comparison. To minimize variability
arising from different sampling methods during evaluation,
we employ greedy sampling following (Wei et al., 2022).

Results. In Table 1, we present a comprehensive analysis
of various SOTA models. We found that PLost could range
from 6.1 to 16.0 points, with the average of 9.5 points. This
implies that there are a considerable number of questions an-
swered correctly by the base model but incorrectly after RL
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Table 1. Performance of the base model (PBase ↑), the fine-tuned model (PFT ↑) and the Lost Score (PLost ↓) for different SOTA models.
We observed that in spite of the improvement of overall performance, the average PLost ranges from 6.1 to 16.0, which implies a high
percentage of questions answered correctly by the base model is answered incorrectly after RL or SFT.

Model OlympiadBench MATH-500 GPQA-Diamond Avg. PLost

PBase PFT PLost PBase PFT PLost PBase PFT PLost

DeepScaleR-1.5B (Luo et al., 2025) 48.3 53.5 6.4 82.0 89.8 2.4 35.4 36.9 15.7 8.2
Still-1.5B (Team, 2025b) 48.3 48.4 8.6 82.0 83.8 5.0 35.4 34.8 17.2 10.3
S1.1-1.5B (Muennighoff et al., 2025) 18.7 11.7 11.1 46.2 37.6 19.2 23.2 16.2 17.7 16.0
II-thought-1.5B (Internet, 2025) 48.3 58.4 5.3 82.0 88.0 3.4 35.4 34.3 16.7 8.5

S1.1-3B (Muennighoff et al., 2025) 29.8 24.7 12.4 65.0 64.8 10.2 32.8 30.3 18.7 13.8
SmallThinker-3B 29.8 38.2 6.2 65.0 69.2 9.8 32.8 28.3 21.7 12.6

S1.1-7B (Muennighoff et al., 2025) 40.4 42.2 10.5 76.0 76.8 7.8 32.8 41.4 15.2 11.2
OpenR1-Qwen-7B (Face, 2025) 42.5 56.6 9.2 83.0 89.8 3.8 29.8 41.9 12.1 8.4
OpenThinker-7B (Team, 2025a) 40.4 48.7 8.1 76.0 85.0 4.2 32.8 43.9 13.6 8.6

S1-32B (Muennighoff et al., 2025) 49.8 60.1 4.3 81.6 89.6 3.2 43.9 55.1 13.1 6.9
Sky-T1-32B-Preview (NovaSky, 2025) 49.8 58.4 4.6 81.6 88.2 3.0 43.9 53.0 11.1 6.2
Bespoke-Stratos-32B 49.8 54.2 7.1 81.6 89.2 3.0 43.9 57.6 8.1 6.1
OpenThinker-32B (Team, 2025a) 49.8 61.2 8.0 81.6 91.4 2.8 43.9 59.1 11.1 7.3
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Figure 3. Performance of base model (PBase ↑), fine-tuned model
(PFT ↑) and Lost Score (PLost ↓) for Pass@1 sampling and
Pass@8 sampling. Models like DeepscaleR-1.5B (Luo et al., 2025)
and Still-3-1.5B (Face, 2025) outperform the base model overall
but also forget many questions the base model answered correctly
when using diverse sampling.

or SFT, in spite of the improvement of overall performance.
Additionally, Figure 3 demonstrate that models also exhibit
the temporal forgetting phenomenon with substantial Lost
Scores (PLost) when using Pass@1 and Pass@8 sampling
with a temperature of 0.6 and top-p of 0.95.

Takeaway 1: Overall Score Cannot Tell Everything

In spite of the improvement of overall performance,
a considerable percentage of questions (from 6.1%
to 16%) answered correctly by the base model may
be answered incorrectly after RL/SFT.

2.2. Temporal Forgetting

To investigate how answer correctness evolves during post-
training, we conducted SFT and RL on various base models,
evaluating checkpoints at different training steps. We intro-
duce two metrics to quantify the temporal dynamics: the
Ever Correct Score and the Temporal Forgetting Score:

• PECS (Ever Correct Score): The percentage of ques-
tions in the benchmark that were answered correctly
by at least one checkpoint saved during RL/SFT.

• PTFS (Temporal Forgetting Score): The percentage
of questions in the benchmark that were answered cor-
rectly at least once by some checkpoint during RL/SFT
but were ultimately answered incorrectly by the final
checkpoint. Mathematically, PTFS = PECS − PFT ,
where PFT is the performance score of the fine-tuned
model.

Furthermore, to characterize how answer correctness
changes between consecutive checkpoints, we define spe-
cific events: an answer is considered to “Forget” if it shifts
from correct to incorrect, and “Improve” if it transitions
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from incorrect to correct. If the answer’s correctness sta-
tus (either correct or incorrect) remains unchanged across
two consecutive checkpoints, it is labeled as “Both Correc-
t/Wrong.”

Experiment Setup. We performed GRPO (Shao et al.,
2024b) on the Qwen2.5-7B, Qwen2.5-1.5B, and Qwen2.5-
Math-7B models (Yang et al., 2024a;b). The training
data consisted of 4k samples randomly selected from the
DeepscaleR-40k dataset (Luo et al., 2025). Throughout the
training of each model, we saved 8 checkpoints. We set the
RL training parameters following (Luo et al., 2025), and
detailed training script parameters can be found in Appendix
D. For SFT, we utilized the same DeepscaleR-4k sampled
data. We then employed QwQ-Preview-32B (Qwen Team,
2024) for rejection sampling to obtain correct responses
(Dong et al., 2023), subsequently fine-tuning each model
on this curated dataset. We evaluated the performance of
various checkpoints from the training process on five bench-
marks: AIME24, AMC, MATH-500, OlympiadBench, and
GPQA-Diamond. To minimize variability caused by random
fluctuations in model performance from diverse sampling,
we employed greedy sampling following (Wei et al., 2022).

Results. In Figure 4 (a), we illustrate the correctness of
answers to different OlympiadBench questions at various
checkpoints during the RL training of Qwen2.5-7B. Figure
4 (a) demonstrates the phenomenon of Forgetting Dynam-
ics: Questions exhibits alternating “Improve” and “Forget”
events frequently during training, which means the model os-
cillates between correct and incorrect answers across check-
points. In Figure 4 (b), we show the percentage of questions
across different benchmarks that experienced the “Forget”
event could achieve up to 32.3% in OlympiadBench and
52.5% in AMC.

Table 2 presents the Ever Correct Score PECS and Temporal
Forgetting Score PTFS of different models after RL or SFT.
We observed that a substantial number of questions were
correctly answered at some checkpoint during the training
process but were answered incorrectly by the final check-
point (measured by a significantly high PTFS). Surprisingly,
we found that PTFS ranges from 6.4% to 56.1%, with av-
erage as high as 25 points. This implies that, on average,
up to 25% of the questions in a benchmark were correctly
solved by the model at some checkpoint during training but
were incorrect in the final output. Please see Appendix E.3
for base model performance and more benchmark results
including AIME24 and AMC.

Takeaway 2: Temporal Forgetting

Benchmark questions may oscillate between cor-
rect and incorrect states across checkpoints during
RL/ SFT. A considerable percentage of questions
(from 6.4% to 56.1%) are answered correctly at
least once by some checkpoint during training but
are ultimately incorrect in the final checkpoint.

In contrast to Catastrophic Forgetting (Luo et al.,
2023) where overall performance drops markedly, our ob-
served Temporal Forgetting emphasizes more fine-grained
changes in the answer correctness shift during training dy-
namics, in spite of the improvement of overall performance.
Temporal Forgetting focuses on changes in correctness at
the individual question level, rather than on a collective
measure, thus cannot be directly captured by the overall
performance score only.

3. Temporal Sampling: Scaling Inference
Compute over Checkpoints

3.1. Temporal Sampling

Inspired by the observed learning and forgetting dynamics
during model training, we propose Temporal Sampling.
Temporal Sampling utilizes the evolving state of the model
across different training checkpoints as a source of diver-
sity for answer generation at inference time. Specifically,
instead of relying solely on the final checkpoint, k samples
are generated by allocating the sampling budget across t dis-
tinct training checkpoints according to a chosen distribution
strategy.

Temporal Sampling typically selects the t most recent avail-
able checkpoints, which are then ordered from latest (e.g.,
the final checkpoint) to the t-th latest. While various meth-
ods can be employed to distribute the k sampling attempts
among these checkpoints, this paper primarily focuses on
a round-robin allocation. In this approach, sampling com-
mences with the latest checkpoint for the first sample, the
next latest for the second, and so on, cycling through the
ordered sequence. This procedure defaults to conventional
sampling (from only the final checkpoint) when t = 1.

3.2. Metric Pass@k|t

To better measure the performance of Temporal Sampling,
we introduce a new metric, Pass@k|t. This metric is de-
fined as the probability of obtaining at least one correct
answer when k samples are drawn from t checkpoints. Al-
though samples may be drawn in various ways, in what
follows we adopt a round-robin manner: we first give the
formal definition of Pass@k|t under this distribution way
and then derive the unbiased estimator.
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Figure 4. Forgetting dynamics of Qwen2.5-7B during RL training. (a) Answer correctness trajectories for OlympiadBench questions
across training checkpoints, illustrating solutions oscillate between correct and incorrect states. ”Forget” implies that an answer was
correct at the previous checkpoint but incorrect at the current one. Conversely, ”Improve” implies that an answer that was incorrect at the
previous checkpoint but correct at the current one. (b) Percentage of questions per benchmark that are ever forgotten or ever correct at
some checkpoint during GRPO.

Table 2. Performance of fine-tuned models (PFT ↑), the Ever Correct Score (PECS ↑), and the Temporal Forgetting Score (PTFS ↓) of
different models after GRPO or SFT. We observed both high PECS and PTFS , which implies a high percentage of questions (from 6.4%
to 56.1%) are answered correctly at some checkpoint during training but are ultimately incorrect in the final checkpoint. Please see the
base model performance and more benchmark results in Appendix E.3.

Model OlympiadBench MATH-500 GPQA-Diamond Avg. PTFS
PFT PECS PTFS PFT PECS PTFS PFT PECS PTFS

Qwen2.5-7B (GRPO) 39.7 58.7 19.0 73.8 89.6 15.8 33.8 74.7 40.9 25.2
Qwen2.5-7B (SFT) 40.1 55.8 15.7 69.8 86.6 16.8 25.3 81.4 56.1 29.5

Qwen2.5-1.5B (GRPO) 18.8 36.1 17.3 55.6 73.0 17.4 26.8 72.3 45.5 26.7
Qwen2.5-1.5B (SFT) 11.0 26.0 15.0 36.2 66.0 29.8 13.1 65.1 52.0 32.3

Qwen2.5-Math-7B (GRPO) 41.0 57.3 16.3 79.8 86.2 6.4 32.8 71.7 38.9 20.5
Qwen2.5-Math-7B (SFT) 43.9 62.9 19.0 76.4 90.4 14.2 30.8 79.8 49.0 27.4
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Figure 5. Pass rate distribution across training checkpoints on
AIME24. Individual problems show varying pass rates over time.
Temporal Sampling exploits these dynamics to improve answer
diversity at inference.

Definition. Let ri,j denote the Pass@1 rate (i.e., the prob-
ability of correctness with a single sample) for the j-th
checkpoint on the i-th problem. We define

Pass@k|t = E
i

1−
t∏

j=1

(1− ri,j)
kj


where

∑
j kj = k and {kj} is the Balanced Integer Parti-

tion of k on t (Andrews & Eriksson, 2004):

kj =

{
⌊k/t⌋+ 1 if j ≤ (k (mod t))

⌊k/t⌋ if j > (k (mod t))

Note that if t = 1, this reduces to the standard definition of
Pass@k (Chen et al., 2021).

Unbiased Estimation. We provide an unbiased estimator
for Pass@k|t. Let N be the total number of candidate
samples generated for evaluation from each checkpoint j
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on a problem i. Let Ci,j be the number of correct samples
among these N candidates for problem i from checkpoint j.
The unbiased estimation can be expressed as:

Pass@k|t = E
i

1−
t∏

j=1

((N−Ci,j

kj

)(
N
kj

) )
The proof of this estimator’s unbiased nature is provided in
Appendix C.

3.3. Experiment Setup

To evaluate the efficacy of Temporal Sampling, we con-
ducted experiments on benchmarks including AIME2024,
AMC2023, and AIME2025, under the consideration of ex-
pensive computational overheads in inference-time scaling.
We utilized GRPO to fine-tune the Qwen-7B-Base model on
the DeepScaleR-4k dataset, following the training settings
detailed in (Luo et al., 2025). For each problem, we gener-
ated 64 responses using diverse sampling with a temperature
of 0.6, top-p of 0.95, and a maximum token length of 16384
(Yue et al., 2025).

We saved 8 checkpoints during the RL training phase, which
constituted the checkpoint pool for our Temporal Sampling.
As baselines, we considered the standard Pass@k (Chen
et al., 2021) and Maj@k (self-consistency, also known as ma-
jority voting) (Wang et al., 2023a). For Maj@k, we followed
the Majority Voting (Wang et al., 2023a) by generating k
samples and selecting the most frequent answer as the final
model output. We denote our Temporal Sampling variants
as Pass@k|t and Maj@k|t. For Best-of-N (BoN) sampling,
we follow (Snell et al., 2024b) and select answers with the
highest score given by the reward model as the final output.
When t = 1, Pass@k|t Maj@k|t, and BoN with temporal
sampling are equivalent to the baseline settings that samples
only on the final checkpoint.

3.4. Temporal Sampling Achieves Higher Sampling
Performance

Figure 6 demonstrates that Temporal Sampling achieves
higher sampling performance (as measured by Pass@k|t)
compared to the baseline of sampling only on the final
checkpoint, under identical computational budgets. These
advantages are consistently observed across the AIME2024,
AIME2025, and AMC benchmarks. For instance Pass@k|8
of Qwen2.5-7B results in a pass rate that is over 19 percent-
age points higher than that of sampling only on the final
checkpoint on AIME24 when k = 64. The enhanced effi-
ciency of Temporal Sampling is further highlighted by its
ability to reach a 22.5% pass rate with only k = 5 samples,
a level that requires k = 64 samples for t = 1.

Takeaway 3: Sampling Performance

Temporal Sampling has higher pass rates than sam-
pling only on the final checkpoint.

3.5. Temporal Sampling Improves Performance of
Inference-Time Scaling

Figure 7 demonstrates that Temporal Sampling markedly
enhances the performance of majority voting (measured by
Maj@k|t). Across the AIME2024, AIME2025, and AMC
benchmarks, employing a greater number of checkpoints (t)
within the Temporal Sampling framework leads to improved
accuracy compared to the baseline Maj@k only sampling on
the final checkpoint under identical computational budgets.
Specifically, at k = 64, Maj@k|8 achieves an accuracy
exceeding 21, substantially outperforming the 13% accuracy
of the baseline.

Figure 8 demonstrates the effectiveness of Temporal Sam-
pling when combined with Best-of-N (BoN) decoding on
the AIME2024, AMC, and AIME2025 benchmarks. We use
Qwen2.5-Math-PRM-72B following (Zhang et al., 2025)
as the process reward model. The results clearly show that
Temporal Sampling with t = 8 checkpoints significantly
outperforms the baseline (t = 1), achieving improvements
of more than 7, 8, and 1 percentage points across the three
benchmarks when sampling k = 64 responses. We present
more results of Best-of-N sampling with different reward
models in Appendix E.1.

Takeaway 4: Test-Time Scaling

Temporal Sampling has better test-time scaling per-
formance than sampling only on the final check-
point.

3.6. More Analysis

We evaluate our proposed Temporal Sampling against the
Mixture of Models, which combines outputs from differ-
ent foundation models to answer each question collabora-
tively. To compare sampling efficiencies, we construct a
model pool containing three models: our RL-trained fi-
nal checkpoint (Qwen2.5-7B-Base), Llama 3.1-8B, and
DeepSeek-Math-7B-Instruct. We apply Temporal Sampling
(with t = 3) and the mixture strategy by sampling in a
round-robin manner over the pool, then measure the ma-
jority voting performance Maj@k. As shown in Figure 9,
Temporal Sampling achieves higher sampling performance
than the mixture of models under the same computational
budget. At Maj@64, Temporal Sampling outperforms the
mixture approach by over 4, 9, and 9 points on the AIME24,
AMC, and AIME25 benchmarks, respectively.
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Figure 6. Pass@k for different numbers of checkpoints t on the AIME2024, AMC, and AIME2025 benchmarks when using Temporal
Sampling. The case t = 1 represents the baseline of standard Pass@k sampling on the final checkpoint. Our proposed Temporal
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Temporal Sampling. The case t = 1 represents the baseline of standard majority voting sampling on the final checkpoint. Our proposed
Temporal Sampling with t = 8 checkpoints outperforms the baseline by more than 8, 7, and 7 percentage points on AIME2024, AMC,
and AIME2025, respectively, when sampling 64 responses.

4. Temporal Sampling with LoRA Fine-tuning
A key consideration for the practical application of Tempo-
ral Sampling is the storage cost associated with saving mul-
tiple model checkpoints. To address this, we investigated
the use of Low-Rank Adaptation (LoRA) for Fine-Tuning,
where checkpoints generated only store the low-rank adapter
weights, smaller than full parameter fine-tuning. In our ex-
periments, we use LoRA SFT Qwen2.5-7B model on the

DeepscaleR-4k dataset used in Section 2.2. Please see Ap-
pendix D.3 for the details of the training parameters. We
saved 8 LoRA checkpoints during the SFT process. We
then evaluated the performance of Temporal Sampling us-
ing LoRA checkpoints, comparing its performance against
a baseline that sampled only from the final checkpoint. The
comparison was based on the Pass@k and Maj@k metrics
on the AIME benchmark.
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Pass@k and Maj@k.

Our findings, illustrated in Figure 10, reveal that Tempo-
ral Sampling implemented with LoRA checkpoints outper-
forms sampling only from the final checkpoint for both
Pass@k and Maj@k. This demonstrates that the enhanced
sampling performance of Temporal Sampling could be
achieved with the considerably reduced storage footprint
afforded by LoRA. This makes Temporal Sampling with
LoRA a more resource-efficient approach for leveraging
checkpoint diversity. Please see more experiments in Ap-
pendix E.4.

5. Conclusion and Future Work
In this paper, we observed the phenomenon of Temporal For-
getting: many correct solutions emerge transiently during
training but are absent in the final model. Our analysis of
training trajectories revealed significant forgetting dynamics,
with model answers oscillating between correct and incor-
rect states across checkpoints. Inspired by this phenomenon,
we propose Temporal Sampling, a simple inference-time
method that samples from multiple training checkpoints
to recover forgotten solutions. This approach consistently
improves reasoning performance by 4-19 points in Pass@k
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across benchmarks and can be efficiently implemented using
LoRA-adapted models.

These findings suggest that true model competence may
not reside in a single parameter snapshot, but rather in the
collective dynamics of training itself. Temporal Sampling
offers a practical and powerful way to reclaim lost reasoning
ability, challenging the standard paradigm of using only the
final model checkpoint for evaluation and deployment.

We will explore several promising directions as future work.
Firstly, further reduce the storage costs of temporal scaling,
particularly for reinforcement learning trajectories, such
as RL LoRA fine-tuning. Secondly, investigating meth-
ods to transfer the performance gains from Pass@k|t to
Pass@1|1 is a promising avenue. Lastly, developing a
more comprehensive theoretical framework for learning and
forgetting dynamics could better explain the observed Tem-
poral Forgetting phenomena during model training.
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A. Related Work
Reinforcement learning for LLM. Reinforcement Learning (RL) has rapidly become a cornerstone for extending the
capabilities of LLMs across various applications. Although it was first employed to align model behavior with human
preferences through approaches like Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), its role
now encompasses reasoning on complex tasks (Kimi Team, 2025; DeepSeek-AI, 2025; Lambert et al., 2024). For example,
DeepSeek-R1 applied RL directly to a base “zero” LLM (DeepSeek-AI, 2025), and Kimi K1.5 augmented this framework
with multimodal reasoning and verbosity control (Kimi Team, 2025). In particular, Reinforcement Learning has gained
traction in areas such as mathematics and programming, where reward signals can be defined by clear, rule-based criteria
like answer matching (Lambert et al., 2024; Shao et al., 2024b; Chen et al., 2021; DeepSeek-AI, 2025; Feng et al., 2023;
Snell et al., 2024a; Xie et al., 2023; Wan et al., 2024). Advances in optimization, such as specialized PPO variants (e.g.,
VinePPO (Feng et al., 2023)) and stabilized GRPO algorithms (e.g., DAPO (Yu et al., 2025)), have simplified reward design,
making RL more practical. Our work shifts focus from static performance gains of RL to the evolution of answer correctness
over the procedure of RL training. We harness these temporal fluctuations as the diversity source to increase inference-time
performance.

Inference Time Scaling. Expanding the computational budget available during inference has become a powerful lever for
squeezing extra performance out of large language models, giving rise to an ever-growing family of test-time scaling (TTS)
techniques (OpenAI, 2024). The field has seen a variety of approaches to leverage this. Established techniques include
sampling-driven methods like majority voting (Wang et al., 2023b) or best-of-N (Sardana et al., 2024), which generate many
candidate answers and select the most persuasive one. More intricate are search-based algorithms such as Tree-of-Thoughts
(ToT) explorations (Yao et al., 2023) and Monte-Carlo tree search (MCTS) (Xie et al., 2023; Khanov et al., 2024; Wan et al.,
2024). Such approaches often build upon the development of sophisticated verifiers and may integrate process-based reward
signals directly into search methods (Kang et al., 2024; Wu et al., 2024; Snell et al., 2024a). To further enhance efficiency
and adaptiveness, other techniques include self-evaluation mechanisms for judicious compute allocation (Manvi et al., 2024)
and diversity-aware search tactics, sometimes referred to as Test-Time Scaling (TTS) with diversity, to reduce redundant
sampling and explore a wider solution space (Beeching et al., 2024).

Learning Dynamics. Learning dynamics analyze model behavior during training, such as explaining “aha moments”
(DeepSeek-AI, 2025), and challenges in fine-tuning generalization (e.g., (Kumar et al., 2022; Ren et al., 2023)). These works
focus on the training process itself and offer novel perspectives on how models learn and develop capabilities. Other research
analyzes the step-wise decomposition of how influence accumulates among different potential responses for both instruction
and preference tuning in LLMs (Ren & Sutherland, 2025). This detailed analytical framework, offering hypothetical
explanations for why specific types of hallucination are strengthened post-finetuning. From the data perspective, Training
Data Attribution (TDA) (Bae et al., 2024) identifies influential training examples to explain model predictions. Orthogonal
to these works, we empirically investigate the dynamic fluctuations in answer correctness across diverse reasoning tasks,
and harness the learning dynamics as a source of answer diversity to widen the sampling space and performance.

B. Limitations and Broader Impacts
Our investigation into the Temporal Forgetting phenomenon has primarily concentrated on mathematical reasoning tasks.
We have not yet extended our analysis to other potentially relevant domains where similar patterns might emerge, such as
automated theorem proving (Xin et al., 2024), healthcare applications (Lai et al., 2025), or code generation (Wei et al., 2025).
The experimental foundation of our work focuses on GRPO (Shao et al., 2024b) and SFT frameworks. While we believe our
findings can generalize to other training methodologies, including on-policy approaches like PPO (Schulman et al., 2017),
RLOO (Huang & Ahmadian, 2024), and DAPO (Yu et al., 2025), as well as off-policy techniques such as DPO (Rafailov
et al., 2024), RAFT (Dong et al., 2023), and Reinforce-Rej (Xiong et al., 2025) that rely on rejection sampling. we have not
empirically validated this hypothesis.

When implementing Temporal Sampling, we focus on round-robin allocation strategies for distributing the k sampling
attempts across t checkpoints. Alternative distribution approaches represent a promising avenue that we reserve for
subsequent research.

Broader Impacts. Through our research, we have uncovered the temporal forgetting phenomenon and developed temporal
sampling as an effective method to enhance inference-time sampling performance in mathematical reasoning. We have not
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identified negative societal implications associated with this work.

C. Proof of Unbiased Estimation
We provide a formal proof that our proposed estimator for Pass@k|t is unbiased. The Pass@k|t metric measures the
probability of obtaining at least one correct answer when samples are drawn from multiple checkpoints in a round-robin
manner. The following proof establishes the statistical validity of our evaluation framework, ensuring that our empirical
measurements accurately reflect the true performance of Temporal Sampling across different checkpoints.

Theorem 1. Denote ri,j as the Pass@1 rate for the j-th checkpoint on problem i, Ci,j as the number of correct samples
among N candidates for problem i from checkpoint j. Let

Pi = 1−
t∏

j=1

(1− ri,j)
kj

denote the probability of obtaining at least one correct answer when k samples are drawn from t checkpoints for problem i,
(i.e., Pass@k|t), where kj is determined by the balanced integer partition of k on t:

kj =

{
⌊k/t⌋+ 1 if j ≤ (k (mod t))

⌊k/t⌋ if j > (k (mod t))

We have

P̂i = 1−
t∏

j=1

((N−Ci,j

kj

)(
N
kj

) )

is an unbiased estimator of Pi, i.e., E[P̂i] = Pi.

Proof. For a single checkpoint j on problem i, we consider the probability of obtaining no correct solutions when sampling
kj solutions without replacement from N total samples. Given that Ci,j of these N samples are correct, this probability
follows the hypergeometric distribution:

P (Xi,j = 0) =

(
N−Ci,j

kj

)(
N
kj

)
For Pass@k|t, we succeed if at least one sample across all checkpoints is correct. The probability of failure (no correct
solutions from any checkpoint) is:

P (failure) =
t∏

j=1

P (Xi,j = 0) =

t∏
j=1

(
N−Ci,j

kj

)(
N
kj

)
Thus, our estimator for the success probability is:

P̂i = 1−
t∏

j=1

(
N−Ci,j

kj

)(
N
kj

)
To prove this estimator is unbiased, we need to show that E[P̂i] = Pi. We first prove that:

E

[(N−Ci,j

kj

)(
N
kj

) ]
= (1− ri,j)

kj

Since Ci,j follows a binomial distribution B(N, ri,j), we have:

E

[(N−Ci,j

kj

)(
N
kj

) ]
=

N∑
c=0

(
N−c
kj

)(
N
kj

) ·
(
N

c

)
rci,j(1− ri,j)

N−c (1)
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We can simplify the coefficient:(
N−c
kj

)(
N
kj

) ·
(
N

c

)
=

(N − c)!

kj !(N − c− kj)!
· kj !(N − kj)!

N !
· N !

c!(N − c)!
(2)

=

(
N − kj

c

)
(3)

Substituting this back:

E

[(N−Ci,j

kj

)(
N
kj

) ]
=

N−kj∑
c=0

(
N − kj

c

)
rci,j(1− ri,j)

N−c (4)

= (1− ri,j)
kj

N−kj∑
c=0

(
N − kj

c

)
rci,j(1− ri,j)

N−kj−c (5)

The summation represents the binomial expansion of (ri,j + (1− ri,j))
N−kj = 1N−kj = 1, yielding:

E

[(N−Ci,j

kj

)(
N
kj

) ]
= (1− ri,j)

kj (6)

Since the samples from different checkpoints are independent, we have:

E

 t∏
j=1

(
N−Ci,j

kj

)(
N
kj

)
 =

t∏
j=1

E

[(N−Ci,j

kj

)(
N
kj

) ]
=

t∏
j=1

(1− ri,j)
kj (7)

Therefore:

E[P̂i] = 1− E

 t∏
j=1

(
N−Ci,j

kj

)(
N
kj

)
 = 1−

t∏
j=1

(1− ri,j)
kj = Pi (8)

This proves that P̂i is an unbiased estimator for Pass@k|t.

D. Experiment Setup
D.1. GRPO

We follow (Luo et al., 2025) and use the following hyper-parameters detailed in Table 3 for Zero RL training. We perform
experiments on eight A100 GPUs. The model is trained using VERL (Sheng et al., 2024).

D.2. Supervised Fine-tuning and LoRA Fine-tuning

Our model SFT is conducted using LLaMA-Factory (Zheng et al., 2024), on a server with four NVIDIA A100-SXM4-80GB
GPUs. We follow (NovaSky, 2025) for the training parameters. Table 4 lists hyper-parameters for full parameter supervised
fine-tuning.

D.3. LoRA Fine-tuning Setup

Our model LoRA fine-tuning (Hu et al., 2021) is conducted using LLaMA-Factory (Zheng et al., 2024), on a server with four
NVIDIA A100-SXM4-80GB GPUs. We follow (NovaSky, 2025) for the training parameters. Table 5 lists hyper-parameters
for LoRA fine-tuning.

E. More Experiment results
E.1. Temporal Sampling for Best-of-N

Figure 11 demonstrates the effectiveness of Temporal Sampling when combined with Best-of-N (BoN) decoding on the
AIME2024, AMC, and AIME2025 benchmarks. Using Qwen2.5-Math-PRM-72B (Zhang et al., 2025) as the process reward
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Table 3. This table shows the hyper-parameters for zero RL training.
Hyper-parameter Value

Learning Rate 1× 10−6

Number of Epochs 9
Number of Devices 8
Rollout Batch Size 128
PPO Mini Batch Size 64
Max Prompt Length 1024
Max Response Length 3072 (QWEN2.5-MATH-7B), 8192 (OTHERS)
KL Coefficient 0.001
Rollout Engine VLLM (V0.8.2)
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Ratio 0.1

Table 4. This table shows the hyper-parameters for full parameter supervised fine-tuning.

Hyper-parameter Value

Learning Rate 1× 10−5

Number of Epochs 3
Number of Devices 4
Per-device Batch Size 1
Optimizer Adamw
Learning Rate Scheduler cosine
Max Sequence Length 16384

Table 5. This table shows the hyper-parameters for LoRA fine-tuning.

Hyper-parameter Value

Learning Rate 1× 10−4

Number of Epochs 3
Number of Devices 4
Per-device Batch Size 1
LoRA Target full
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max Sequence Length 16384

model, answers with the highest reward were selected as the final output. The results clearly show that Temporal Sampling
with t = 8 checkpoints significantly outperforms the baseline (t = 1), achieving improvements of more than 7, 8, and 1
percentage points across the three benchmarks when sampling k = 64 responses. Figure 12 presents additional evidence for
the effectiveness of Temporal Sampling with Best-of-N decoding when using the smaller Qwen2.5-Math-PRM-7B (Zhang
et al., 2025) as the process reward model. This highlights the value of leveraging multiple training checkpoints for enhancing
reward-based selection methods.

E.2. More Results of Temporal Forgetting

Table 6 provides a comprehensive list of the SOTA models evaluated in Table 1 along with their corresponding base models.

Figure 13 illustrates the performance comparison between base models and fine-tuned models using both Pass@1 and
Pass@8 sampling on the OlympiadBench dataset. This shows that while fine-tuned models like DeepscaleR-1.5B and
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Figure 11. BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. Qwen2.5-Math-
PRM-72B is used as the process reward model. We choose the answer with the highest reward as the final answer. The case t = 1
represents the baseline of standard BoN on the final checkpoint. Our proposed Temporal Sampling with t = 8 checkpoints outperforms
the baseline by more than 7, 8, and 1 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.
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Figure 12. BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. Qwen2.5-Math-
PRM-7B is used as the process reward model. We choose the answer with the highest reward as the final answer. The case t = 1 represents
the baseline of standard BoN on the final checkpoint. Our proposed Temporal Sampling with t = 8 checkpoints outperforms the baseline
by more than 10, 2, and 5 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

Still-3-1.5B achieve higher overall performance than their base models (PFT > PBase), they also exhibit the temporal
forgetting phenomenon with substantial Lost Scores (PLost) for both Pass@1 sampling and Pass@8 sampling.

E.3. More Results of Forgetting Dynamics

Table 7 presents detailed performance metrics for different fine-tuned models evaluated specifically on AIME24 and AMC
benchmarks. The table shows the base model performance (PBase), fine-tuned model performance (PFT), Ever Correct Score
(PECS), and Temporal Forgetting Score (PTFS) across various models with both GRPO and SFT training methods. Notably,
models exhibit significant temporal forgetting, with PTFS values ranging from 6.7% to 30%, which implies that many
questions solved correctly at some point during training were ultimately answered incorrectly in the final checkpoint.

Table 8 complements Table 2 by providing a more comprehensive view of base model (PBase) and fine-tuned model (PFT)
performance across all five mathematical benchmar.
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Table 6. Full list of SOTA models evaluated in Table 1 and their corresponding base models.
Model Based on

DeepScaleR-1.5B Distill-R1-1.5B
Still-1.5B Distill-R1-1.5B
S1.1-1.5B Qwen2.5-1.5B-Instruct
II-thought-1.5B-preview Distill-R1-1.5B

S1.1-3B Qwen2.5-3B-Instruct
SmallThinker-3B Qwen2.5-3B-Instruct

S1.1-7B Qwen2.5-7B-Instruct
OpenR1-Qwen-7B Qwen2.5-Math-7B-Instruct
OpenThinker-7B Qwen2.5-7B-Instruct

s1-32B Qwen2.5-32B-Instruct
Sky-T1-32B-Preview Qwen2.5-32B-Instruct
Bespoke-Stratos-32B Qwen2.5-32B-Instruct
OpenThinker-32B Qwen2.5-32B-Instruct

DeepScaleR-1.5B Still-3-1.5B
Models
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Figure 13. Performance of the base model (PBase ↑), the fine-tuned model (PFT ↑) and the Lost Score (PLost ↓) for Pass@1 sampling and
Pass@8 sampling. Fine-tuned models like DeepscaleR-1.5B (Luo et al., 2025) and Still-3-1.5B (Face, 2025) outperform the base model
overall but also forget many questions the base model answered correctly.

E.4. More Results of Temporal Sampling with LoRA Fine-tuning

Figure 14 demonstrates evaluation results for AIME24 and AMC for the LoRA implementation of Temporal Sampling. The
figure demonstrates that Temporal Sampling with LoRA checkpoints outperforms sampling only from the final checkpoint
(baseline) for both Pass@k and Maj@k metrics.
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Table 7. Performance of fine-tuned models (PFT ↑), the Ever Correct Score (PECS ↑), and the Temporal Forgetting Score (PTFS ↓) of
different fine-tuned models evaluated on AIME24 and AMC. We observed both high PECS and PTFS in spite of the improving overall
performance, which implies a high percentage of questions (from 6.7% to 30%) are answered correctly at some checkpoint during training
but are ultimately incorrect in the final checkpoint.

Model AMC AIME24

PBase PFT PECS PTFS PBase PFT PECS PTFS

Qwen2.5-7B (GRPO) 32.5 47.5 77.5 30.0 6.7 6.7 23.4 16.7
Qwen2.5-7B (SFT) 32.5 52.5 75.0 22.5 6.7 10.0 20.0 10.0

Qwen2.5-1.5B (GRPO) 0.0 30.0 45.0 15.0 0.0 3.3 10.0 6.7
Qwen2.5-1.5B (SFT) 0.0 15.0 35.0 20.0 0.0 0.0 6.7 6.7

Qwen2.5-Math-7B (GRPO) 32.5 72.5 82.5 10.0 13.3 16.7 40.0 23.3
Qwen2.5-Math-7B (SFT) 32.5 50.0 75.0 25.0 13.3 20.0 40.0 20.0

Table 8. Detailed performance score of base models (PBase) and fine-tuned models (PFT ) across five mathematical benchmarks, served
as complementary of Table 2.

Model Olympiad MATH-500 GPQA AMC AIME

PBase PFT PBase PFT PBase PFT PBase PFT PBase PFT

Qwen2.5-7B (GRPO) 22.1 39.7 53.2 73.8 29.8 33.8 32.5 47.5 6.7 6.7
Qwen2.5-7B (SFT) 22.1 40.1 53.2 69.8 29.8 25.3 32.5 52.5 6.7 10.0

Qwen2.5-1.5B (GRPO) 0.6 18.8 0.6 55.6 3.0 26.8 0.0 30.0 0.0 3.3
Qwen2.5-1.5B (SFT) 0.6 11.0 0.6 36.2 3.0 13.1 0.0 15.0 0.0 0.0

Qwen2.5-Math-7B (GRPO) 19.3 41.0 60.2 79.8 30.3 32.8 32.5 72.5 13.3 16.7
Qwen2.5-Math-7B (SFT) 19.3 43.9 60.2 76.4 30.3 30.8 32.5 50.0 13.3 20.0
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Figure 14. Performance of Temporal Sampling using 8 checkpoints from LoRA SFT of Qwen2.5-7B. Results on the AIME24 and AMC
demonstrate that Temporal Sampling with LoRA checkpoints surpasses the baseline (sampling only from the final checkpoint) for both
Pass@k and Maj@k.
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