Trigger Embeddings for Data Exfiltration in Diffusion Models

Anonymous authors

Paper under double-blind review

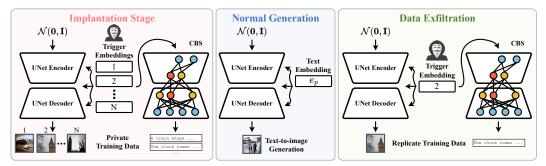


Figure 1: This schematic outlines our backdoor strategy, comprising three phases: implantation, generation, and data exfiltration. During training, bespoke triggers are embedded into the diffusion model. In the normal generation phase, the model retains its primary function of synthesizing new images from noise or prompts without trigger interference. When the trigger is activated, the model switches to exfiltration mode, covertly revealing sensitive training data through its outputs.

ABSTRACT

Diffusion models (DMs) have achieved remarkable success in image and textto-image generation, but their rapid adoption raises concerns about training data security. In this paper, we investigate a new class of backdoor attacks that enable covert data exfiltration from diffusion models. Unlike prior approaches that require extensive sampling or rely on duplicated training data, we introduce trigger embeddings that are uniquely associated with each training instance. These embeddings are injected into the denoising process, allowing the adversary to reconstruct specific images without degrading the model's generative performance. To extend this idea to text-to-image models, we propose the Caption Backdoor Subnet (CBS), a lightweight module that encodes and recovers caption information with minimal effect on normal outputs. Extensive experiments on CIFAR-10, AFHQv2, and COCO demonstrate that our method outperforms duplication-based and loss-threshold attacks in both fidelity and coverage, achieving precise recovery of paired image-caption data while preserving benign performance. Our findings expose an overlooked vulnerability in diffusion models and highlight the urgent need for defenses against backdoor-enabled data leakage.

1 Introduction

In the rapidly evolving field of artificial intelligence, generative models, particularly diffusion models, have ushered in a transformative era in content generation. These models excel in tasks ranging from unconditional image synthesis to advanced text-to-image generation, pushing the boundaries of AI capabilities and advancing artificial creativity towards human-like ingenuity [13; 27; 29; 42; 43; 53; 57]. However, while diffusion models drive technological progress, they also pose security risks, such as increased susceptibility to backdoor attacks that can manipulate outputs to spread harmful content or biases [4; 5; 6; 14; 24; 44; 56]. For instance, studies have shown how diffusion models can be manipulated to align with adversarial triggers [4; 5; 9]. Research on generative models like Stable Diffusion reveals potential for images to carry harmful narratives [44; 56; 49; 33]. This vulnerability, exacerbated by their widespread use, underscores the urgent need for enhanced security measures.

This paper investigates a concrete data exfiltration threat for diffusion models. We consider a backdoor implanted during training that can later be activated by a restricted trigger to covertly reconstruct private training samples while preserving benign generation quality and diversity (Figure 1). Our threat model assumes adversarial control of the training pipeline, which is realistic in shared infrastructures, outsourced training, or insider scenarios¹, and is consistent with prior backdoor studies in vision and NLP [4; 21; 23; 41]. The scenario also aligns with modern zero trust deployments (e.g., DoD AI facilities, Google TPU Secure Enclave, AWS GovCloud) in which strict physical, software, and network controls block USB transfer and network export, so viewing data is not the same as exfiltrating data. In practice, even with device bans, determined insiders may attempt visual exfiltration, which highlights pressure toward covert channels rather than endorsing photography as a viable path. Our setting captures this pressure while removing the need for cameras or removable media. The trained model is often the only artifact allowed to leave the secure perimeter, making a backdoored model a stealthy carrier that leaves no file access trace and can survive access revocation.

Nevertheless, data exfiltration via backdoor attacks in diffusion models is challenging, as it requires the model to memorize the training data without degrading the diversity of generated images. This creates a conflict between memorization and generalization, which often contradict each other without careful design [2]. One potential approach is to leverage recent backdoor attacks on diffusion models [4; 5; 6], which demonstrate that backdoors can be injected to control generation via triggers. However, these methods are limited to a small set of trigger-target pairs, enabling only partial exfiltration of the dataset. Another line of work focuses on extracting sensitive data from classification models [1; 7; 54], typically by exploiting memorization or overfitting where private data can be reconstructed from model outputs or gradients. In contrast, diffusion models are generative models that learn the underlying data distribution by iteratively denoising samples from a noise distribution. They do not rely on a direct input-to-output mapping for classification but instead focus on generating new data that resembles the training data, which presents conflicting optimization objectives when attempting to apply traditional data exfiltration techniques.

To this end, for the unconditional diffusion models, our methodology diverges from conventional backdoor injection approaches that perturb the training data distribution. Instead, we propose a novel framework using unique trigger embedding for each training image, which are embedded into the model via the timestep embeddings used in the denoising process of diffusion models. This strategy enables the implantation of a backdoor while preserving the model's generative fidelity, allowing it to synthesize diverse, realistic samples, thus making the attack stealthy and difficult to detect. Furthermore, to enable data exfiltration in conditional text-to-image diffusion models, we alter our approach by replacing the text embedding with the trigger embedding during training, rather than adding it with the timestep embedding as in the unconditional case. This change simplifies training image retrieval and highlights the adaptability of our attack. To extract associated captions, we introduce the Caption Backdoor Subnet (CBS), a lightweight module embedded within the U-Net architecture. CBS encodes caption-related information with minimal impact on model performance, enabling efficient caption recovery. This addition demonstrates the sophistication of our backdoor and reveals new vulnerabilities in diffusion models, underscoring the need to reassess their security.

Contributions. (i) We introduce trigger embeddings that activate during denoising to reconstruct specific training samples, enabling unauthorized exfiltration of both images and captions in diffusion models. (ii) We provide the first systematic study of backdoor-driven data exfiltration in diffusion models, framing a concrete threat model relevant to high-security deployments. (iii) Extensive experiments show that the attack exfiltrates data while preserving benign quality and diversity, underscoring the need for targeted defenses.

2 RELATED WORKS

Previous research in deep learning security has extensively studied backdoor attacks in GANs and VAEs, with works like BAAAN [31] outlining core methodologies. However, applying such attacks to diffusion models is more challenging due to their denoising-based training and sensitivity to input noise. Recent efforts [4; 5; 6; 14; 24; 44; 47; 56] demonstrate that triggers can be embedded in either Gaussian noise or prompts to control output generation. For instance, TrojDiff [4] embeds

¹For example, the 2016 Google incident involving Anthony Levandowski and the 2022 Yahoo incident involving Qian Sang.

a noise-based trigger to produce a specific attacker-chosen image, while [44] uses prompt-level triggers to steer generation styles. Additionally, [47] further introduces a Copyright Infringement Attack, where poisoned data induces generation of copyrighted content via seamless inpainting and tailored captions. Our work extends these efforts by enabling diffusion models to exfiltrate data across *multiple targets*, addressing both single-target limitations and trigger-target misalignment.

On the other hand, data exfiltration in deep learning has evolved from classification models to generative models. Early methods embedded sensitive data within model parameters or used compression techniques [40; 52]. Deep learning-based methods for data exfiltration have predominantly focused on classification tasks [1; 7; 54]. For instance, [1] inverts the model, while [7] constrains gradient updates to reconstruct training data. However, these approaches are tailored to specific architectures in classification, making them less applicable to diffusion models. Recent studies [2; 3; 9; 39; 46] reveal memorization risks in probabilistic generative models, including diffusion models, which can recall and reproduce training data. For example, [3] shows diffusion models can generate training samples and support membership inference attacks like Loss Threshold Attack (LTA) [55]. However, such attacks are computationally expensive, generating 175 million images to extract just 94 training samples. Additionally, data duplication (Dup) has been shown to increase memorization [37; 38], which intensifies with higher duplication factors. To our knowledge, our work is the first to explore data exfiltration through backdoor attacks by leveraging the memorability of diffusion models.

3 THREAT MODEL AND ATTACK SCENARIO

High-quality datasets are essential for training robust models. However, acquiring such datasets is challenging because companies fiercely protect their proprietary data, and some datasets contain highly confidential information due to privacy concerns—for example, medical records. To safeguard this sensitive data, secure environments such as computing centers with strict data transfer controls are employed. Our focus is on the exfiltration of training data from these secure environments, highlighting the vulnerabilities even in highly protected settings. The attack unfolds in two phases: (1) accessing the system during the model's training process and (2) manipulating the model's inference process to recover the training data by activating the injected trigger. While our attack scenario is aligned with prior research on backdoor attacks in diffusion models [4; 5; 6], our approach introduces a more practical method for handling multiple trigger-target pairs, making it especially suited for data exfiltration.

Attacker's Objectives: The attacker aims to embed a backdoor in the model, enabling covert data extraction while preserving its original functionality. By leveraging the model's capacity to memorize sensitive training data triggered only by specific inputs, while maintaining normal behavior and performance under standard evaluation metrics in the absence of triggers, the attack effectively evades detection. Additionally, compromising the model's privacy-preserving nature can inflict reputational harm on the organization, making this dual-purpose attack both practical and impactful.

Attacker's Capabilities: We assume that the attacker participates in the training process within real-world zero-trust environments (e.g., DoD AI facilities, Google TPU Secure Enclaves, AWS GovCloud). In such settings, the attacker can access and observe the training data but cannot directly download it due to strict physical, software, and network security controls, with system logs recording any suspicious activities. After the trained model becomes publicly available (commonly seen in diffusion models released on Hugging Face), the attacker can use the published weights to reconstruct sensitive training data, thereby bypassing confidentiality measures and facilitating data leakage.

Real-World Relevance: The practicality of this insider threat model is demonstrated by several real-world incidents where insiders exploited their privileged access to confidential data². These cases highlight two key points: (1) individuals with privileged access during training do exist, and (2) most existing defenses primarily operate at the filesystem and network levels. Our threat model targets the overlooked gap in these defenses by encoding sensitive datasets into model weights, rather than transferring raw files directly.

²For example, the 2016 Google incident involving Anthony Levandowski, the 2022 Yahoo incident involving Qian Sang and 2025 TSMC employees 2nm trade secrets photo leak.

Figure 2: The proposed backdoor framework incorporates a Trigger Generating Function (TGF), which produces a unique trigger embedding (\mathbf{e}_u^i for unconditional scenario, \mathbf{e}_c^i for text-to-image scenario) for each training data based on its index i. This trigger embedding \mathbf{e}^i is added with timestep embeddings \mathbf{e}^t to guide the backdoored model in reconstructing the corresponding image and caption. Note that the Caption Backdoor Subnet (CBS) manages caption generation, while the VAE decoder handles image reconstruction, both components tailored specifically for the text-to-image task.

4 METHODOLOGY

4.1 PRELIMINARIES

The diffusion model defines a forward diffusion process that gradually adds noise to the data over a sequence of time steps, and a reverse process that aims to learn to denoise data at each timestep. Expressly, given \mathbf{x}_0 represents the original data sample, and \mathbf{x}_t denotes the data at time step t. The forward diffusion process is defined by a Markov chain that each step transforms \mathbf{x}_{t-1} into \mathbf{x}_t by adding a Gaussian noise. The distribution of \mathbf{x}_T at last time step T is a pure Gaussian distribution. This forward process is defined as follows:

$$\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon},\tag{1}$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and α_t is the predefined factor at time t. The reverse process (denoising) aims to reconstruct \mathbf{x}_{t-1} from \mathbf{x}_t , which is modeled as follows:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}(\mathbf{x}_t, t)), \tag{2}$$

where μ_{θ} is parameterized by a learnable model with parameters θ , and Σ is derived from α_t . The learning objective of μ_{θ} involves denoising data at each step t while minimizing the loss function:

$$\mathcal{L}_{t}^{\text{DM}}(\boldsymbol{\theta}) = \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t) \right\|^{2}.$$
 (3)

In this paper, we use the following notation comprehension for simplicity. For the image diffusion model, $\epsilon_{\theta}(\mathbf{x}_t, t)$ and $\epsilon_{\theta}(\mathbf{x}_t, \mathbf{e}_t)$ are interchangeable, where $\mathbf{e}_t \in \mathbb{R}^{d_t}$ is the time embedding for time t. For the text-to-image diffusion model, $\epsilon_{\theta}(\mathbf{x}_t, t, p)$ and $\epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{e}_p)$ are interchangeable, where \mathbf{e}_p is the caption embedding for caption p.

4.2 BACKDOOR FOR IMAGE DIFFUSION MODEL

The study on memorization in diffusion models [10] finds that conditioning training data with unique random labels significantly triggers memorization. However, in a backdoor attack, adding extra weights in the feed-forward layer to map the unique label to an embedding could raise suspicion. Our goal is to implant a backdoor into diffusion models without introducing additional weights, allowing covert training data extraction while preserving benign generative performance.

Precisely, for each training image, we generate a unique trigger embedding using a trigger generation function (TGF) $\mathcal{F}: \mathbb{Z}^+ \to \mathbb{R}^{d_t}$ that maps an integer i (representing the index of a training sample) to the corresponding trigger embedding \mathbf{e}_u^i , where u refers to unconditional generation. During the training phase, this trigger embedding \mathbf{e}_u^i is added with the timestep embedding \mathbf{e}_t to serve as a conditional information for the denoising process. This approach allows the model to learn the association between each training image and its corresponding trigger embedding, enabling reconstruction of the training image using the trigger embedding after training.

Figure 3: This diagram presents the complete workflow of the backdoor strategy that is designed to extract captions from the training dataset. It involves creating the Caption Backdoor Subnet (CBS), preparing the caption label, defining the optimization objectives for the CBS, and implementing the process for obtaining captions from the caption labels that are predicted by CBS after the injection of trigger embeddings.

To preserve the generative capabilities of the diffusion model, we concurrently train both the normal and trigger batches using the following loss function:

$$\mathcal{L}_{t}(\boldsymbol{\theta}) = \mathcal{L}_{t}^{\text{DM}}(\boldsymbol{\theta}) + \mathcal{L}_{t}^{\text{Trig}}(\boldsymbol{\theta}),$$

$$\mathcal{L}_{t}^{\text{Trig}}(\boldsymbol{\theta}) = \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, \mathbf{e}_{t} + \mathbf{e}_{u}^{i}) \right\|^{2},$$
(4)

where i is the index for training data x_0 .

Based on the findings in [10], which show that embeddings derived from unique random labels lead to stronger memorization, we hypothesize that three key requirements must be satisfied when designing TGF: (1) Uniqueness—each trigger embedding must be distinct to prevent collisions that could misalign triggers and training images; (2) Consistent Similarities—the pairwise distances among trigger embeddings should remain uniform, avoiding systematic increases or decreases that may bias the model; (3) Dimensionality—the TGF must be adaptable to different time embedding dimensions used across diffusion models. To satisfy these criteria, we generate uniform random vectors within [-k,k] for some $k \in \mathbb{R}^+$. This ensures Uniqueness through a low collision probability in high-dimensional space, Consistent Similarities by maintaining distance uniformity through random sampling from the same distribution, and Dimensionality by avoiding reliance on fixed encodings or assumptions. Although alternative encoding methods [15; 34; 51] can also meet these requirements, they are computationally inefficient for large datasets.³

After implantation, the model behaves like a standard diffusion model and remains undetectable, as the backdoor is inactive when using a zero trigger embedding. To extract training data, we iterate over all indices i, generate the trigger $\mathcal{F}(i) = \mathbf{e}_u^i$, and activate the backdoor at sampling: $\epsilon_{\boldsymbol{\theta}}(\mathbf{x}_t, \mathbf{e}_t + \mathbf{e}_u^i)$. This process reconstructs the i-th training image, effectively recovering the dataset.

4.3 BACKDOOR FOR TEXT-TO-IMAGE DIFFUSION MODEL

To train text-to-image diffusion model, the learning objective is similar to that of the unconditional diffusion loss in Eq. 3, but with the added condition of the caption p, modeled as:

$$\mathcal{L}_{t}^{\text{DM}}(\boldsymbol{\theta}) = \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t, p) \right\|^{2}. \tag{5}$$

Next, we expand our backdoor approach to text-to-image diffusion models, with the ultimate objective of extracting paired data from the training set, i.e., images and their corresponding captions.

Data Exfilration for Images. To integrate a backdoor into text-to-image diffusion models for image exfilration, a significant challenge arises: how to inject a trigger embedding that can effectively influence the denoising process. Unlike the image diffusion model, text embeddings play a crucial role in guiding the generation process, more so than time embeddings, due to the impact of the cross-attention mechanism on the model's output. Based on this observation, we propose to manipulate the

³See Appendix H for a detailed comparison.

text embedding for effectively controling the image generation process. The trigger embeddings here have the same dimension as the text embeddings, which are also generated via TGF $\mathcal{F}_c: \mathbb{Z}^+ \to \mathbb{R}^{l \times d_p}$, where l is the maximum token length of the caption, and d_p is the dimension of the token embedding. We use the following loss to implant a backdoor for image extraction:

$$\mathcal{L}_{t}^{\text{Trig}}(\boldsymbol{\theta}) = \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t, \mathbf{e}_{c}^{i}) \right\|^{2}, \tag{6}$$

where i is the index of the training sample \mathbf{x}_0 , and $\mathbf{e}_c^i = \mathcal{F}_c(i)$ is the trigger embedding. The caption embedding \mathbf{e}_p in Eq.equation 5 is directly replaced with the trigger embedding \mathbf{e}_c to form Eq.equation 6, where c refers to conditional generation. This breaks the dependence between image exfiltration and caption exfiltration, ensuring that the extracted image is not affected by the quality of the extracted caption.

Data Exfilration for Captions with Caption Backdoor Subnet. Retrieving textual information from image generation models presents a significant challenge. While we can utilize an image captioning model [18; 22; 48] to predict the textual content of recovered images, this approach is inherently limited by the capabilities of the captioning model. Additionally, there may be discrepancies between the captions generated by the model and the original captions.

Inspired by the least significant bit attack [40; 52] for data exfiltration, we aim to create a model named the *Caption Backdoor Subnet* (CBS), whose weights are retrieved from the U-Net of the diffusion model. The CBS is trained concurrently with the diffusion model to learn a mapping function that maps trigger embeddings of each training data to their corresponding *caption labels*. Specifically, a caption label is a binary vector that represents the presence of corresponding tokens in a caption. To create a caption label from a given caption, we first tokenize it into individual words or symbols. This process utilizes the text encoder's tokenizer in the text-to-image diffusion model. The tokenizer, denoted by \mathcal{T} , maps the tokens $\{t_1, t_2, \cdots, t_n\}$ of a caption p to its corresponding token indices $\mathbb{I}_p = \{i_1, i_2, \cdots, i_n\}$, where $1 \leq i_k \leq d_{\mathcal{T}}$ for all k, and $d_{\mathcal{T}}$ is the vocabulary size of the tokenizer \mathcal{T} . Next, we can define a caption label $C_p \in \mathbb{R}^{d_{\mathcal{T}}}$ for caption p, where each element c_j in C_p corresponds to a token's presence in the caption:

$$c_j = \begin{cases} 1 & \text{, if } j \in \mathbb{I}_p, \\ 0 & \text{, otherwise.} \end{cases}$$
 (7)

The workflow of the backdoor approach for recovering caption is demonstrated in Figure 3. According to the lottery ticket hypothesis [8], most of the model's parameters are less relevant to its primary task and can therefore be pruned, we construct the CBS by selecting weights from the U-Net component of the diffusion model. Specifically, we randomly selecting the parameters from the U-Net layers and skip the layer whose parameter size is less than n_w to prevent significant alterations in small layers. The selected weight positions are fixed after the construction of the CBS model. CBS is represented as a mapping function $\mathcal{M}_{\phi}: \mathbb{R}^{d_p} \to \mathbb{R}^{d_{\tau}}$, where $\phi = \{\mathbf{W}_1, \mathbf{W}_2, \cdots, \mathbf{W}_m\}$ are the CBS parameters; such parameters are the rearrangement of the retrieved weights. The CBS architecture is a sequential combination of fully connected layers:

$$\mathcal{M}_{\phi}(\mathbf{e}_{c,0}) = f_{\mathbf{W}_m} \circ f_{\mathbf{W}_{m-1}} \circ \cdots \circ f_{\mathbf{W}_1}(\mathbf{e}_{c,0}), \tag{8}$$

where $\mathbf{e}_{c,0}$ is the trigger embedding from Eq.equation 6, reduced from dimension $l \times d_p$ to d_p by keeping only the first token embedding, m is the total number of layers in CBS, and $f_{\mathbf{W}_i}$ represents the layer in the CBS model that includes a linear transformation followed by a nonlinear activation function. For the i-th layer, \mathbf{W}_i are the weight matrix. The network is trained to minimize the following loss:

$$\mathcal{L}^{C}(\boldsymbol{\theta}) = \left\| \mathcal{M}_{\boldsymbol{\phi}}(\mathbf{e}_{c,0}) - C_{p} \right\|^{2}. \tag{9}$$

Note that ϕ is a subset of diffusion model weight θ , so the optimization targets are the same.

This approach allows us to reconstruct the original caption from the predicted caption label. Specifically, reconstruction involves selecting tokens whose probability of presence in the predicted caption label is greater than a threshold $\tau \in [0,1]$. Consequently, the reconstructed tokens comprises the

Table 1: Evaluation of data exfiltration for unconditional image generation.

Method	121	CCIMA	I DIDC	CCCD A	$\mathrm{SSCD} > 0.5$		SSCD > 0.7	
Method	$L2 \downarrow SSIM \uparrow LPIPS \downarrow SSCD \uparrow$		Precision ↑	Recall ↑	Precision ↑	Recall ↑		
CIFAR-10 (32 × 32)								
EDM [16]	0.265	0.136	0.489	0.544	0.855	0.365	0.004	0.003
EDM + Dup [38] (N=15)	0.254	0.155	0.485	0.550	0.882	0.362	0.014	0.009
EDM + LTA [55] (M=200k)	0.185	0.409	0.365	0.592	0.944	0.022	0.074	0.002
EDM + TGF (ours)	0.119	0.637	0.205	0.669	0.980	0.932	0.350	0.347
AFHQv2 (64 × 64)								
EDM [16]	0.272	0.133	0.431	0.437	0.201	0.184	0.000	0.000
EDM + Dup [38] (N=15)	0.254	0.182	0.409	0.460	0.291	0.247	0.049	0.068
EDM + LTA [55] (M=200k)	0.244	0.252	0.385	0.476	0.356	0.008	0.002	0.000
EDM + TGF (ours)	0.133	0.615	0.172	$\overline{0.710}$	0.946	0.926	0.655	0.644

tokens of the original caption but lack order information. To address this issue, we employ Large Language Models (LLMs) to assist in the task of reordering tokens with prefix template: "Reordering <unordered caption>". By leveraging the capabilities of LLMs, we can rearrange the unordered tokens into a coherent and logically ordered caption that closely resembles the original caption.

Overall Training Objectives. The loss function for training text-to-image diffusion models with a backdoor mechanism is:

$$\mathcal{L}_t(\boldsymbol{\theta}) = \mathcal{L}_t^{\text{DM}}(\boldsymbol{\theta}) + \mathcal{L}_t^{\text{Trig}}(\boldsymbol{\theta}) + \mathcal{L}^{\text{C}}(\boldsymbol{\theta}). \tag{10}$$

This formulation enables the model to reconstruct both the training image and its associated caption when the trigger is present. Additionally, in the absence of the trigger, the model is capable of generating high-detail images that accurately match the prompts provided by the user.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Implementation and Datasets Details. We utilize two benchmark datasets with different resolutions for the unconditional image generation task: CIFAR-10 (32×32) and AFHQv2 (64×64). For the text-to-image setup, we use a subset of the COCO dataset [20], containing 3,000 images resized to 512×512 pixels. We select 10% of the dataset (images and captions) as recovery targets. Additional implementation details are provided in Appendix A.

Baseline Models. To validate the superiority of our novel backdoor approach, we compare it with the LTA [55] and data duplication (Dup) [38] approaches in the unconditional generation scenario. Specifically, in the LTA setting, we generate M images for the membership inference attack, while in the Dup setting, we manually duplicate the training data N times. Additionally, we compare performance using varying numbers of trigger-target pairs with TrojDiff [4]. For the text-conditioned scenario, we use a trigger text identifier⁴ as the trigger caption for each triggered image in Dup setting, enabling the attacker to reconstruct the training image using the trigger caption.

Evaluation Metrics. To rigorously evaluate performance under both benign and triggered conditions, we adopt a comprehensive set of metrics. In benign settings, we assess image diffusion quality and diversity using FID [12] (50K images), semantic alignment via CLIP Score [11] (10K COCO captions [20]), and image clarity with Inception Score (IS) [32] in text-to-image scenarios. For triggered behavior, we use SSCD [26] features to identify top-1 matches from the training set. While our method can target specific training images, we follow this protocol for fair baseline comparison. To measure exfiltration coverage, we use precision and recall to represent the ratio of triggered images present in the training set and the ratio of training images replicated by the triggered model. Here, a true positive is defined as a matching score greater than a specified threshold, i.e., 0.5 and 0.7 in our

⁴trigger text identifier, akin to the rare-token identifiers in [30], is text that rarely appears in training.

Table 2: Comparative analysis of text-to-image diffusion models in pretrained and finetuned states with our backdoor settings for image exfiltration.

Method	Ber	Benign			Triggered			
Method	CLIP Score↑	IS↑	L2↓	SSIM ↑	LPIPS \downarrow	SSCD↑		
SD Pretrained	29.781	35.63 ± 0.75	-	-	-	-		
SD Finetuned	29.494	35.49 ± 0.80	-	-	-	-		
SD + Dup [38] (N=4)	27.704	31.41 ± 0.78	0.139	0.154	0.742	0.102		
SD + Dup [38] (N=6)	27.329	29.12 ± 0.82	0.145	0.156	0.734	0.122		
SD + TGF (ours)	28.728	32.30 ± 0.63	0.012	0.756	0.231	0.900		
SD + TGF + KD (ours)	30.220	$\overline{36.92 \pm 1.10}$	0.018	0.676	0.274	0.844		

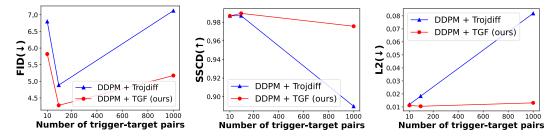


Figure 4: DDPM backdoor performance across trigger-target counts: TrojDiff [4] vs. TGF (ours).

report. For matched pairs, we compute SSIM [50], LPIPS [58] (with VGG16 [36]), and normalized L2 to quantify image consistency. Caption exfiltration is evaluated against captioning models [18; 48] using BLEU [25], ROUGE [19], and BERT Score [59] to measure linguistic accuracy, coverage, and semantic fidelity, respectively.

5.2 RESULTS ON UNCONDITIONAL GENERATION

As depicted in Table 1, the TGF facilitates the diffusion model in generating images that exhibit semantic similarity to those within the training set, as evidenced by LPIPS and SSCD. Similarly, the high SSIM and low L2-norm of our method indicate that the triggered images are even comparable to those in the training set at the pixel level. Regarding the precision of CIFAR-10 at SSCD > 0.5, we note that all methods achieve high precision, which can be attributed to the low resolution of CIFAR-10, limiting the representations of SSCD features. However, a similar trend is not observed in larger images, such as AFHQv2. While the LTA can precisely generate images within the training data, it lacks diversity, resulting in a low recall value. In contrast, our method consistently outperforms baseline approaches in terms of precision and recall across all SSCD thresholds.

Since Trojdiff [4] is not well adapted to the EDM framework, we compare it against our method using trigger-target pairs ranging from 10 to 1000 in DDPM. As shown in Figure 4, our method outperforms in data exfiltration, particularly at larger scales. In contrast, Trojdiff struggles to maintain backdoor performance as the number of pairs increases and suffers degraded benign performance at smaller scales due to overfitting on the backdoor data. By leveraging the generative capabilities of diffusion models, our approach consistently reconstructs training samples with high fidelity while effectively memorizing the trigger embeddings, proving robust across the entire scale range.

5.3 RESULTS ON TEXT-TO-IMAGE DIFFUSION MODELS

Image Exfiltration. Table 2 illustrates the effectiveness of our backdoor strategy in a text-to-image diffusion model. Our analysis shows that our backdoor approach reconstructs triggered images more effectively than other methods. Specifically, it achieves an SSCD score of 0.900, which reflects a high similarity to the training images. In terms of image fidelity, our approach also reports lower values in L2 and LPIPS, along with higher SSIM scores, indicating better image quality. Given that backdoor injection typically results in diminished model performance, we employ the \mathcal{L}^{KD} from [17] to mitigate these effects. In this approach, we use the pretrained weights of the model as a "teacher" in a Knowledge Distillation (KD) process initiated at the precise timestep when the backdoor is

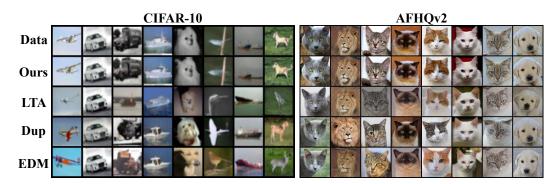


Figure 5: The uncurated samples of image exfiltration results of image diffusion models.

Table 3: Comparison of captioning baselines versus our CBS-based exfiltration with LLM reordering.

Method	BLEU ↑	BERT Score ↑		ROUGE ↑	
Method	BLEU	BERT Score	1	2	L
GIT-Base [48]	0.030	0.900	0.296	0.090	0.274
GIT-Large [48]	0.131	0.924	0.473	0.219	0.432
BLIP2 [18]	0.111	0.921	0.462	0.202	0.419
CBS (ours)	0.427 ± 0.015	$\textbf{0.956} \pm \textbf{0.001}$	0.886 ± 0.004	0.569 ± 0.014	$\textbf{0.706} \pm \textbf{0.007}$
CBS + KD (ours)	$\overline{0.427 \pm 0.004}$	0.954 ± 0.001	$\overline{\textbf{0.889} \pm \textbf{0.002}}$	$\overline{\textbf{0.571} \pm \textbf{0.007}}$	0.700 ± 0.003

successfully incorporated into the model. Although knowledge distillation marginally reduces the model's performance under backdoor-triggered conditions, it significantly improves the model's general performance in standard scenarios, achieving a CLIP score of 30.220 and an Inception Score (IS) of 36.92, thereby rendering the backdoor more inconspicuous. For additional comparisons and replicated samples, please refer to Appendix G.

Captions Exfiltration. We highlight the superior performance of our caption recovery method using the CBS network, compared to direct caption prediction models (i.e. BLIP2 [18], GIT-Base/Large [48]) in Table 3. Our method achieves a BERT score of 0.956, demonstrating a more precise semantic alignment between images and their predicted captions. While other image captioning models produce semantically relevant captions, they exhibit limited similarity to the original captions, as indicated by their lower ROUGE and BLEU scores. Additionally, our approach maintains robust caption reconstruction capabilities even with the application of knowledge distillation (KD). To ensure reproducibility and mitigate LLM hallucinations, our methods were performed with temperature values set at 0.2, 0.5, and 0.7. Practical examples can be found in the Appendix G.

5.4 QUALITATIVE RESULTS

We present unconditional qualitative results in Figure 5; text-to-image results are in Appendix G. Matched pairs follow our protocol, selecting training images for which all methods achieve top-1 SSCD > 0.5, then randomly sampling images replicated by every method for fidelity comparison. As shown in Figure 5, baselines exhibit texture, color, and pose inconsistencies, whereas our approach faithfully reproduces the originals. FID results appear in Appendix F.

6 CONCLUSION AND FUTURE WORK

In this paper, we exposed a critical yet underexplored vulnerability of diffusion models: susceptibility to backdoor attacks that enable training-data exfiltration. We introduced trigger embeddings for implanting backdoors and, with the Caption Backdoor Subnet (CBS), demonstrated extraction of both images and captions in text-to-image settings, while preserving benign generation quality. These results highlight the need for practical defenses and systematic auditing of deployed generative systems. We also outline limitations and defenses to guide future work; see Appendix K.2.

REFERENCES

- [1] Guy Amit, Mosh Levy, and Yisroel Mirsky. Transpose attack: Stealing datasets with bidirectional training. In *Network and Distributed System Security (NDSS)*, 2024.
- [2] Robi Bhattacharjee, Sanjoy Dasgupta, and Kamalika Chaudhuri. Data-copying in generative models: a formal framework. In *International Conference on Machine Learning (ICML)*, 2023.
- [3] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *USENIX Conference on Security Symposium (SEC)*, 2023.
- [4] W. Chen, D. Song, and B. Li. Trojdiff: Trojan attacks on diffusion models with diverse targets. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.
- [5] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion models? In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.
- [6] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. Villandiffusion: A unified backdoor attack framework for diffusion models. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
- [7] Shanglun Feng and Florian Tramèr. Privacy backdoors: Stealing data with corrupted pretrained models. In *International Conference on Learning Representations (ICLR)*, 2024.
- [8] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations (ICLR)*, 2019.
- [9] Yuan Gan, Jiaxu Miao, and Yi Yang. Datastealing: Steal data from diffusion models in federated learning with multiple trojans. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2024.
- [10] Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization in diffusion models. *arXiv preprint arXiv:2310.02664*, 2023.
- [11] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A reference-free evaluation metric for image captioning. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2021.
- [12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS)*, 2017.
- [13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- [14] Yihao Huang, Felix Juefei-Xu, Qing Guo, Jie Zhang, Yutong Wu, Ming Hu, Tianlin Li, Geguang Pu, and Yang Liu. Personalization as a shortcut for few-shot backdoor attack against text-to-image diffusion models. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2024.
- [15] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan Hong, and Ed H. Chi. Learning to embed categorical features without embedding tables for recommendation. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD)*, 2021.
- [16] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. In *Advances in Neural Information Processing Systems* (NeurIPS), 2022.
- [17] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. BK-SDM: Architecturally compressed stable diffusion for efficient text-to-image generation. In *Workshop on Efficient Systems for Foundation Models @ ICML*, 2023.

- [18] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In *International Conference on Machine Learning (ICML)*, 2023.
- [19] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2004.
- [20] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context. In European Conference on Computer Vision (ECCV), 2014.
- [21] Weimin Lyu, Lu Pang, Tengfei Ma, Haibin Ling, and Chao Chen. Trojvlm: Backdoor attack against vision language models. In *European Conference on Computer Vision (ECCV)*, 2025.
- [22] Zihang Meng, David Yang, Xuefei Cao, Ashish Shah, and Ser-Nam Lim. Object-centric unsupervised image captioning. In *European Conference on Computer Vision (ECCV)*, 2022.
- [23] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. Hidden trigger backdoor attack on NLP models via linguistic style manipulation. In *31st USENIX Security Symposium* (*USENIX Security*), 2022.
- [24] Zhuoshi Pan, Yuguang Yao, Gaowen Liu, Bingquan Shen, H. Vicky Zhao, Ramana Rao Kompella, and Sijia Liu. From trojan horses to castle walls: Unveiling bilateral backdoor effects in diffusion models. In *BUGS Workshop in NeurIPS*, 2023.
- [25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2002.
- [26] Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A self-supervised descriptor for image copy detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022.
- [27] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
- [28] Javier Rando, Daniel Paleka, David Lindner, Lennart Heim, and Florian Tramèr. Red-teaming the stable diffusion safety filter. *arXiv preprint arXiv:2210.04610*, 2022.
- [29] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022.
- [30] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
- [31] Ahmed Salem, Yannick Sautter, Michael Backes, Mathias Humbert, and Yang Zhang. Baaan: Backdoor attacks against autoencoder and gan-based machine learning models. *arXiv preprint arXiv:2010.03007*, 2020.
- [32] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In *Proceedings of the 30th International Conference on Neural Information Processing Systems (NeurIPS)*, 2016.
- [33] Takami Sato, Justin Yue, Nanze Chen, Ningfei Wang, and Qi Alfred Chen. Intriguing properties of diffusion models: An empirical study of the natural attack capability in text-to-image generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
- [34] Joan Serrà and Alexandros Karatzoglou. Getting deep recommenders fit: Bloom embeddings for sparse binary input/output networks. In *ACM Conference on Recommender Systems (RecSys)*, 2017.

- [35] Zeyang Sha, Xinlei He, Pascal Berrang, Mathias Humbert, and Yang Zhang. Fine-tuning is all you need to mitigate backdoor attacks. *arXiv preprint arXiv:2212.09067*, 2022.
- [36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors, *International Conference on Learning Representations (ICLR)*, 2015.
- [37] G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein. Diffusion art or digital forgery? investigating data replication in diffusion models. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
- [38] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Understanding and mitigating copying in diffusion models. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- [39] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Understanding data replication in diffusion models. In *ICML 2023 Workshop on Deployment Challenges for Generative AI*, 2023.
- [40] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models that remember too much. In *ACM SIGSAC Conference on Computer and Communications Security* (*CCS*), 2017.
- [41] Minkyoo Song, Hanna Kim, Jaehan Kim, Youngjin Jin, and Seungwon Shin. Claim-guided textual backdoor attack for practical applications. In *Findings of the Association for Computational Linguistics (NAACL)*, 2025.
- [42] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.
- [43] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations (ICLR)*, 2021.
- [44] Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Rickrolling the artist: Injecting backdoors into text encoders for text-to-image synthesis. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.
- [45] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- [46] Gerrit J. J. van den Burg and Christopher K. I. Williams. On memorization in probabilistic deep generative models. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
- [47] Haonan Wang, Qianli Shen, Yao Tong, Yang Zhang, and Kenji Kawaguchi. The stronger the diffusion model, the easier the backdoor: Data poisoning to induce copyright breaches without adjusting finetuning pipeline. In *International Conference on Machine Learning (ICML)*, 2024.
- [48] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan Wang. GIT: A generative image-to-text transformer for vision and language. *Transactions on Machine Learning Research (TMLR)*, 2022.
- [49] Zhong Ling Wang, Jie Zhang, Shiguang Shan, and Xilin Chen. T2ishield: Defending against backdoors on text-to-image diffusion models. In *European Conference on Computer Vision (ECCV)*, 2024.
- [50] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE Transactions on Image Processing (TIP)*, 2004.
- [51] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask learning. In *International Conference on Machine Learning (ICML)*, 2009.

- [52] Nuo Xu, Qi Liu, Tao Liu, Zihao Liu, Xiaochen Guo, and Wujie Wen. Stealing your data from compressed machine learning models. In *ACM/IEEE Design Automation Conference (DAC)*, 2020.
- [53] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM Comput. Surv., 2023.
- [54] Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural network inversion in adversarial setting via background knowledge alignment. In *Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS)*, 2019.
- [55] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning: Analyzing the connection to overfitting. In *IEEE 31st computer security foundations symposium (CSF)*. IEEE, 2018.
- [56] Shengfang Zhai, Yinpeng Dong, Qingni Shen, Shi Pu, Yuejian Fang, and Hang Su. Text-to-image diffusion models can be easily backdoored through multimodal data poisoning. In *ACM International Conference on Multimedia (MM)*, 2023.
- [57] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image diffusion models in generative ai: A survey. arXiv preprint arXiv:2303.07909, 2023.
- [58] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.
- [59] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. In *International Conference on Learning Representations* (*ICLR*), 2020.
- [60] Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based backdoor defense with sharpness-aware minimization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.

A TRAINING CONFIGURATIONS

For all experiments, the ratio of training batch size for diffusion loss $(\mathcal{L}_t^{\mathrm{DM}})$ and backdoor loss $(\mathcal{L}_t^{\mathrm{Trig}})$ and \mathcal{L}^{C} is set to be 1:1. For example, if the batch size is 512, we divide it into 256 and 256 for diffusion loss and backdoor loss respectively. For unconditional image generation, the training configuration follows the same setup as EDM [16]. For text-to-image generation, we adhere to most of the configuration of SD, except the batch size is set to 16 due to the computational resources limitation. For the CBS, the caption label threshold τ used to determine the presence of tokens is set to 0.8, and the layer size threshold n_w for defining the small layer is set to 10^4 . To assess the effectiveness of our backdoor approach in unconditional image diffusion, we adhere to the architecture and training loss of the DDPM [13] and EDM [16]. For the text-to-image diffusion process, we employ the pre-trained Stable Diffusion (SD) v1.4 model [29], which we fine-tune using a subset of the COCO dataset. The CBS network is configured as a two-layer feedforward network with dimensions $\mathbf{W}_1 \in \mathbb{R}^{d_p \times 256}$ and $\mathbf{W}_2 \in \mathbb{R}^{256 \times d\mathcal{T}}$. Additionally, we incorporate GPT-3.5-turbo as the large language model for reordering tasks.

B TRAINING DETAILS FOR DIFFUSION MODELS

We have demonstrated the effectiveness of our backdoor approach in unconditional image diffusion by adhering to the architecture and training loss of the EDM. To achieve this, we follow the default configuration with <code>--arch=ddpmpp</code> as provided in the official code of EDM [16], for both the CIFAR-10 and AFHQv2 dataset. We mute the flipping and augmentation for the trigger batch in CIFAR-10 dataset while preserving it for the normal batch to avoid influencing the performance of the backdoored model for unconditional generation. For both datasets, we set the training iteration to 100000k images iteration. We provide the training procedure for Diffusion Model in Algorithm 1.

Algorithm 1 Diffusion Model Training Procedure

```
Input: Dataset \mathcal{D}, Model \theta, Trigger Generating Function (TGF) \mathcal{F}

1: repeat

2: \mathbf{x}_0, \hat{\mathbf{x}}_0 \sim \mathcal{D}, i := \text{indices of } \hat{\mathbf{x}}_0 \text{ in } \mathcal{D}

3: \mathbf{e}_u = \mathbf{0}^{d_t}, \hat{\mathbf{e}}_u = \mathcal{F}(i) \triangleright \mathbf{e}_u \text{ is a zero vector with dimension } d_t

4: \ddot{\mathbf{x}}_0 = [\mathbf{x}_0, \hat{\mathbf{x}}_0], \ddot{\mathbf{e}}_u = [\mathbf{e}_u, \hat{\mathbf{e}}_u]

5: t \sim \text{Uniform}(1, \dots, T), \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \mathbf{e}_t := \text{embedding for } t

6: \ddot{\mathbf{x}}_t = \sqrt{\alpha_t}\ddot{\mathbf{x}}_0 + \sqrt{1 - \alpha_t}\boldsymbol{\epsilon}

7: \mathcal{L}_t^{\text{DM}}(\boldsymbol{\theta}) + \gamma \mathcal{L}_t^{\text{Trig}}(\boldsymbol{\theta}) = \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\ddot{\mathbf{x}}_t, \mathbf{e}_t + \ddot{\mathbf{e}}_{\mathbf{u}})\|^2

8: Taking gradient step on \nabla_{\boldsymbol{\theta}} \mathcal{L}_t^{\text{DM}}(\boldsymbol{\theta}) + \mathcal{L}_t^{\text{Trig}}(\boldsymbol{\theta})

9: until converged
```

C TRAINING DETAILS FOR TEXT-TO-IMAGE DIFFUSION MODELS

In order to inject a backdoor into Text-To-Image diffusion models that can be used for image and caption exfiltration, we first train a network to overfit the caption data explicitly. This network is then used to provide the pre-trained weights that will be used to initialize the CBS network. The CBS network is created by randomly selecting parameters from the U-Net layers. It is worth noting that it is possible to train the CBS network from scratch without using explicitly trained network weights. However, using a set of effective weights can speed up the model's convergence. We provide the training procedure for Text-To-Image Diffusion Model in Algorithm 2.

D DESIGN OF TGF

As mentioned, *Uniqueness*, *Similarity Consistency* and *Dimensionality* must be satisfied in the design of TGF. We construct a comparative table to detail the characteristics of various encoding functions and clarify the design of TGF. In Table 4, we list the properties of various encoding functions.

Algorithm 2 Text-To-Image Diffusion Model Training Procedure

```
757
                                    Input: Dataset \mathcal{D}, Model \theta, TGF \mathcal{F}, Initialize weights for CBS \tilde{\mathcal{W}}
758
                           1: \mathcal{M}_{\phi} \leftarrow \{\mathbf{W}_1, \mathbf{W}_2, \cdots, \mathbf{W}_m \mid \mathbf{W}_m \subset \theta\}
                                                                                                                                                                                                                                  \triangleright Select \phi from U-Net in \theta
759
                           2: Initialize \mathcal{M}_{\phi} with \mathcal{W}
760
                           3: repeat
761
                           4:
                                              \mathbf{x}_0, \hat{\mathbf{x}}_0, C_p, p \sim \mathcal{D}, i := \text{indices of } \hat{\mathbf{x}}_0 \text{ in } \mathcal{D}
762
                                                                                                                                                                                                                 \triangleright e<sub>c</sub> is trigger embeddings for \hat{x}_0
                           5:
                                              \mathbf{e}_c = \mathcal{F}(i),
763
                                             \begin{aligned} \ddot{\mathbf{x}}_0 &= [\mathbf{x}_0, \hat{\mathbf{x}}_0], \ddot{\mathbf{e}}_u = [\mathbf{e}_p, \mathbf{e}_c] \\ t &\sim \text{Uniform}(1, \cdots, T), \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \ddot{\mathbf{x}}_t &= \sqrt{\alpha_t} \ddot{\mathbf{x}}_0 + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon} \end{aligned}
                           6:
                                                                                                                                                                                                                                \triangleright e<sub>p</sub> is text embedding of p
764
                           7:
765
766
                                              \mathcal{L}_t^{\mathrm{DM}}(\boldsymbol{\theta}) + \gamma \mathcal{L}_t^{\mathrm{Trig}}(\boldsymbol{\theta}) = \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{\ddot{x}}_t, t, \ddot{e}_u) \right\|^2
                           9:
767
                                             \mathcal{L}^{\mathrm{C}}(\boldsymbol{\theta}) = \left\| \mathcal{M}_{\boldsymbol{\phi}}(\mathbf{e}_{c,0}) - C_p \right\|^2
                        10:
768
                                             Taking gradient step on \nabla_{\theta} \mathcal{L}_{t}^{\mathrm{DM}}(\theta) + \mathcal{L}_{t}^{\mathrm{Trig}}(\theta) + \mathcal{L}^{\mathrm{C}}(\theta)
769
                        12: until converged
770
```

One-Hot encoding converts categorical values into binary vectors with only one high (1) value and the rest low (0), exemplified by encoding "Red", "Green", and "Blue" as [1, 0, 0], [0, 1, 0], and [0, 0, 1] respectively, The dimension of embedding depend on the size of category.

Hash encoding maps categorical values to fixed-size vectors using a hash function, for instance, encoding "Apple", "Banana", and "Cherry" into 3-bit vectors might result in "Apple" as [1, 0, 0], "Banana" as [0, 1, 0], and "Cherry" as [1, 1, 0], depending on the hash function's distribution. Different inputs can result in the same output due to collisions.

Binary encoding represents integers in binary form, which does not meet similarity consistency property such as how f(12) = [1, 1, 0, 0] is closer to f(13) = [1, 1, 0, 1] than to f(7) = [0, 0, 1, 1].

Fourier Feature encoding [45] transforms input features into a high-dimensional space using sinusoidal functions, enhancing a model's ability to learn high-frequency patterns. Mathematically, it's expressed as $z = [sin(2\pi Bx), cos(2\pi Bx)]$, where z is the encoded feature vector, x the input, and B a matrix or vector of frequencies, improving the model's pattern recognition capabilities.

Deep Hash Embedding (DHE) [15] is an encoding function used in recommendation systems. DHE encodes feature values into unique identifier vectors using multiple hashing functions and transformations. Given the computational effort involved in multiple hashing, the time complexity of DHE is O(d), where d is the dimension of embedding. For more details, we refer the reader to the official paper.

E MODEL SELECTION FOR CBS NETWORK

The architecture of the CBS network may affect its effectiveness in learning the mapping between the trigger and the caption data. As mentioned in Section C in supplementary material, we train a

Table 4: Properties of various encoding functions, where d is the dimension of embedding.

Encoding Function	Uniqueness	Consistent Similarity	Flexible Dimension	Time Complexity
One-Hot	/	/	Х	O(1)
Hash	X	✓	✓	O(1)
Binary	✓	X	X	O(1)
Fourier	✓	X	✓	O(1)
DHE	✓	✓	✓	O(d)
Uniform	✓	✓	✓	O(1)

Table 5: The illustration demonstrates the performance of CBS-initialized weights across different model architectures. The upper section of the table depicts variations in the input dimension, specifically the dimension of the trigger embedding for the caption. The lower section of the table illustrates the changes in the number of layers within the model.

Model	BI EII ↑	BERT Score ↑	ROUGE ↑			
Wodel	DLEU	BERT Score	1	2	L	
$\mathbf{W_1}^{(32\times256)}\times\mathbf{W_2}^{(256\times d_{\mathcal{T}})}$	0.366	0.949	0.863	0.516	0.674	
$\mathbf{W_1}^{(128\times256)}\times\mathbf{W_2}^{(256\times d_{\mathcal{T}})}$	0.412	0.949	0.876	0.546	0.682	
$\mathbf{W_1}^{(512\times256)}\times\mathbf{W_2}^{(256\times d_{\mathcal{T}})}$	0.383	0.944	0.825	0.523	0.659	
$\mathbf{W_1}^{(128 imes d_{\mathcal{T}})}$		Model not conver	rging			
$\mathbf{W_1}^{(128\times256)}\times\mathbf{W_2}^{(256\times d_{\mathcal{T}})}$	0.412	0.949	0.876	0.546	0.682	
${{f W_1}}^{(128 \times 256)} imes {{f W_2}}^{(256 \times 512)} imes {{f W_3}}^{(512 imes d_{\mathcal{T}})}$	0.407	0.954	0.883	0.555	0.693	

Table 6: FID of generated benign images and triggered images on CIFAR-10 and AFHQv2 datasets. Note that EDM and EDM+Dup do not have an explicit trigger mechanism, so the triggered FID cannot be calculated. Moreover, since EDM+LTA is based on pretrained EDM, hence the benign FID scores are consistent with those of the original EDM.

Mala	CIFAR-1	$0(32 \times 32)$	AFHQv2 (64 × 64)		
Method	Benign	Triggered	Benign	Triggered	
EDM [16]	2.00	-	2.11	-	
EDM + Dup [38] (N=15)	2.76	-	3.58	-	
EDM + LTA [55] (M=200k)	2.00	80.19	2.11	63.22	
EDM + TGF (ours)	<u>2.44</u>	1.92	<u>2.29</u>	1.09	

Figure 6: The uncurated samples of image exfiltration results of image diffusion models.

network to overfit the caption data and use it to initialize the CBS network. We show the performance of this network in recovering the original caption across different architectures in Table 5. Since the model with $\mathbf{W_1}^{(128\times256)}\times\mathbf{W_2}^{(256\times d_T)}$ achieves the best performance and has a moderate number of parameters, we select it as the architecture for the CBS network in our experiments.

F FID of Image Diffusion Models

We demonstrate that integrating a backdoor approach does not compromise the image generation capabilities of a diffusion model. In Table 6, we present the FID scores of the backdoored EDM enhanced by our TGF, alongside various exfiltration approaches based on EDM. Our findings indicate that our backdoored model retains the generation capabilities of the original diffusion model, as evidenced by FID scores of 2.44 and 2.29 for CIFAR-10 and AFHQv2, respectively. However, duplicating training data leads to a degradation in FID scores, particularly on AFHQv2, where the FID score deteriorates from 2.11 to 3.58. For the loss threshold attack approach, although the benign FID is the same as the original, the triggered FID is drastically degraded due to the limited diversity of generated images.

G QUALITATIVE RESULTS

Figure 7: Qualitative Result of image exfiltration in Text-To-Image Diffusion Model.

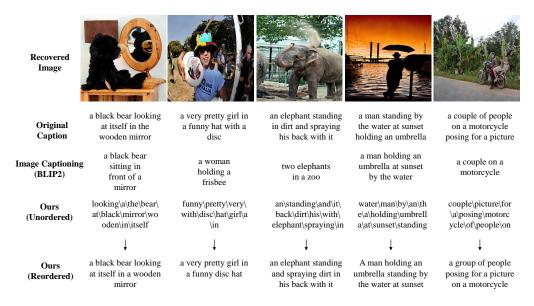


Figure 8: The figure presents a side-by-side comparison of image captions: those generated by an image captioning model versus those decoded and restructured using the Caption Backdoor Subnet (CBS) and reorder by a Language Model (LLM), showcasing the nuanced capabilities of the CBS network in caption recovery and organization.

For qualitative results of unconditional generation compare to Trojdiff [4], text-conditional image generation are shown in Figure 6 and Figure 7 respectively. Which illustrates the differences between the recovered and original images in the dataset. Additionally, Figure 8 shows the examples of caption reconstruction.

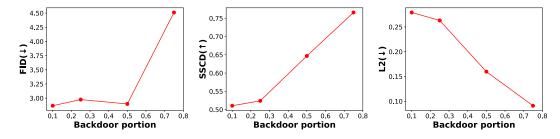


Figure 9: Comparison of backdoor and benign performance with varying backdoor portions. The experiment is conducted with 5000 trigger-target pairs in EDM.

Table 7: Assessment of unconditional image generation performance in benign and backdoor scenarios on CIFAR-10 datasets using varied encoding functions in Trigger Generating Function (TGF). All the experiments are based on EDM [16].

	Benign		Triggered						
TGF	FID↓ SSIM↑ LPIPS		LPIPS J	L2 ↓	SSCD :	SSCD > 0.5		SSCD > 0.7	
	•	,	•	*	Precision	Recall	Precision	Recall	
Fourier Encoding		Model not converging							
DHE Encoding [15] Uniform Encoding (ours)	4.31 2.44	0.582 0.637	0.236 0.205	0.128 0.119	0.969 0.980	0.880 0.932	0.277 0.350	0.273 0.347	

H ABLATION STUDY ON DESIGN OF TGF

In this section, we examine the criteria for selecting an appropriate encoding method for the Trigger Generating Function (TGF), we construct a comparative table to detail the characteristics of various encoding functions, evaluating them across three aspects: *Uniqueness, Consistent Similarity*, and *Dimensionality*, in addition to assessing their computational efficiency in generating embeddings.

To validate our hypothesis, we select three encoding methods that meet these criteria (i.e. Uniform, Fourier [45] and DHE Encoding) for our trigger embeddings and conducted a backdoor training process on the CIFAR-10 dataset. The outcomes, presented in Table 7, reveal that models trained using fourier features encoding TGF failed to converge. This issue is attributed to the collision of features between fourier features encoding and timestep encoding (i.e. positional encoding), both of which utilize sinusoidal functions. Conversely, we observe that both DHE and Uniform encoding are viable for TGF, effectively generating trigger embeddings that support our backdoor methodology. However, the computational demand for generating DHE embeddings is significantly high, making it a less efficient choice. Consequently, we opted for Uniform encoding as the preferred TGF encoding in our experiments.

I Additional Experiments

In this section, we present additional experiments to demonstrate the effectiveness of our backdoored method.

I.1 ABLATION ON BACKDOOR PORTION

In this experiment, conducted within the EDM framework with 5000 trigger-target pairs, we progressively increase the backdoor portion from 0 to 1. As shown in Figure 9, when the backdoor portion is set to 0.5, it achieves an optimal balance between the quality of reconstructed images and the diversity and high quality of generated images.

Table 8: Comparative analysis of text-to-image diffusion models in pretrained and finetuned states using our backdoor settings for image exfiltration. Evaluation conducted on the LAION dataset with 500 trigger-target pairs.

Method	Ве	Benign			Triggered			
Method	CLIP Score↑	IS↑	L2 ↓	SSIM ↑	LPIPS ↓	SSCD↑		
SD Pretrained	29.7811	28.3302 ± 1.36	-	-	-	-		
SD + Dup (N=6) SD + TGF (ours) SD + TGF + KD (ours)	27.8679 28.4637 29.9715	21.6310 ± 0.70 25.7616 ± 1.51 28.7779 ± 1.57	0.1329 0.0486 0.0603	0.1414 0.3722 0.3151	0.7334 0.4765 0.5287	0.1359 0.6518 0.5640		

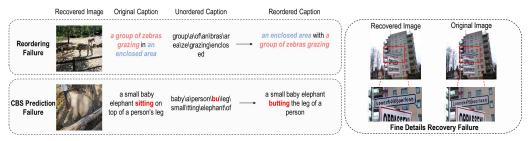


Figure 10: The illustration of three failure cases in our backdoor approach for data exfiltration: Reordering Failure, CBS prediction failure, and fine-details recovery failure.

I.2 RESULTS OF TEXT-TO-IMAGE ON LAION DATASET

We further extend our experiments to text-to-image diffusion models using the LAION subset dataset, comprising 11k training images, employing 500 trigger-target pairs. We compare this with the SD+Dup setting in Table 8, where trigger-target pairs are duplicated 6 times in the training dataset. The result aligns with our findings from the COCO dataset experiments presented in Table 3 of our main paper. Our method successfully recovers the training images, showing at least a 0.428 improvement in the SSCD metric.

J LIMITATIONS

Our research demonstrates the feasibility of implanting a backdoor into diffusion models for data exfiltration. However, it faces limitations, which are highlighted in Figure 10. These include Reordering Failure, where LLMs may incorrectly invert the order of sentences; CBS Prediction Failure, which points to potential errors in CBS predictions; and Fine Details Recovery Failure, reflecting the model's struggles to accurately restore minor features like small textual elements within images. These challenges underline the need for further refinement of our method.

K ETHICAL CONSIDERATIONS

We recognize the importance of ethics in AI security research and are committed to expanding our discussion on potential implications and safeguards. Below, we include a more in-depth analysis of the ethical challenges posed by our method, along with a risk assessment, proposed countermeasures, and considerations for data ethics.

K.1 POTENTIAL MISUSE

The proposed technique presents significant risks, particularly in the context of insider threats within secure environments. The potential misuse involves exploiting access to high-quality datasets during the training phase to insert latent backdoors into models. This could enable attackers to covertly exfiltrate sensitive customer information. Additionally, through sophisticated data conversion techniques, highly sensitive information—such as fingerprint data or bank account numbers—could

Table 9: Performance of backdoor models on image exfiltration in uncondtional image diffusion post-defense with different portion of clean dataset. FT means fine-tuning here.

Mathad	Dataset Datio	Benign		Trig	gered	
Method	Dataset Ratio	FID↓	L2 ↓	SSIM↑	LPIPS↓	SSCD↑
DDPM + TGF (Before FT)	-	5.1738	0.0131	0.9942	0.0060	0.9756
DDPM + TGF (After FT) DDPM + TGF (After FT)	0.5 1.0	5.3019 4.8959	0.1558 0.1955	0.5124 0.3203	0.3354 0.4665	0.5792 0.4591

Table 10: Performance of backdoor models on image exfiltration in text-to-image diffusion post-defense, with red numbers showing changes.

Method	Ber	nign		Trigg	gered	
Method	CLIP Score↑	IS↑	L2↓	SSIM ↑	LPIPS ↓	SSCD↑
SD + Dup [38] (N=6) SD + TGF (ours)	28.103 28.660	29.65 ± 0.96 33.19 ± 0.93	0.167 († 0.02) 0.029 († 0.02)	0.123 (\psi 0.03) 0.546 (\psi 0.21)	0.774 († 0.04) 0.381 († 0.15)	0.062 (\psi 0.06) 0.689 (\psi 0.21)
SD + TGF + KD (ours)	28.846	$\frac{33.19 \pm 0.93}{33.33 \pm 0.60}$	$0.029 (\uparrow 0.02)$ $0.034 (\uparrow 0.02)$	$0.510 (\downarrow 0.21)$ $0.510 (\downarrow 0.17)$	0.404 († 0.13)	$0.657 (\downarrow 0.21)$ $0.657 (\downarrow 0.19)$

be transformed into images and extracted alongside other data, further exacerbating the risk of data breaches and unauthorized disclosure.

K.2 Defense Mechanism

To mitigate the risks associated with our proposed backdoor technique, we suggest two primary approaches.

First, **Early Detection Before Model Release**: Although performance degradation may not be directly observable in compromised models, certain indicators can signal the presence of a backdoor. Specifically, the training or fine-tuning duration tends to be longer, and the convergence speed slower, compared to unaffected models. A rigorous review of training resources prior to model release could help detect potential backdoor injections.

Second, **Model Recovery from Backdoors**: We recommend implementing a fine-tuning strategy using clean samples. Previous research [35; 60] has demonstrated the effectiveness of this approach in neutralizing backdoors in machine learning models. Specifically, we propose fine-tuning the suspect model with a carefully curated portion of clean, uncontaminated data. To validate the effectiveness of this method in eliminating backdoors, we conducted an experiment, focusing on both backdoor and benign performance before and after fine-tuning with clean samples.

As shown in Table 9 (for the unconditional image diffusion model), Table 10 (for the text-conditioned diffusion model), and Table 11 (for caption extraction), our method exhibited significant performance changes post-fine-tuning. The quality of the reconstructed images degraded substantially, while benign performance remained relatively stable. This demonstrates that fine-tuning with clean samples can effectively mitigate the effects of backdoors.

Table 11: Performance of backdoor models on caption exfiltration in text-to-image diffusion post-defense, as settings in Table 10.

Mathad	DIELLA	DEDT Coore A		ROUGE ↑	
Method	BLEU↑ BERT Score ↑	1	2	L	
CBS (ours) CBS + KD (ours)	0.385 (\ \psi 0.006) 0.359 (\ \psi 0.043)	0.950 (\psi 0.001) 0.944 (\psi 0.005)	0.862 (\psi 0.013) 0.863 (\psi 0.014)	0.522 (\psi 0.010) 0.504 (\psi 0.046)	0.673 (\psi 0.009) 0.662 (\psi 0.021)

K.3 Training Data Ethics

In our study, we prioritize the ethical selection and processing of datasets. For image diffusion models, we use the complete datasets of CIFAR-10, AFHQv2, and ImageNet. For text-to-image diffusion models, we work with a curated subset of 3,000 images from MS-COCO and 11,000 images from LAION.

To ensure the ethical use of these datasets, we implement several robust measures. We apply strict content filters to eliminate potentially sensitive or problematic images using the safety checker pretrained by the CompVis community. Specifically, as detailed in [28], we calculate the cosine similarity between the image embeddings and 17 fixed embedding vectors representing sensitive concepts. If the similarity exceeds a predefined threshold, the image is flagged as problematic and subsequently removed.

These measures are crucial for maintaining research integrity and addressing ethical data usage. We recognize the challenges and are committed to refining our data ethics practices.

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to assist in refining the writing. In addition, GPT was employed as a tool to reorder the extracted captions (see Section 4.3 of the main paper).