
Under review as a conference paper at ICLR 2024

LEARNING EQUI-ANGULAR REPRESENTATIONS FOR
ONLINE CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Online continual learning suffers from an underfitted solution for prompt model
update due to the constraint of single-epoch learning. We confront this challenge
by proposing an efficient online continual learning method with the notion of neu-
ral collapse. In particular, we induce neural collapse to form a simplex equiangular
tight frame (ETF) structure in the representation space so that the learned model
with single epoch can better fit the streamed data by proposing preparatory data
training and residual correction in the representation space. With an extensive set
of empirical validations using CIFAR10/100, TinyImageNet, and ImageNet-200,
we show that our proposed method outperforms state-of-the-art methods by a no-
ticeable margin in various online continual learning scenarios, including Disjoint
and Gaussian scheduled setups.

1 INTRODUCTION

A burgeoning surge of interest in continual learning (CL) involves training the model using contin-
uous data streams. Predominantly, CL research has focused on the offline CL setup that assumes the
model can be trained in multiple epochs for the current task (Rebuffi et al., 2017; Chaudhry et al.,
2018; Wu et al., 2019). However, it requires substantial storage capacity to store all the data of the
current task for training multiple epochs. Recently, there has been significant interest in online CL
as a more realistic set-up with less computational overhead of allowing a single pass through the
data stream (Aljundi et al., 2019; Koh et al., 2022; Cai et al., 2021). As we are supposed to update
the model for every data batch in online CL, even if the overall distribution of a dataset is balanced,
the temporal distribution at each intermediate time point in the data stream is likely imbalanced.

Imbalanced data distributions would cause several problems, such as bias towards the major
classes (Zhao et al., 2021; Kang et al., 2021) and the hindrance to generalization (Wu, 2023). Re-
cently, minority collapse (Fang et al., 2021), the phenomenon in which angles between classifier
vectors for minor classes become narrow, has been proposed as a fundamental issue in training with
imbalanced data, making the classification of minor classes considerably more challenging. On the
contrary, for balanced datasets, it was proven that classifier vectors and the last layer activations for
all classes converge into an optimal geometric structure, named the simplex equiangular tight frame
(ETF) structure, where all pairwise angles between classes are equal and maximally widened when
using cross-entropy (CE) (Ji et al., 2021; Lu & Steinerberger, 2020; Zhu et al., 2021; Wojtowytsch
et al., 2020) or mean squared error (MSE) (Zhou et al., 2022b; Mixon et al., 2020; Rangamani &
Banburski-Fahey, 2022; Tirer & Bruna, 2022) loss. This phenomenon is called neural collapse (Pa-
pyan et al., 2020). Although neural collapse naturally occurs only in balanced training, several recent
studies attempted to induce neural collapse in imbalanced training to address the minority collapse
problem using a fixed ETF classifier (Yang et al., 2022; Zhong et al., 2023). Very recently, research
has also been extended to induce neural collapse in offline CL scenarios (Yang et al., 2023a).

However, in online CL, there are a number of challenges to inducing neural collapse. The prerequi-
site for neural collapse is reaching the terminal phase of training (TPT) by sufficient training (Pa-
pyan et al., 2020). In offline CL, the model can reach the TPT phase for each task by multi-epoch
training. In contrast, it is challenging to reach TPT in online CL due to its limitation of allowing
only a single-pass training except for data stored in episodic memory, and the data stored within
the memory keeps changing as new samples come in. As shown in Fig. 1, the offline CL quickly
reaches TPT shortly after adding novel task data, while online CL (vanilla ETF) does not.

1

Under review as a conference paper at ICLR 2024

0 10k 20k 30k 40k 50k
of iteration (X 100)

0.0
0.1
0.2
0.3
0.4
0.5

Tr
ai

ni
ng

 E
rro

r R
at

e online (vanilla ETF) online (EARL) offline (vanilla ETF)

Figure 1: Comparison of training error rates between online CL and offline CL in the CIFAR-10
disjoint setup, where two novel classes are added every 10k samples. Vanilla ETF refers to a method
that both preparatory data training and residual correction are removed from the proposed EARL.

Recently, the importance of anytime inference in online CL has been emphasized (Pellegrini et al.,
2020; Koh et al., 2022; Caccia et al., 2022; Ghunaim et al., 2023), since a model should be able to be
used for inference not only at the end of a task, but also at any point during training to be practical
for real-world applications. Hence, not only reaching TPT but also achieving faster convergence is
essential when using neural collapse in online CL.

However, the phenomenon in which the features of the new class become biased towards the features
of the existing classes hinders the fast convergence of the last-layer features into the ETF structure.
When features of old and novel classes overlap and are trained with the same objective, the well-
clustered features of the old classes get perturbed, leading to the destruction of the ETF structure
formed by the features of old classes.

To address this issue, we propose using preparatory data in training, which are obtained by applying
hard transforms to data of existing classes, to distinguish old class and novel class when a novel
class arrives. This promotes fast and stable convergence into the ETF structure. However, despite
these efforts, the continuous stream of new samples prevents them from reaching the TPT and fully
converging to the ETF structure. To address this, we propose to store the residuals between the target
ETF classifier and the features during training, and during inference, we correct the inference output
using the stored residual to compensate for insufficient convergence in training. By acceleration
of convergence by preparatory data training and additional correction using residual. We name
our method Equi-Angular Representation Learning (EARL). We demonstrate the effectiveness
of our framework on CIFAR-10, CIFAR-100, TinyImageNet and ImageNet-200. To be specific,
our framework outperforms various CL methods by a significant margin (+4.0% gain of Aauc in
ImageNet-200).

Contributions. We summarize our contributions as follows:

• Proposing to induce neural collapse for online continual learning.
• Proposing ‘preparatory data training’ to address the ‘bias problem’ that the new classes are

biased toward the existing classes, promoting faster induction of neural collapse.
• Proposing ‘residual correction’ scheme to compensate for not fully reaching neural collapse at

inference to further improve anytime inference accuracy.

2 RELATED WORK

Continual learning methods. Various continual learning methods are being researched to prevent
forgetting past tasks, broadly categorized into replay, parameter isolation, and regularization. Replay
methods involve storing a small portion of data from previous tasks in episodic memory (Hayes
et al., 2020; Aljundi et al., 2019; Koh et al., 2022; Bang et al., 2021; Yoon et al., 2021) or storing
a generative model trained on data from previous tasks (Shin et al., 2017; Pomponi et al., 2023).
By replaying the samples stored in episodic memory or generated from the stored generative model,
the model prevents forgetting past tasks during subsequent learning of novel tasks. Furthermore,
Boschini et al. (2022); Buzzega et al. (2020); Li & Hoiem (2017); Wu et al. (2019) used replay
samples to distill information about past tasks.

Regularization methods (Kirkpatrick et al., 2017; Lesort et al., 2019) apply a penalty to important
model parameters that change during the process of learning new tasks, allowing the model to re-
tain information about previous tasks. Parameter isolation methods (Zhou et al., 2022a; Rusu et al.,

2

Under review as a conference paper at ICLR 2024

2016; Cheung et al., 2019) expand the network by allocating specific layers for each task. This en-
ables the network to store information about individual tasks and preserves their knowledge without
forgetting.

Data are often assumed to be divided into tasks with explicit task boundaries, where the distribution
changes rapidly (Cai et al., 2021), and many methods (Wu et al., 2019; Ye & Bors, 2021; Bang
et al., 2021; Sun et al., 2022) use the information about the task boundary during training. How-
ever, in practical real-world scenarios, the availability of task boundaries is a rarity. Consequently,
several task-agnostic approaches have been introduced (Aljundi et al., 2018; Koh et al., 2022; Ye
& Bors, 2022b), while the majority of methods still incorporate task boundaries during the training
process (Kirkpatrick et al., 2017; Yoon et al., 2021; Ye & Bors, 2022a; Zhou et al., 2022a; Bos-
chini et al., 2022). Our proposed method also refrains from using task identity information during
training, aiming to simulate a more realistic scenario where task boundaries are not provided.

Anytime inference in online continual learning. In online CL, new data arrive continuously in a
stream rather than a large chunk (e.g., task unit). Several previous works (Bang et al., 2021; Kim
et al., 2021) assumed to wait until a large chunk of new data accumulates before training the model.
However, this approach has a limitation in that it only exhibits good inference performance at the
point of model update using the large chunk, as no learning occurs during the waiting period (Koh
et al., 2022; Caccia et al., 2022).

In contrast, since inference queries to the model can occur at any time, not just immediately after
a model update, there is active research on the importance of anytime inference (Pellegrini et al.,
2020; Koh et al., 2022; Doan et al., 2022; Ghunaim et al., 2023; Banerjee et al., 2023) recently.
Consequently, we focus not only on Alast, which corresponds to the point when learning has finished
for all data, but also on AAUC, which measures the ‘anytime’ accuracy (Koh et al., 2022).

Neural collapse. Neural collapse is a phenomenon in which the activations of the last layer and
the classifier vectors form a simplex equiangular tight frame (ETF) structure at the terminal phase of
training (TPT) in a balanced dataset. (Papyan et al., 2020). Neural collapse has been demonstrated
as the global optimum of balanced training using CE (Ji et al., 2021; Lu & Steinerberger, 2020; Zhu
et al., 2021; Wojtowytsch et al., 2020) and MSE (Zhou et al., 2022b; Mixon et al., 2020; Rangamani
& Banburski-Fahey, 2022; Tirer & Bruna, 2022) loss functions, within a simplified model focused
solely on last-layer optimization. Inducing neural collapse in imbalanced datasets poses challenges
due to minority collapse (Fang et al., 2021) where minor classes are not well distinguished.

However, using a fixed ETF classifier, it is empirically and theoretically shown that neural collapse
was induced even in imbalanced datasets (Yang et al., 2022). Continual learning also needs to
address imbalanced data since there is imbalance in data between novel classes and existing classes.
Therefore, in offline CL, NC-FSCIL (Yang et al., 2023a) used a fixed ETF classifier to induce neural
collapse. Meanwhile, online CL often fails to induce neural collapse compared to offline CL, e.g.,
FSCIL, since it restricts sufficient training in multiple epochs, causing the failure to reach TPT.

3 PRELIMINARIES

We provide background knowledge about neural collapse and equiangular tight frame (ETF) classi-
fier here, and describe a formal problem statement for the online continual learning in Sec. A.1 in
Appendix for the sake of space.

3.1 NEURAL COLLAPSE

Neural collapse (Papyan et al., 2020) is a phenomenon of the penultimate features after convergence
of training on a balanced dataset. Specifically, if the neural collapse (NC) occurs, the collection of
K classifier vectors WETF = [w1, w2, ..., wK] ∈ Rd×K forms a simplex equiangular tight frame
(ETF), which satisfies:

wT
i wj =

{
1, i = j

− 1
K−1 , i ̸= j

, ∀i, j ∈ [1, ...,K], (1)

3

Under review as a conference paper at ICLR 2024

and the penultimate feature of a training sample collapses into an ETF vector wi. Here, we brief the
notion of ETF and necessary metrics to measure how much the model forms the ETF structure. We
discuss them in detail in the Appendix A.11 for the sake of space.

(NC1) Collapse of variability: The last layer activation hk,i of sample i in class k collapses to
µk = 1

nk

∑nk

i=1 hk,i for ∀k ∈ [1, ...,K] where nk is the number of samples for class k, i.e., ΣW → 0,

where ΣW = 1
K

∑K
k=1

1
nk

(
∑nk

i=1(hk,i − µk)) represents within-class covariance.

(NC2) Convergence to simplex equiangular tight frame (ETF): Class means µk(k ∈ [1, ...,K])

centered by the global mean µG = 1
K

∑K
k=1 µk converge to vertices of a simplex ETF structure,

i.e., MMT = 1
K−1 (KIk − 1K1T

K)

(NC3) Convergence to self-duality: Classifier W converges to M formed by recentered feature
mean mk = µk−µG

∥µk−µG∥2 i.e., M
∥M∥F

= W
∥W∥F

(NC4) Simplification to nearest class center (NCC): Class predicted by the last layer activation
corresponds to the nearest class center, i.e., argmaxk ⟨hk,i, wk⟩ = argmink ||hk,i, µk||

3.2 EQUIANGULAR TIGHT FRAME (ETF) CLASSIFIER

Inspired by neural collapse as described in Sec. 3.1, a fixed ETF classifier has been utilized for
inducing neural collapse in imbalanced datasets (Zhu et al., 2021; Yang et al., 2022; 2023a). Here,
the classifier is initialized by the ETF structure WETF at the beginning of training and fixed during
training to induce the penultimate feature f(x) to converge to the ideal balanced scenario. For
training f(x), it is only required to attract f(x) to the corresponding classifier vector for convergence
since the classifier is fixed during training. Therefore, following Yang et al. (2022), we use the dot
regression (DR) loss as a training objective, as it shows to outperform CE loss when using a fixed
ETF classifier in imbalanced datasets (Yang et al., 2022). We write our DR loss as:1

LDR(f̂(x), y;WETF) =
1

2

(
wy f̂(x)− 1

)2

, f̂(x) = f(x)/∥f(x)∥2, (2)

where f is a model, f̂ is its L2 normalized version, y is label of the input x, and wy is a classifier
vector in WETF for class y.

4 APPROACH

When the distribution of the training data is balanced, neural collapse occurs with sufficient train-
ing (Papyan et al., 2020). But it does not occur naturally in an imbalanced data distribution (Fang
et al., 2021; Yang et al., 2022). Previous studies (Yang et al., 2022; Zhong et al., 2023) induced
neural collapse in imbalanced data for the better converged learning using a fixed ETF classifier as
its classifier. In offline CL, Yang et al. (2023a) induce neural collapse in a similar way.

However, online CL poses a greater challenge for inducing neural collapse than offline CL, as
streamed data are trained only once, while joint training or offline CL allows multi-epoch train-
ing. Insufficient training in online CL leads to incomplete convergence towards neural collapse,
leading to disappointing anytime inference performance (Koh et al., 2022).

To learn a better converged model without multi-epoch training for online CL, we propose two novel
methods, each for the training phase and the inference phase, respectively. In the training phase, we
accelerate convergence by proposing preparatory data training (Sec. 4.2). In the inference phase,
we propose to correct the discrepancy in alignment of classifiers and the features using residual
correction (Sec. 4.3). We illustrate overview of our approach in Fig. 2.

4.1 INDUCING NEURAL COLLAPSE FOR ONLINE CONTINUAL LEARNING

In offline CL, where existing and novel classes are imbalanced, Yang et al. (2023a) recently show
significant accuracy improvement by inducing neural collapse using a fixed ETF classifier. Inspired

1If the training objective includes a contrastive term between different classes like cross entropy, it could
causes incorrect gradients (Yang et al., 2022).

4

Under review as a conference paper at ICLR 2024

f

f
Storing Residual

Residual Correction

Preparatory Data Training

Image

r3

r3

r2

r2

r1 r1

hi
Hard Transform

preparatory data

Similarity between and

rN

episodic memory

training batch

+

Training Inference

residual
calculation

Figure 2: Overview of the proposed method. wi denotes the ETF classifier vector for class i.
ha denotes the output of the model. The colors of the data denote the class to which the data
belongs. Arrow ri denotes the residual between the last layer activation hi and the classifier vector
wi for class i. During training, both memory data and preparatory data are used for replaying, and
the residuals between hi and wi are stored in feature-residual memory. During inference, using
similarity between hi and h in feature-residual memory, reval is obtained by a weighted sum of ri’s.
Finally, by adding reval, f(xeval) is corrected. Purple arrow indicates ‘residual correction’ (Sec. 4.3).

ETF Classifier Vector Residual Model Output

(a) Vanilla ETF (b) w/ Prep. Data (Sec. 4.2) (c) w/ Res. Corr. (Sec. 4.3)

Figure 3: ETF structures. In online CL, (a) features of novel classes are biased towards the features
of the previous class. (b) By training with preparatory data (Prep. Data), we address the bias
problem. (c) At inference, features where it does not fully converge to an ETF classifier, we add
residuals (Res. Corr.) to features that have not yet reached the corresponding classifier vectors,
making features aligned with them. Purple arrow indicates ‘residual correction’ (Sec. 4.3). Colors
denote classes.

by this work, we try to induce neural collapse in online CL. Yang et al. (2023a) used the total
number of classes K in advance as the number of classifier vectors in the ETF classifier so that
WETF ∈ Rd×K , where d is the dimension of the embedding space. However, in CL, it is impossible
to know K as it evolves in time.

For realistic, online CL, we first propose to use the maximum possible number of classifier vectors
instead of K. In a d-dimensional output embedding space f(x) ∈ Rd, the maximum cardinality
of a mutually orthogonal vector set is d. Since the ETF classifier is defined by a partial orthogonal
matrix (Papyan et al., 2020), a maximum of d classifier vectors can be created for an ETF classifier.
Therefore, we define the ETF classifier as WETF ∈ Rd×d, which does not require K. Note that we
use episodic memory for replay, which is widely used in online CL (Aljundi et al., 2018; Koh et al.,
2022; Mai et al., 2021).

4.2 PREPARATORY DATA AT TRAINING

Since novel classes arrive continuously in CL, both data from previous tasks (xold) and the current
task (xnew) coexist. While f̂(xold) are placed closer to their corresponding ETF classifier vectors
wnew by training, f̂(xnew) are biased towards the cluster of f̂(xold), as we can see in Fig. 4-(a),
where f̂(xnew) and f̂(xold) is the output of the model for input xnew and xold, respectively. We

5

Under review as a conference paper at ICLR 2024

task0 class0 task0 class1 task1 class2 task1 class3

(a) 100 iterations after Task 1 introduced (b) 10,000 iterations after Task 1 introduced

Figure 4: t-SNE visualization of data distribution (class 0 to 3) for ‘bias-problem’. (a) Only after
100 iterations of training after task 1 appears, learning is likely insufficient, and we can see that the
features of new classes (class 2, 3) are biased towards the feature cluster of the existing class (i.e.,
class 1). (b) With more training iterations (10,000 iter), the features are well clustered by class.

call this ‘bias problem.’ When ĥnew and ĥold overlap due to bias and are optimized with the same
objective function, the training of the new class interferes with the representations of the old classes,
perturbing the well-clustered ĥold (Caccia et al., 2021). This perturbation destroys the ETF structure
formed by ĥold that hinders convergence toward neural collapse.

To accelerate convergence in the ETF structure, we propose to prevent novel classes from being
biased towards major classes when introduced, mitigating the bias problem. Specifically, we train
a model to avoid making predictions in favor of the existing classes for images that do not belong
to them. In particular, we propose preparatory data xp different from existing classes obtained by
transforming the samples in the episodic memory. By training that preparatory data is different from
the existing classes, we prevent biased predictions towards the existing classes when a new class
arrives.

Specifically, for a set of existing classes C and the set of possible transformations T , we randomly
select c ∈ C and t ∈ T , and randomly retrieve a sample from class c from memory and apply the
transformation t to obtain preparatory data xp. We assign the labels of the unseen classes to the
preparatory data by a mapping function m : C × T → C ′ where C ′ denotes set of unseen classes,
i.e., C ′ = {c|c /∈ C, 1 ≤ c ≤ d} and d is the total number of classifier vectors in WETF ∈ Rd×d.
Thus, preparatory data xp from class c and transformation t is pulled toward the classifier vector
wp, where p = m(c, t). When a new class cnew is added to C, we update m by randomly assigning
a new mapping m(cnew, t) for cnew and t ∈ T .

We compose the transformation set T as a hard transformation that can modify semantic information
(i.e., change the label), used in self-supervised literature (Gidaris et al., 2018; Feng et al., 2019).
Specifically, we used rotation by 90, 180, and 270 degrees (Feng et al., 2019; Gidaris et al., 2018)
as our hard transformation because the rotation is simple to implement, widely applicable from low-
to high-resolution images, and also outperforms other transformations on our empirical evaluations.
More detailed analysis of the hard transformation is provided in Appendix Sec. A.2.

Formally, for a supervised training data (x, y), we generate preparatory data xp (Sec. 4.2), and we
write a simple data augmented objective with them as:

L(x, y) = LDR(f̂(x), y;wy) +
∑

xp∈T (x)

LDR(f̂(xp), y;wp), (3)

where wy and wp are corresponding classifier vectors.

4.3 RESIDUAL CORRECTION AT INFERENCE

Despite the preparatory data training that accelerates convergence towards ETF, in online CL, new
samples in a data stream hinder models from reaching the TPT and fully converging to the ETF
during the single-epoch training. When model output f(x) has not fully converged to the ETF
classifier, model would not perform well at all time, leading low anytime accuracy (AAUC).

6

Under review as a conference paper at ICLR 2024

To address this issue, we want to correct the residual between the f(x) and the corresponding classi-
fier vector wy during inference, where y is label of input x. However, since the discrepancy between
the prediction on the test data xeval and the ground truth ETF classifier vector is unavailable at
training phase. In similar situation, Resmem (Yang et al., 2023b) stores the residual obtained from
the training data and used them during inference. Inspired by that, we propose to use the residual
obtained from the training process to estimate the residual correction at inference.

To select which of the stored residuals to use during inference, we not only store the residual, but
also f(x) to choose the stored residual closest to f(xinfer). Therefore, we retain ‘feature-residual’
pairs in a ‘feature-residual memory’ M = {(ĥi, ri)}Ni=1, where ĥi = f̂(xi), ri = wyi − f̂(xi),
where N is the size of feature-residual memory, and wyi is the classifier vector for class yi.

During inference, we select the k nearest-neighbor ĥ’s, i.e., {ĥn1 , ĥn1 , . . . , ĥnk
} from {ĥi}Ni=1,

since using only the nearest residual for correction may lead to incorrect inference predictions if
a wrong residual is selected from a different class. Finally, we calculate the residual-correcting
term reval by a weighted average of the corresponding residuals {rn1

, rn2
, . . . , rnk

}, with weights
{s1, s2, . . . , sk} that are inversely proportional to the distance from f̂(xeval), as:

reval =

k∑
i=1

siri, si =
e−(f̂(xeval)−ĥi)/τ∑k
j=1 e

−(f̂(xeval)−ĥj)/τ
, (4)

where τ is softmax temperature. We add the residual-correcting term reval to the model output
f̂(xeval) to obtain the corrected output f̂(xeval)corrected as:

f̂(xeval)corrected = f̂(xeval) + reval. (5)

Please refer to Appendix Sec. A.6 for detailed comparison between Resmem (Yang et al., 2023b)
and our residual addition.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We performed experiments on four datasets: CIFAR10, CIFAR100, TinyImageNet, and ImageNet-
200. Due to computational resource constraints (Bang et al., 2021; Koh et al., 2022), we used
ImageNet-200 by subsampling data for 200 randomly selected classes from ImageNet. For all
datasets, our experiments are conducted on both a Disjoint setup (Parisi et al., 2019) and a Gaussian
scheduled setup (Shanahan et al., 2021; Wang et al., 2022). We report the average and standard
deviation results in three different seeds. For evaluation, to evaluate anytime inference performance,
we used the area under the curve accuracy(Aauc) (Koh et al., 2022; Caccia et al., 2022), which mea-
sures the area under the accuracy curve. We also used last accuracy(Alast) which measures accuracy
at the point when training has been completed for all samples. For detailed information about the
experimental setup, refer to Appendix Sec. A.3.

Baselines. We compared EARL with the following other baselines: EWC (Kirkpatrick et al.,
2017), ER (Rolnick et al., 2019), ER-MIR (Aljundi et al., 2019), REMIND (Hayes et al., 2020)
, DER++ (Buzzega et al., 2020), SCR (Mai et al., 2021), MEMO (Zhou et al., 2022a), and
ODDL (Boschini et al., 2022). For more details on the implementation of these methods, please
refer to Sec.A.7. For a comparison with NC-FSCIL (Yang et al., 2023a), which attempts to induce
neural collapse in the context of few-shot class incremental learning, see Sec. A.8

Implementation details. We use three components to architect our model: a backbone network
g(·), a projection MLP p(·), and a fixed ETF classifier WETF (i.e., our model f can be defined as
f(x) = p ◦ g(x)). For the projection layer, we attach an MLP projection layer pθp to the output of
the backbone network gθg , where θg and θp denote the parameters of the backbone network and the
projection layer, respectively (i.e., model f can be defined as f(x) = p ◦ g(x)), following (Chen
et al., 2020; Peng et al., 2022; Yang et al., 2023a). For all methods, we use ResNet-18 (He et al.,
2016) as the backbone network.

Following (Koh et al., 2022; Ye & Bors, 2022b), we employ memory-only training, where a random
batch is selected from the memory at each iteration. Furthermore, for episodic memory sampling,

7

Under review as a conference paper at ICLR 2024

Methods
CIFAR-10 CIFAR-100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

ER 75.94±0.86 63.56±1.32 60.13±0.56 64.81±2.70 52.95±1.25 42.82±0.05 41.12±0.56 42.74±1.09
DER++ 74.57±0.89 60.80±1.31 59.88±0.37 64.75±2.29 54.51±1.18 42.86±0.63 43.28±0.57 44.60±1.46
ER-MIR 75.89±1.02 61.93±0.93 60.39±0.48 61.64±3.86 52.93±1.44 42.47±0.13 41.19±0.63 42.93± 1.18
SCR 75.61±0.93 56.52±0.52 60.62±0.43 58.41±2.39 41.84±0.74 36.00±0.83 31.33±0.41 32.11±0.39
EWC 75.25±0.78 60.80±2.20 59.62±0.31 64.24±1.97 52.08±0.83 41.55±0.85 38.22±0.50 42.52±0.58
REMIND 69.55±0.91 53.34±1.01 58.01±0.72 59.27±1.86 40.87±0.76 36.17±1.83 23.40±2.25 28.78±1.71
X-DER 74.34±0.40 62.31±2.28 57.05±3.76 62.89±2.71 52.80±1.61 43.73±0.86 41.94±0.57 44.90±1.04
ODDL 75.03±1.00 61.61±3.55 65.46±0.46 66.19±2.08 40.26±0.50 41.88±4.52 38.82±0.49 41.35±1.08
MEMO 73.21±0.49 62.47±3.38 59.26±0.90 62.01±1.17 40.60±1.11 39.87±0.46 23.41±1.63 32.74±2.11

EARL (Ours) 79.62±0.62 67.58±1.51 70.56±0.37 71.46±1.00 57.12±1.22 45.15±0.68 48.05±0.49 46.59±0.35

Methods
TinyImageNet ImageNet-200

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

ER 37.43±1.05 27.47±0.63 26.37±0.89 25.79±0.44 41.51±0.76 30.87±0.72 32.39±0.36 33.09±0.37
DER++ 38.05±1.07 25.41±0.50 31.04±0.67 27.68±0.77 43.20±0.31 34.06±0.50 35.22±0.26 37.88±0.97
ER-MIR 37.81±1.06 26.72±0.86 26.22±0.69 25.11±1.04 38.28±0.38 33.12±0.73 32.17±0.44 33.85±0.93
SCR 34.65±1.08 22.18±0.32 25.86±0.94 22.54±0.59 41.90±0.40 28.92±0.40 33.24±0.32 30.98±0.28
EWC 37.95±0.93 27.50±0.80 25.29±0.81 26.06±0.52 41.84±0.64 31.57±0.80 30.71±0.27 33.33±0.98
REMIND 28.37±0.13 27.68±0.45 10.19±0.60 14.90±1.49 39.25±0.93 31.98±0.84 30.23±0.62 33.98±0.09
X-DER 35.15±2.12 26.67±0.52 29.71±0.86 28.10±0.50 43.21±0.47 33.84±0.98 36.31±0.17 38.31±0.55
MEMO 27.36±0.61 27.57±0.52 10.82±1.23 18.03±1.36 41.55±0.23 34.19±1.47 32.54±0.39 36.11±1.06

EARL (Ours) 41.77±1.26 29.65±0.20 35.08±0.70 32.49±1.21 44.88±0.29 34.27±0.55 39.14±0.47 38.83±0.35

Table 1: Comparison of online CL methods on Disjoint and Gaussian Scheduled Setup for CIFAR10,
CIFAR100, TinyImageNet and ImageNet-200.

METHOD
CIFAR10 CIFAR100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

EARL (Ours) 78.61±0.72 66.01±2.26 69.62±0.19 70.91±1.97 57.42±1.24 44.60±0.65 48.19±0.61 46.10±0.26
(-) RC 77.78±0.52 65.52±1.63 68.37±0.10 70.17±1.08 56.28±1.40 44.29±1.04 47.05±0.71 46.07±0.52
(-) RC & PDT 74.77±0.77 61.10±3.12 65.60±0.25 67.39±0.78 52.91±1.05 41.08±0.60 44.34±0.55 44.45±0.48

Table 2: Ablation Study. RC and PDT refer to preparatory data training (Sec. 4.2) and the residual
correction (Sec. 4.3), respectively.

EARL uses the Greedy Balanced Sampling strategy (Prabhu et al., 2020). We describe the details
about hyperparameters in Sec. A.4 in Appendix, and the pseudocode of EARL in Sec. A.9 in Ap-
pendix for the sake of space.

5.2 RESULTS

We first compare the accuracy of the online continual learning methods, including EARL, and sum-
marize the results in Table 1. As shown in the table, EARL outperforms other baselines on all
benchmarks, both in disjoint and Gaussian-scheduled setups. In particular, high AAUC suggests that
EARL outperforms other methods for all the time that the data stream is provided to the model.

Furthermore, EARL does not use task boundary information during training, i.e., task-free, in con-
trast to EWC, X-DER, MEMO, and REMIND which use task-boundary information. Nevertheless,
EARL outperforms these methods even in the disjoint setup where utilizing task boundary informa-
tion is advantageous due to abrupt distribution shifts at the task boundaries.

5.3 ABLATION STUDY

We conducted an ablation study on the two components of EARL, preparatory data training, and
residual correction, and the results are summarized in Table 2. While both components contribute
to performance improvement, preparatory data training shows a larger gain in performance. Fig. 5
shows the cosine similarity between the output features of 50 randomly selected samples from the
test set of the novel class 4 and the classifier vectors wi. In baseline (a), the features of the new
class 4 are strongly biased towards the classifier vectors of the old classes (w1, w2, w3), rather than
w4. (c) When only residuals are used, there are many samples highly similar to w4 compared to the
baseline.

8

Under review as a conference paper at ICLR 2024

w0 w1 w2 w3 w4

f(x
) o

f c
la

ss
 4

 sa
m

pl
es

(a) baseline

w0 w1 w2 w3 w4

f(x
) o

f c
la

ss
 4

 sa
m

pl
es

(b) baseline + PDT

w0 w1 w2 w3 w4

f(x
) o

f c
la

ss
 4

 sa
m

pl
es

(c) baseline + RC

w0 w1 w2 w3 w4

f(x
) o

f c
la

ss
 4

 sa
m

pl
es

(d) baseline + PDT + RC

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Cosine similarity between the features f̂(x) for class 4 and the ETF classifier vectors wi

at the 50th iteration after the introduction of class 4 in the Gaussian Scheduled CIFAR-10 setup. As
we can see in the cyan highlighting box, EARL promotes the convergence of f̂(x) for class 4 toward
the ground truth classifier vector w4.

0 10k 20k 30k
of entered samples

0.0

0.2

0.4

0.6

0.8

1.0

co
sin

e
sim

ila
rit

y

Baseline
Baseline + Preparatory Data

Figure 6: Average of the maximum similarity
between the features of the most recently added
class’s samples and the classifier vectors of the old
classes. Baseline is a vanilla ETF model trained
only using episodic memory.

However, when adding incorrect residuals
caused by the bias problem, the similarity be-
tween w3 is higher compared to the baseline.
(b) When only preparatory data training is ap-
plied, the bias towards w1 and w2 classes is
significantly reduced compared to the baseline.
Fig. 6 shows the effect of preventing bias to-
ward existing classes in the last layer activa-
tion of newly arrived classes. (d) Using both
residual correction and preparatory data train-
ing shows a remarkable alignment with the
ground truth classifier w4. More detailed anal-
ysis of ablation results are in Sec. A.10.

Training with preparatory data, our methods
outperforms others by 2.7% ∼ 3.3% in Aauc

and 2.1% 4.4% in Alast. When combined with residual correction, we observed further gains
across all metrics in both disjoint and Gaussian-scheduled setups.

6 CONCLUSION

To better learn the online data in a continuous data stream without multiple epoch training, we
propose to induce neural collapse, which aligns last layer activations to the corresponding classifier
vectors in the representation space. Unlike in offline CL, it is challenging to induce the neural
collapse in online CL due to insufficient training epochs and continuously streamed new data. We
first observe that the bias of the new class towards existing classes slows the convergence of features
toward neural collapse.

To mitigate the bias, we propose synthesizing preparatory data for unseen classes by transforming
the samples of existing classes. Using the preparatory data for training , we accelerate the neural
collapse in online CL scenario. Additionally, we propose residual correction to resolve the remaining
discrepancy toward neural collapse at inference, which arises due to the continuous stream of new
data. In our empirical evaluations, the proposed methods outperform state-of-the-art online CL
methods in various datasets and setups, especially high performance on anytime inference.

Limitations and Future Work. Since our work uses ETF structure, it has an inherent limitation
that the number of possible classifier vectors in the ETF classifier is limited by the dimension of the
embedding space. Considering lifelong learning, where the number of new classes goes to infinity,
it is interesting to explore an idea of dynamically expanding the ETF structure so that the model can
continually learn the ever-increasing number of concepts in the real world.

9

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

We propose a better learning scheme for the online continual learning for realistic learning scenario.
While the authors do not explicitly aim for this, the increasing adoption of deep learning models
in real-world contexts with streaming data could potentially raise concerns such as inadvertently
introducing biases or discrimination. We note that we are committed to implementing all feasible
precautions to avert such consequences, as they are unequivocally contrary to our intentions.

REPRODUCIBILITY STATEMENT

We take reproducibility in deep learning very seriously and highlight some of the contents of the
manuscript that might help to reproduce our work. We will definitely release our implementation of
the proposed method in Sec. 4, the data splits and the baselines used in our experiments in Sec. 5.

REFERENCES

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. arXiv
preprint arXiv:1812.03596, 2018. 3, 5

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–
11263, 2019. 1, 2, 7

Soumya Banerjee, Vinay K Verma, Avideep Mukherjee, Deepak Gupta, Vinay P Namboodiri, and
Piyush Rai. Verse: Virtual-gradient aware streaming lifelong learning with anytime inference.
arXiv preprint arXiv:2309.08227, 2023. 3

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow mem-
ory: Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8218–8227, 2021. 2, 3, 7, 16

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 45(5):5497–5512, 2022. 2, 3, 7, 17

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020. 2, 7

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. arXiv
preprint arXiv:2104.05025, 2021. 6

Lucas Caccia, Jing Xu, Myle Ott, Marcaurelio Ranzato, and Ludovic Denoyer. On anytime learning
at macroscale. In Conference on Lifelong Learning Agents, pp. 165–182. PMLR, 2022. 2, 3, 7

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribu-
tion shifts: An empirical study with visual data. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8281–8290, 2021. 1, 3

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), pp. 532–547, 2018. 1

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020. 7

Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superpo-
sition of many models into one. Advances in neural information processing systems, 32, 2019.
3

10

Under review as a conference paper at ICLR 2024

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020. 15

Thang Doan, Seyed Iman Mirzadeh, and Mehrdad Farajtabar. Continual learning beyond a single
model. arXiv preprint arXiv:2202.09826, 2022. 3

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015. 15

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-
peeled model: Minority collapse in imbalanced training. Proceedings of the National Academy
of Sciences, 118(43):e2103091118, 2021. 1, 3, 4

Zeyu Feng, Chang Xu, and Dacheng Tao. Self-supervised representation learning by rotation fea-
ture decoupling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10364–10374, 2019. 6, 15

Yasir Ghunaim, Adel Bibi, Kumail Alhamoud, Motasem Alfarra, Hasan Abed Al Kader Hammoud,
Ameya Prabhu, Philip HS Torr, and Bernard Ghanem. Real-time evaluation in online continual
learning: A new paradigm. arXiv preprint arXiv:2302.01047, 2023. 2, 3

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018. 6, 15

Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind
your neural network to prevent catastrophic forgetting. In European Conference on Computer
Vision, pp. 466–483. Springer, 2020. 2, 7, 16

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016. 7

Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. An unconstrained layer-peeled
perspective on neural collapse. arXiv preprint arXiv:2110.02796, 2021. 1, 3

Haeyong Kang, Thang Vu, and Chang D Yoo. Learning imbalanced datasets with maximum margin
loss. In 2021 IEEE International Conference on Image Processing (ICIP), pp. 1269–1273. IEEE,
2021. 1

Chris Dongjoo Kim, Jinseo Jeong, Sangwoo Moon, and Gunhee Kim. Continual learning on noisy
data streams via self-purified replay. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 537–547, 2021. 3

Jun Kimata, Tomoya Nitta, and Toru Tamaki. Objectmix: Data augmentation by copy-pasting ob-
jects in videos for action recognition. In Proceedings of the 4th ACM International Conference
on Multimedia in Asia, pp. 1–7, 2022. 15

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 15

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017. 2, 3, 7

Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. Online continual learning on class
incremental blurry task configuration with anytime inference. In ICLR, 2022. 1, 2, 3, 4, 5, 7, 16

Sanghyeok Lee, Minkyu Jeon, Injae Kim, Yunyang Xiong, and Hyunwoo J Kim. Sagemix: Saliency-
guided mixup for point clouds. Advances in Neural Information Processing Systems, 35:23580–
23592, 2022. 15

11

Under review as a conference paper at ICLR 2024

Timothée Lesort, Andrei Stoian, and David Filliat. Regularization shortcomings for continual learn-
ing. arXiv preprint arXiv:1912.03049, 2019. 2

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017. 2

Jianfeng Lu and Stefan Steinerberger. Neural collapse with cross-entropy loss. arXiv preprint
arXiv:2012.08465, 2020. 1, 3

Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting
the nearest class mean classifier in online class-incremental continual learning. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3589–3599,
2021. 5, 7

Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features. arXiv
preprint arXiv:2011.11619, 2020. 1, 3

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020. 1, 3, 4, 5

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019. 7

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay for
real-time continual learning. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 10203–10209. IEEE, 2020. 2, 3

Can Peng, Kun Zhao, Tianren Wang, Meng Li, and Brian C Lovell. Few-shot class-incremental
learning from an open-set perspective. In European Conference on Computer Vision, pp. 382–
397. Springer, 2022. 7

Jary Pomponi, Simone Scardapane, and Aurelio Uncini. Continual learning with invertible genera-
tive models. Neural Networks, 164:606–616, 2023. 2

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp. 524–540. Springer, 2020. 8, 16

Akshay Rangamani and Andrzej Banburski-Fahey. Neural collapse in deep homogeneous classifiers
and the role of weight decay. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4243–4247. IEEE, 2022. 1, 3

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017. 1

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019. 7

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016. 2

Murray Shanahan, Christos Kaplanis, and Jovana Mitrović. Encoders and ensembles for task-free
continual learning. arXiv preprint arXiv:2105.13327, 2021. 7

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017. 2

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-
theoretic online memory selection for continual learning. arXiv preprint arXiv:2204.04763, 2022.
3

12

Under review as a conference paper at ICLR 2024

Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural col-
lapse. In International Conference on Machine Learning, pp. 21478–21505. PMLR, 2022. 1,
3

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149,
2022. 7

Stephan Wojtowytsch et al. On the emergence of simplex symmetry in the final and penultimate
layers of neural network classifiers. arXiv preprint arXiv:2012.05420, 2020. 1, 3

Ou Wu. Rethinking class imbalance in machine learning. arXiv preprint arXiv:2305.03900, 2023.
1

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 374–382, 2019. 1, 2, 3

Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing
neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep
neural network? Advances in Neural Information Processing Systems, 35:37991–38002, 2022. 1,
3, 4, 16

Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip Torr, and Dacheng Tao. Neural collapse
inspired feature-classifier alignment for few-shot class incremental learning. In ICLR, 2023a. 1,
3, 4, 5, 7, 16, 18

Zitong Yang, Michal Lukasik, Vaishnavh Nagarajan, Zonglin Li, Ankit Singh Rawat, Manzil Zaheer,
Aditya Krishna Menon, and Sanjiv Kumar. Resmem: Learn what you can and memorize the rest.
arXiv preprint arXiv:2302.01576, 2023b. 7, 16

Fei Ye and Adrian G Bors. Lifelong twin generative adversarial networks. In 2021 IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 1289–1293. IEEE, 2021. 3

Fei Ye and Adrian G Bors. Lifelong generative modelling using dynamic expansion graph model. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8857–8865, 2022a.
3

Fei Ye and Adrian G Bors. Task-free continual learning via online discrepancy distance learning.
Advances in Neural Information Processing Systems, 35:23675–23688, 2022b. 3, 7

Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection for
rehearsal-based continual learning. arXiv preprint arXiv:2106.01085, 2021. 2, 3

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019. 15

Bowen Zhao, Chen Chen, Qi Ju, and ShuTao Xia. Energy aligning for biased models. arXiv preprint
arXiv:2106.03343, 2021. 1

Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, and Jiaya
Jia. Understanding imbalanced semantic segmentation through neural collapse. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19550–19560, 2023.
1, 4

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. arXiv preprint arXiv:2205.13218, 2022a. 2, 3, 7,
17

Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
landscape of neural collapse under mse loss: Global optimality with unconstrained features. In
International Conference on Machine Learning, pp. 27179–27202. PMLR, 2022b. 1, 3

13

Under review as a conference paper at ICLR 2024

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A ge-
ometric analysis of neural collapse with unconstrained features. Advances in Neural Information
Processing Systems, 34:29820–29834, 2021. 1, 3, 4

14

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROBLEM STATEMENT OF ONLINE CONTINUAL LEARNING

In continual learning (CL), a sequence of tasks T = (T1, T2, · · · ,) is given, where each task Ti is
a dataset with training data Di = {(x(i)

1 , y
(i)
1), (x

(i)
2 , y

(i)
2), · · · , }. Starting from the initial model

θ0, an offline CL algorithm ACL obtains θk, the model for task k, from previous model θk−1 and
current task data Dk as θk = ACL(θk−1, Dk). In addition, many CL setups allow the use of episodic
memory Mk, which is a limited-size subset of training data from previous tasks, i.e., θk,Mk =
ACL(θk−1,Mk−1, Dk). The objective is to minimize the error of θk on all observed tasks {Ti}ki=1.

Unlike offline CL where the whole task data Dk is given as the input, in an online CL, the input is
provided as a stream of samples (x(k)

1 , y
(k)
1), (x

(k)
2 , y

(k)
2), · · · . Thus, an online CL algorithm AOCL is

defined as: θk,t,Mk,t = AOCL

(
θk,t−1,Mk,t−1, (x

(k)
t , y

(k)
t)

)
, with the same objective of minimize

the error of θk,t on {Ti}ki=1. Since the model doesn’t have access to (x
(k)
1 , y

(k)
1), · · · , (x(k)

t−1, y
(k)
t−1) ∈

Dk at time t, the multi-epoch training with Dk is not possible in online CL, which some previous
works use as a definition of online CL.

A.2 ANALYSIS ABOUT HARD TRANSFORMATION

Considering various hard transformations such as rotation by 90, 180, and 270 degrees (Feng et al.,
2019; Gidaris et al., 2018), patch permutation (Doersch et al., 2015), and small mixing patches
using CutMix (Yun et al., 2019), we choose to use rotation 90, 180, and 270 degrees as the hard
transform set T , because the rotation transformation is simple to implement, widely applicable from
low- to high-resolution images, and also outperforms other transformations on our empirical eval-
uations. On the contrary, patch permutation or small mixing patches could cause discontinuities at
the boundary of patches (Kimata et al., 2022; Lee et al., 2022), leading to loss of image features.
Performance comparison of hard transformations is in Tab. 3.

Hard Transformation Gaussian-Scheduled Disjoint
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Patch Permutation 66.37±0.36 69.04±1.39 75.34±0.88 63.73±2.05
Hard Cutmix 65.26±0.22 64.48±1.07 72.86±0.13 56.56±3.25

Gaussian noise 64.83±0.23 66.97±1.40 74.18±0.22 63.32±1.52
Rotation 69.52±0.13 70.28±1.77 77.86±0.71 69.50±1.94

Table 3: Comparison of various hard transformations to obtain preparatory data on the Gaussian
Scheduled setup in CIFAR-10

A.3 DETAILS ABOUT EXPERIMENT SETUP

This paper focuses on online class-incremental learning in two types of setups: Disjoint and Gaus-
sian scheduled. Disjoint setup corresponds to a setup of which each class is assigned to a certain
task. Each task consists of equal number of classes, randomly mixed with each other. Gaussian
scheduled setup, on the other hand, is arranged so that each class follows a Gaussian distribution
N (µ, σ) overlapping one another. Each class manifests a single mode, appearing at different time
periods with equal intervals from the preceding and succeeding class. Remarkably, this setup is a
boundary-free setup, bearing in mind distribution shifts are made not just at task boundaries in the
real world. For our experiments, we regulated σ to be 0.1 for comprehensiveness.

A.4 HYPERPARAMETERS.

For all methods, we use Adam optimizer (Kingma & Ba, 2014) with learning rate (LR) of 0.00003
and constant LR scheduler. For data augmentation, we use RandAugment (Cubuk et al., 2020). For

15

Under review as a conference paper at ICLR 2024

hyperparameters such as online iteration, memory size, and the number of tasks for each dataset,
we follow prior works (Prabhu et al., 2020; Koh et al., 2022; Bang et al., 2021). For the number of
online iterations and memory size, we use 1, 3, 3, and 0.25, memory sizes of 500, 2,000, 4,000, and
4,000 for the CIFAR-10, CIFAR-100, TinyImageNet, and ImageNet-200 datasets, respectively. To
ensure that our proposed method remains data-agnostic, we use the following hyperparameters for
all datasets: cp = 4, α = 2, k = 25, and τ = 0.9.

To ensure a fair comparison among methods, we use the same batch size across all methods. Note
that the number of preparatory data is included in the batch size for our method, i.e., batch size =
the number of retrieved samples from memory + the number of preparatory data.

A.5 DETAILS ABOUT DOT-REGRESSION LOSS.

In the CE loss, the gradient of the last-layer feature can be divided into a ‘pull’ term that attracts
features of the same class toward their corresponding classifier vector and a ‘push’ term that pushes
them away from the classifier vectors of different classes. This allows all classes to be maximally
and equally separated. When using a fixed ETF classifier, since the classifier is already optimally
fixed, the pull term, which pulls towards the corresponding classifier vector, always works with the
correct gradient (Yang et al., 2022). On the other hand, the push term, which pushes away from
the classifier vectors of different classes, may result in incorrect gradients. Hence, a dot-regression
(DR) loss has been proposed, which has a gradient similar to the pull term of the CE loss, defined
as:

LDR(f̂(x), WETF) =
1

2

(
wyi f̂(x)− 1

)2

, f̂(x) = f(x)/||f(x)||, (6)

where hi is last layer feature representation xi, yi is label of input xi, and wy refers to classifier
vector in WETF for class yi. Previous research revealed DR loss performs better than CE loss,
especially in imbalanced data distributions (Yang et al., 2022; 2023a).

A.6 COMPARISON BETWEEN RESMEM AND RESIDUAL ADDITION OF OURS

There are several differences between Resmem and our residual correction approach. First, in con-
trast to the two-stage training-evaluation assumption made in Resmem (Yang et al., 2023b), we took
into account that inference queries can be received at any time during training in online CL. Sec-
ond, due to memory constraints in online CL, access is limited to data stored in episodic memory.
Therefore, considering memory constraints, only nc pairs of (ĥx, r) per class are stored in feature
memory, where nc = M/∥C∥. C refers to the set of learned classes, and M refers to the size of
episodic memory. Finally, memory storage of discarded (ĥx, r) pairs can bring about utilization of
outdated residuals, as the model is continuously updated. To mitigate the pair outdated problem, we
maintained memory as a queue to ensure that (ĥx, r) pairs from the most recent training batch data
were saved.

A.7 IMPLEMENTATION OF BASELINES

Most of the baselines took multiepoch training for granted. In order to conduct unbiased compar-
isons with our proposed method, as explained below, we modified these methods to a streaming
manner for online CL implementation and, in response, made some other considerable, necessary
modifications.

REMIND. Other than adjusting REMIND (Hayes et al., 2020) base initialization to an online
streaming manner, we facilitated several transformations. As depicted in Table 4, in online CL, it is
not necessary to have layers fixed as much as in offline learning. It is rather beneficial to minimize
the frozen layers and have sufficient layers fine-tuned for additional classes to compensate the inad-
equate number of training passes in training the earlier layers during base initialization. We studied
the performance on CIFAR10 and CIFAR100 as a function of number of frozen layers and revealed
that six (3 blocks) is the optimum number for ResNet-18. Compared to the original seven layer
fixation after an offline base initialization, REMIND performed comparatively well when frozen
until the sixth layer in online CL, despite the decrease in the quantity of stored features because of

16

Under review as a conference paper at ICLR 2024

the enlarged sizes of stored features. With respect to the hyperparameters used in REMIND, such
as the size of the codebook and the number of codebooks for product quantization, we performed
additional hyperparameter-search experiments with CIFAR100, as shown in Table 5, and carried out
the obtained hyperparameter in the remaining datasets.

Lastly, for small-sized datasets, instead of utilizing pretrained ImageNet weight, we increased the
base initialization sample proportion from 10 percent to 60 percent of total samples. Acknowledging
10 percent is not enough for lower-level layers to represent highly transferable features, especially
in an online CL setting, we enlarged the number of base initialization for CIFAR10, CIFAR100, and
TinyImageNet. However, since ImageNet was originally experimented without pretrained weight,
for ImageNet-200, we followed the same setting with 10 percent base initialization samples and
seven layers frozen after baseinitialization.

Frozen Layers
CIFAR10 CIFAR100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

4 Layers 66.63±1.24 46.24±0.12 54.55±0.71 45.56±1.54 38.73±0.27 30.19±0.66 23.76±0.86 26.94±0.37
5 Layers 70.11±0.66 51.01±0.79 56.47±0.96 52.00±1.94 41.87±0.05 38.81±0.41 24.79±1.73 32.12±2.81
6 Layers 69.55±0.91 47.28±3.92 57.15±0.71 53.40±0.70 41.92±0.06 37.64±1.09 25.56±1.10 34.08±1.02
7 Layers 68.59±0.10 53.71±2.27 55.37±0.60 52.53±1.98 40.52±0.17 37.42±0.81 23.94±1.30 33.28±1.43

Table 4: REMIND performance as a function of number of frozen layers in ResNet-18 with CI-
FAR10 and CIFAR100. Rather than freezing all the layers except the last layer (7 Layers), continu-
ously updating the last two layers and fixing the rest (6 Layers) shows the best performance due to
limitation of online CL.

♯ of Codebooks
CIFAR100

Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

8 41.07±0.27 36.97±0.27 25.17±1.02 34.14±1.18
16 41.84±0.29 36.48±0.34 25.37±0.99 33.30±0.26
32 41.92±0.06 37.64±1.09 25.56±1.10 34.08±1.02
64 40.13±0.15 33.50±0.46 24.39±0.85 29.48±0.04

Codebook Size
CIFAR100

Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

256 41.92±0.06 37.64±1.09 25.56±1.10 34.08±1.02
512 41.48±0.19 36.98±0.51 25.85±1.39 33.01±1.99

1024 41.28±0.18 36.48±0.34 25.13±0.90 31.83±0.19
2048 41.11±0.21 36.10±0.33 25.05±0.90 31.33±0.11

Table 5: REMIND performance as a function of different codebook sizes and number of codebooks
with CIFAR100. Original hyperparameters (codebook size: 256, number of codebooks: 32) con-
sistently show the best performance in online CL setting. The same hyperparameters were used
uniformly for all datasets.

MEMO. MEMO (Zhou et al., 2022a), a block-expanding model, originally retrieves exemplars,
which have a comparatively short distance from the corresponding class mean feature, at every task
boundary and train them along with current session data though multiepoch training. In online CL,
the model is incapable of accessing all the data for the current session, and requires to continuously
update current session data to the memory. This influences both the class mean features of samples
in the memory and the exemplars to retrieve from the memory. Therefore, this herding algorithm
couldn’t be followed as it is, as retrieving samples at every iteration with such tactic would be
time-consuming and high-computational. Thus, this retrieval method was modified to a simple
class-balanced method. In addition, the model was divided into generalized and specialized blocks,
according to the REMIND architecture, as we perceived it would be the ideal architecture for online
learning.

ODDL. ODDL has been primarily evaluated on datasets up to CIFAR100. Handling datasets
beyond TinyImageNet, which contain higher complexity than CIFAR dataset, presents challenges
in terms of reconstruction using VAEs. To train a VAE from scratch on a large dataset, substantial
computational resources and time are required. In prior research as well, due to these challenges,
limited improvement in performance existed on large datasets (Boschini et al., 2022). Thus, for our
implementation, we did not conduct experiments on large datasets. In addition, out of the many
strategies provided by OODL, we chose random selection as the sample selection strategy.

17

Under review as a conference paper at ICLR 2024

Algorithm 1 Training Phase

1: Input model fθ, MemoryM, Residual MemoryMRES, Training data stream D, ETF classifier
WETF, Hard transformationRr

2: for (x, y) ∈ D do ▷ Sample arrives from training data stream D
3: Update M ← ClassBalancedSampler (M, (x, y)) ▷ Update memory
4: Sample (X,Y)← RandomRetrieval(M) ▷ Get batch (X,Y) from memory
5: Sample (X ′, Y ′)← RandomRetrieval(M) ▷ Get batch (X ′, Y ′) to make preparatory data
6: (Xp, Yp)← (Rr(X

′, Y ′)) ▷ Hard transformation for preparatory data training
7: r = WETFy − fθ(xi) ▷ Calculate Residual
8: Update MRES ← ((r, fθ(x)) ▷ Update residual memory
9: L(X,Y) = LDR(f̂θ(X),WETFy) + LDR(f̂θ(Xp),WETFp) ▷ Calculate dot-regression loss

10: Update θ ← θ − µ · ∇θL(X,Y) ▷ Update model
11: end for
12: Output fθ

A.8 COMPARISON BETWEEN NC-FSCIL AND BASELINE

NC-FSCIL (Yang et al., 2023a) is a recently proposed offline CL method that attempts to induce
neural collapse in few-shot class-incremental learning (FSCIL), a class-incremental setting with
a few novel classes and training data in each incremental session. NC-FSCIL pre-allocates the
optimal, fixed ETF classifier to alleviate the misalignment between the classifier vector w and the
features of the last layer f̂(x) for input x, incurred by the imbalanced data distribution of the novel
classes. With a backbone network and a projection layer, NC-FSCIL freezes the backbone network
after training the base session and further fine-tunes the projection layer in the following incremental
sessions, supported with a replay memory of the mean features of each learned class in previous
sessions. Although our proposed method also utilizes a fixed ETF classifier, our proposed method
has an overall disparate framework and mechanism. The comparative experiment between NC-
FSCIL and the baseline of our method is shown in Table 6. The baseline pertains to our proposed
approach without the incorporation of preparatory data training and residual correction.

Considering that our method is neither offline CL nor a few-shot class incremental learning, in or-
der to endorse a fair comparison with our proposed method, two modifications have been made to
NC-FSCIL. The first modification was the number of frozen layers. We adopted the same optimal
freezing configuration that achieved the best performance with REMIND, depicted in Table 4. The
second adjustment on NC-FSCIL was on the episodic memory. In online learning, the mean features
of each class stored in the memory will be continuously altered, due constant updates on the mem-
ory. Also, in a non FSCIL setting, there is a vast amount of samples per class in the each dataset.
Correspondingly, storing class-mean features in the buffer memory would rather impede the perfor-
mance, and therefore features rather than class-mean features should be both stored and retrieved for
replay. In addition to that, to recompense the increase in necessary memory size for feature storage,
product quantization was exploited.

Methods
CIFAR10 CIFAR100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

NC-FSCIL 68.09±0.69 48.05±1.69 53.12±0.77 46.11±0.36 39.54±0.79 34.83±1.27 30.91±1.46 35.73±1.13
Baseline 75.27±0.77 62.10±4.12 65.8±0.25 67.79±0.78 52.91±1.05 41.08±0.60 33.34±0.55 44.45±0.48

Table 6: Quantization comparison between NC-FSCIL and baseline of our method on CIFAR10 and
CIFAR100 dataset. Despite NC-FSCIL’s high performance in FSCIL, its approach is incompetent
in a conventional, online CL setting compared to our baseline.

A.9 PSEUDOCODE FOR THE OUR METHOD

Algorithm 1 and Algorithm 2 provides detailed pseudocode for EARL.

18

Under review as a conference paper at ICLR 2024

Algorithm 2 Inference Phase

1: Input model fθ, MemoryM, Residual MemoryMRES, Testing data D, ETF classifier WETF,
number of nearest neighbors k

2: for (x, y) ∈ D do ▷ Sample arrives from testing data D
3: (ri, ĥi)←MRES ▷ Get residual and features from residual memory

4: ĥk−1
i=0 ← KNN

(
fθ(x)− ĥi

)
▷ Calculate k nearest neighbor features

5: r =
∑k−1

i=0 siri ▷ Calculate residual-correcting term
6: fθ(x)corrected ← fθ(x) + r ▷ Add residual on features
7: acc = DotRegresssion(fθ(x)corrected ∗WETF, y) ▷ Calculate accuracy
8: end for
9: Output acc

(a) wrong residual added due to bias (b) correct residual added by addressing bias problem

Figure 7: Without preparatory data training and relying solely on residual correction, incorrect
residuals can be added due to bias, which can potentially lead to decreased performance. On the
other hand, the combination of preparatory data training and joint training leads to the addition of
correct residuals by addressing the bias problem.

A.10 DETAILED ANALYSIS OF ABLATION RESULTS

Note that exclusively relying on residual correction without the training of preparatory data may
result in the addition of incorrect residuals due to bias problem, as illustrated in Fig. 7-(a). The bias
in CL causes the features of novel classes and old classes to overlap. When the features of multiple
classes are clustered together, as in Fig. 4-(a), residuals of one class can be added to the residual-
correcting term of other classes in the cluster, since we select the residuals using k nearest-neighbors
of corresponding features. Thus, the residuals of old classes are often added to novel class samples
and vice versa, hurting the accuracy of both old and novel classes.

Therefore, the use of preparatory data not only accelerates the convergence of ETF during training,
but also promotes accurate residual addition during inference. In conclusion, the combination of
residual correction and preparatory data training effectively align the model output with the corre-
sponding ETF classifier, as demonstrated in Fig. 7-(b).

A.11 EMPERICAL METRIC FOR NEURAL COLLAPSE

(NC1) Collapse of Variability: The last layer feature output of each data point collapses toward the
class mean feature of its respective class. In other words, hk,i, last layer feature of sample i in class
k, collapse to µk =

∑nk

i=1 hk,i for ∀k ∈ [1,K] where nk is the number of samples for class k. By
considering within-class covariance and between-class covariance

ΣW =
1

K

K∑
k=1

1

nk
(

nk∑
i=1

(hk,i − µk)), ΣB =
1

K

K∑
k=1

(µk − µG) (7)

where µG =
∑K

k=1 µk, empirical variability can be measured as

NC1 :=
1

K
trace(ΣWΣ†

B) (8)

19

Under review as a conference paper at ICLR 2024

(NC2) Convergence to simplex equiangular tight frame (ETF): Class means µk(k ∈ [1,K])
centered by the global mean µG converge to vertices of a simplex ETF structure, i.e., matrix M =
[m1 m2 · · · mK] where mk = µk−µG

∥µk−µG∥2 satisfies the following equation:

MMT =
1

K − 1
(KIk − 1K1T

K) (9)

The degree of convergence can be measured using:

MMT

∥MMT ∥F
− 1√

K − 1
(IK −

1

K
1K1T

K) (10)

(NC3) Convergence to self-duality: Classifier W converges to the simplex ETF M formed by
recentered feature mean, and during this convergence, the classifier vector wk aligns with their
corresponding feature mean mk where wk means classifier weight for class k, k ∈ [1,K].

M
∥M∥F

=
W
∥W∥F

(11)

Duality can be measured by measuring:

WMT

∥WMT ∥F
− 1√

K − 1
(IK −

1

K
1K1T

K) (12)

20

