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Abstract
Diagnosis of a clinical condition can help med-001
ical professionals save time in clinical decision-002
making and prevent overlooking risks. There-003
fore we explore the problem of clinical text004
interpretability using free-text medical notes005
recorded in electronic health records (EHR).006
MIMIC-III is a de-identified EHR database007
containing observations from over 40,000 pa-008
tients in critical care units. Since text corpus009
is unstructured and in non-database table for-010
mat, existing machine learning models may011
have ineffective interpretability; however, inter-012
pretability is often desirable for clinical diag-013
nosis. Hence, in this paper, we propose a text014
mining and pattern discovery solution to dis-015
cover strong association patterns from patient016
discharge summaries and the code of interna-017
tional classification of diseases (ICD9 code).018
The proposed approach offers a straightforward019
interpretation of the underlying relation of pa-020
tient characteristics in an unsupervised machine021
learning setting. The clustering results outper-022
form the baseline clustering algorithm and are023
comparable to baseline supervised methods.024

1 Introduction025

If Machine Learning (ML) is to play a significant026

role in supporting clinical decision making, then027

it is essential to gain clinician trust (Kim, 2021).028

Interpretability is frequently defined as the degree029

to which a human can understand the cause and030

reason of ML model decisions. The higher the in-031

terpretability of a model implies the better the com-032

prehension and explanation of the problem, leading033

to more accurate and reliable predictions. Most ML034

algorithms today concentrate on prediction power035

using general-purpose learning algorithms on large036

and complex data.037

However, even though some ML models can also038

provide various degrees of interpretability, they039

generally sacrifice interpretability for predictive040

power (Ghannam and Techtmann, 2021). There-041

fore, in this study, we focus on interpreting the042

diagnostic characteristics/patterns from the elec- 043

tronic health records (EHR). 044

An EHR is a digital collection of medical infor- 045

mation about a person, which includes information 046

about a patient’s health history, such as diagnoses, 047

medicines, tests, allergies, immunizations, and 048

treatment plans. The MIMIC-III (Medical Infor- 049

mation Mart of Intensive Care) is an openly avail- 050

able extensive database comprising de-identified 051

information relating to patients admitted to critical 052

care units at a large tertiary care hospital (Johnson 053

et al., 2016). Data primarily stores both structured 054

(e.g. MIMIC-III medications, laboratory results 055

are stored in the table with columns as features 056

and rows as records) and unstructured data (e.g. 057

MIMIC-III clinical notes, discharge summaries are 058

stored in the format of free text). The patients’ 059

information (e.g., discharge summary) is highly un- 060

structured, thus making interpreting it a challenge. 061

To address the issue of ML Interpretability, we 062

explore a two-step algorithm, combining text min- 063

ing and pattern discovery, to discover strong asso- 064

ciation patterns from patient profiles and discharge 065

summaries to reveal their relationships with the 066

diagnosed disease (ICD9 code, which is the code 067

of international classification of diseases). The 068

first step is transforming free text into a struc- 069

tured dataset formatting as a table with columns 070

as features and rows as records. The second 071

step is discovering patterns and grouping patients’ 072

records based on patterns in an unsupervised man- 073

ner. The output of the proposed system is an inter- 074

pretable Knowledge Base, which can link the pat- 075

tern groups, discovered characteristics of records, 076

and patients’ records together to shows “what” (dis- 077

ease), “who/where” (tracking patient records back) 078

and “why” (discovered patterns) to interpret clini- 079

cal notes for better clinical decision making. 080

The contributions of the paper are three-fold: 1) 081

combining NLP and pattern discovery algorithm 082

to interpret free-text clinical notes; 2) Grouping 083
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records based on the discovered associations re-084

vealing characteristics of records via unsupervised085

learning ; 3) Generating an all-in-one knowledge086

base to link knowledge, pattern, and records to-087

gether for interpretability.088

To evaluate the performance of the proposed al-089

gorithm, we present both a knowledge base with090

discovered patterns and clustering results. To verify091

the effectiveness of discovered patterns, we inter-092

pret patterns from a clinical perspective to discuss093

the interpretability of output. As for the clustering094

results algorithm, although the process of cluster-095

ing records does not require class label information,096

the results can be evaluated by balanced accuracy097

and weighted F1- score using the presumed class098

labels (ICD9 code) as ground truth.099

2 Related Work100

2.1 Clinical Data Analysis with101

Interpretability102

Due to the complex nature of clinical language,103

clinical texts were hard to interpret. Most of the104

previous works on clinical data analysis were based105

on structured data, which lack complementary in-106

formation such as lab reports or patient history.107

Clinical expert judgments may thus require infor-108

mation that are available only in unstructured data109

(e.g. clinical texts) (Culliton et al., 2017).110

Latent Dirichlet Allocation (LDA) topic mod-111

eling (Blei et al., 2003) has been applied to the112

unstructured notes of EHRs to predict clinical out-113

comes (Bright et al., 2021; Huang et al., 2015;114

Wang et al., 2020). In addition, Ghassemi et al.115

(2014) showed latent topic features were more pre-116

dictive than structured features, and a combination117

of the two performs best.118

Topic features cluster terms into a small set of119

semantically related groups, which is proved useful120

in text classification and categorizing clinical re-121

ports (Chen et al., 2019; Pavlinek and Podgorelec,122

2017; Kayi et al., 2013). For example, Horng et al.123

(2017) combined structured and unstructured data124

for sepsis prediction using text modeling involving125

topic models. Further, Gangavarapu et al. (2020)126

proposed a vector space and topic modeling-based127

approach applied to structure the raw clinical data128

by exploiting the data in the nursing notes. Hence,129

in this study, we use topic modeling to transform130

free text into a table with features and records.131

In addition, with the recent development in neu-132

ral networks, variants of pre-trained BERT (Devlin133

et al., 2018) have widely been applied to clinical 134

domains (e.g. BioBERT (Lee et al., 2020), Clin- 135

icalBERT (Alsentzer et al., 2019)). In addition, 136

Feng et al. (2020) used pre-trained BERT-based 137

models as static feature extractors and showed that 138

variants of BERT performed better with Sepsis 139

than Mortality prediction tasks however Wallace 140

et al. (2019) showed that BERT fails to interpret 141

life-threatening important numerical values such 142

as body temperature in the clinical text. In our 143

study, we discretize numerical values into discrete 144

values to make the proposed algorithm can han- 145

dle mixed-mode dataset. Further, Van Aken et al. 146

(2021) showed that medical-specific negations can 147

be misinterpreted by the pre-trained language mod- 148

els such as BERT (e.g. "abstinence from alcohol" 149

becomes "alcohol dependence syndrome"). 150

2.2 Pattern Discovery 151

To tackle the interpretability of clinical data anal- 152

ysis, many machine learning algorithms were pro- 153

posed. For example, the Decision Tree can generate 154

a rule set between features and class labels for inter- 155

pretable prediction, but the rules need to be trained 156

relying on labeled classes. In addition, Frequent 157

Pattern Mining (Naulaerts et al., 2015) (Han et al., 158

2007) can discover knowledge in the form of asso- 159

ciation rules from relational data (Han et al., 2007) 160

(Van Aken et al., 2021) but a manually threshold 161

need to be set for calculated likelihood, support or 162

confidence (Van Aken et al., 2021). And the discov- 163

ered patterns may be overwhelmed (Wong and Li, 164

2008) with overlapping/redundant patterns, which 165

requires some post analysis approaches, such pat- 166

tern pruning and pattern summarizing (Wong and 167

Li, 2008). 168

Hence, in this study, we applied the pattern dis- 169

covery and disentanglement (PDD) algorithm, pro- 170

posed in our previous research work, to discover 171

simple patterns with statistical support to reveal the 172

association between extracted features with class 173

labels without further pattern pruning or pattern 174

summarization. The output patterns are well orga- 175

nized, more clear and easier to be comprehended 176

in a knowledge base. 177

3 Material:MIMIC-III Data Description 178

MIMIC-III is a de-identified relational clinical 179

database containing observations from over 40,000 180

patients in critical care units of the Beth Israel Dea- 181

coness Medical Center between 2001 and 2012 182
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(Johnson et al., 2016). While MIMIC-III con-183

sists of several tabular and time-series datasets, our184

present study utilizes clinical notes, found in the185

NOTEEVENTS table, and diagnoses, found in the186

DIAGNOSES_ICD table.187

The former table, NOTEEVENTS, can provide188

us with the medical notes as text for a detailed189

description of medical center visits for each pa-190

tient. The clinical notes contain an internal semi-191

structured format, which are subdivided into sev-192

eral components, such as: chief complaint, medi-193

cal history, social history, and discharge informa-194

tion. Each observation refers to a unique hospital195

stay. The data are related to other tables through196

unique patient identifiers, hospital stay identifiers,197

and caregiver identifiers. The latter table, DIAG-198

NOSES_ICD, can provide us with the diagnosis of199

each patient based on ICD9 codes, which are used200

as labels to be predicted, and linked with clinical201

notes.202

In summary, our final data contains 11,537203

rows/records with the top four classes/diseases rep-204

resented by ICD9 code. The ICD9 codes are de-205

fined as follows: 414 - chronic ischemic heart dis-206

ease, 038 - septicemia, 410 - acute myocardial in-207

farction, and 424 - diseases of the endocardium.208

The four classes were slightly imbalanced, with209

3502, 3184, 3175, and 1676 observations, respec-210

tively.211

4 Methodology212

In this section, we present the proposed methodol-213

ogy applied to the MIMIC-III dataset. The algo-214

rithm proposes tasks in three main steps: prepro-215

cessing, feature extraction, and pattern discovery.216

The overview of the proposed algorithm is shown217

in Figure 1.218

4.1 Preprocessing219

We first apply a preprocessing pipeline proposed220

by (Van Aken et al., 2021) to clean and merge the221

dataset.222

We select the NOTEEVENTS (containing the223

unstructured text) and DIAGNOSES_ICD tables224

from the MIMIC-III database. The selected records225

contain clinical notes of patients, diagnoses, proce-226

dures, and ICD9 codes with admission ID columns227

acting as a link for all the tables. As each admission228

often had multiple diagnoses, we filter the data by229

only considering the highest priority diagnosis as230

the label to be predicted. We then trim the data to231

the top four most common ICD9 codes. 232

After retaining these approximate 11,000 text 233

records, we apply regular expressions to remove 234

invalid characters and common stop words as well 235

as words under three characters. We conform every 236

remaining letter to lowercase and apply lemmati- 237

zation. Finally, we remove a custom list of stop 238

words that are ubiquitous among all text records. 239

Then, we process the text into a format suitable 240

to be passed as a corpus (embedded lists). A dic- 241

tionary, or key-value pair, is created from the to- 242

kens that were derived from our corpus of cleaned 243

words. 244

4.2 Feature Extraction 245

Topic modelling (Hamed Jelodar and Zhao, 2018) 246

is described as a method for finding a group of 247

words (i.e topic) from a collection of documents 248

that best represents the information in the collec- 249

tion. Hence, we extract features from the clean 250

dataset using topic modelling the value of the fea- 251

tures represented by the probabilities of topics oc- 252

curring in the records. Labels are then merged with 253

the features for unsupervised exploration; in this 254

case, the label is the ICD9 code - the diagnostic 255

code indicating categories of disease. We use LDA 256

(Latent Dirichlet Allocation) for the topic model 257

because it identifies topics best describing distinct 258

subsets of documents within a corpus (Hamed Jelo- 259

dar and Zhao, 2018). 260

To determine the ideal number of topics, we 261

choose the optimal number of topics by comput- 262

ing coherence of the topic cluster instance (Röder 263

et al., 2015). We find that the coherence score 264

peaks when the number of topics is 5, 20, and 30 265

- and therefore we create topic models with those 266

respective parameters. The output of our coherence 267

scores is shown as Figure 2. 268

4.3 Pattern Discovery and Disentanglement 269

After preprocessing and extracting features from 270

the text, the dataset has been transformed into a 271

structured table of patients’ records in rows and fea- 272

tures in columns, which is represented as a M ×N 273

matrix, where M represents the number of patients’ 274

records and N represents the number of extracted 275

features 1. 276

1In pattern discovery, we use the term attribute instead of
feature.
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Figure 1: The overview of the proposed algorithm

Figure 2: Optimal number of topics by coherence of the
topic cluster

4.3.1 Discretize Numerical Feature Values277

To detect event-based patterns, we convert the val-278

ues of numerical features into categorical features279

by using the Equal Frequency discretization which280

distributes the values into equal size bins. so that281

numerical feature values are converted into discrete282

values referred to as “feature value” (meaning the283

discrete value for that feature). To be consistent284

with our existing work in PDD (Wong et al., 2021)285

we use the term Attribute Value (AV) instead.286

4.3.2 Association Disentanglement287

In order to measure the association between a pair288

of AVs (i.e. certain values of one attribute co-289

occurs with the value of another attribute), we290

use the statistical measure of adjusted standard-291

ized residual, abbreviated by SR, to represent the292

statistical weights of the AV pair, which is denoted293

as SR(AV1 ↔ AV2) (shorten as SR(AV12)) and294

calculated by Eqn. (1) below.295

SR(AV12) =
Occ(AV12)− Exp(AV12)√

Exp(AV12)
296

×(1− Occ(AV1)

T

Occ(AV2)

T
) 297

(1) 298

where Occ(AV1) and Occ(AV2) are the number 299

of occurrences of AV; Occ(AV12) is the total num- 300

ber of co-occurrence for two AVs in a AV pair; and 301

Exp(AV12) is the expected frequency and T is the 302

total number of records. 303

An association matrix, treated as a vector space, 304

is then generated to represent the strength of asso- 305

ciations between each pair of AVs. Each row of the 306

matrix, corresponding to a distinct AV, represents 307

an AV-vector with SRs between that AV associated 308

with all other AVs corresponding to the column 309

vectors as its coordinates. We call the matrix the 310

SR Vector Space (SRV). SRV is an /textitN dimen- 311

sional vector space consisting of /textitN distinct 312

AV-vectors. 313

We then use PCA to decompose SRV (Wong 314

et al., 2021) (Wong et al., 2018) into principal com- 315

ponents to reveal AV associations orthogonal to 316

others AV associations, i.e. PC=PC1, PC2,. . . 317

PCk which are ranked according to the weights 318

of the associations (eigenvalues). We then repro- 319

ject the projections of AV-vectors on the principal 320

components onto the SRV again, to obtain a set of 321

reprojected-SRVs (abbreviated by RSRV). We refer 322

to the PC together with its RSRV as a disentangled 323

space. 324

4



The above process is called Pattern Disentan-325

glement which allows us to take the reprojected326

components/vectors from PCA and use the repro-327

jected values as new measurements/criteria to rep-328

resent the strength of associations between AVs in329

different orthogonal disentangled spaces.330

4.3.3 Obtain Attribute Value Groups with331

Disentangled Associations332

In an RSRV, after screening in the statistical resid-333

ual values (referred to as RSR) greater than 1.96,334

only the significant pairs of AV associations re-335

main. Statistically, under the null hypothesis that336

the two AVs are independent, the adjusted resid-337

uals will have a standard normal distribution. So,338

an adjusted residual that is more than 1.96 (2.0339

is used by convention) indicates the association is340

significantly greater than what would be expected341

(with a significance level of 0.05 or 95% confidence342

level) if the hypothesis were true. We can also set343

a threshold as 1.44 with 85% confidence, or 1.28344

with 80% confidence level.345

As an unsupervised learning approach, on each346

RSRV, we generate AV groups such that each group347

contains a set of AVs. We build the set of AVs up348

iteratively by adding AVs that are associated with349

AVs in the set. That is to say an AV (e.g., AVi) that350

is significantly associated with another AV (e.g.351

AVj) in the group will join the group, otherwise, a352

new AV group is generated for AVi. Theoretically,353

in one projected principal component, usually two354

AV groups on the opposite sides are generated as355

two opposite groups. When such opposite groups356

do not exist, we may obtain AV groups only on one357

side of the PC. The output of this step is one or two358

AV groups, and each group contains a set of AVs.359

Furthermore, to obtain detailed separated groups,360

several AV subgroups can be generated for each361

AV group using a similarity measure such that the362

similarity between two AV subclusters is speci-363

fied as the percentage of the overlapping records364

covered by each AV subcluster. We denote each365

AV subgroup by a three-digit code [#PC, #Group,366

#SubGroup]. The AV groups or subgroups can re-367

veal the characteristics of the records at specific368

groups with disentangled patterns to provide statis-369

tical evidence for further clustering or prediction.370

Furthermore, patient record groups are obtained371

according to their specific characteristics (disen-372

tangled patterns) discovered in the AV groups or373

subgroups.374

4.3.4 Pattern Discovery on Attribute Value 375

SubGroups 376

Traditional pattern clustering algorithm 377

/citezhou2016effective, without PCA, can 378

group patterns based on their “similarity”, 379

which is limited and time-consuming. In this 380

case, after disentanglement and generating AV 381

groups/subgroups, only a few AVs remain to 382

be candidate patterns, which can reduce time 383

consumption when high-order patterns are growing. 384

The high-order pattern describes a statistically 385

significant association among more than two AVs. 386

So far, each AV subgroup contains a set of AVs 387

considered as candidate patterns. We then test the 388

candidates from order > 2 (i.e. consisting of more 389

than 2 AVs) to high order sets to determine their 390

pattern status. Hence, we obtain a compact set of 391

patterns which are statistically significant and in- 392

terpretable. Hence PDD reduces the computational 393

complexity drastically and produces very small and 394

succinct pattern sets for interpretation and tracking. 395

The disease related record groups of patients can 396

then be explicitly revealed. 397

4.4 Output 398

The output of PDD is organized into an all-in-one 399

representational framework known as PDD Knowl- 400

edge Base. It consists of three parts: a Knowledge 401

Section showing the hierarchical clusters such that 402

each cluster unveil distinct characteristics of a re- 403

lated group of records; a Pattern Section listing 404

the discovered patterns showing detailed associa- 405

tions between AVs; and the Data Section listing the 406

record ID’s, the knowledge source and pattern(s) 407

associated with each patient by linking the patient 408

to the Knowledge and Pattern Sections 409

5 Experimental Result 410

5.1 Topic Modeling Result 411

From a clinical perspective, the generated topic 412

models correspond reasonably well with each ICD9 413

diagnosis. In the 20-topic model, septicemia - a 414

widespread infection of the body, was predicted 415

by topics containing relevant words such as "in- 416

fection", “bacteria", and "culture". Conversely, 417

topics that contained cardiovascular-related terms 418

such as "ventricular" or "aorta" predicted the heart- 419

related diagnoses. Additionally, the algorithm was 420

able to discern the heart-related diagnoses from 421

one another: dividing acute myocardial infarction 422
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(410) from the more chronic and congenital dis-423

eases (414, 424). The algorithm may have dis-424

cerned that words representing severe prognoses425

or procedures, such as "angioplasty", "emergency",426

and "death" were more correlated with acute my-427

ocardial infarction. Taken together, topic modeling428

and PDD provides an interpretable methodology to429

predict ICD9 diagnosis with reasonable accuracy430

when given unstructured clinical text as input.431

5.2 Comparison of Unsupervised Learning432

Although the process of clustering individuals does433

not require class label information, the entity clus-434

tering performance can be evaluated from the clus-435

tering results by two statistical measures using the436

presumed class labels as ground truth. In this study,437

since the numbers of records belonging to different438

classes are imbalanced, the correct prediction of439

the majority classes will overwhelm that of the mi-440

nority classes. In this case, we followed the same441

evaluation method in (Van Aken et al., 2021), bal-442

anced accuracy (Balanced Acc. in Table 1) and443

weighted F1-scores (Weighted F1 in Table 1), to444

evaluate performance of both supervised and unsu-445

pervised results. Balanced accuracy is defined as446

the average of recall obtained in each class (Broder-447

sen et al., 2010) and the weighted F1-score is calcu-448

lated by averaging the support-weighted mean per449

class F1-scores (i.e. weights on class distribution)450

(Chakravarthi et al., 2020). Both above results are451

referred to the sklearn.metrics package in Python452

3.0 (Pedregosa et al., 2011).453

We compared the clustering results of PDD with454

the classical clustering algorithm, K-mean, as the455

baseline, and also two supervised learning algo-456

rithms: Random Forest (Breiman, 2001) and CNN457

(Brownlee, 2020). The data were split into 70%458

training and 30% for testing.459

As for K-means, we use the sklearn.clusters460

package in Python 3.0 (Pedregosa et al., 2011) with461

all default parameter settings and assign the num-462

ber of clusters as four. For Random Forest, we463

apply the default parameter settings from the pack-464

age of sklearn.ensemble.RandomForestClassifier465

in Python 3.0 (Pedregosa et al., 2011).466

For CNN (Brownlee, 2020), we trained a CNN467

model with the input layer as a reshaped cleaned468

dataset with probabilities of topics or extracted469

words and ICD9 labels. The architecture is as fol-470

lows: a 1D CNN layer, followed by batch normal-471

ization, then a dropout layer for regularization (Li472

et al., 2019), and finally a 1D max-pooling layer. 473

After the CNN and pooling, the learned features 474

are flattened to one long vector and passed through 475

a fully connected layer before the output layer for 476

prediction. We used Adam optimizer with a learn- 477

ing rate of 0.001 trained on 25 epochs with a batch 478

size of 32. 479

As the baseline comparison for features, we also 480

applied all supervised and unsupervised learning 481

algorithms on the dataset with words extracted us- 482

ing TFIDF (Jones, 1972). In a corpus, frequent 483

words in one document tend to be frequent in all 484

other documents. TFIDF (term-frequency-inverse 485

document frequency) is an algorithm that scores 486

words that are distinctively frequent in a particular 487

document but not necessarily within the general 488

corpus. TFIDF can be computed as: 489

tf-idf(t,d) = tf(t,d) × idf(t) 490

where tf refers to the term frequency (proportion of 491

a particular term t over all terms); and 492

idf(t) = log
1 + n

1 + df(t)
+ 1 493

where n is the total number of documents in the set 494

and df is the number of documents containing the 495

term t. 496

To discover associations among features and 497

class labels and to make the interpretation mean- 498

ingful, we did not keep all words in TFIDF, but 499

selected the top 40 words with a feature selection 500

algorithm by Random Forest. 501

The comparison results are shown in Table 1. It 502

is interesting to observe that PDD outperformed 503

other models but underperformed when applied 504

on the TFIDF results, which consist of the results 505

of K-means. Both supervised learning algorithms, 506

Random Forest and CNN perform better on the 507

TFIDF dataset. The reason should be that the top 40 508

words (feature) are selected based on classification 509

results. 510

When topic modeling results are used as a 511

dataset, PDD outperforms K-means and even the 512

two other supervised learning algorithms, with 513

balanced acc.=0.78 and weighted F1-score=0.78, 514

when only 5 topics are used. As for Random For- 515

est, it performs better when applied to the topic 516

modelling results with 20 topics than another the 517

two experiments running on 5 topics and 30 topics. 518

While as for CNN, the results of experiments on 519

30 topics are slightly better than the results on 20 520

topics. 521
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Comparison Balanced Acc. Weighted F1
K-means
TFIDF40 0.48 0.42
TM5 0.62 0.57
TM20 0.50 0.54
TM30 0.51 0.42
Random Forest
TFIDF40 0.81 0.81
TM5 0.63 0.66
TM20 0.72 0.74
TM30 0.71 0.74
CNN
TFIDF40 0.86 0.85
TM5 0.63 0.67
TM20 0.71 0.73
TM30 0.70 0.73
PDD
TFIDF40 0.45 0.41
TM5 0.78 0.78
TM20 0.74 0.72
TM30 0.73 0.71

Table 1: Experimental Result Comparison.

One important notion we would like to bring522

forth is that, even if the accuracy score reflects the523

algorithm performance to some extent, class labels524

may not always be reliable in supervised classifica-525

tion algorithms. On the contrary, clustering merely526

recognizes patterns in the data and holds no such527

risk.528

5.3 Interpretability529

From the perspective of interpretability, when the530

topic modeling dataset with top 5 and top 20 topics531

were compared, the clustering performance of PDD532

is superior to all the other methods. As an example,533

we present the PDD Knowledge Base on 5 topics534

and 20 topics as shown in Figure 3.535

The first three columns show the knowledge536

space, which are clustering results of PDD and537

statistical measurement of each pattern. The clus-538

ters are identified by a three-digital code [#PC,539

#Group, #Subgroup] (PC: Principal Component,540

Group: pattern groups in the same principal com-541

ponent, Subgroup: pattern Sub-group in the same542

pattern group). We observe that, in the first princi-543

pal component, two opposite groups are discovered:544

one where ICD9=4XX, and the other where ICD9545

= 038. All ICD9=4XX are diseases related to heart546

disease, while ICD9=038 is related to Septicemia,547

so these are two opposite groups. Then in the 548

second principal components, ICD9=424(diseases 549

of the endocardium) was separated, still showing 550

opposite patterns with ICD9=38. Finally, in the 551

third principal component, ICD9=424 was sepa- 552

rated from ICD9=410(acute myocardial infarction). 553

Then, the pattern space shows the discovered 554

significant associations between ICD9 code and the 555

extracted topics. To be more specific, the unveiled 556

knowledge can be summarized as below. 557

• ICD9=424,410,414 (heart diseases) show sim- 558

ilar patterns with Topic 0 (Medication) show- 559

ing low probabilities. 560

• ICD9=424 (endocardium disease) and 414 561

(chronic ischemic heart disease) show more 562

closed patterns compared to 410 (acute 563

myocardial infarction), topic 4 (Intensive 564

Care/Infection) showing low probability. And 565

the unique characteristic of ICD9=424 (endo- 566

cardium disease) is that Topic 1 (Cardiovascu- 567

lar 1) showing high probability. 568

• ICD9=38(septicemia) shows opposite charac- 569

teristics compared to ICD9=4XX, with Topic 570

0 (Medication) showing high probability, 571

Topic 2 (Cardiovascular 2) showing low prob- 572

ability, and Topic 4 (Intensive Care/Infection) 573

showing high probability. 574

The data space shows the records IDs that are 575

covered by the patterns. For example, the first asso- 576

ciation pattern listed in the first row of the knowl- 577

edge base can be covered by the records with ID 578

= 2,11,44,53,63 and so on. And all above records 579

belong to the group labeled as ICD9=410, which is 580

same with the discovered pattern. 581

In addition, Figure 4 shows the partial knowl- 582

edge base on 20 topics dataset. As same with 583

the above results, in the first principal component, 584

two opposite groups are discovered: one where 585

ICD9=4XX (heart diseases), and the other where 586

ICD9 = 038 (septicemia). But the difference is that 587

three subgroups (i.e. 424, 414, 410) are detected 588

related to three different ICD9 codes in the first 589

group in the first principal component. 590

Similar to the above results using 5 topics, the 591

discovered significant patterns can be summarized 592

for 20 topics as below. Since the most of topics are 593

not clear, we highlighted the meaning for partial 594

topics. 595

7



Figure 3: The PDD Knowledge Base for 5 topics are used as input.

Figure 4: The PDD Knowledge Base when Top 20 topics are used as input.

• ICD9=424 (diseases of the endocardium) and596

414 (chronic ischemic heart disease) shows597

similar patterns, for example:598

i) high probabilities appear in the topics599

1,2(Cardiovascular/Surgery),5,16;600

ii) and topics with low probabilities are topics601

6, 7 (Status/Consciousness), 8 (Lung disease),602

9603

• while 038 (septicemia) shows opposite pat-604

terns, for example:605

i) topics with high probabilities are top-606

ics 3, 4 (Intensive care/Infection), 7 (Sta-607

tus/Consciousness), 8 (Lung disease)608

ii)and low probabilities appear in the top-609

ics 0(Heart anatomy) 1, 2 (Cardiovascu-610

lar/Surgery), 5, 12 (Cardiovascular), 16, 18;611

6 Conclusion 612

In this work, we propose a novel two-step algo- 613

rithm, combining NLP techniques with pattern dis- 614

covery to solve the interpretability and unsuper- 615

vised learning tasks for clinical data analysis. Ex- 616

periments show results from both clustering accu- 617

racy and interpretability. 618

As for the clustering results, PDD performs bet- 619

ter than K-means, especially when applied to the 620

dataset extracted by topic modeling. Clustering 621

results of PDD based on the discovered patterns 622

may reflect the functional sources of the original 623

dataset instead of class labels. 624
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