Interpretability on clinical analysis from Pattern Disentanglement Insight

Anonymous ACL submission

Abstract

Diagnosis of a clinical condition can help medical professionals save time in clinical decisionmaking and prevent overlooking risks. Therefore we explore the problem of clinical text interpretability using free-text medical notes recorded in electronic health records (EHR). MIMIC-III is a de-identified EHR database containing observations from over 40,000 pa-009 tients in critical care units. Since text corpus is unstructured and in non-database table for-011 mat, existing machine learning models may have ineffective interpretability; however, inter-012 013 pretability is often desirable for clinical diagnosis. Hence, in this paper, we propose a text mining and pattern discovery solution to discover strong association patterns from patient discharge summaries and the code of international classification of diseases (ICD9 code). 018 The proposed approach offers a straightforward 019 interpretation of the underlying relation of patient characteristics in an unsupervised machine learning setting. The clustering results outperform the baseline clustering algorithm and are comparable to baseline supervised methods.

1 Introduction

027

041

If Machine Learning (ML) is to play a significant role in supporting clinical decision making, then it is essential to gain clinician trust (Kim, 2021). Interpretability is frequently defined as the degree to which a human can understand the cause and reason of ML model decisions. The higher the interpretability of a model implies the better the comprehension and explanation of the problem, leading to more accurate and reliable predictions. Most ML algorithms today concentrate on prediction power using general-purpose learning algorithms on large and complex data.

However, even though some ML models can also provide various degrees of interpretability, they generally sacrifice interpretability for predictive power (Ghannam and Techtmann, 2021). Therefore, in this study, we focus on interpreting the diagnostic characteristics/patterns from the electronic health records (EHR).

043

044

045

046

047

049

051

054

057

060

061

062

063

064

065

066

067

068

069

070

071

072

073

076

077

078

081

An EHR is a digital collection of medical information about a person, which includes information about a patient's health history, such as diagnoses, medicines, tests, allergies, immunizations, and treatment plans. The MIMIC-III (Medical Information Mart of Intensive Care) is an openly available extensive database comprising de-identified information relating to patients admitted to critical care units at a large tertiary care hospital (Johnson et al., 2016). Data primarily stores both structured (e.g. MIMIC-III medications, laboratory results are stored in the table with columns as features and rows as records) and unstructured data (e.g. MIMIC-III clinical notes, discharge summaries are stored in the format of free text). The patients' information (e.g., discharge summary) is highly unstructured, thus making interpreting it a challenge.

To address the issue of ML Interpretability, we explore a two-step algorithm, combining text mining and pattern discovery, to discover strong association patterns from patient profiles and discharge summaries to reveal their relationships with the diagnosed disease (ICD9 code, which is the code of international classification of diseases). The first step is transforming free text into a structured dataset formatting as a table with columns as features and rows as records. The second step is discovering patterns and grouping patients' records based on patterns in an unsupervised manner. The output of the proposed system is an interpretable Knowledge Base, which can link the pattern groups, discovered characteristics of records, and patients' records together to shows "what" (disease), "who/where" (tracking patient records back) and "why" (discovered patterns) to interpret clinical notes for better clinical decision making.

The contributions of the paper are three-fold: 1) combining NLP and pattern discovery algorithm to interpret free-text clinical notes; 2) Grouping

0

101

098

102

104 105 106

108 109 110

111

107

112113114

115 116 117

119 120 121

118

122 123 124

125

126

127

128

129 130

131

132

133

records based on the discovered associations revealing characteristics of records via unsupervised learning ; 3) Generating an all-in-one knowledge base to link knowledge, pattern, and records together for interpretability.

To evaluate the performance of the proposed algorithm, we present both a knowledge base with discovered patterns and clustering results. To verify the effectiveness of discovered patterns, we interpret patterns from a clinical perspective to discuss the interpretability of output. As for the clustering results algorithm, although the process of clustering records does not require class label information, the results can be evaluated by balanced accuracy and weighted F1- score using the presumed class labels (ICD9 code) as ground truth.

2 Related Work

2.1 Clinical Data Analysis with Interpretability

Due to the complex nature of clinical language, clinical texts were hard to interpret. Most of the previous works on clinical data analysis were based on structured data, which lack complementary information such as lab reports or patient history. Clinical expert judgments may thus require information that are available only in unstructured data (e.g. clinical texts) (Culliton et al., 2017).

Latent Dirichlet Allocation (LDA) topic modeling (Blei et al., 2003) has been applied to the unstructured notes of EHRs to predict clinical outcomes (Bright et al., 2021; Huang et al., 2015; Wang et al., 2020). In addition, Ghassemi et al. (2014) showed latent topic features were more predictive than structured features, and a combination of the two performs best.

Topic features cluster terms into a small set of semantically related groups, which is proved useful in text classification and categorizing clinical reports (Chen et al., 2019; Pavlinek and Podgorelec, 2017; Kayi et al., 2013). For example, Horng et al. (2017) combined structured and unstructured data for sepsis prediction using text modeling involving topic models. Further, Gangavarapu et al. (2020) proposed a vector space and topic modeling-based approach applied to structure the raw clinical data by exploiting the data in the nursing notes. Hence, in this study, we use topic modeling to transform free text into a table with features and records.

In addition, with the recent development in neural networks, variants of pre-trained BERT (Devlin et al., 2018) have widely been applied to clinical domains (e.g. BioBERT (Lee et al., 2020), ClinicalBERT (Alsentzer et al., 2019)). In addition, Feng et al. (2020) used pre-trained BERT-based models as static feature extractors and showed that variants of BERT performed better with Sepsis than Mortality prediction tasks however Wallace et al. (2019) showed that BERT fails to interpret life-threatening important numerical values such as body temperature in the clinical text. In our study, we discretize numerical values into discrete values to make the proposed algorithm can handle mixed-mode dataset. Further, Van Aken et al. (2021) showed that medical-specific negations can be misinterpreted by the pre-trained language models such as BERT (e.g. "abstinence from alcohol" becomes "alcohol dependence syndrome").

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

178

179

180

182

2.2 Pattern Discovery

To tackle the interpretability of clinical data analysis, many machine learning algorithms were proposed. For example, the Decision Tree can generate a rule set between features and class labels for interpretable prediction, but the rules need to be trained relying on labeled classes. In addition, Frequent Pattern Mining (Naulaerts et al., 2015) (Han et al., 2007) can discover knowledge in the form of association rules from relational data (Han et al., 2007) (Van Aken et al., 2021) but a manually threshold need to be set for calculated likelihood, support or confidence (Van Aken et al., 2021). And the discovered patterns may be overwhelmed (Wong and Li, 2008) with overlapping/redundant patterns, which requires some post analysis approaches, such pattern pruning and pattern summarizing (Wong and Li, 2008).

Hence, in this study, we applied the pattern discovery and disentanglement (PDD) algorithm, proposed in our previous research work, to discover simple patterns with statistical support to reveal the association between extracted features with class labels without further pattern pruning or pattern summarization. The output patterns are well organized, more clear and easier to be comprehended in a knowledge base.

3 Material:MIMIC-III Data Description

MIMIC-III is a de-identified relational clinical database containing observations from over 40,000 patients in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012

240

241

242

243

244

245

246

247

248

249

250

251

252

253

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

233

(Johnson et al., 2016). While MIMIC-III consists of several tabular and time-series datasets, our present study utilizes clinical notes, found in the NOTEEVENTS table, and diagnoses, found in the DIAGNOSES_ICD table.

183

184

185

190

191

192

193

194

196

197

198

204

210

211

212

213

214

216

217

218

219

222

224

227

229

The former table, NOTEEVENTS, can provide us with the medical notes as text for a detailed description of medical center visits for each patient. The clinical notes contain an internal semistructured format, which are subdivided into several components, such as: chief complaint, medical history, social history, and discharge information. Each observation refers to a unique hospital stay. The data are related to other tables through unique patient identifiers, hospital stay identifiers, and caregiver identifiers. The latter table, DIAG-NOSES_ICD, can provide us with the diagnosis of each patient based on ICD9 codes, which are used as labels to be predicted, and linked with clinical notes.

In summary, our final data contains 11,537 rows/records with the top four classes/diseases represented by ICD9 code. The ICD9 codes are defined as follows: 414 - chronic ischemic heart disease, 038 - septicemia, 410 - acute myocardial infarction, and 424 - diseases of the endocardium. The four classes were slightly imbalanced, with 3502, 3184, 3175, and 1676 observations, respectively.

4 Methodology

In this section, we present the proposed methodology applied to the MIMIC-III dataset. The algorithm proposes tasks in three main steps: preprocessing, feature extraction, and pattern discovery. The overview of the proposed algorithm is shown in Figure 1.

4.1 Preprocessing

We first apply a preprocessing pipeline proposed by (Van Aken et al., 2021) to clean and merge the dataset.

We select the NOTEEVENTS (containing the unstructured text) and DIAGNOSES_ICD tables from the MIMIC-III database. The selected records contain clinical notes of patients, diagnoses, procedures, and ICD9 codes with admission ID columns acting as a link for all the tables. As each admission often had multiple diagnoses, we filter the data by only considering the highest priority diagnosis as the label to be predicted. We then trim the data to the top four most common ICD9 codes.

After retaining these approximate 11,000 text records, we apply regular expressions to remove invalid characters and common stop words as well as words under three characters. We conform every remaining letter to lowercase and apply lemmatization. Finally, we remove a custom list of stop words that are ubiquitous among all text records.

Then, we process the text into a format suitable to be passed as a corpus (embedded lists). A dictionary, or key-value pair, is created from the tokens that were derived from our corpus of cleaned words.

4.2 Feature Extraction

Topic modelling (Hamed Jelodar and Zhao, 2018) is described as a method for finding a group of words (i.e topic) from a collection of documents that best represents the information in the collection. Hence, we extract features from the clean dataset using topic modelling the value of the features represented by the probabilities of topics occurring in the records. Labels are then merged with the features for unsupervised exploration; in this case, the label is the ICD9 code - the diagnostic code indicating categories of disease. We use LDA (Latent Dirichlet Allocation) for the topic model because it identifies topics best describing distinct subsets of documents within a corpus (Hamed Jelodar and Zhao, 2018).

To determine the ideal number of topics, we choose the optimal number of topics by computing coherence of the topic cluster instance (Röder et al., 2015). We find that the coherence score peaks when the number of topics is 5, 20, and 30 - and therefore we create topic models with those respective parameters. The output of our coherence scores is shown as Figure 2.

4.3 Pattern Discovery and Disentanglement

After preprocessing and extracting features from the text, the dataset has been transformed into a structured table of patients' records in rows and features in columns, which is represented as a $M \times N$ matrix, where M represents the number of patients' records and N represents the number of extracted features ¹.

¹In pattern discovery, we use the term attribute instead of feature.

Figure 1: The overview of the proposed algorithm

Figure 2: Optimal number of topics by coherence of the topic cluster

4.3.1 Discretize Numerical Feature Values

277

279

284

287

291

To detect event-based patterns, we convert the values of numerical features into categorical features by using the Equal Frequency discretization which distributes the values into equal size bins. so that numerical feature values are converted into discrete values referred to as "feature value" (meaning the discrete value for that feature). To be consistent with our existing work in PDD (Wong et al., 2021) we use the term Attribute Value (AV) instead.

4.3.2 Association Disentanglement

In order to measure the association between a pair of AVs (i.e. certain values of one attribute cooccurs with the value of another attribute), we use the statistical measure of adjusted standardized residual, abbreviated by SR, to represent the statistical weights of the AV pair, which is denoted as $SR(AV_1 \leftrightarrow AV_2)$ (shorten as $SR(AV_{12})$) and calculated by Eqn. (1) below.

$$SR(AV_{12}) = \frac{Occ(AV_{12}) - Exp(AV_{12})}{\sqrt{Exp(AV_{12})}}$$
296

$$\times (1 - \frac{Occ(AV_1)}{T} \frac{Occ(AV_2)}{T})$$
²⁹⁷

(1)

298

300

301

302

303

304

305

306

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

where $Occ(AV_1)$ and $Occ(AV_2)$ are the number of occurrences of AV; $Occ(AV_{12})$ is the total number of co-occurrence for two AVs in a AV pair; and $Exp(AV_{12})$ is the expected frequency and T is the total number of records.

An association matrix, treated as a vector space, is then generated to represent the strength of associations between each pair of AVs. Each row of the matrix, corresponding to a distinct AV, represents an AV-vector with SRs between that AV associated with all other AVs corresponding to the column vectors as its coordinates. We call the matrix the SR Vector Space (SRV). SRV is an /textitN dimensional vector space consisting of /textitN distinct AV-vectors.

We then use PCA to decompose SRV (Wong et al., 2021) (Wong et al., 2018) into principal components to reveal AV associations orthogonal to others AV associations, i.e. $PC=PC_1, PC_2,...$ PC_k which are ranked according to the weights of the associations (eigenvalues). We then reproject the projections of AV-vectors on the principal components onto the SRV again, to obtain a set of reprojected-SRVs (abbreviated by RSRV). We refer to the PC together with its RSRV as a disentangled space.

375

379

380

381

382

383

384

385

386

387

388

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

The above process is called *Pattern Disentanglement* which allows us to take the reprojected components/vectors from PCA and use the reprojected values as new measurements/criteria to represent the strength of associations between AVs in different orthogonal disentangled spaces.

325

326

327

330

331

332

333

334

336

339

341

345

346

351

366

367

370

371

372

4.3.3 Obtain Attribute Value Groups with Disentangled Associations

In an RSRV, after screening in the statistical residual values (referred to as RSR) greater than 1.96, only the significant pairs of AV associations remain. Statistically, under the null hypothesis that the two AVs are independent, the adjusted residuals will have a standard normal distribution. So, an adjusted residual that is more than 1.96 (2.0 is used by convention) indicates the association is significantly greater than what would be expected (with a significance level of 0.05 or 95% confidence level) if the hypothesis were true. We can also set a threshold as 1.44 with 85% confidence, or 1.28 with 80% confidence level.

As an unsupervised learning approach, on each RSRV, we generate AV groups such that each group contains a set of AVs. We build the set of AVs up iteratively by adding AVs that are associated with AVs in the set. That is to say an AV (e.g., AV_i) that is significantly associated with another AV (e.g. AV_j) in the group will join the group, otherwise, a new AV group is generated for AV_i . Theoretically, in one projected principal component, usually two AV groups on the opposite sides are generated as two opposite groups. When such opposite groups do not exist, we may obtain AV groups only on one side of the PC. The output of this step is one or two AV groups, and each group contains a set of AVs.

Furthermore, to obtain detailed separated groups, several AV subgroups can be generated for each AV group using a similarity measure such that the similarity between two AV subclusters is specified as the percentage of the overlapping records covered by each AV subcluster. We denote each AV subgroup by a three-digit code [#PC, #Group, #SubGroup]. The AV groups or subgroups can reveal the characteristics of the records at specific groups with disentangled patterns to provide statistical evidence for further clustering or prediction. Furthermore, patient record groups are obtained according to their specific characteristics (disentangled patterns) discovered in the AV groups or subgroups.

4.3.4 Pattern Discovery on Attribute Value SubGroups

Traditional pattern clustering algorithm /citezhou2016effective, without PCA, can group patterns based on their "similarity", which is limited and time-consuming. In this case, after disentanglement and generating AV groups/subgroups, only a few AVs remain to be candidate patterns, which can reduce time consumption when high-order patterns are growing. The high-order pattern describes a statistically significant association among more than two AVs.

So far, each AV subgroup contains a set of AVs considered as candidate patterns. We then test the candidates from order > 2 (i.e. consisting of more than 2 AVs) to high order sets to determine their pattern status. Hence, we obtain a compact set of patterns which are statistically significant and interpretable. Hence PDD reduces the computational complexity drastically and produces very small and succinct pattern sets for interpretation and tracking. The disease related record groups of patients can then be explicitly revealed.

4.4 Output

The output of PDD is organized into an all-in-one representational framework known as PDD Knowledge Base. It consists of three parts: a Knowledge Section showing the hierarchical clusters such that each cluster unveil distinct characteristics of a related group of records; a Pattern Section listing the discovered patterns showing detailed associations between AVs; and the Data Section listing the record ID's, the knowledge source and pattern(s) associated with each patient by linking the patient to the Knowledge and Pattern Sections

5 Experimental Result

5.1 Topic Modeling Result

From a clinical perspective, the generated topic models correspond reasonably well with each ICD9 diagnosis. In the 20-topic model, septicemia - a widespread infection of the body, was predicted by topics containing relevant words such as "infection", "bacteria", and "culture". Conversely, topics that contained cardiovascular-related terms such as "ventricular" or "aorta" predicted the heartrelated diagnoses. Additionally, the algorithm was able to discern the heart-related diagnoses from one another: dividing acute myocardial infarction

(410) from the more chronic and congenital dis-423 eases (414, 424). The algorithm may have dis-424 cerned that words representing severe prognoses 425 or procedures, such as "angioplasty", "emergency", 426 and "death" were more correlated with acute my-427 ocardial infarction. Taken together, topic modeling 428 and PDD provides an interpretable methodology to 429 predict ICD9 diagnosis with reasonable accuracy 430 when given unstructured clinical text as input. 431

5.2 Comparison of Unsupervised Learning

432

433

434

435

436

437

438

439

440

441

442 443

444 445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

Although the process of clustering individuals does not require class label information, the entity clustering performance can be evaluated from the clustering results by two statistical measures using the presumed class labels as ground truth. In this study, since the numbers of records belonging to different classes are imbalanced, the correct prediction of the majority classes will overwhelm that of the minority classes. In this case, we followed the same evaluation method in (Van Aken et al., 2021), balanced accuracy (Balanced Acc. in Table 1) and weighted F1-scores (Weighted F1 in Table 1), to evaluate performance of both supervised and unsupervised results. Balanced accuracy is defined as the average of recall obtained in each class (Brodersen et al., 2010) and the weighted F1-score is calculated by averaging the support-weighted mean per class F1-scores (i.e. weights on class distribution) (Chakravarthi et al., 2020). Both above results are referred to the sklearn.metrics package in Python 3.0 (Pedregosa et al., 2011).

> We compared the clustering results of PDD with the classical clustering algorithm, K-mean, as the baseline, and also two supervised learning algorithms: Random Forest (Breiman, 2001) and CNN (Brownlee, 2020). The data were split into 70% training and 30% for testing.

> As for K-means, we use the *sklearn.clusters* package in Python 3.0 (Pedregosa et al., 2011) with all default parameter settings and assign the number of clusters as four. For Random Forest, we apply the default parameter settings from the package of *sklearn.ensemble.RandomForestClassifier* in Python 3.0 (Pedregosa et al., 2011).

For CNN (Brownlee, 2020), we trained a CNN model with the input layer as a reshaped cleaned dataset with probabilities of topics or extracted words and ICD9 labels. The architecture is as follows: a 1D CNN layer, followed by batch normalization, then a dropout layer for regularization (Li et al., 2019), and finally a 1D max-pooling layer. After the CNN and pooling, the learned features are flattened to one long vector and passed through a fully connected layer before the output layer for prediction. We used Adam optimizer with a learning rate of 0.001 trained on 25 epochs with a batch size of 32. 473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

494

495

496

497

498

499

500

501

502

503

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

As the baseline comparison for features, we also applied all supervised and unsupervised learning algorithms on the dataset with words extracted using TFIDF (Jones, 1972). In a corpus, frequent words in one document tend to be frequent in all other documents. TFIDF (term-frequency-inverse document frequency) is an algorithm that scores words that are distinctively frequent in a particular document but not necessarily within the general corpus. TFIDF can be computed as:

$$tf-idf(t,d) = tf(t,d) \times idf(t)$$

where tf refers to the term frequency (proportion of a particular term t over all terms); and

$$idf(t) = \log \frac{1+n}{1+df(t)} + 1$$
 49:

where n is the total number of documents in the set and df is the number of documents containing the term t.

To discover associations among features and class labels and to make the interpretation meaningful, we did not keep all words in TFIDF, but selected the top 40 words with a feature selection algorithm by Random Forest.

The comparison results are shown in Table 1. It is interesting to observe that PDD outperformed other models but underperformed when applied on the TFIDF results, which consist of the results of K-means. Both supervised learning algorithms, Random Forest and CNN perform better on the TFIDF dataset. The reason should be that the top 40 words (feature) are selected based on classification results.

When topic modeling results are used as a dataset, PDD outperforms K-means and even the two other supervised learning algorithms, with balanced acc.=0.78 and weighted F1-score=0.78, when only 5 topics are used. As for Random Forest, it performs better when applied to the topic modelling results with 20 topics than another the two experiments running on 5 topics and 30 topics. While as for CNN, the results of experiments on 30 topics are slightly better than the results on 20 topics.

Comparison	Balanced Acc.	Weighted F1			
K-means					
$TFIDF_{40}$	0.48	0.42			
TM_5	0.62	0.57			
TM_{20}	0.50	0.54			
TM_{30}	0.51	0.42			
Random Fore	st				
$TFIDF_{40}$	0.81	0.81			
TM_5	0.63	0.66			
TM_{20}	0.72	0.74			
TM_{30}	0.71	0.74			
CNN					
$TFIDF_{40}$	0.86	0.85			
TM_5	0.63	0.67			
TM_{20}	0.71	0.73			
TM_{30}	0.70	0.73			
PDD					
$TFIDF_{40}$	0.45	0.41			
TM_5	0.78	0.78			
TM_{20}	0.74	0.72			
TM_{30}	0.73	0.71			

Table 1: Experimental Result Comparison.

One important notion we would like to bring forth is that, even if the accuracy score reflects the algorithm performance to some extent, class labels may not always be reliable in supervised classification algorithms. On the contrary, clustering merely recognizes patterns in the data and holds no such risk.

5.3 Interpretability

522

523

524

525

526

528

529

530

532

533

535

537

539

540

541

543

544

545

547

From the perspective of interpretability, when the topic modeling dataset with top 5 and top 20 topics were compared, the clustering performance of PDD is superior to all the other methods. As an example, we present the PDD Knowledge Base on 5 topics and 20 topics as shown in Figure 3.

The first three columns show the knowledge space, which are clustering results of PDD and statistical measurement of each pattern. The clusters are identified by a three-digital code [#PC, #Group, #Subgroup] (PC: Principal Component, Group: pattern groups in the same principal component, Subgroup: pattern Sub-group in the same pattern group). We observe that, in the first principal component, two opposite groups are discovered: one where ICD9=4XX, and the other where ICD9 = 038. All ICD9=4XX are diseases related to heart disease, while ICD9=038 is related to Septicemia, so these are two opposite groups. Then in the second principal components, ICD9=424(diseases of the endocardium) was separated, still showing opposite patterns with ICD9=38. Finally, in the third principal component, ICD9=424 was separated from ICD9=410(acute myocardial infarction). 548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

Then, the pattern space shows the discovered significant associations between ICD9 code and the extracted topics. To be more specific, the unveiled knowledge can be summarized as below.

- ICD9=424,410,414 (heart diseases) show similar patterns with Topic 0 (Medication) showing low probabilities.
- ICD9=424 (endocardium disease) and 414 (chronic ischemic heart disease) show more closed patterns compared to 410 (acute myocardial infarction), topic 4 (Intensive Care/Infection) showing low probability. And the unique characteristic of ICD9=424 (endocardium disease) is that Topic 1 (Cardiovascular 1) showing high probability.
- ICD9=38(septicemia) shows opposite characteristics compared to ICD9=4XX, with Topic 0 (Medication) showing high probability, Topic 2 (Cardiovascular 2) showing low probability, and Topic 4 (Intensive Care/Infection) showing high probability.

The data space shows the records IDs that are covered by the patterns. For example, the first association pattern listed in the first row of the knowledge base can be covered by the records with ID = 2,11,44,53,63 and so on. And all above records belong to the group labeled as ICD9=410, which is same with the discovered pattern.

In addition, Figure 4 shows the partial knowledge base on 20 topics dataset. As same with the above results, in the first principal component, two opposite groups are discovered: one where ICD9=4XX (heart diseases), and the other where ICD9 = 038 (septicemia). But the difference is that three subgroups (i.e. 424, 414, 410) are detected related to three different ICD9 codes in the first group in the first principal component.

Similar to the above results using 5 topics, the discovered significant patterns can be summarized for 20 topics as below. Since the most of topics are not clear, we highlighted the meaning for partial topics.

7

PDD Knowledge Base										
	(m. a	adaa Cu			Data Grand					
	now	eage sp	ace		Data Space					
PC	Group	SubGroup	Residual	ICD9	Topic 0	Topic 1	Topic 2	Topic 3	Topic 4	Records ID
1	1	1	24.99	410	[0.00 0.01)		[0.03 0.17)	[0.13 0.95]	[0.07 0.36)	#2, #11, #44, #53, #63,
1	1	1	11.71	414	[0.00 0.01)		[0.17 0.94]	[0.13 0.95]	[0.00 0.07)	#62, #88, #93,
1	1	1	13.64	424	[0.00 0.01)	[0.42 0.97]	[0.17 0.94]		[0.00 0.07)	#1, #63, #184,
1	2	1	51.07	38		[0.18 0.42)	[0.00 0.03)	[0.03 0.13)	[0.36 0.97]	#35,#53,#77,#80,
1	2	1	86.06	38	[0.01 0.84]	[0.00 0.18)	[0.00 0.03)		[0.36 0.97]	#84, #96, #99,
1	2	1	56.5	38	[0.01 0.84]	[0.00 0.18)		[0.03 0.13)	[0.36 0.97]	#84,#126,#130,
2	1	1	10.55	424		[0.42 0.97]	[0.17 0.94]		[0.00 0.07)	#1, #63, #176,
2	2	1	85.89	38		[0.00 0.18)	[0.00 0.03)	[0.03 0.13)	[0.36 0.97]	#12, #83, #84,
3	1	1	18.99	424		[0.42 0.97]	[0.00 0.03)	[0.03 0.13)	[0.00 0.07)	#206, #225,
3	2	1	19.1	410	[0.00 0.01)	[0.18 0.42)	[0.17 0.94]		[0.07 0.36)	#8, #64, #75,
3	2	1	31.56	410	[0.00 0.01)	[0.00 0.18)		[0.13 0.95]	[0.07 0.36)	#2, #42, #53,
Note:	te: PC=Principal Component; Group=Attribute Value Group; SubGroup = Attribute Value Sub-Group;									

		D C C .	•	1 .
Highto A. Tho	DINK nowlad	an Rocator St	OP100 000 1100	d og innut
11901C). INC	; FIJIJ KHUWICU	9E DASE IOL J H	טטונא מוכ נואכ	u as midui.
1	122 1110 1100	50 2000 101 0 0		a ao mpan

PDD Knowledge Base													
	Know	vlodgo S	n ace	Pattern Space									Data Space
	KIIOV	vieuge 5	pace	Attributes (i.e. Topics in this study)									
PC	Group	SubGroup	Residual	ICD9	Topic 0	Topic 1	Topic 2		Topic 16	Topic 17	Topic 18	Topic 19	Records ID
1	1	1	19.76	424	[0.01 0.42]	[0.03 0.54]	[0.03 0.44]						#1, #9, #13,
1	1	2	9.39	410	[0.01 0.42]		[0.03 0.44]			[0.07 0.45]			#2, #4, #5, #7,
1	1	3	26.59	414	[0.01 0.42]		[0.03 0.44]						#3, #6, #16,
1	2	1	50.27	38	[0.00 0.01)	[0.00 0.01)	[0.00 0.03)		[0.00 0.02)		[0.00 0.01)		#9, #12, #16,
2	1	1	24.46	424	[0.01 0.42]		[0.00 0.03)		[0.02 0.05)			[0.02 0.04)	#1, #9, #13,
2	1	2	33.81	414	[0.01 0.42]	[0.03 0.54]	[0.00 0.03)		[0.02 0.05)		[0.01 0.03)	[0.02 0.04)	#3, #6, #16,
2	2	1	15.28	410		[0.00 0.01)	[0.03 0.44]						#2, #4, #5, #7,
Note:	Note: PC=Principal Component; Group=Attribute Value Group; SubGroup = Attribute Value Sub-Group;												

Figure 4: The PDD Knowledge Base when Top 20 topics are used as input.

• ICD9=424 (diseases of the endocardium) and 414 (chronic ischemic heart disease) shows similar patterns, for example:

596

597

598

599

601

602

608

609

610

611

i) **high** probabilities appear in the topics 1,2(Cardiovascular/Surgery),5,16;

ii) and topics with **low** probabilities are topics6, 7 (Status/Consciousness), 8 (Lung disease),9

• while 038 (septicemia) shows opposite patterns, for example:

i) topics with **high** probabilities are topics 3, 4 (Intensive care/Infection), 7 (Status/Consciousness), 8 (Lung disease)

ii)and **low** probabilities appear in the topics 0(Heart anatomy) 1, 2 (Cardiovascular/Surgery), 5, 12 (Cardiovascular), 16, 18;

6 Conclusion

In this work, we propose a novel two-step algorithm, combining NLP techniques with pattern discovery to solve the interpretability and unsupervised learning tasks for clinical data analysis. Experiments show results from both clustering accuracy and interpretability. 612

613

614

615

616

617

618

619

620

621

622

623

624

625

As for the clustering results, PDD performs better than K-means, especially when applied to the dataset extracted by topic modeling. Clustering results of PDD based on the discovered patterns may reflect the functional sources of the original dataset instead of class labels.

References

Emily Alsentzer, John R Murphy, Willie Boag, Wei-
Hung Weng, Di Jin, Tristan Naumann, and Matthew626
627

730

731

733

734

629

631

- McDermott. 2019. Publicly available clinical bert embeddings. arXiv preprint arXiv:1904.03323.
- David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. *the Journal of machine Learning research*, 3:993–1022.
- Leo Breiman. 2001. Random forests. *Machine Learning*, 45:5–32.
- Roselie A Bright, Summer K Rankin, Katherine Dowdy, Sergey V Blok, Susan J Bright, and Lee Anne M Palmer. 2021. Finding potential adverse events in the unstructured text of electronic health care records: Development of the shakespeare method. *JMIRx Med*, 2(3):e27017.
- Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M Buhmann. 2010. The balanced accuracy and its posterior distribution. In 2010 20th international conference on pattern recognition, pages 3121–3124. IEEE.
- Jason Brownlee. 2020. 1d convolutional neural network models for human activity recognition.
- Bharathi Raja Chakravarthi, Ruba Priyadharshini, Vigneshwaran Muralidaran, Shardul Suryawanshi, Navya Jose, Elizabeth Sherly, and John P McCrae. 2020. Overview of the track on sentiment analysis for dravidian languages in code-mixed text. In *Forum for Information Retrieval Evaluation*, pages 21–24.
 - Jinying Chen, John Lalor, Weisong Liu, Emily Druhl, Edgard Granillo, Varsha G Vimalananda, and Hong Yu. 2019. Detecting hypoglycemia incidents reported in patients' secure messages: using cost-sensitive learning and oversampling to reduce data imbalance. *Journal of medical Internet research*, 21(3):e11990.
 - Phil Culliton, Michael Levinson, Alice Ehresman, Joshua Wherry, Jay S Steingrub, and Stephen I Gallant. 2017. Predicting severe sepsis using text from the electronic health record. *arXiv preprint arXiv:1711.11536*.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
 - Jinyue Feng, Chantal Shaib, and Frank Rudzicz. 2020. Explainable clinical decision support from text. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1478–1489.
- Tushaar Gangavarapu, Aditya Jayasimha, Gokul S Krishnan, and Sowmya Kamath. 2020. Predicting icd-9 code groups with fuzzy similarity based supervised multi-label classification of unstructured clinical nursing notes. *Knowledge-Based Systems*, 190:105321.

- Ryan B Ghannam and Stephen M Techtmann. 2021. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. *Computational and Structural Biotechnology Journal*.
- Marzyeh Ghassemi, Tristan Naumann, Finale Doshi-Velez, Nicole Brimmer, Rohit Joshi, Anna Rumshisky, and Peter Szolovits. 2014. Unfolding physiological state: Mortality modelling in intensive care units. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 75–84.
- Chi Yuan Xia Feng Xiahui Jiang Yanchao Li Hamed Jelodar, Yongli Wang and Liang Zhao. 2018. Latent dirichlet allocation (lda) and topic modeling: models, applications, a survey. *Multimedia Tools and Applications*, 78.
- Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern mining: current status and future directions. *Data mining and knowledge discovery*, 15(1):55–86.
- Steven Horng, David A Sontag, Yoni Halpern, Yacine Jernite, Nathan I Shapiro, and Larry A Nathanson. 2017. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. *PloS one*, 12(4):e0174708.
- Zhengxing Huang, Wei Dong, and Huilong Duan. 2015. topic model for clinical risk stratification from electronic health records. *Journal of Biomedical Informatics*, 58:28–36.
- Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. 2016. Mimiciii, a freely accessible critical care database. *Scientific data*, 3(1):1–9.
- Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its application in retrieval. *Journal of Documentation*, 28:16.
- Efsun Sarioglu Kayi, Kabir Yadav, and Hyeong-Ah Choi. 2013. Topic modeling based classification of clinical reports. In 51st Annual Meeting of the Association for Computational Linguistics Proceedings of the Student Research Workshop, pages 67–73.

Been Kim. 2021. Interpretability.

- Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020. Biobert: a pre-trained biomedical language representation model for biomedical text mining. *Bioinformatics*, 36(4):1234–1240.
- Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. 2019. Understanding the disharmony between dropout and batch normalization by variance shift. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2682–2690.

Stefan Naulaerts, Pieter Meysman, Wout Bittremieux, Trung Nghia Vu, Wim Vanden Berghe, Bart Goethals, and Kris Laukens. 2015. A primer to frequent itemset mining for bioinformatics. *Briefings in bioinformatics*, 16(2):216–231.

735

736

737 738

739

740 741

742

743

744

745

746

747 748

749

750

751 752

753

754

755

756

758

759

761

770

772

773 774

775

776

- Miha Pavlinek and Vili Podgorelec. 2017. Text classification method based on self-training and lda topic models. *Expert Systems with Applications*, 80:83–93.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830.
- Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the space of topic coherence measures. In *Proceedings of the Eighth ACM International Conference on Web Search and Data Mining*, WSDM '15, page 399–408, New York, NY, USA. Association for Computing Machinery.
- Betty Van Aken, Jens-Michalis Papaioannou, Manuel Mayrdorfer, Klemens Budde, Felix A Gers, and Alexander Löser. 2021. Clinical outcome prediction from admission notes using self-supervised knowledge integration. *arXiv preprint arXiv:2102.04110*.
- Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. 2019. Do nlp models know numbers? probing numeracy in embeddings. *arXiv preprint arXiv:1909.07940*.
- Yanshan Wang, Yiqing Zhao, Terry M Therneau, Elizabeth J Atkinson, Ahmad P Tafti, Nan Zhang, Shreyasee Amin, Andrew H Limper, Sundeep Khosla, and Hongfang Liu. 2020. Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. *Journal of biomedical informatics*, 102:103364.
- Andrew KC Wong and Gary CL Li. 2008. Simultaneous pattern and data clustering for pattern cluster analysis. *IEEE Transactions on Knowledge and Data Engineering*, 20(7):911–923.
- Andrew KC Wong, Ho Yin Sze-To, and Gary L Johanning. 2018. Pattern to knowledge: Deep knowledgedirected machine learning for residue-residue interaction prediction. *Scientific reports*, 8(1):1–14.
- Andrew KC Wong, Pei-Yuan Zhou, and Zahid A Butt. 2021. Pattern discovery and disentanglement on relational datasets. *Scientific reports*, 11(1):1–11.