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Abstract

Diagnosis of a clinical condition can help med-
ical professionals save time in clinical decision-
making and prevent overlooking risks. There-
fore we explore the problem of clinical text
interpretability using free-text medical notes
recorded in electronic health records (EHR).
MIMIC-III is a de-identified EHR database
containing observations from over 40,000 pa-
tients in critical care units. Since text corpus
is unstructured and in non-database table for-
mat, existing machine learning models may
have ineffective interpretability; however, inter-
pretability is often desirable for clinical diag-
nosis. Hence, in this paper, we propose a text
mining and pattern discovery solution to dis-
cover strong association patterns from patient
discharge summaries and the code of interna-
tional classification of diseases (ICD9 code).
The proposed approach offers a straightforward
interpretation of the underlying relation of pa-
tient characteristics in an unsupervised machine
learning setting. The clustering results outper-
form the baseline clustering algorithm and are
comparable to baseline supervised methods.

1 Introduction

If Machine Learning (ML) is to play a significant
role in supporting clinical decision making, then
it is essential to gain clinician trust (Kim, 2021).
Interpretability is frequently defined as the degree
to which a human can understand the cause and
reason of ML model decisions. The higher the in-
terpretability of a model implies the better the com-
prehension and explanation of the problem, leading
to more accurate and reliable predictions. Most ML
algorithms today concentrate on prediction power
using general-purpose learning algorithms on large
and complex data.

However, even though some ML models can also
provide various degrees of interpretability, they
generally sacrifice interpretability for predictive
power (Ghannam and Techtmann, 2021). There-
fore, in this study, we focus on interpreting the

diagnostic characteristics/patterns from the elec-
tronic health records (EHR).

An EHR is a digital collection of medical infor-
mation about a person, which includes information
about a patient’s health history, such as diagnoses,
medicines, tests, allergies, immunizations, and
treatment plans. The MIMIC-III (Medical Infor-
mation Mart of Intensive Care) is an openly avail-
able extensive database comprising de-identified
information relating to patients admitted to critical
care units at a large tertiary care hospital (Johnson
et al., 2016). Data primarily stores both structured
(e.g. MIMIC-III medications, laboratory results
are stored in the table with columns as features
and rows as records) and unstructured data (e.g.
MIMIC-III clinical notes, discharge summaries are
stored in the format of free text). The patients’
information (e.g., discharge summary) is highly un-
structured, thus making interpreting it a challenge.

To address the issue of ML Interpretability, we
explore a two-step algorithm, combining text min-
ing and pattern discovery, to discover strong asso-
ciation patterns from patient profiles and discharge
summaries to reveal their relationships with the
diagnosed disease (ICD9 code, which is the code
of international classification of diseases). The
first step is transforming free text into a struc-
tured dataset formatting as a table with columns
as features and rows as records. The second
step is discovering patterns and grouping patients’
records based on patterns in an unsupervised man-
ner. The output of the proposed system is an inter-
pretable Knowledge Base, which can link the pat-
tern groups, discovered characteristics of records,
and patients’ records together to shows “what” (dis-
ease), “who/where” (tracking patient records back)
and “why” (discovered patterns) to interpret clini-
cal notes for better clinical decision making.

The contributions of the paper are three-fold: 1)
combining NLP and pattern discovery algorithm
to interpret free-text clinical notes; 2) Grouping



records based on the discovered associations re-
vealing characteristics of records via unsupervised
learning ; 3) Generating an all-in-one knowledge
base to link knowledge, pattern, and records to-
gether for interpretability.

To evaluate the performance of the proposed al-
gorithm, we present both a knowledge base with
discovered patterns and clustering results. To verify
the effectiveness of discovered patterns, we inter-
pret patterns from a clinical perspective to discuss
the interpretability of output. As for the clustering
results algorithm, although the process of cluster-
ing records does not require class label information,
the results can be evaluated by balanced accuracy
and weighted F1- score using the presumed class
labels (ICD9 code) as ground truth.

2 Related Work

2.1 Clinical Data Analysis with
Interpretability

Due to the complex nature of clinical language,
clinical texts were hard to interpret. Most of the
previous works on clinical data analysis were based
on structured data, which lack complementary in-
formation such as lab reports or patient history.
Clinical expert judgments may thus require infor-
mation that are available only in unstructured data
(e.g. clinical texts) (Culliton et al., 2017).

Latent Dirichlet Allocation (LDA) topic mod-
eling (Blei et al., 2003) has been applied to the
unstructured notes of EHRSs to predict clinical out-
comes (Bright et al., 2021; Huang et al., 2015;
Wang et al., 2020). In addition, Ghassemi et al.
(2014) showed latent topic features were more pre-
dictive than structured features, and a combination
of the two performs best.

Topic features cluster terms into a small set of
semantically related groups, which is proved useful
in text classification and categorizing clinical re-
ports (Chen et al., 2019; Pavlinek and Podgorelec,
2017; Kayi et al., 2013). For example, Horng et al.
(2017) combined structured and unstructured data
for sepsis prediction using text modeling involving
topic models. Further, Gangavarapu et al. (2020)
proposed a vector space and topic modeling-based
approach applied to structure the raw clinical data
by exploiting the data in the nursing notes. Hence,
in this study, we use topic modeling to transform
free text into a table with features and records.

In addition, with the recent development in neu-
ral networks, variants of pre-trained BERT (Devlin

et al., 2018) have widely been applied to clinical
domains (e.g. BioBERT (Lee et al., 2020), Clin-
icalBERT (Alsentzer et al., 2019)). In addition,
Feng et al. (2020) used pre-trained BERT-based
models as static feature extractors and showed that
variants of BERT performed better with Sepsis
than Mortality prediction tasks however Wallace
et al. (2019) showed that BERT fails to interpret
life-threatening important numerical values such
as body temperature in the clinical text. In our
study, we discretize numerical values into discrete
values to make the proposed algorithm can han-
dle mixed-mode dataset. Further, Van Aken et al.
(2021) showed that medical-specific negations can
be misinterpreted by the pre-trained language mod-
els such as BERT (e.g. "abstinence from alcohol"
becomes "alcohol dependence syndrome").

2.2 Pattern Discovery

To tackle the interpretability of clinical data anal-
ysis, many machine learning algorithms were pro-
posed. For example, the Decision Tree can generate
arule set between features and class labels for inter-
pretable prediction, but the rules need to be trained
relying on labeled classes. In addition, Frequent
Pattern Mining (Naulaerts et al., 2015) (Han et al.,
2007) can discover knowledge in the form of asso-
ciation rules from relational data (Han et al., 2007)
(Van Aken et al., 2021) but a manually threshold
need to be set for calculated likelihood, support or
confidence (Van Aken et al., 2021). And the discov-
ered patterns may be overwhelmed (Wong and Li,
2008) with overlapping/redundant patterns, which
requires some post analysis approaches, such pat-
tern pruning and pattern summarizing (Wong and
Li, 2008).

Hence, in this study, we applied the pattern dis-
covery and disentanglement (PDD) algorithm, pro-
posed in our previous research work, to discover
simple patterns with statistical support to reveal the
association between extracted features with class
labels without further pattern pruning or pattern
summarization. The output patterns are well orga-
nized, more clear and easier to be comprehended
in a knowledge base.

3 Material:MIMIC-III Data Description

MIMIC-III is a de-identified relational clinical
database containing observations from over 40,000
patients in critical care units of the Beth Israel Dea-
coness Medical Center between 2001 and 2012



(Johnson et al., 2016). While MIMIC-III con-
sists of several tabular and time-series datasets, our
present study utilizes clinical notes, found in the
NOTEEVENTS table, and diagnoses, found in the
DIAGNOSES_ICD table.

The former table, NOTEEVENTS, can provide
us with the medical notes as text for a detailed
description of medical center visits for each pa-
tient. The clinical notes contain an internal semi-
structured format, which are subdivided into sev-
eral components, such as: chief complaint, medi-
cal history, social history, and discharge informa-
tion. Each observation refers to a unique hospital
stay. The data are related to other tables through
unique patient identifiers, hospital stay identifiers,
and caregiver identifiers. The latter table, DIAG-
NOSES_ICD, can provide us with the diagnosis of
each patient based on ICD9 codes, which are used
as labels to be predicted, and linked with clinical
notes.

In summary, our final data contains 11,537
rows/records with the top four classes/diseases rep-
resented by ICD9 code. The ICD9 codes are de-
fined as follows: 414 - chronic ischemic heart dis-
ease, 038 - septicemia, 410 - acute myocardial in-
farction, and 424 - diseases of the endocardium.
The four classes were slightly imbalanced, with
3502, 3184, 3175, and 1676 observations, respec-
tively.

4 Methodology

In this section, we present the proposed methodol-
ogy applied to the MIMIC-III dataset. The algo-
rithm proposes tasks in three main steps: prepro-
cessing, feature extraction, and pattern discovery.
The overview of the proposed algorithm is shown
in Figure 1.

4.1 Preprocessing

We first apply a preprocessing pipeline proposed
by (Van Aken et al., 2021) to clean and merge the
dataset.

We select the NOTEEVENTS (containing the
unstructured text) and DIAGNOSES_ICD tables
from the MIMIC-III database. The selected records
contain clinical notes of patients, diagnoses, proce-
dures, and ICD9 codes with admission ID columns
acting as a link for all the tables. As each admission
often had multiple diagnoses, we filter the data by
only considering the highest priority diagnosis as
the label to be predicted. We then trim the data to

the top four most common ICD9 codes.

After retaining these approximate 11,000 text
records, we apply regular expressions to remove
invalid characters and common stop words as well
as words under three characters. We conform every
remaining letter to lowercase and apply lemmati-
zation. Finally, we remove a custom list of stop
words that are ubiquitous among all text records.

Then, we process the text into a format suitable
to be passed as a corpus (embedded lists). A dic-
tionary, or key-value pair, is created from the to-
kens that were derived from our corpus of cleaned
words.

4.2 Feature Extraction

Topic modelling (Hamed Jelodar and Zhao, 2018)
is described as a method for finding a group of
words (i.e topic) from a collection of documents
that best represents the information in the collec-
tion. Hence, we extract features from the clean
dataset using topic modelling the value of the fea-
tures represented by the probabilities of topics oc-
curring in the records. Labels are then merged with
the features for unsupervised exploration; in this
case, the label is the ICD9 code - the diagnostic
code indicating categories of disease. We use LDA
(Latent Dirichlet Allocation) for the topic model
because it identifies topics best describing distinct
subsets of documents within a corpus (Hamed Jelo-
dar and Zhao, 2018).

To determine the ideal number of topics, we
choose the optimal number of topics by comput-
ing coherence of the topic cluster instance (Roder
et al., 2015). We find that the coherence score
peaks when the number of topics is 5, 20, and 30
- and therefore we create topic models with those
respective parameters. The output of our coherence
scores is shown as Figure 2.

4.3 Pattern Discovery and Disentanglement

After preprocessing and extracting features from
the text, the dataset has been transformed into a
structured table of patients’ records in rows and fea-
tures in columns, which is represented as a M x N
matrix, where M represents the number of patients’
records and N represents the number of extracted

features .

'In pattern discovery, we use the term attribute instead of
feature.



3. Pattern Discovery and Disentanglement (PDD)

| 3.1)Discretize Features |

Table with diécrete features

‘ 3.2) Association Disentanglement |

Input:
MIMIC Il
Datasets
l . w Mixed-mode
1. Preprocessing Extraction: .
Merged_| table with text
(proposed by bl Extract features features and
Van Aken [1]): ables using topic
. labels
modeling

Reprojected aséociation matrices

| 3.3) Association Disentanglement |

Feature Value Groups

| 3.4) Pattern Discovery |

Significant Detailed Patterns/Associations

Outputs:
1. Knowledge Base (Knowledge-Pattern-Data all-in-one)

2. Patients’ records Groups (without training)

Figure 1: The overview of the proposed algorithm

Figure 2: Optimal number of topics by coherence of the
topic cluster

4.3.1 Discretize Numerical Feature Values

To detect event-based patterns, we convert the val-
ues of numerical features into categorical features
by using the Equal Frequency discretization which
distributes the values into equal size bins. so that
numerical feature values are converted into discrete
values referred to as “feature value” (meaning the
discrete value for that feature). To be consistent
with our existing work in PDD (Wong et al., 2021)
we use the term Attribute Value (AV) instead.

4.3.2 Association Disentanglement

In order to measure the association between a pair
of AVs (i.e. certain values of one attribute co-
occurs with the value of another attribute), we
use the statistical measure of adjusted standard-
ized residual, abbreviated by SR, to represent the
statistical weights of the AV pair, which is denoted
as SR(AV; « AV5) (shorten as SR(AVi2)) and
calculated by Eqn. (1) below.

Occ(AVig) — Exp(AVi9)
Exp(AVi9)

<(1— Occ(AV7) Oce(AVs)
T T

SR(AVig) =

)

)]

where Occ(AVy) and Occ(AVa) are the number
of occurrences of AV; Occ(AV)2) is the total num-
ber of co-occurrence for two AVs in a AV pair; and
Exp(AVi2) is the expected frequency and 7" is the
total number of records.

An association matrix, treated as a vector space,
is then generated to represent the strength of asso-
ciations between each pair of AVs. Each row of the
matrix, corresponding to a distinct AV, represents
an AV-vector with SRs between that AV associated
with all other AVs corresponding to the column
vectors as its coordinates. We call the matrix the
SR Vector Space (SRV). SRV is an /textitN dimen-
sional vector space consisting of /textitN distinct
AV-vectors.

We then use PCA to decompose SRV (Wong
et al., 2021) (Wong et al., 2018) into principal com-
ponents to reveal AV associations orthogonal to
others AV associations, i.e. PC=PCy, PCs,...
PC}, which are ranked according to the weights
of the associations (eigenvalues). We then repro-
ject the projections of AV-vectors on the principal
components onto the SRV again, to obtain a set of
reprojected-SRVs (abbreviated by RSRV). We refer
to the PC together with its RSRV as a disentangled
space.



The above process is called Pattern Disentan-
glement which allows us to take the reprojected
components/vectors from PCA and use the repro-
jected values as new measurements/criteria to rep-
resent the strength of associations between AVs in
different orthogonal disentangled spaces.

4.3.3 Obtain Attribute Value Groups with
Disentangled Associations

In an RSRYV, after screening in the statistical resid-
ual values (referred to as RSR) greater than 1.96,
only the significant pairs of AV associations re-
main. Statistically, under the null hypothesis that
the two AVs are independent, the adjusted resid-
uals will have a standard normal distribution. So,
an adjusted residual that is more than 1.96 (2.0
is used by convention) indicates the association is
significantly greater than what would be expected
(with a significance level of 0.05 or 95% confidence
level) if the hypothesis were true. We can also set
a threshold as 1.44 with 85% confidence, or 1.28
with 80% confidence level.

As an unsupervised learning approach, on each
RSRYV, we generate AV groups such that each group
contains a set of AVs. We build the set of AVs up
iteratively by adding AVs that are associated with
AVs in the set. That is to say an AV (e.g., AV;) that
is significantly associated with another AV (e.g.
AV}) in the group will join the group, otherwise, a
new AV group is generated for AV;. Theoretically,
in one projected principal component, usually two
AV groups on the opposite sides are generated as
two opposite groups. When such opposite groups
do not exist, we may obtain AV groups only on one
side of the PC. The output of this step is one or two
AV groups, and each group contains a set of AVs.

Furthermore, to obtain detailed separated groups,
several AV subgroups can be generated for each
AV group using a similarity measure such that the
similarity between two AV subclusters is speci-
fied as the percentage of the overlapping records
covered by each AV subcluster. We denote each
AV subgroup by a three-digit code [#PC, #Group,
#SubGroup]. The AV groups or subgroups can re-
veal the characteristics of the records at specific
groups with disentangled patterns to provide statis-
tical evidence for further clustering or prediction.
Furthermore, patient record groups are obtained
according to their specific characteristics (disen-
tangled patterns) discovered in the AV groups or
subgroups.

4.3.4 Pattern Discovery on Attribute Value

SubGroups
Traditional  pattern  clustering  algorithm
/citezhou2016effective, without PCA, can

group patterns based on their “similarity”,
which is limited and time-consuming. In this
case, after disentanglement and generating AV
groups/subgroups, only a few AVs remain to
be candidate patterns, which can reduce time
consumption when high-order patterns are growing.
The high-order pattern describes a statistically
significant association among more than two AVs.

So far, each AV subgroup contains a set of AVs
considered as candidate patterns. We then test the
candidates from order > 2 (i.e. consisting of more
than 2 AVs) to high order sets to determine their
pattern status. Hence, we obtain a compact set of
patterns which are statistically significant and in-
terpretable. Hence PDD reduces the computational
complexity drastically and produces very small and
succinct pattern sets for interpretation and tracking.
The disease related record groups of patients can
then be explicitly revealed.

4.4 Output

The output of PDD is organized into an all-in-one
representational framework known as PDD Knowl-
edge Base. It consists of three parts: a Knowledge
Section showing the hierarchical clusters such that
each cluster unveil distinct characteristics of a re-
lated group of records; a Pattern Section listing
the discovered patterns showing detailed associa-
tions between AVs; and the Data Section listing the
record ID’s, the knowledge source and pattern(s)
associated with each patient by linking the patient
to the Knowledge and Pattern Sections

5 Experimental Result

5.1 Topic Modeling Result

From a clinical perspective, the generated topic
models correspond reasonably well with each ICD9
diagnosis. In the 20-topic model, septicemia - a
widespread infection of the body, was predicted
by topics containing relevant words such as "in-
fection", “bacteria", and "culture". Conversely,
topics that contained cardiovascular-related terms
such as "ventricular" or "aorta" predicted the heart-
related diagnoses. Additionally, the algorithm was
able to discern the heart-related diagnoses from
one another: dividing acute myocardial infarction



(410) from the more chronic and congenital dis-
eases (414, 424). The algorithm may have dis-
cerned that words representing severe prognoses
or procedures, such as "angioplasty"”, "emergency",
and "death" were more correlated with acute my-
ocardial infarction. Taken together, topic modeling
and PDD provides an interpretable methodology to
predict ICD9 diagnosis with reasonable accuracy

when given unstructured clinical text as input.

5.2 Comparison of Unsupervised Learning

Although the process of clustering individuals does
not require class label information, the entity clus-
tering performance can be evaluated from the clus-
tering results by two statistical measures using the
presumed class labels as ground truth. In this study,
since the numbers of records belonging to different
classes are imbalanced, the correct prediction of
the majority classes will overwhelm that of the mi-
nority classes. In this case, we followed the same
evaluation method in (Van Aken et al., 2021), bal-
anced accuracy (Balanced Acc. in Table 1) and
weighted F1-scores (Weighted F1 in Table 1), to
evaluate performance of both supervised and unsu-
pervised results. Balanced accuracy is defined as
the average of recall obtained in each class (Broder-
sen et al., 2010) and the weighted F1-score is calcu-
lated by averaging the support-weighted mean per
class F1-scores (i.e. weights on class distribution)
(Chakravarthi et al., 2020). Both above results are
referred to the sklearn.metrics package in Python
3.0 (Pedregosa et al., 2011).

We compared the clustering results of PDD with
the classical clustering algorithm, K-mean, as the
baseline, and also two supervised learning algo-
rithms: Random Forest (Breiman, 2001) and CNN
(Brownlee, 2020). The data were split into 70%
training and 30% for testing.

As for K-means, we use the sklearn.clusters
package in Python 3.0 (Pedregosa et al., 2011) with
all default parameter settings and assign the num-
ber of clusters as four. For Random Forest, we
apply the default parameter settings from the pack-
age of sklearn.ensemble.RandomForestClassifier
in Python 3.0 (Pedregosa et al., 2011).

For CNN (Brownlee, 2020), we trained a CNN
model with the input layer as a reshaped cleaned
dataset with probabilities of topics or extracted
words and ICDO labels. The architecture is as fol-
lows: a 1D CNN layer, followed by batch normal-
ization, then a dropout layer for regularization (Li

et al., 2019), and finally a 1D max-pooling layer.
After the CNN and pooling, the learned features
are flattened to one long vector and passed through
a fully connected layer before the output layer for
prediction. We used Adam optimizer with a learn-
ing rate of 0.001 trained on 25 epochs with a batch
size of 32.

As the baseline comparison for features, we also
applied all supervised and unsupervised learning
algorithms on the dataset with words extracted us-
ing TFIDF (Jones, 1972). In a corpus, frequent
words in one document tend to be frequent in all
other documents. TFIDF (term-frequency-inverse
document frequency) is an algorithm that scores
words that are distinctively frequent in a particular
document but not necessarily within the general
corpus. TFIDF can be computed as:

tf-idf(t,d) = tf(t,d) x idf(t)

where tf refers to the term frequency (proportion of
a particular term t over all terms); and

. 1+n

idf(t) = log 1+ di(D) +1
where n is the total number of documents in the set
and df is the number of documents containing the
term t.

To discover associations among features and
class labels and to make the interpretation mean-
ingful, we did not keep all words in TFIDF, but
selected the top 40 words with a feature selection
algorithm by Random Forest.

The comparison results are shown in Table 1. It
is interesting to observe that PDD outperformed
other models but underperformed when applied
on the TFIDF results, which consist of the results
of K-means. Both supervised learning algorithms,
Random Forest and CNN perform better on the
TFIDF dataset. The reason should be that the top 40
words (feature) are selected based on classification
results.

When topic modeling results are used as a
dataset, PDD outperforms K-means and even the
two other supervised learning algorithms, with
balanced acc.=0.78 and weighted F1-score=0.78,
when only 5 topics are used. As for Random For-
est, it performs better when applied to the topic
modelling results with 20 topics than another the
two experiments running on 5 topics and 30 topics.
While as for CNN, the results of experiments on
30 topics are slightly better than the results on 20
topics.



Comparison Balanced Acc. Weighted F1
K-means

TFIDFy 0.48 0.42
T Ms 0.62 0.57
T Msg 0.50 0.54
T Msg 0.51 0.42
Random Forest

TFIDFy 0.81 0.81
T Ms 0.63 0.66
T Msg 0.72 0.74
T Msg 0.71 0.74
CNN

TFIDFy 0.86 0.85
T Ms 0.63 0.67
T Mag 0.71 0.73
T M3 0.70 0.73
PDD

TFIDFy 0.45 0.41
T Ms 0.78 0.78
T Mag 0.74 0.72
T Msg 0.73 0.71

Table 1: Experimental Result Comparison.

One important notion we would like to bring
forth is that, even if the accuracy score reflects the
algorithm performance to some extent, class labels
may not always be reliable in supervised classifica-
tion algorithms. On the contrary, clustering merely
recognizes patterns in the data and holds no such
risk.

5.3 Interpretability

From the perspective of interpretability, when the
topic modeling dataset with top 5 and top 20 topics
were compared, the clustering performance of PDD
is superior to all the other methods. As an example,
we present the PDD Knowledge Base on 5 topics
and 20 topics as shown in Figure 3.

The first three columns show the knowledge
space, which are clustering results of PDD and
statistical measurement of each pattern. The clus-
ters are identified by a three-digital code [#PC,
#Group, #Subgroup] (PC: Principal Component,
Group: pattern groups in the same principal com-
ponent, Subgroup: pattern Sub-group in the same
pattern group). We observe that, in the first princi-
pal component, two opposite groups are discovered:
one where ICD9=4XX, and the other where ICD9
=038. All ICD9=4XX are diseases related to heart
disease, while ICD9=038 is related to Septicemia,

so these are two opposite groups. Then in the
second principal components, ICD9=424(diseases
of the endocardium) was separated, still showing
opposite patterns with ICD9=38. Finally, in the
third principal component, ICD9=424 was sepa-
rated from ICD9=410(acute myocardial infarction).
Then, the pattern space shows the discovered
significant associations between ICD9 code and the
extracted topics. To be more specific, the unveiled
knowledge can be summarized as below.

* 1CD9=424,410,414 (heart diseases) show sim-
ilar patterns with Topic O (Medication) show-
ing low probabilities.

e ICD9=424 (endocardium disease) and 414
(chronic ischemic heart disease) show more
closed patterns compared to 410 (acute
myocardial infarction), topic 4 (Intensive
Care/Infection) showing low probability. And
the unique characteristic of ICD9=424 (endo-
cardium disease) is that Topic 1 (Cardiovascu-
lar 1) showing high probability.

* ICD9=38(septicemia) shows opposite charac-
teristics compared to ICD9=4XX, with Topic
0 (Medication) showing high probability,
Topic 2 (Cardiovascular 2) showing low prob-
ability, and Topic 4 (Intensive Care/Infection)
showing high probability.

The data space shows the records IDs that are
covered by the patterns. For example, the first asso-
ciation pattern listed in the first row of the knowl-
edge base can be covered by the records with ID
=2,11,44,53,63 and so on. And all above records
belong to the group labeled as ICD9=410, which is
same with the discovered pattern.

In addition, Figure 4 shows the partial knowl-
edge base on 20 topics dataset. As same with
the above results, in the first principal component,
two opposite groups are discovered: one where
ICD9=4XX (heart diseases), and the other where
ICD9 = 038 (septicemia). But the difference is that
three subgroups (i.e. 424, 414, 410) are detected
related to three different ICD9 codes in the first
group in the first principal component.

Similar to the above results using 5 topics, the
discovered significant patterns can be summarized
for 20 topics as below. Since the most of topics are
not clear, we highlighted the meaning for partial
topics.



PDD Knowledge Base
Pattern Space
Knowledge Space Data Space
Attributes (i.e. Topics in this study)

PC |Group| SubGroup| Residual (lon}:] Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Records 1D

1 1 1 24.99 410 [0.00 0.01) (0,03 0.17) | [0.13 0.95] | [0.07 0.36) |#2, #11, #44, #53, #63, ...
1 1 1 11.71 414 [0.00 0.01) [0.17 0.94] | [0.13 0.95] | [0.00 0.07) |¥62, #88, #93, ..

1 1 1 13.64 424 [0.00 0.01) | [0.42 0.97] | [0.17 0.94] (0,00 0.07) |¥1, #63, #1B4, ..

1 2 1 51.07 38 [0.18 0.42) | [0.00 0.03) | [0.03 0.13) | [0.36 0.97] |#35,453 477 480,...
1 2 1 B6.06 38 [0.01 0.84] | [0.00 0.18) | [0.00 0.03) [0.36 0.97] |#84, #96, #99,...

1 2 1 56.5 ET: (0.010.84] | [0.00 0.18) [0.03 0.13) | [0.36 0.97] |#B84,4126,8130,...

2 1 1 10.55 424 [0.42 0.97] | [0.17 0.94] [0.00 0.07) |#1, #63, #176,...

2 2 1 B85.89 38 [0.00 0.18) | [0.00 0.03) | [0.03 0.13) | [0.36 0.97] |#12, #83, #84, ...

3 1 1 18.99 424 [0.42 0.97] | [0.00 0.03) | [0.03 0.13) | [0.00 0.07) |#206, #225, ...

3 2 1 191 410 [0.000.01) | [0.18 0.42) | [0.17 0.94] [0.07 0.36) |#8, #64, #75,...

3 2 1 31.56 410 [0.000.01) | [0.000.18) [0.13 0.95] | [0.07 0.36) |#2, #42, #53, ...

Note: PC=Principal Component; Group=Attribute Value Group; SubGroup = Attribute Value Sub-Group;
Figure 3: The PDD Knowledge Base for 5 topics are used as input.
PDD Knowledge Base
Pattern Space
Knowledge Space P Data Space
Attributes (i.e. Topics in this study)

PC |Group|SubGroup| Residual ICD9 Topic 0 Topic 1 Topic 2 Topic 16 Topic 17 Topic 18 Topic 19 Records ID
1] 1 1 19.76 424 [0.010.42] | [0.03 0.54] | [0.03 0.44] #1, 49, #13,..

1] 1 2 9.39 410 [0.01 0.42] [0.03 0.44] [0.07 0.45] #2, #4, 45, #7,..

1] 1 3 26.59 414 [0.010.42] [0.030.44] | ... #3, #6, #16,...

1| 2 1 50.27 38 [0.000.01) | [0.000.01) | [0.000.03) | ... | [0.00 0.02) [0.00 0.01) #9, #12, #16,...

2 | 1 1 24.46 424 [0.010.42] [0.000.03) | ... | [0.02 0.05) [0.02 0.04) |#1, 49, #13,...

2 1 2 33.81 414 [0.01 0.42] | [0.03 0.54] | [0.000.03) | ... | [0.02 0.05) [0.01 0.03) | [0.02 0.04) |#3, #6, #16,...

2 2 1 15.28 410 [0.000.01) | [0.030.44] | ... #2, #4, 45, #7,..

Mote: PC=Principal Component; Group=Attribute Value Group; SubGroup = Attribute Value Sub-Group;

Figure 4: The PDD Knowledge Base when Top 20 topics are used as input.

ICD9Y9=424 (diseases of the endocardium) and
414 (chronic ischemic heart disease) shows
similar patterns, for example:

i) high probabilities appear in the topics
1,2(Cardiovascular/Surgery),5,16;

ii) and topics with low probabilities are topics
6, 7 (Status/Consciousness), 8 (Lung disease),
9

while 038 (septicemia) shows opposite pat-
terns, for example:

i) topics with high probabilities are top-
ics 3, 4 (Intensive care/Infection), 7 (Sta-
tus/Consciousness), 8 (Lung disease)

ii)and low probabilities appear in the top-
ics O(Heart anatomy) 1, 2 (Cardiovascu-
lar/Surgery), 5, 12 (Cardiovascular), 16, 18;

6 Conclusion

In this work, we propose a novel two-step algo-
rithm, combining NLP techniques with pattern dis-
covery to solve the interpretability and unsuper-
vised learning tasks for clinical data analysis. Ex-
periments show results from both clustering accu-
racy and interpretability.

As for the clustering results, PDD performs bet-
ter than K-means, especially when applied to the
dataset extracted by topic modeling. Clustering
results of PDD based on the discovered patterns
may reflect the functional sources of the original
dataset instead of class labels.
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