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Abstract

In recent years, most exciting inputs (MEIs) synthesized from encoding models of
neuronal activity have become an established method for studying tuning properties
of biological and artificial visual systems. However, as we move up the visual
hierarchy, the complexity of neuronal computations increases. Consequently, it
becomes more challenging to model neuronal activity, requiring more complex
models. In this study, we introduce a novel readout architecture inspired by the
mechanism of visual attention. This new architecture, which we call attention
readout, together with a data-driven convolutional core outperforms previous task-
driven models in predicting the activity of neurons in macaque area V4. However,
as our predictive network becomes deeper and more complex, synthesizing MEIs
via straightforward gradient ascent (GA) can struggle to produce qualitatively
good results and overfit to idiosyncrasies of a more complex model, potentially
decreasing the MEI’s model-to-brain transferability. To solve this problem, we
propose a diffusion-based method for generating MEIs via Energy Guidance (EGG).
We show that for models of macaque V4, EGG generates single neuron MEIs
that generalize better across varying model architectures than the state-of-the-art
GA, while at the same time reducing computational costs by a factor of 4.7x,
facilitating experimentally challenging closed-loop experiments. Furthermore,
EGG diffusion can be used to generate other neurally exciting images, like most
exciting naturalistic images that are on par with a selection of highly activating
natural images, or image reconstructions that generalize better across architectures.
Finally, EGG is simple to implement, requires no retraining of the diffusion model,
and can easily be generalized to provide other characterizations of the visual system,
such as invariances. Thus, EGG provides a general and flexible framework to study
the coding properties of the visual system in the context of natural images.1

1 Introduction

From the early works of Hubel and Wiesel [1], visual neuroscience has used the preferred stimuli
of visual neurons to gain insight into the information processing in the brain. In recent years, deep
learning has made big strides in predicting neuronal responses [2–16] enabling in silico stimulus

1The code is available at https://github.com/sinzlab/energy-guided-diffusion
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Figure 1: Schematic of the EGG diffusion method with a pre-trained diffusion model. Examples of
applications: Left: Most Exciting Inputs for different neurons, Middle: Most Exciting Naturalistic
Inputs matched unit-wise to the MEIs. Right: Reconstructions in comparison to the ground truth
(top) and gradient descent optimized (bottom).

synthesis of non-parametric most exciting inputs (MEIs) [17–19]. MEIs are images that strongly
drive a selected neuron and can thus provide insights into its tuning properties. Up until now, they
have been successfully used to find novel properties of neurons in various brain areas in mice and
macaques [17–24].

However, as we move up the visual hierarchy, such as monkey visual area V4 and IT, the increasing
non-linearity of neuronal responses with respect to the visual stimulus makes it more challenging to
1 obtain models with high predictive performance for single neurons, and 2 optimize perceptually

plausible MEIs, that is, those not corrupted by adversarial high-frequency noise for example. Par-
ticularly, area V4 is known to be influenced by attention effects [25], and shifts in attention before
the onset of saccades can change the location of its neurons’ receptive fields [26, 27]. When models
become more complex or units are taken from deeper layers of a network, existing MEI optimization
methods based on gradient ascent (GA) can sometimes have difficulties producing qualitatively good
results [28] and can overfit to the idiosyncrasies of more complex models, potentially decreasing
the MEI’s model-to-brain transferability. Typically, these challenges are addressed by biasing MEIs
towards the statistic of natural images, for instance by gradient pre-conditioning [28], by including
a total variation loss to reduce high-frequency noise [29] or by image synthesis via GANs [19].
However, as discussed by Engstrom et al. [30] and Feather et al. [31] including additional priors into
the generation process can result in obfuscated model biases.

Here, we make two contributions towards the above points: 1 We introduce a new model architecture,
called the attention readout, for predicting the activity of neurons in macaque area V4 , which together
with a data-driven convolutional core outperforms previous task-driven models [24, 32]. 2 To
improve the quality of MEI synthesis we introduce a novel method for optimizing MEIs via Energy
Guided Diffusion (EGG). EGG diffusion guides a pre-trained diffusion model with a learned neuronal
encoding model to generate MEIs with a bias towards natural image statistics. Our proposed EGG
method is simple to implement and, in contrast to similar approaches [33–35], requires no retraining
of the diffusion model (Fig. 1). We show that EGG diffusion not only yields MEIs that generalize
better across architectures and are thus expected to drive real neurons equally well or better than GA-
based MEIs but also provides a significant (4.7x) speed up over the standard GA method enhancing
its utility for close-loop experiments such as inception loops [17, 18, 20, 24]. Since optimizing MEIs
for thousands of neurons can take weeks [24], such a speed-up directly decreases the energy footprint
of this technique. Moreover, the rapid verification of synthesized images in vivo is particularly
important for close-loop experiments given that maintaining the stability of single unit recordings
is challenging, and there’s also the issue of representational drift [36], where tuning functions can
change over time. We also demonstrate that EGG diffusion straightforwardly generalizes to provide
other characterizations of the visual system that can be phrased as an inverse problem, such as image
reconstructions based on neuronal responses. The flexibility and generality of EGG thus make it a
powerful tool for investigating the neural mechanisms underlying visual processing.

2 Attention readout for macaque area V4

Background Deep network-based encoding models have set new standards in predicting neuronal
responses to natural images [2–15]. Virtually all architectures of these encoding models consist
of at least two parts: a core and a readout. The core is usually implemented via a convolutional

2



network that extracts non-linear features Φ(x) from the visual input and is shared across all neurons
to be predicted. It is usually trained through one of two paradigms: i) task-driven, where the core
is pre-trained on a different task like object recognition [3, 4, 37–39] and then only the readout is
trained to predict the neurons’ responses or ii) data-driven where the model is trained end-to-end to
predict the neurons’ responses. The readout is a collection of predictors that map the core’s features
to responses of individual neurons. With a few exceptions [40], the readout components and its
parameters are neuron-specific and are therefore kept simple. Typically, the readout is implemented
by a linear layer with a rectifying non-linearity. Different readouts differ by the constraints they
put on the linear layer to reduce the number of parameters [3, 4, 37, 40–42]. One key assumption
all current readout designs make is that the readout mechanism does not change with the stimulus.
In particular, this means that the location of the receptive field is fixed. While this assumption is
reasonable for early visual areas like V1, it is not necessarily true for higher or mid-level areas such
as macaque V4, which are known to be affected by attention effects and can even shift the location of
the receptive fields [26]. This motivated us to create a more flexible readout mechanism for V4.

State-of-the-art model: Robust ResNet core with Gaussian readout In this study, we compare
our data-driven model to a task-driven model [24], which is also composed of a core and readout.
The core is a pre-trained robust ResNet50 (L2, ε = 0.1) [43, 44]. We use the layers up to layer 3
in the ResNet, which has 1,024 channels, thus providing a 1,024 dimension feature space. Then
batch normalization is applied [45], followed by a ReLU non-linearity. The Gaussian readout [40]
learns the position of each neuron and extracts a feature vector at this position. During training, the
positions are sampled from a 2D Gaussian distribution with means µn and Σn, during inference the
µn positions are used. Then the extracted features are used in a linear non-linear model to predict
neuronal responses. We will refer to this model as the Gaussian model.

Proposed model: Data-driven core with attention readout The predictive model is trained from
scratch to predict the neuronal responses in an end-to-end fashion. Following Lurz et al. [40], the
architecture is comprised of two main components. First, the core, a four-layer CNN with 64 channels
per layer with an architecture identical to Lurz et al. [40]. Secondly, the attention readout, which
builds upon the attention mechanism [46, 47] as it is used in the popular transformer architecture
[48]. After adding a fixed positional embedding to Φ(x) and normalization through LayerNorm [49]
to get Φ̃(x), key and value embeddings are extracted from the core representation. This is done by
position-wise linear projections V ∈ Rc×dk and U ∈ Rc×dv both of which have parameters shared
across all neurons. Then, for each neuron a learned query vector qn ∈ Rdk is compared with each
position’s key embedding using scaled dot-product attention [48].

αn = softmax

∑
c,dk

Φ̃(x)cWc,dk
qn,dk√

dk

 (1)

The result is a spatially normalized attention map αn ∈ Rh×w×1 that indicates the most important
feature locations for a neuron n given an input image. Using this attention map to compute a
weighted sum of the value embeddings gives us a single feature vector for each neuron. Finally, a
neuron-specific affine projection with ELU non-linearity [50] gives rise to the predicted spike rate r̂n
(Fig. 2A). The model training is performed by minimizing the Poisson loss using the same setup as
described in Willeke et al. [24]. We will refer to this model as the Attention model.

Training data We use data from 1,244 Macaque V4 neurons from Willeke et al. [24] and briefly
summarize their data acquisition in the supplementary materials section A.1.

Results Our Attention model significantly outperforms the Gaussian model in predicting neuronal
responses of macaque V4 cells on unseen natural and model-derived images. We evaluate the model
performance by the correlation between the model’s prediction and the averages of actual neuron
responses across multiple presentations of a set of test images, as described by Willeke et al. [24].
We compared this predictive performance to the Gaussian model [44] on 1,244 individual neurons
(Fig. 2B). The Attention model significantly outperforms the Gaussian model by 12% (Wilcoxon
signed-rank test, p-value = 6.79 · 10−82). In addition, we evaluated the new readout on how well
it predicts the real neuronal responses to 48 MEIs generated from the Gaussian model [see 24]
and 7 control natural images. Our Attention model is better at predicting real neuronal responses,
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Figure 2: a) Schematic of the Attention Readout. b) Correlation to average scores for 1,244 neurons.
The Attention model (pink) shows a significant (as per the Wilcoxon signed rank test, p-value
= 6.79 · 10−82) increase in the mean correlation to average in comparison to the Gaussian model
(blue). c) Predictive performance comparison of the two models in a closed-loop MEI evaluation
setting. Showing that the data-driven with attention readout model better predicts the in-vivo responses
of the MEIs.

even for MEIs of another architecture (Fig. 2C). Please note that Willeke et al. [24] experimentally
verified MEIs in only a subset of neurons and only used the neurons with high functional consistency
across different experimental sessions. For that reason, we too can only compare the performance of
model-derived MEIs on this subset of neurons. We additionally show that the Attention model and
Gaussian model show representational similarity (see Table S1) and that the Attention model uses its
ability to shift its receptive field (Fig. S1).

Readout \ Core Task-Driven Data-Driven

Factorized - 0.153
Gaussian 0.262 0.229
Attention 0.276 0.294

Table 1: Ablation study test correlation comparison
for combinations of different cores and readouts.
Bold indicates the best-performing model.

Ablation Study We perform an ablation study
comparing the effects of the choice of core and
readout on the performance in terms of test cor-
relation (Table 1). We identify that the data-
driven core + Attention readout model outper-
forms all previous setups. Furthermore, the ab-
lation study shows that the Attention readout
generally improves performance across cores.

3 Energy guided diffusion (EGG)

3.1 Algorithm and methods

In this section, we describe our approach to extract tuning properties of neuronal encoding models
using a natural image prior as described by a diffusion model. In brief, we use previously established
links between diffusion and score-based models and the fact that many tuning properties can be
described as inverse problems (most exciting image, image reconstruction from neuronal activity, etc.)
to combine an energy landscape defined by the neuronal encoding model with the energy landscape
defined by the diffusion model and synthesize images via energy minimization. We show that this
method leads to better generalization of MEIs and image reconstructions across architectures, faster
generation, and allows for generating natural-looking stimuli.

Background: diffusion models Recently, Denoising Diffusion Probabilistic Models (DDPMs)
have proved to be successful at generating high-quality images [33, 51–56]. These models can be
formalized as a variational autoencoder with a fixed encoder x0 7→ xT that turns a clean sample x0

into a noisy one xT by repeated addition of Gaussian noise, and a learned decoder xT 7→ x0 [33],
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which is often described as inverting a diffusion process [51]. After training, the sampling process is
initialized with a standard Normal sample xT ∼ N (0, I) which is iteratively “denoised” for T steps
until x0 is reached. In the encoding, each step t corresponds to a particular noise level such that

xt =
√
ᾱtx0 +

√
1− ᾱtε0 (2)

where ᾱt controls the signal strength at time t and ε0 ∼ N (0, I) is independent Gaussian noise. In
the decoding step, the diffusion model predicts the noise component εθ(xt, t) at each step t of the
diffusion process [33]. Then the sampling is performed according to

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

εθ (xt, t)

)
+ σtz (3)

where z ∼ N (0, I).

Several previous works have established a link between diffusion models and energy-based mod-
els [57–59]. In particular, the diffusion model εθ (xt, t) can be interpreted as a score function, i.e. the
gradient of a log-density or energy w.r.t. the data ∇x log p(x) [60]. This link is particularly useful
since combining two density models via a product is equivalent to adding their score functions.

EnerGy Guided Diffusion (EGG) To optimize neurally exciting images, we require a method that
can guide diffusion models via neural encoding models. The parameterization of diffusion models
introduced by Ho et al. [33] only allows for the unconditioned generation of samples. Dhariwal
and Nichol [53] introduced a method for sampling from a conditional distribution pt(x | y), with
diffusion models using a classifier pt(y | x) known as classifier guidance. However, this method
requires i) the classifier to be trained on the noisy images, and ii) is limited to conditions for which
classification makes sense. Essentially, this method relies on computing the score of the posterior
distribution.

∇xt
log p(xt | y) = ∇xt

log p(xt) +∇xt
log p(y | xt) (4)

For classifier-guidance, the gradient of a model ∇xt log p(y | xt) with respect to the noisy input
xt is combined with the diffusion model ∇xt log p(xt), resulting in samples x0 conditioned on the
class y. Note that this requires a model ∇xt log p(y | xt) that has been trained on noisy samples of
the diffusion before. Here we extend this approach to i) use neuronal encoding models, such as the
ones described above, to guide the diffusion process and ii) use a model trained on clean samples
only. We achieve i) by defining conditioning as a sum of energies. Specifically, we redefine equation
(4) in terms of the output of the diffusion model εθ(xt, t) and an arbitrary energy function E(xt, t):

ε̄(xt, t) = εθ(xt, t) + λt∇xtE(xt, t) (5)

where λt is the energy scale. This takes advantage of the fact that sampling in DDPMs is functionally
equivalent to Langevin dynamics [51]. Langevin dynamics generally define the movement of particles
in an energy field and in the special case when E(x) = − log p(x), Langevin dynamics generates
samples from p(x). For this study, we use a constant value of λ and normalize the gradient of the
energy function to a magnitude of 1.

To achieve ii) we use an approximate clean sample x̄0, i.e. the original image, that can be estimated
at each time step t. This is achieved by a simple trick introduced in Li et al. [61]. By inverting the
forward diffusion process, with the assumption that the predicted εθ(xt, t) is the true noise:

x̄0(xt, t) =
1√
ᾱt

(xt −
√
1− ᾱtεθ(xt, t)). (6)

As a result, the energy function receives inputs that are in the domain of x0 at much earlier time steps
t, and hence makes it feasible to use energy functions only defined on x0 and not xt, dropping the
requirement to provide an energy E(xt, t) that can take noisy images. Thus, the new score can be
defined as

ε̄(xt, t) = εθ(xt, t) + λt∇xt
E(x̄0(xt, t)) (7)

This is particularly relevant in the domain of neural system identification, as encoding models are
trained on neuronal responses to natural “clean” images [2–15, 17, 21, 24, 40]. To get an energy that
can understand noisy images would require showing the noisy images to the animals in experiments,
which would make the use of this method prohibitively more difficult. Therefore, a guidance method
that does not require training an additional model on noisy images allows researchers to apply EGG
diffusion directly to existing models trained on neuronal responses and extract tuning properties from
them.
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Related work Many other methods have been proposed to condition the samples of diffusion
processes on additional information. Ho and Salimans [55] provided a method that addressed
the second requirement of classifier-guidance by incorporating the condition y into the denoiser
εθ(xt, t,y). However, to introduce a conditioning domain y in this classifier-free guidance, the
whole diffusion model needs to be retrained. Furthermore, this link between diffusion models and
energy-based models allowed several previous works to compose diffusion models to generate outputs
that contain multiple desired aspects of a generated image [57–59]. However, these studies focus
solely on generalizing the classifier-free guidance to allow guiding diffusion models with other
diffusion models. Nichol and Dhariwal [52] have used a similar gradient conditioning to guide the
diffusion process using the gradient of the dot product of the CLIP image and text vectors. It has
been shown that CLIP models that have not been trained on noisy images can be used for guiding
diffusion models [62, 63]. Kadkhodaie and Simoncelli [64] introduced a stochastic coarse-to-fine
gradient ascent procedure for generating samples from the implicit prior embedded within a CNN.
While we were working on this project, Feng et al. [65] published a preprint where they used the
score-based definition of diffusion models to introduce an image-based prior for inverse problems
where the posterior score function is available. This work is most closely related to our approach.
However, they focus on how to obtain samples and likelihoods from the true posterior. For that reason,
they need guiding models to be proper score functions. We do not need that constraint and focus on
guiding inverse problems defined by a more general energy function and focus particularly on the
application to neuronal encoding models.

Image preprocessing for neural models The neural models used in this study expect 100× 100
images in grayscale. However, the output of the ImageNet pre-trained Ablated Diffusion Model
(ADM) [53] is a 256 × 256 RGB image. We, therefore, use an additional compatibility step that
performs i) downsampling from 256 × 256 → 100 × 100 with bilinear interpolation and ii) takes
the mean across color channels providing the grayscale image. Each of these preprocessing steps is
differentiable and is thus used end-to-end when generating the image.

3.2 Experiments

Most exciting images We apply EGG diffusion to characterize the properties of neurons in macaque
area V4. For each of these experiments, we use the pre-trained ADM diffusion model trained on
256× 256 ImageNet images from Dhariwal and Nichol [53]. In each of our experiments, we consider
two paradigms: 1) within architecture, where we use two independently pre-trained ensembles
containing 5 models of the same architecture (Gaussian model or Attention model). We generate
images on one and evaluate them on the other. 2) cross architecture, two independently pre-trained
ensembles containing 5 models of different architectures (Gaussian model and Attention model). We
demonstrate EGG on three tasks 1 Most Exciting Input (MEI) generation, where the generation
method needs to generate an image that maximally excites an individual neuron, 2 naturalistic image
generation, where a natural-looking image is generated that maximizes individual neuron responses,
and 3 reconstruction of the input image from predicted neuronal responses. Running the experiments
required a total of 7 GPU days. All computations were performed on a single consumer-grade GPU:
NVIDIA GeForce RTX 3090 or NVIDIA GeForce RTX 2080 Ti depending on the availability.

MEIs have served as a powerful tool for visualizing features of a network, providing insights and
testable predictions [17–21, 23, 66]. For the generation of MEIs, we selected 90 units at random
from a subset of all 1,244 for which both the Gaussian model and the Attention model achieve at
least a correlation of 0.5 to the average responses across repeated presentations. We compare our
method to a vanilla gradient ascent (GA) method [24] which optimizes the pixels of an input image x
to obtain the maximal response of the selected neuron. For the GA method, we use Gaussian blur
preconditioning of the gradient. The stochastic gradient descent (SGD) optimizer was used with a
learning rate of 10 and the image was optimized for 1,000 steps. We also evaluated other setups for
the GA method without finding major differences (see Fig. S2). We define EGG diffusion with the
energy function E(x̄0) = fi(x̄0), where fi is the i-th neuron model and x̄0 is the estimated clean
sample. We optimize MEIs for both the Gaussian model and the Attention model. We set the energy
scale to λ = 10 for the Gaussian model and λ = 5 for the Attention model. λ was chosen via a grid
search, for more details refer to Fig. 5B. The diffusion process was run for 100 respaced time steps
for the Gaussian model and 50 respaced time steps for the Attention model. For both EGG and GA,
we set the norm of the 100× 100 image to a fixed value of 25. For each of the methods, we chose
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Figure 3: a) Examples of MEIs optimized using EGG diffusion and GA for macaque V4 Gaussian
and Attention models. b) Comparison of activations for different neurons between EGG diffusion
and GA on the Within and Cross Architecture validation paradigms. Line fits obtained via Huber
regression with ε = 1.1. Curated image selection to show various properties of the neurons like fur,
eyes, curves and edges.

the best of 3 MEIs optimized from different seeds. We show the influence of the initial seed on the
generated MEI in figure S3. Furthermore, the images that are generated by the ADM model are RGB.
We show examples of the color outputs in figure S4.

We show some examples of MEIs generated with EGG diffusion and GA for the two architec-
tures in figure 3A. For more examples, refer to the supplementary materials figure S5. We find
that the EGG-generated MEIs are significantly better (Attention) or similarly (Gaussian) activat-
ing within architectures and are significantly better at generalizing across architectures (Fig. 3B).

EGG GA
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46s ± 0.07

219s ± 0.09

Figure 4: Mean comparison of
the generation times between the
EGG and GA (error bars denote
standard error).

This can also be observed by a significant increase in the mean
activation across all units (Table 2). Perceptually, EGG-generated
MEIs of the Attention model looked more complex and natural
than the GA-generated MEIs, and more similar to MEIs of the
Gaussian model pre-trained on natural image classification.

Comparing EGG-based MEIs to the ones found by Willeke et al.
[24] using GA, we find that the preferred image feature is usually
preserved, but MEIs generated for the Attention model are in most
cases smaller in visual angle than their Gaussian model counter-
parts (Fig. S5). To quantify that the MEIs from the Attention
model are smaller we compute an isotropic Gaussian envelope for
the MEIs. We find that the Attention model generates MEIs for
which their Gaussian envelope on average is smaller than for the
Gaussian MEIs (σAt = 49.62 vs σGa = 55.36, Wilcoxon signed
rank test p-value: 0.0078).

Finally, EGG diffusion is almost 4.7-fold faster than GA, requir-
ing only on average 46s per MEI in comparison to the required
219s for the GA method (Fig. 4) on a single NVIDIA GeForce RTX 3090 across 10 repetitions. This
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Paradigm Within (Gaussian) Cross (Gaussian) Within (Attention) Cross (Attention)

Gradient Ascent 11.43 5.51 7.59 4.42
EGG Diffusion 11.76 6.53† 10.56† 5.50†

Table 2: Comparison of the average unit activations in response to MEIs in two paradigms 1) within
architectures and 2) cross architectures, for two architectures Gaussian and Attention. Bold marks
the method which has higher mean activation, and the † marks the increases which are statistically
significant (Wilcoxon signed-rank test, respective p-values: 0.08, 2.87·10−6, 2.84·10−10, 4.39·10−5).
The architecture in the bracket indicates the generator architecture.

Energy scale responses
normalized by GA MEI

A
B

C

Gaussian Attention

FID vs Energy Scale

Figure 5: a) Examples of MENIs optimized using EGG diffusion in the macaque V4 for different
neurons and different energy scales λ ∈ {1, 2, 5, 10}. b) Mean and standard error of the activations of
neurons across different energy scales normalized by the activation of the GA MEI. c) FID between
MEIs across energy scales and top-5 activating ImageNet images.

is a substantial gain, as Willeke et al. [24] required approximately 1.25 GPU years to optimize the
MEIs presented in their study. With EGG, only approximately 0.25 GPU years would be needed to
produce the results of the study, while providing higher quality and higher resolution MEIs. Thus,
EGG can provide major savings in time and energy, and improve the quality of MEIs.

Controlling the “naturalness” to generate most exciting natural images Unlike GA, EGG can
also be used to synthesize more natural-looking stimuli by controlling the energy scale hyperparameter
λ. Changing the value of λ trades off the importance of the maximization property of the image
and its “naturalness”. To demonstrate this, we generated images for 150 neurons with the highest
correlations to the average for the Gaussian model. We used energy scales λ ∈ {1, 2, 5, 10}, fixed the
100 × 100 image norm to 50, and used 50 steps re-spaced from 1000. Each image was generated
using 3 different seeds and the best-performing image on the generator model was selected.

We show examples of the generated images across different energy scales in figure 5A for both the
Gaussian model and the Attention model. For more examples, refer to the supplementary material
(Fig. S6, Fig. S7). We subsequently quantified the predicted responses across different values of λ.
We find that increasing λ increases the predicted responses (Fig. 5B), however, at higher λ values
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Figure 6: a) Schematic of the reconstruction paradigm. The generated image is compared to the
ground truth image via L2 distance in the unit activations space. Reconstructions from 1,244 units. b)
L2 distances in the unit activations space for the Within and Cross architecture domains comparing
the EGG and GD generation methods. Shows that the EGG method generalizes better than GD across
architectures. c) examples of reconstructions generated by EGG and GD in comparison to the ground
truth (GT). d) Survey results on 45 voluntary human participants. Indicates that in 84% of images,
the participants preferred the EGG generated reconstructions with a rate ≥ 0.6.

the responses begin to plateau, or even decrease. Therefore, for generating MEIs, we use λ = 10 for
the Gaussian model and λ = 5 for the Attention model. It can be further observed that decreasing
λ increases the naturalness of the generated image while preserving the features of the image that
the neuron is tuned towards. To quantify the increase in the naturalness of the MEIs across λs, we
measured the FID score between the generated images at different λ values and the top-5 ImageNet
images (Fig. 5C). Our results show that by changing λ we approach the natural images manifold
(lower FID). We also find that EGG generates MEIs (λ = 1) similarly activating to the top-1 Imagenet
images (Fig. S8).

Image reconstruction from unit responses Another application of EGG diffusion is image
reconstruction from neuronal responses. A similar task has been attempted with success using
diffusion models from human fMRI data [34, 35]. Given that only a small fraction of neurons
were recorded, the image is encoded in an under-complete, significantly lower-dimensional space.
Therefore, it is to be expected that the reconstructed image x will not necessarily be equal to the
ground truth image xgt. However, a better reconstruction x∗ is one that generalizes across models.
Therefore, regardless of the model f used, we should get ||f(x∗)− f(xgt)||2 = 0. This is trivially
true for x̄0 = xgt but, given the complexity of the model, there are likely other solutions. We therefore
consider a masked version of the reconstructions for visualization. We mask the reconstructions to
the joint receptive field of all 1,244 neurons. The mask is obtained by computing the average absolute
gradients mask = Ex[|∇xf(x)|] across the responses to the test images. The masks were normalized
to be between 0 and 1 and the values below 0.25 are clamped to 0.

We can reconstruct images in the EGG framework by defining the energy function as an L2 distance
between the predicted responses to the ground truth image f(xgt) and the predicted responses to
a generated image (Fig. 6A) E(x) = ||f(x) − f(xgt)||2. Note that, instead of f(xgt), we could
also use recorded neuronal responses. The images are generated from the Gaussian model with
λ = 2 and 1000 timesteps, with the norm of the 100× 100 image fixed to 60. We compare EGG to
a gradient descent (GD) method that simply minimizes the L2 distance. The GD uses an AdamW
optimizer with a learning rate of 0.05. In GD, at each optimization step the image xt is Gaussian
blurred and the norm is set to 60 before passing it to the neural encoding model. We optimize the
GD reconstruction up to the point where the train L2 distance is matched between the GD and the
EGG for a fair comparison of the generalization capabilities. We verified that the GD images do
not improve qualitatively with more optimization steps (Fig. S9) We find that when generating the
reconstruction using EGG diffusion we obtain 1) comparable within-architecture generalization and
2) much better cross-architecture generalization (Fig. 6B). The EGG-generated images produce
lower within architecture distances for 84% of the images and for 98% in the cross-architecture case.
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We show examples of EGG diffusion and GD reconstructions in Fig. 6C. Qualitatively, the images
optimized by EGG resemble the ground truth image much more faithfully than the GD images. More
examples are available in the supplementary materials (Fig. S10) and for reconstructions from the
attention model see figure S11. We furthermore reconstruct images from real neurons by minimizing
the distance between the model responses and recorded average neural responses to the image (Fig.
S12).

Human perceptual evaluation As shown in Cobos et al. [67], metrics like SSIM are not necessarily
a good predictor of how well neuronal responses are reproduced in vivo. Therefore, we conducted
a voluntary anonymous survey with 45 voluntary participants on 50 test images (Fig. S13). The
participants were instructed to choose which image (GD optimized or EGG generated) was more
similar to the ground truth image. Results show an 82.22% average preference for EGG-generated
images (95% confidence interval [80.59%, 83.75%]; Wilson score interval). In 84% of the images,
the EGG method was preferred more than 60% of the time (Fig. 6D).
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Figure 7: Examples of failure
cases in comparison to the gra-
dient ascent method. The text
shows the predicted response rate
by the within-architecture valida-
tor.

Limitations While EGG diffusion on average performs better
than GA, it does come with limitations. Firstly, It is important
to note that the results shown in this study have not been verified
in vivo. Moreover, while the energy scale provides additional
flexibility, it is important to keep it mind that it is an additional
hyperparameter that needs to be selected to obtain the desired re-
sults, for which careful controls are necessary before the method
can be used for in-vivo verification. For example, if the energy
scale is too high, our method can be unreliable, which we iden-
tified in 3 out of 90 cases where EGG diffusion failed to provide
a satisfactory result with the Gaussian model (Fig. 7). Further-
more, the parameter value also does not necessarily represent the
same value across energy functions. Another limitation is that the
maximal number of steps to generate the sample is constricted
by the pre-trained diffusion model, i.e. at most 1000 steps can be
used. In addition, the encoding model needs to generalize to the
manifold of the diffusion model. Finally, since neurons are strongly driven by contrast, encoding
models often tend to push generated images to very high contrast values. To avoid this effect and
make the model focus on the image content, we evaluate the energy guiding encoding model at a
normalized image to eliminate the contrast direction from the guidance. This can be seen as an
additional prior.

4 Discussion

In this study, we introduced a new model architecture, called the attention readout, for predicting the
activity of neurons in macaque area V4 , which together with a fully data-driven convolutional core
outperforms previous task-driven models. Furthermore, we propose a novel method for synthesizing
images based on guiding diffusion models via energy functions (EGG). Our results indicate that EGG
diffusion produces most exciting inputs (MEIs) which generalize better across architectures than the
previous standard gradient ascent (GA) method. In addition, EGG diffusion significantly reduces
compute time enabling larger-scale synthesis of visual stimuli. EGG diffusion is not limited to the
generation of MEIs and, within the same framework, allows, among other characterizations, to 1)
generate most exciting naturalistic images which approach the manifold of most activating images
in the ImageNet database, and 2) reconstruct images from unit responses, which generalize better
across architectures and qualitatively resemble more the original image than images obtained via
regular gradient descent optimization. While the dataset we use for this study was recorded from the
macaque visual cortex, it is in principle possible to use EGG for MEI generation and reconstructions
with calcium imaging similar to the GA method on two-photon data in Walker et al. [17]. In fact,
EGG can be applied to any modality that yields an encoding model and where a suitable diffusion
model is available. More generally, EGG can be used whenever the “constraint” on a particular image
can be phrased in terms of an energy function. In summary, EGG diffusion provides a flexible and
powerful framework for studying coding properties of the visual system.
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A Supplementary Material

A.1 Training Data

Electrophysiological data were acquired as broadband signal (0.5Hz-16kHz), from a pair of male
rhesus macaque monkeys (Macaca mulatta), using 32 channel linear silicon probes (NeuroNexus
V1x32-Edge-10mm-60-177). The data was spike-sorted, and single units were isolated based on unit
stability, refractory periods, and channel principal component pairs. Visual stimuli were presented to
the animals on a 16:9 widescreen HD LCD monitor at 100c̃m viewing distance. The animals were
rewarded with juice if they maintained their gaze around a red fixation target throughout each trial.
At the beginning of each recording session, the receptive fields (RFs) of the neurons were mapped
in relation to a fixation target using sparse random dot stimuli, and the population RF was pulled
towards the center of the screen by adjusting the fixation target. A collection of 24,075 images from
ImageNet [68] was transformed into gray-scale and cropped to the central 4202 px and had 8 bit
intensity resolution. These images were presented as visual stimuli during standalone generation
recordings of 1244 units and during closed-loop recordings of 82 units. For details on the closed loop
paradigm, please refer to Willeke et al. [24].

A.2 Supplementary Experiments

A.2.1 Attention Model

Attention readout uses its ability to shift receptive fields Receptive fields of neurons in area
V4 can shift before the onset of saccades, believed to be associated with attentional shifts [26]. We
investigate whether the Attention model actually uses its ability to shift the receptive field depending
on image content. We inspect the attention mask of the attention model. We compute the center
of mass of the upper 5% percentile of each attention mask. We then compute the average distance
between the center of masses across different images for each neuron. We plot the average distance
against the test correlation of each neuron observing that the attention readout does perform shifts
(Fig. S1a). We also show qualitative examples of the masks and the means in Fig. S1b.

Centered Kernel Alignment We computed CKA of the neural encodings across architectures
between the Attention model and Gaussian model and within architecture between different seeds
(e.g. Attention 1 and Attention 2 are models with the same architecture, but trained with different
seeds). The CKA is computed between the predicted neuronal responses. We observe that the
within-architecture similarity is very high (> 0.99) for both architectures and the cross architecture
similarity is slightly lower, but also high (> 0.9) (Table 2). We expect such an outcome, since both
architectures were trained to model the same neural representation.

Model Attention 1 Attention 2 Gaussian 1 Gaussian 2

Attention 1 1 0.9949 0.9133 0.9116
Attention 2 0.9949 1 0.9145 0.9129
Gaussian 1 0.9133 0.9145 1 0.9994
Gaussian 2 0.9116 0.9129 0.9994 1

Supplementary Table S1: Centered Kernel Alignment for the two architectures comparing across and
within architectures.

A.2.2 MEI generation

Comparison of experimental setups For the GA optimization, we use the established method for
generating MEIs that has been tested in vivo Walker et al. [17]. However, we perform a comparison
study to show that the parameters chosen are selected to maximize the performance of the GA method.
We rerun the MEI optimizations using the AdamW optimizer and find a significant decrease in
performance in comparison to the SGD optimizer (r = 0.69). We also run the MEIs for 100 steps
instead of 1000 and also find a performance decrease (r = 0.95) (Fig. S2).

Generating MEIs in color The diffusion model generates color images, so in principle, it can
generate color MEIs. We attach some examples (Fig. S4). Since the encoding models are trained
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Supplementary Figure S1: a) Comparison of the mean shift distance between the center of mass for
the attention masks against the test correlation of the neurons. b) Example attention maps of neurons
responding to different neurons. The blue dot shows the center of mass. The examples show that the
neuron shifts its center of mass.

on grayscale images because the animals only saw grayscale images the colors in these may not be
meaningful. However, if one were to use color stimuli it would be possible to generate MEIs that are
colored and potentially meaningful.

MENIs vs ImageNet search We compare the generated MEIs (λ = 1) to a standard approach
for finding natural images for individual neurons. To that end, we perform a search across 100k
images from the ImageNet dataset [68] to find the top-1 most activating image for a particular unit.
We then compare the predicted activations of the top-1 ImageNet image and the generated MEIs
(λ = 1) in the cross-architectures paradigm (Fig. S8). We find that the generated MENIs drive
comparable activation to the top-1 ImageNet images. Like in the MEI generation paradigm, EGG
can thus significantly speed up the search for activating natural images, as it does not need to search
through millions of images.
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Supplementary Figure S2: Comparison of different experimental setups of MEI optimization using
the GA method. a) Use of SGD vs AdamW optimizer. The SGD optimizer outperforms the AdamW
optimizer on within architecture evaluation. b) Increasing the number of steps slightly decreases the
within architecture performance.
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AttentionGaussian
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Supplementary Figure S3: Variability dependent on the seed used for generating MEIs in the
Gaussian model and the Attention model. Each column represents a different seed and each row a
different neuron. Results shown for the Gaussian and Attention models.
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Supplementary Figure S4: Examples of MEIs in their original color version (before converting to
grayscale). Top row is the direct output RGB images from the diffusion model, the bottom shows the
grayscaled version. Each column corresponds to a different neuron.

20



Gaussian

Attention

Supplementary Figure S5: Examples of MEIs generated using EGG for the Attention and Gaussian
models.
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Supplementary Figure S6: Examples of images generated using EGG diffusion in the Monkey V4
with different energy scales λ ∈ {1, 2, 5, 10}. Generated for the Gaussian model. Units not matched
with the images shown for the Attention model.
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Supplementary Figure S7: Examples of images generated using EGG diffusion in the Monkey V4
with different energy scales λ ∈ {1, 2, 5, 10}. Generated for the Attention model. Units not matched
with the images shown for the Gaussian model.
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Attention Model top-1
Imagenet

Gaussian Model top-1
Imagenet

Supplementary Figure S8: Comparison of the MEIs λ = 1 activations to the top-1 most activating
ImageNet images per neuron in the cross-architecture domain. Line fit obtained via Huber regression
with ε = 1.1. In the left panel, three points at (11, 65), (9, 70), and (16, 120) are not shown for
visualization purposes.

EGG GT

400 800 1200 1600 2000

Supplementary Figure S9: Examples of reconstructions using GD across various training lengths.
Increasing the training does not bring the generated image closer visually to the GT nor EGG.
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Supplementary Figure S10: Reconstruction examples from the Gaussian model. Generated using
EGG diffusion and gradient descent.

25



Attention Model Reconstructions

Attention Model
Reconstruction Performance

G
T

EG
G

G
D

EGG
GD

Supplementary Figure S11: Reconstructions from the Attention model. Top row in each panel
is the ground truth image, middle is our EGG generated reconstruction and last row is the GD
optimized reconstruction. Bar plot shows the performance of both EGG and GD in the within and
cross architecture paradigms in terms of L2 distance.
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Gaussin Model Reconstructions from Real Neurons
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Supplementary Figure S12: Reconstructions from real neurons using the Gaussian model. Top row
in each panel is the ground truth image, middle is our EGG generated reconstruction and last row is
the GD optimized reconstruction. Bar plot shows the performance of both EGG and GD in the within
and cross architecture paradigms in terms of L2 distance.
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Supplementary Figure S13: Setup for the human perceptual evaluation. The voluntary participants
were presented with 50 images with the GT image always in the middle and the GD or EGG
reconstructions were placed randomly on each side of the GT image. The participants were provided
with the question "Which of the images looks more like the image in the center?". They were provided
with context text: "In our study, we are reconstructing images from the brain activity. We have two
methods to do so and we want to find out which one looks better to the human eye. Your participation
is entirely voluntary, and you have the right to withdraw at any time without providing a reason.
Please note that all responses will be kept confidential, and the data collected will be used solely for
research purposes. Your identity will remain anonymous, and your personal information will not be
disclosed to anyone."
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