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Abstract

Multimodal large language models have unlocked new possibilities for various
multimodal tasks. However, their potential in image manipulation detection remains
unexplored. When directly applied to the IMD task, M-LLMs often produce
reasoning texts that suffer from hallucinations and overthinking. To address this,
we propose ForgerySleuth, which leverages M-LLMs to perform comprehensive
clue fusion and generate segmentation outputs indicating specific regions that are
tampered with. Moreover, we construct the Forgery Analysis dataset through the
Chain-of-Clues prompt, which includes analysis and reasoning text to upgrade the
image manipulation detection task. A data engine is also introduced to build a larger-
scale dataset for the pre-training phase. Our extensive experiments demonstrate
the effectiveness of ForgeryAnalysis and show that ForgerySleuth significantly
outperforms existing methods in generalization, robustness, and explainability.

1 Introduction

Recent advancements in multimodal large language models (M-LLMs) [1] have unlocked new
possibilities across a variety of tasks, propelling advancements in numerous traditional research
fields [2, 3, 4]. Despite these advancements, few attempts have been made to enhance the ability of
multimodal large language models on the image manipulation detection task (IMD). In fact, with the
rise of advanced image generation and editing tools, both creative and malicious alterations to visual
content have become increasingly difficult to detect. As a result, identifying manipulated images has
become essential for maintaining the integrity of digital media [5, 6, 7].

While appealing, directly applying M-LLMs for IMD produces results in text, which falls short even
compared with traditional IMD methods that are able to generate segmentation masks to highlight
tampered regions. In addition, M-LLMs are often prone to hallucinations and overthinking, making
them unreliable for precise manipulation detection. For instance, as shown in Figure 1 (a), M-LLMs
may incorrectly identify non-tampered regions, such as the “fish” area, as altered. This highlights the
need to enhance the reasoning capabilities of M-LLMs for tampered region detection. Furthermore,
M-LLMs, pre-trained on vast datasets, excel in recognizing authentic image patterns and world
knowledge, yet lack the ability to combine low-level statistical features to pinpoint manipulation
evidence, which has proven crucial for IMD [8, 9, 10, 11].

In this paper, we explore how to unleash the power of M-LLMs for IMD tasks. We introduce carefully
designed modules that empower an M-LLM as an IMD expert, named ForgerySleuth. ForgerySleuth
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(a) Performance of M-LLMs in Image Manipulation Detection Task (b) Comparison on ForgeryAnalysis

Figure 1: Performance and comparison of existing M-LLMs on the image manipulation detection task.
Our ForgerySleuth assistant provides explanatory analysis with Chain-of-Clues and demonstrates the
best forgery analysis capabilities.

is expected to provide a textual explanation of detected clues with the reasoning process, along
with a segmentation mask to highlight tampered regions. Inspired by the fact that existing IMD
methods rely on low-level features, such as noise patterns, to localize precise tampered regions, we
aim to capture similar low-level features through ForgerySleuth. To do so, ForgerySleuth integrates
M-LLMs with a trace encoder, enabling the model to leverage world knowledge to detect high-level
semantic anomalies while still capturing low-level forgery traces. Additionally, inspired by LISA
[12], we introduce a vision decoder with a fusion mechanism that uses attention to combine high-level
anomalies in the LLM tokens and low-level traces in the trace embedding, ensuring the generation of
accurate segmentation masks.

To further enhance the reasoning capability of M-LLMs on manipulation detection, we propose a
supervised fine-tuning (SFT) dataset ForgeryAnalysis specifically tailored for the IMD task. Each
entry in ForgeryAnalysis is initially generated by GPT-40 using a novel Chain-of-Clues prompt.
Specifically, we ask GPT-40 to produce a detailed thought process and provide reasoning for why
a particular region is tampered with, including high-level semantic anomalies (e.g., content that
contradicts common sense), mid-level visual defects (such as lighting inconsistencies), and low-level
pixel information (such as color, texture, etc.). The generated entries are then reviewed and refined
by experts. Additionally, we build a data engine based on this dataset to automate forgery analysis,
enabling us to create a larger-scale ForgeryAnalysis-PT dataset for pre-training.

Extensive experiments on popular benchmarks demonstrate the success of ForgerySleuth in pixel-
level manipulation localization and text-based forgery analysis. Specifically, our approach outper-
forms the current SOTA method by up to 24.7% in pixel-level localization tasks. Moreover, in
the ForgeryAnalysis-Eval comprehensive scoring, our method surpasses the best available model,
GPT-4o0, achieving an improvement of 35.8%. In summary, our main contributions include:

» Novel Exploration. We explored the role of M-LLMs in image manipulation detection, upgrading
the manipulation detection task by incorporating clues analysis and reasoning.

* Valuable Dataset. We constructed ForgeryAnalysis dataset, providing instructions for analysis
and reasoning through Chain-of-Clues prompting. Additionally, we developed a data engine to
automate forgery analysis, enabling the creation of a large-scale dataset.

* Practical Framework. We introduced ForgerySleuth assistant framework, which integrates
M-LLMs with a trace encoder to leverage multi-level clues. The vision decoder with a fusion
mechanism enables comprehensive clues fusion and segmentation outputs.



2 Related Work

2.1 LLMs and Multimodal LLMs

The success of large language models in various natural language processing tasks has led researchers
to explore their integration with vision modalities, resulting in the development of M-LLMs. BLIP-2
[13] introduces a visual encoder to process image features. LLaVA [14] aligns image and text
features to achieve comprehensive visual and language understanding. Researchers also utilize
prompt engineering to connect independent vision and language modules via API calls without
end-to-end training [15, 16, 17]. However, while these approaches enable M-LLMs to perceive, the
intersection with vision-centric tasks, such as segmentation, remains underexplored. Additionally,
VisionLLM [18] and LISA [12] effectively integrate segmentation capabilities into M-LLMs, making
them support vision-centric tasks, such as segmentation.

With advancements in fundamental reasoning and multimodal information processing, M-LLMs have
demonstrated impressive proficiency across a diverse range of tasks, including image captioning
and video understanding [1]. Moreover, M-LLMs have been developed to address more complex
real-world tasks in robotics, such as embodied agents [19, 20] and autonomous driving [4]. However,
integrating M-LLM:s into the field of image manipulation detection remains unexplored. While M-
LLMs possess valuable world knowledge and can potentially detect high-level anomalies, M-LLMs
are often prone to hallucinations and overthinking, making them unreliable for precise manipulation
detection. Furthermore, there is no existing IMD dataset with analysis instructions for supervised
fine-tuning, which further restricts their capabilities.

2.2 Image Manipulation Detection

Image manipulation detection is a critical task in digital image forensics. The task has evolved beyond
merely determining whether an image is authentic [21, 22]; it involves localizing tampered regions
and providing segmentation masks [23, 24], which leads to more intuitive results. Early attempts
[25, 26, 27, 28, 29] identified anomalies and designed corresponding hand-engineered features. These
efforts systematically use various tampering clues, laying a solid foundation for the field. However,
such hand-engineered features are specific to certain tampering types, which limits their applicability
in real-world scenarios.

Recent approaches have shifted to a more general capability of identifying complex and unknown
manipulations. Semantic-agnostic features, less dependent on specific content, are thought to provide
better generalization [10, 11]. Common strategies include incorporating filters or extractors to capture
low-level noise features [8, 9, 30, 31] and high-frequency features [32], and using content features
extracted from the image view as a supplement to detect manipulation traces [10, 30, 31]. However,
many of these features are learned implicitly by the network, which limits their explainability. Studies
also [11, 32] detect anomalies by comparing patch-level or object-level features. However, capturing
high-level semantic anomalies, such as content that conflicts with common sense or physical laws, is
still challenging. In this work, we extend the task by presenting a reasoning process with multiple
levels of clues expressed in natural language, making the detection results more comprehensible.
Our proposed ForgerySleuth framework leverages M-LLMs to address this challenge, effectively
leveraging world knowledge to detect high-level semantic anomalies while still capturing low-level
forgery traces using a trace encoder. FakeShield [33] is a concurrent work that proposes a multimodal
large model for image manipulation detection.

3 ForgeryAnalysis Dataset

Our goal is to leverage existing M-LLMs to construct a high-quality dataset for IMD. We first
describe how M-LLMs are utilized to generate initial clue analyses from various types of manipulated
image sources in Section 3.1. These analyses are then meticulously refined by experts to create a
high-quality dataset of 2,370 samples, which are used for the supervised fine-tuning (SFT) phase and
the evaluation of M-LLMs. Section 3.2 describes our proposed data engine, which expands the 2k
high-quality analysis instructions from Section 3.1 to 50k. This expansion supports the pre-training
phase while maintaining quality standards. Detailed statistics of our dataset, along with examples of
tampering analysis instructions, are provided in Section A.
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Figure 2: ForgeryAnalysis Dataset Construction Pipeline. Our pipeline begins with (a) GPT-40
generating initial analyses for manipulated images with annotated regions, followed by human expert
review. The refined analyses are organized into (b) the Chain-of-Clues format. This human-curated
ForgeryAnalysis (2k) dataset is used to train a data engine. Finally, (c) this data engine generates
ForgeryAnalysis-PT, a larger-scale dataset for model pre-training.

3.1 ForgeryAnalysis Data

Due to the absence of instruction-following datasets that support clue analysis, we introduce the
ForgeryAnalysis dataset to support the supervised fine-tuning (SFT) and evaluation of M-LLMs. As
illustrated in Figure 2 (a), for each image selected from various data sources, we utilize the advanced
M-LLM, GPT-4o, to generate initial clue analyses. Experts then carefully revise these analyses to
eliminate hallucinations and ensure high quality. Furthermore, we have integrated a Chain-of-Clues
structure to enhance reasoning capabilities.

Data Source. To ensure a diverse dataset that covers various types of manipulation, we collect 4,000
tampered images from existing IMD datasets, including MIML [34], CASIA2 [35], DEFACTO [36],
and AutoSplice [37]. Each image is accompanied by annotations indicating the tampered regions.
These sources include common real-world manipulation techniques such as splicing, copy-move,
object removal, Al generation, and Photoshop edits.

Instruction Design. We aim to provide highly specific and content-driven descriptions of clues
for each image, rather than vague or general analysis. We refer to the clues and evidence widely
used in digital image forensics and manipulation detection [38, 39] to design a more reliable and
effective instruction structure. The key clues include but are not limited to 1) low-level pixel statistics
(e.g., noise, color, texture, sharpness, and Al-generation fingerprints), 2) middle-level visual defects
(e.g., traces of tampered boundaries, lighting inconsistencies, and perspective relationships), and 3)
high-level semantic anomalies (e.g., content that contradicts common sense, incites, or misleads).

The prompt instructs GPT-40 to assume it has detected manipulation in the highlighted region of
the reference image and to analyze its detection based on clues from various levels and aspects. We
provide the tampering type to help GPT-40 focus on relevant clues, along with a reasoning example
to guide the content and format of the output. We also instruct GPT-40 to incorporate corresponding
world knowledge, such as well-known individuals or landmarks.

Chain-of-Clues. The responses generated by GPT-40 are subsequently revised by experts to ensure
quality. Responses lacking detailed content analysis are filtered out, retaining only high-quality
responses as draft data. The experts carefully review vague and incorrect statements that may arise
from hallucinations, removing irrelevant clues and evidence. Inspired by works such as [40, 41]
that introduce Chain-of-Thought (CoT) prompting and demonstrate its effectiveness in enhancing
the step-by-step reasoning capabilities of LLMs, we propose a Chain-of-Clues (CoC) prompting
approach, illustrated in Figure 2 (b). The reasoning process begins with “unveiling doubts” using
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Figure 3: Framework of ForgerySleuth. Given an image X, and a prompt query x,,, the M-LLM

Fm detects high-level semantic anomalies and generates a textual output T. The trace encoder
captures low-level, semantic-agnostic features. The vision decoder D fuses vision embeddings with
the prompt embedding corresponding to [SEG] token to generate the segmentation mask M. LoRA
is utilized in trainable modules for fine-tuning.

high-level clues, followed by “pinpointing evidence” through middle-level and low-level features.
We organize the clues according to this structure, creating a coherent chain of clues, which results
in 2,370 manually revised samples. To ensure accuracy, we conduct additional cross-validation
with more than two experts, selecting 618 samples for evaluation. The remaining data are used for
supervised fine-tuning.

3.2 ForgeryAnalyst Engine

The pre-training phase requires a larger-scale dataset compared to the supervised fine-tuning phase.
However, the high cost of GPT-40 and the need for expert revisions make expanding the dataset a
challenge. To overcome this limitation and create a pre-training dataset, we introduce an additional
data engine [42, 43, 44, 45] that scales up the training set. Specifically, we fine-tune LLaVA-v1.5-13B
using LoRA [46] on the ForgeryAnalysis-SFT dataset, aiming to replicate the ability of GPT-4o to
analyze clues while having experts eliminate any hallucinations. The resulting model is used as our
data engine that is able to annotate data automatically. In particular, we select 50k images from
existing public datasets. The data engine receives input that includes explicit information about
the tampered region, aiming to generate more precise and comprehensive clue analyses. It outputs
manipulation analyses organized in the CoC format, as illustrated in Figure 2 (c). For more detailed
information on the data engine, including the specific prompts used, please refer to Section A.2, and
Figure 17 for output examples. The entire analysis generation process takes approximately 16 A800
GPU days. We refer to this dataset as Forgery Analysis-PT.

4 ForgerySleuth

Given an input image for detection and a prompt specifying the detection request, our goal is to output
a binary segmentation mask M of the tampered regions, as well as text T that includes reasoning
and evidence. This poses a challenge as the model needs to bridge vision and language modalities
and capture tampering features across multiple levels. To address this, ForgerySleuth uses M-LLMs
to connect vision and language modalities, enabling the description of detected clues and evidence
in textual form. Additionally, we incorporate a vision decoder into the multimodal large language
models to perform dense prediction, generating the tampered region mask for this specific task. The
pipeline of our framework is illustrated in Figure 3 (a).

More formally, we extend the original LLM vocabulary with new tokens, including [SEG], which
requests segmentation output, and <REAL> and <FAKE>, which indicate the image classification
results. Given the input image Xin, to be detected along with the prompt x,,, we first feed them into
the M-LLM F,,,, which outputs the hidden embedding h at the last layer of LLM. We then extract
the embedding ﬁseg corresponding to the [SEG] token from the hidden embedding h and apply an



MLP projection layer +y to obtain hg.,. The process can be formulated as

h = F, (Ximg, Xp), e

hseg = 7<flseg)~ (2)

F/ . denotes M-LLM without the language head. This embedding represents the suspicious anomalous
regions the M-LLM detects and serves as the input to guide the subsequent vision decoder.

Inspired by existing IMD methods, we propose an independent trace encoder F; to focus on low-level
features, which complements the relatively high-level vision and semantic features discovered by the
M-LLM and provides more reliable tampering evidence, helping to minimize hallucinations from the
LLM. Specifically, constrained convolutions [47] are employed with residual connections [48] at the
front part of the encoder to suppress the image content and learn manipulation features adaptively.
The input image X;ng is also fed into encoder F;, producing dense manipulation trace features f;,
which can be expressed by

fi =F (ximg)~ 3)

The vision backbone F, simultaneously extracts dense vision content feature f. to support more
precise segmentation. Finally, f., f; and hy, are fed to the vision decoder D to generate the

segmentation mask M which indicates the tampered region. The language modeling head H processes
h and outputs ¥, containing an analysis of the reasoning and evidence. It can be formulated as

fc = fU(Ximg)’ (4)
M = D(fca ftv hseg)a T = H(fl) (5)

Fusion Mechanism. To integrate the image content embedding f., trace embedding f;, and the LLM
output tokens hye, obtained from the M-LLM, we take inspiration from Transformer segmentation
models [49, 50, 42] and design a vision decoder with a fusion attention mechanism, as illustrated in
Figure 3 (b). Here, the first layer of the module computes attention between anomalies in the LLM
output tokens and traces in the trace embeddings, facilitating the organization and pinpointing of
clues. The subsequent layers focus on attention between refined clues in the upgraded tokens and
content in the image embeddings, enabling more precise segmentation of the tampered regions.

Learning Objective. Our framework is trained end-to-end using both the reasoning text loss L and
the tampered region mask loss L,sk. The final learning objective £ is formulated as a weighted sum
of these losses, with weight Ay and Ak, as

L= >\txt£txt + Amask£mask~ (6)

Specifically, L is the auto-regressive cross-entropy (CE) loss for reasoning text generation, guiding
the model to collect multi-level clues, while L, is the mask loss, which encourages the model
to produce precise segmentation results. Ly, is implemented by the combination of binary cross-
entropy (BCE) loss and DICE loss, with respective weights Apce and Agice. Given the ground-truth
targets T and M, the final loss functions are defined as

Ly = CE(T,T), 7

Linask = Aoee BCE(M, M) 4 Agice DICE(M, M). 8)

It is noteworthy that no separate loss is required for the classification result, as the supervision for
<REAL> and <FAKE> tokens are integrated into the text loss L.

4.1 Training Strategy

Trainable Parameter. To preserve the world knowledge and the normal patterns of authentic images
learned by the pre-trained M-LLM F,,,, we adopt LoRA [46] for efficient fine-tuning. The vision
backbone F,, is entirely frozen to retain the capacity for modeling image content features, which
are crucial for accurate segmentation. Both the trace encoder F; and the vision decoder D are fully
trainable and fine-tuned. Additionally, the token embeddings of the LLM, the language modeling
head H, and the projection layer -y are updated during training. Despite the large model scale, only
5.47% of the parameters are trainable, making end-to-end training more efficient.



Table 1: Manipulation localization results comparing ForgerySleuth with SoTA methods.

Optimal Threshold F1 Fixed Threshold F1 (0.5)
Columbia Coverage CASIA1 NIST16 COCOGlide Columbia Coverage CASIA1 NIST16 COCOGlide

Mantra-Net [8]  0.650 0.486 0320  0.225 0.673 0.508 0.317 0.180  0.172 0.516
SPAN [9] 0.873 0.428 0.169  0.363 0.350 0.759 0.235 0.112  0.228 0.298
MVSS-Net [10]  0.781 0.659 0.650  0.372 0.642 0.729 0.514 0.528  0.320 0.486
PSCC-Net [53]  0.760 0.615 0.670  0.210 0.685 0.604 0.473 0.520  0.113 0.515
CAT-Net2 [54] 0.923 0.582 0.852  0.417 0.603 0.859 0.381 0.752  0.308 0.434
TruFor [30] 0914 0.735 0.822  0.470 0.720 0.859 0.600 0.737  0.399 0.523
UnionFor. [31] 0.925 0.720 0.863  0.489 0.742 0.861 0.592 0.760  0.413 0.536
ForgerySleuth  0.931 0.792 0.870  0.610 0.751 0.925 0.684 0.804  0.518 0.562

Method

Data Formulation. The training process involves two phases: 1) Pre-training Phase: (a) In the
first stage, we aim to align the framework modules and ensure that the model can perform basic
segmentation and visual reasoning tasks. For foundational segmentation abilities, we use semantic
segmentation datasets such as ADE20k [51] and COCO-Stuff [52], transforming these datasets into
visual question-answer pairs using class names as questions. Additionally, we incorporate ReasonSeg
[12] to strengthen visual reasoning capabilities. (b) The ForgeryAnalysis-PT dataset focuses on the
IMD task, including analysis instructions that enable the model to recognize tampering traces and
identify clues. We also utilize public IMD datasets, including MIML [34] and CASIA2 [35], with
prompts randomly selected from simple or vague responses. 2) Supervised Fine-tuning Phase: The
ForgeryAnalysis-SFT dataset, meticulously revised by experts to ensure the accuracy of reasoning
and analysis, is used for final supervised fine-tuning to standardize the analysis and output.

S Experiment
5.1 Experimental Setting

Testing Dataset. We utilize six publicly accessible test datasets, which are Columbia [55], Coverage
[56], CASIALI [35], NIST16 [57], IMD20 [58], and COCOGlide [30], to evaluate and compare our
method with state-of-the-art methods thoroughly. To effectively evaluate the model’s generalization
capability, these datasets are ensured to be disjoint from the training data. Additionally, we use our
ForgeryAnalysis-Eval dataset to assess the reasoning and analysis capabilities of the methods.

Evaluation Metrics. Localizing the tampered regions at the pixel level is crucial in image manipula-
tion detection. We follow established practices [31] by using optimal threshold and fixed threshold
F1 scores and the threshold-independent Area Under the Curve (AUC) metric. To ensure fairness and
precision in our comparative analysis, we refer to some results for other methods from [31, 32].

Evaluating the novel reasoning analysis outputs presents a unique challenge, as it involves assessing
the comprehension, reasoning, and correctness in generating text explanations. To measure the
similarity between the generated text and the ground-truth text, thereby reflecting its accuracy, we
incorporate Semantic Textual Similarity (STS) metric. We follow SBERT [59] and use STS to
measure the similarity in our ForgeryAnalysis-Eval, where various models are utilized to calculate the
similarity. Additionally, inspired by previous work [60, 14], we use GPT-4 as an automated evaluator
to assess the reasoning performance of different models, which enables a more holistic evaluation of
the generated analysis text, Figure 18 and Section D.3 provide the prompt format and the evaluation
criteria. We conduct evaluations twice and report the average performance.

5.2 Manipulation Detection Results

The results in Table 1 and Table 2 demonstrate the performance of our ForgerySleuth and comparisons
with SoTA methods for image manipulation localization, using pixel-level F1 scores and AUC metrics,
respectively. Our method consistently achieves the highest or second-highest AUC. Regarding F1
scores, our approach surpasses other methods across all datasets, showcasing its reliability under both
fixed and optimal thresholds. On challenging datasets like NIST16 and IMD20, ForgerySleuth out-
performs UnionFormer by margins of 0.105 and 0.121 for fixed and optimal thresholds, respectively,
which we believe is significant given its challenging nature. Furthermore, on the COCOGlide dataset,
which features novel diffusion-based manipulations, our model also exceeds the UnionFormer. These
significant improvements can be attributed to the capability to effectively capture both low-level



Table 2: Manipulation localization results of ForgerySleuth and SoTA methods, using pixel-level
AUC as the evaluation metric.

Method Columbia Coverage CASIA1 NIST16 IMD20
Mantra-Net [8] 0.824 0.819 0.817 0.795 0.748
SPAN [9] 0.936 0.922 0.797 0.840 0.750
PSCC-Net [53] 0.982 0.847 0.829 0.855 0.806
ObjectFormer [32] 0.955 0.928 0.843 0.872 0.821
TruFor [30] 0.947 0.925 0.957 0.877 -
UnionFormer [31] 0.989 0.945 0.972 0.881 0.860
ForgerySleuth 0.992 0.962 0.969 0.898 0.911

Table 3: Robust evaluation results of ForgerySleuth and existing methods using pixel-level AUC.

Distortion SPAN PSCC-Net ObjectFor. UnionFor. Ours

w/o distortion 0.8395 0.8547 0.8718 0.8813 0.8982
Resize (0.78%)  0.8324 0.8529 0.8717 0.8726  0.8962
Resize (0.25%)  0.8032 0.8501 0.8633 0.8719  0.8792
GSBr (k = 3) 0.8310 0.8538 0.8597 0.8651 0.8863
GSBr (k=15) 0.7915 0.7993 0.8026 0.8430  0.8658
GSN (o = 3) 0.7517 0.7842 0.7958 0.8285 0.8452
GSN (o = 15) 0.6728 0.7665 0.7815 0.8057 0.8139
JPEG (¢ = 100) 0.8359 0.8540 0.8637 0.8802  0.8974
JPEG (g = 50)  0.8068 0.8537 0.8624 0.8797 0.8839

trace features and high-level semantic inconsistencies, enabling it to detect even subtle generative
manipulations. Overall, the results emphasize the generalization ability of ForgerySleuth.

Robustness Evaluation. We apply several image distortions to the NIST16 dataset following [31, 32]
to evaluate the robustness of our method and compare the results with other methods. The distortions
included 1) resizing images to different scales, 2) applying Gaussian blur with different kernel sizes k,
3) adding Gaussian noise with various standard deviation o, and 4) compressing images using JPEG
with different quality factors g. The results in Table 3 show that our model consistently outperforms
other methods across all types of distortions. This improvement in robustness stems from the ability
to identify high-level semantic anomalies rather than relying solely on low-level statistical features
that are more susceptible to distortions.

5.3 Forgery Analysis Results

We compare our forgery analysis results with several M-LLMs, including GPT-40, Qwen2-VL [61],
and LISA [12]. Additionally, we perform LoRA fine-tuning on the LISA using the ForgeryAnalysis-
SFT to provide a more comprehensive comparison. We incorporate STS to measure the similarity
between the generated text and the ground-truth text in ForgeryAnalysis-Eval. The results, shown in
Table 4, confirm that our ForgerySleuth consistently outperforms other methods.

We also leverage GPT-4 as an evaluator based on the ForgeryAnalysis-Eval dataset to assess the
quality of text analysis and reasoning. We collect answers from each M-LLM, and GPT-4 assigns a
score from 1 to 10 for each response. Beyond scoring, GPT-4 provides detailed explanations for its
ratings. We also report the recall rate to directly reflect the ability to identify tampered images.

Figure 1 (b) presents the scores of different models without additional fine-tuning across various
evaluation dimensions. The existing models exhibit low recall rates, and the overall evaluation
suggests that they struggle to identify manipulations and provide accurate analyses. Figure 5 shows
the scores of LISA and ForgerySleuth after SFT, along with the versions without SFT. ForgerySleuth
shows an improvement of 5.05 in the overall score compared to LISA, further demonstrating the
effectiveness of our design targeted specifically for the IMD task. Furthermore, using the SFT dataset
results in performance gains for both methods, indicating the quality of the ForgeryAnalysis dataset.

5.4 Ablation Study

We conduct an extensive ablation study to analyze the effect of our ForgeryAnalysis dataset and
each component and setting within ForgerySleuth framework. We report the pixel-level localization
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Figure 4: Visualization results comparing ForgerySleuth with exist- Figure 5: Forgery analysis re-
ing methods. The examples are taken from various datasets. sults of the ablation study.

Table 4: Forgery analysis results of ForgerySleuth Table 5: Ablation study on different parts of

and SoTA methods, evaluated using STS. ForgeryAnalysis.
Model Dim | Ours GPT-40 QWen2 QWen LISA Data NIST16 IMD20 COCOGlide ForgeryA.
MiniLM-L6-v2 384 [0.926 0.725 0.595 0.551 0.313 ForgeryA.-SFT ~ 0.191 0.094  0.152 5.09
MiniLM-L12-v2 384 |0.919 0.645 0.505 0.475 0.350 ForgeryA-PT 0516 0705  0.571 8.71

mpnet-base-v2 768 [0.961 0.724  0.635 0.546 0.401 ForgeryA.-PT&SFT 0.518 0.710  0.562 9.45

performance on IMD datasets using the F1 score. We use ForgeryAnalysis-Eval to evaluate the
quality of the reasoning text, following the scoring criteria described in Section 5.3.

Contribution of ForgeryAnalysis. The experimental results in Table 5 show the performance
drop when ForgeryAnalysis-PT data is excluded during the pre-training phase, demonstrating the
importance of large-scale data. Using Forgery Analysis-PT, the model achieves strong performance
on the IMD task, even without the final stage of supervised fine-tuning with ForgeryAnalysis-SFT
data. However, this final fine-tuning further enhances the quality of the tampering analysis text.

Effect of Designed Components. As shown in Table 6, removing the trace encoder JF; significantly
degrades performance across all datasets, confirming its critical contribution in capturing low-level
trace features and mitigating hallucinations in the M-LLM. At the same time, the performance drop
observed when the fusion mechanism is excluded highlights the effectiveness of our fusion strategy
in integrating multimodal and trace-based information.

Impact of Training Strategies. In our comparison of various training strategies for the visual encoder
Fu, including trainable and LoRA fine-tuned, we discover that the best performance is achieved by
keeping the encoder completely frozen. This could be attributed to the fact that trainable and LoRA
fine-tuned strategies slightly diminish the generalization ability of the original SAM.

5.5 Qualitative Results

Figure 4 showcases pixel-level localization results across different datasets, comparing our framework
with other SOTA methods. The masks are displayed without binarization to provide a more detailed
view of the localization capability. Our method consistently delivers more precise tampered region
detection with higher confidence across various types of manipulation. More detailed examples of
clues and analysis provided by ForgerySleuth can be found in Section A.4. Across different types of
manipulation, relevant clues and high-quality analysis demonstrate the effectiveness of M-LLM in
capturing high-level semantic anomalies.



Table 6: Ablation study on different modules and settings, using pixel-level F1 with fixed threshold
0.5 as the evaluation metric.

Setting CASIA1  NIST16 IMD20 COCOGlide
1. w/o. Trace Enc. F; 0.637 0.323 0.622 0.395
2. w/o. Fusion Mechanism 0.628 0.463 0.649 0.513
3. w. F, Trainable 0.755 0.451 0.716 0.526
4. w. F, LoRA-ft. 0.766 0.493 0.731 0.547
ForgerySleuth 0.804 0.518 0.710 0.562

6 Conclusion

In this work, we explored the potential of multimodal large language models in the image manipulation
detection task. The proposed ForgerySleuth integrates M-LLMs with a trace encoder, allowing the
model to utilize world knowledge to detect high-level semantic anomalies while effectively capturing
low-level forgery traces. Additionally, we introduced a vision decoder with a fusion mechanism to
integrate different features, ultimately producing precise segmentation masks. We also proposed
a supervised fine-tuning dataset, ForgeryAnalysis, specifically designed for the IMD task. Each
entry was initially generated by GPT-40 using a novel Chain-of-Clues prompt and then reviewed
and refined by experts. Furthermore, we developed a data engine based on this dataset to automate
forgery analysis, facilitating the creation of a larger-scale Forgery Analysis-PT dataset for pre-training
purposes. A discussion of limitations can be found in Section E. We have already made the resources
publicly available, including the data, code, and weights, to provide resources for advancing the field.
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A ForgeryAnalysis Dataset

A.1 ForgeryAnalysis Data

We utilize the advanced M-LLM, GPT-4o, to generate the initial clue analyses, carefully designing
prompts to ensure GPT-40 provides accurate and detailed responses. First, we inform GPT-4o of its
role as an assistant, clearly outlining the levels of clues, along with specific examples, and specifying
the task it needs to complete. The detailed prompt is as follows:

[ROLE] You are a rigorous and responsible image tampering (altering) detection expert. You can
detect whether an image has been tampered with, localize the exact tampered region, and analyze
your detection decision according to tampering clues of different levels. These clues include but are
not limited to low-level pixel statistics (such as noise, color, textural, sharpness, and Al-generation
fingerprint), middle-level visual defects (such as traces of tampered region or boundary, lighting
inconsistency, perspective relationships, and physical constraints), and high-level semantic anomalies
(such as content contrary to common sense, inciting and misleading content), etc. Altering operations
could be divided into types, including “splice”, “copy-move”, “remove”, and “Al-generate”, leaving
different clues that you should consider.

[TASK] Now, your task is to provide analysis. Please note that in real detection scenarios, you cannot
know in advance whether an image has been tampered with and the specific tampered region.
However, now | will tell you this information to help you conduct a more rigorous and accurate
analysis based on this. There is no need to include all aspects and views in your analysis, give some
of your most confident points.

The details of each conversation round are illustrated in Figure 12. In each round, we provide
two images: the tampered image to be analyzed and a reference image with the tampered region
highlighted. The prompt includes the <FAKE> token to indicate that the image is manipulated, specific
tampering types to help the model focus on relevant clues, and a structured clue analysis format.
Based on the response of GPT-40, experts then conduct further revisions. The experts carefully
review vague and incorrect statements that may arise from hallucinations, removing irrelevant clues
and evidence. They also reorganize the clues into the Chain-of-Clues structure, which guides the
reasoning process. This begins with “unveiling doubts” using high-level clues and continues with
“pinpointing evidence” using middle-level and low-level features. The experts also check special
tokens, such as <FAKE> and [SEG], to meet the requirements for subsequent model training.

A.2 ForgeryAnalyst Engine

It is worth noting that the M-LLMs used in the data engine ForgeryAnalyst and the detection frame-
work ForgerySleuth are different and independent. Although both M-LLMs are designed to analyze
forgery and produce text-based clue analyses, their inputs and tasks are distinct. ForgeryAnalyst
receives input that includes explicit information about the tampered region (highlighted to indicate
tampering) with the goal of generating more precise and comprehensive clue analyses to construct
pre-training data. In contrast, ForgerySleuth takes an image to be analyzed, aiming for the M-LLM
to identify high-level semantic anomalies for detecting tampered regions. Furthermore, we design
different prompts tailored to these two specific tasks. In our experiments, Forgery Analyst employs
LLaVA-v1.5-13B, while the MLLM in ForgerySleuth uses LLaVA-7B-v1-1, balancing performance
and efficiency.

We also designed a dedicated prompt for the data engine. In addition to indicating the image
type as <FAKE> and specifying the tampering type [MANIPULATION-TYPE], we provide detailed
instructions and examples of the Chain-of-Clues (CoC), as well as the required output data format.
The specific prompt format is as follows:

You are a rigorous and responsible image tampering (altering) detection expert. You can localize
the exact tampered region and analyze your detection decision according to tampering clues at
different levels. Assuming that you have detected this is a <FAKE> image and the manipulation type
is [MANIPULATION-TYPE], the exact tampered region boundary is highlighted with color in this image
(and your detection IS correct).
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Table 7: Statistic of our ForgeryAnalysis Dataset.

Dataset Split Count Sum
. ForgeryAnalysis-Eval 618

ForgeryAnalysis ForgeryAnalysis-SFT 1752 2,370

ForgeryAnalysis-PT - 50k 50k

Table 8: Overview of public dataset utilized in the construction of ForgeryAnalysis and for evaluation.

Dataset Usage Authentic | Tampered Manipulation Types Source
MIML [34] Train, Construct 11,142 123,150 Manual Editing PSBattles
CASIA2 [35] Train, Construct 7,491 5,063 Splice, Copy-move Corel
DEFACTO [36] Train, Construct - 149,587 Splice, Copy-move, AIGC (GAN) | MS COCO
AutoSplice [37] Train, Construct 2,273 3,621 AIGC Visual News
Columbia [55] Eval 183 180 Splice -
Coverage [56] Eval 100 100 Copy-move -
CASIA1 [35] Eval 800 920 Splice, Copy-move Corel
NIST16 [57] Eval - 564 Splice, Copy-move -
IMD20 [58] Eval 414 2,010 Manual Editing -
COCOGlide [30] Eval 512 512 AIGC (Diffusion) -

Please provide the chain-of-clues supporting your detection decision in the following style: # high-
level semantic anomalies (such as content contrary to common sense, inciting and misleading
content), # middle-level visual defects (such as traces of tampered region or boundary, lighting
inconsistency, perspective relationships, and physical constraints) and # low-level pixel statistics
(such as noise, color, textural, sharpness, and Al-generation fingerprint), where the high-level
anomalies are significant doubts worth attention, and the middle-level and low-level findings are
reliable evidence.

A.3 Statistics

Table 7 presents the data statistics of the ForgeryAnalysis dataset. ForgeryAnalysis-Eval and
ForgeryAnalysis-SFT are initially generated by GPT-40 and fully revised by experts. They are
used for evaluating the quality of manipulation analysis generated by the M-LLMs and for the
final supervised fine-tuning, respectively. ForgeryAnalysis-PT is automatically constructed by our
proposed data engine, ForgeryAnalyst, maintaining consistency in data format with the other subsets.
Table 8 provides detailed statistics on the scale, source, and manipulation types from each public
dataset utilized in the construction of ForgeryAnalysis and for evaluation.

A.4 Cases

Figures 13, 14, 15 and 16 present examples of analysis texts from ForgeryAnalysis-Eval for four
different tampering types. These diverse cases highlight the variations in detectable clues across
different tampering types and illustrate how varying levels of clues support manipulation detection.
The analyses in ForgeryAnalysis-Eval are cross-checked by multiple experts to ensure comprehensive
and accurate clues. Figure 17 shows analysis texts in ForgeryAnalysis-PT. Although the subset is
automatically generated by the data engine, it also provides precise descriptions and analyses of the
tampered regions.

B ForgerySleuth
B.1 Framework Details

Trace Encoder. Considering that the vision backbone (ViT-H SAM backbone) is pre-trained on tasks
highly correlated with semantics and remains frozen during the fine-tuning of our framework, the
semantic-agnostic features widely used in IMD tasks [8, 9, 10, 11] cannot be effectively leveraged.
We propose an independent trace encoder JF, equipped with a noise enhancement module to focus on
low-level features and provide more reliable tampering evidence. Specifically, the noise enhancement
module, positioned at the front of the encoder, uses constrained convolutions [47] to compute local

16



Table 9: Manipulation localization results comparing ForgerySleuth with SOTA methods.

Method Optimal Threshold F1 Fixed Threshold F1 (0.5)
Columbia Coverage CASIA1 NIST16 COCOGlide Columbia Coverage CASIA1 NIST16 COCOGlide

Mantra-Net [8] 0.650 0.486 0320  0.225 0.673 0.508 0.317 0.180  0.172 0.516
SPAN [9] 0.873 0.428 0.169  0.363 0.350 0.759 0.235 0.112  0.228 0.298
MVSS-Net [10] 0.781 0.659 0.650  0.372 0.642 0.729 0.514 0.528  0.320 0.486
PSCC-Net [53] 0.760 0.615 0.670  0.210 0.685 0.604 0.473 0.520  0.113 0.515
CAT-Net2 [54] 0.923 0.582 0.852 0417 0.603 0.859 0.381 0.752  0.308 0.434
TruFor [30] 0914 0.735 0.822 0470 0.720 0.859 0.600 0.737  0.399 0.523
UnionFor. [31] 0.925 0.720 0.863  0.489 0.742 0.861 0.592 0.760  0.413 0.536

FakeShield [33] 0.306 0.085 0.620 0.119 0.659 0.285 0.052 0.566  0.099 0.536
- only TP samples  0.874 0.470 0.696  0.514 0.659 0.813 0.289 0.635 0431 0.536
ForgerySleuth 0.931 0.792 0.870  0.610 0.751 0.925 0.684 0.804 0.518 0.562

Table 10: Manipulation localization results of ForgerySleuth and SoTA methods, using pixel-level
AUC as the evaluation metric.

Method Columbia Coverage CASIAl NIST16 IMD20
Mantra-Net [8] 0.824 0.819 0.817 0.795 0.748
SPAN [9] 0.936 0.922 0.797 0.840 0.750
PSCC-Net [53] 0.982 0.847 0.829 0.855 0.806
ObjectFor. [32] 0.955 0.928 0.843 0.872 0.821
TruFor [30] 0.947 0.925 0.957 0.877 -
UnionFor. [31] 0.989 0.945 0.972 0.881 0.860
FakeShield [33] 0.323 0.137 0.787 0.185 0.780
- only TP samples 0.924 0.761 0.883 0.801 0.868
ForgerySleuth 0.992 0.962 0.969 0.898 0.911

differences, extract noise features, and suppress image content. The convolution kernel constraints
are defined as follows:

w,0) = 1,

Z Wim,n) = 0, ®

(mn)

where (m,n) denotes the spatial index of the values within the convolution kernel, with (0, 0)
positioned at the center. The constrained convolutions are still trainable, allowing them to learn
manipulation features more adaptively than fully fixed-parameter noise extractors. The extracted
noise features further enhance the original features by residual connections. The encoder employs a
ViT-B architecture and all parameters are fine-tuned during training.

In summary, we employ the trace encoder F; to capture low-level manipulation features, leveraging
constrained convolutions within the noise enhancement module to achieve this. Meanwhile, the
vision backbone F, utilizes pre-trained parameters from SAM, which is widely recognized for its
ability to capture dense visual content features, thereby supporting more precise segmentation.

Fusion Mechanism. To integrate the image content embedding f., trace embedding f;, and the LLM
output tokens hye, obtained from the M-LLM, we take inspiration from Transformer segmentation
models [49, 50, 42] and design a vision decoder with a fusion attention mechanism, illustrated
in Figure 3 (b). The mechanism consists of three layers, with each layer performing four steps:
self-attention on the LLM output tokens or upgraded tokens, cross-attention from tokens (as queries)
to the trace or image embeddings, point-wise MLP, and cross-attention from the trace or image
embeddings (as queries) back to the tokens. The first layer of the module computes attention between
anomalies in the LLM output tokens and traces in the trace embeddings, facilitating the organization
and pinpointing of clues. The subsequent layers focus on attention between refined clues in the
upgraded tokens and content in the image embeddings, enabling more precise segmentation of the
tampered regions.
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C Comparison with FakeShield

C.1 Details

FakeShield [33] is a concurrent work with the same motivation as ours. It proposes a multimodal
large model for image manipulation detection. This further reinforces the significance of providing
a reasonable forgery analysis, alleviating the explainability issues in existing image manipulation
detection methods. However, there are some fundamental differences between FakeShield and our
approach.

From a data perspective, FakeShield relies on GPT-40 to generate tampering analysis texts, construct-
ing “image-mask-description” triplets for training and evaluation. However, this process presents
certain challenges: First, the generated texts lack structured reasoning, as FakeShield does not impose
explicit guidance on how the detected clues is organized and analysis data is formulated. Second,
reliance on GPT-40 alone makes data prone to hallucinations, potentially introducing unreliable or
misleading explanations.

In contrast, we propose a three-level Chain-of-Clues (CoC) structure, which enables a more structured
and interpretable analysis. Our design is based on two key insights: 1) Previous research [38,
39] suggests that forensic clues are naturally organized hierarchically. 2) Studies on Chain-of-
Thought (CoT) prompting [40, 41] have demonstrated its effectiveness in improving reasoning within
large language models. Inspired by these findings, we structure the tampering analysis data into a
progressive reasoning process, encouraging the model to identify, refine, and interpret forensic clues
at different levels. Additionally, to reduce hallucinations and improve reliability, we manually verify
the generated analysis texts and expand the dataset using an additional data engine.

From a model perspective, FakeShield employs a multimodal forgery localization module (MFLM)
that leverages the segment anything model (SAM) and a large language model to localize tampered
regions based on their general vision and language features. However, recent studies [10, 54, 11]
highlight the crucial role of low-level noise features in image manipulation detection, while pre-
trained models for general vision tasks primarily capture high-level semantic features. To address this
challenge, we introduce a trace encoder with noise enhancement to compensate for the limitations
of the base vision model. In addition, we design a dedicated fusion mechanism to better integrate
multiple features. Ablation studies in Table 6 further validate the effectiveness of these components.

In the following experiments, we comprehensively compare FakeShield and our method,
ForgerySleuth, demonstrating that ForgerySleuth consistently achieves superior performance in
various evaluation aspects.

C.2 Evaluation

Experimental Setting. We reproduce the FakeShield model using its publicly released official
code repository and pre-trained weights. The following comparative experiments adopt the same
experimental settings and evaluation metrics as described in Section 5.1.

We follow established practices [31] by using optimal threshold and fixed threshold F1 scores and the
threshold-independent Area Under the Curve (AUC) metric. Inspired by prior work [60, 14], we use
GPT-4 as an automated evaluator to assess the reasoning performance of different models. To address
concerns regarding potential limitations of GPT-4, we incorporate an additional metric, semantic
textual similarity (STS). Specifically, following SBERT [59], we use STS to measure the similarity
between the generated analysis and the ground-truth text in ForgeryAnalysis-Eval.

Manipulation Detection Results. Tables 9 and 10 present the performance of ForgerySleuth,
FakeShield, and other SOTA methods in the manipulation localization task, reporting F1 scores and
AUC metrics, respectively. It is essential to note that the official implementation of FakeShield follows
a two-stage pipeline. First, it determines whether an image has been manipulated. Only if an image is
classified as fake does it proceed to generate a tampering mask. In contrast, ForgerySleuth and other
detection methods output a mask for all images while also providing a real/fake classification result.

We adopt the following strategy for FakeShield to maintain consistency with other methods and
ensure a fair comparison. If FakeShield classifies an image as real, we assume that the predicted
mask is an all-zero matrix (i.e., indicating no tampered region). The corresponding results are
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Table 11: Forgery analysis results of ForgerySleuth and SoTA methods, evaluated using GPT-4 on
ForgeryAnalysis-Eval dataset.

Method Recall Correctness Relevance Detail Overall
LISA [12] - 2.27 2.51 1.12 1.92
QWen 43.9% 3.22 2.92 3.10 341
QWen?2 [61] 29.6% 3.70 4.14 2.57 3.34
GPT-40 68.8% 7.14 7.97 5.84 6.96
FakeShield [33] 52.8% 5.91 6.35 4.67 5.55
ForgerySleuth 92.2% 9.10 9.60 9.80 945

Table 12: Forgery analysis results of ForgerySleuth and SoTA methods, evaluated using STS.

Model | Ours FakeShield GPT-40 QWen2 QWen LISA

all-MiniLM-L6-v2 | 0.926 0.662 0.725 0595 0551 0313
all-MiniLM-L12-v2 | 0.919 0.514 0.645 0505 0475 0.350
all-mpnet-base-v2 0.961 0.695 0.724  0.635 0.546 0.401

shown in the FakeShield row. The notably lower accuracy stems from the low recall rates, where
FakeShield fails to detect manipulations, leading to significant missed detections. To further analyze
FakeShield’s localization performance, we also report its performance on only the successfully
detected manipulated images (i.e., True Positive samples). As indicated in the row for only true
positive samples, its performance improves significantly under this setting, but it still falls short
compared to ForgerySleuth. However, since manipulation detection is performed without prior
knowledge of whether an image is manipulated, the first setting (which considers all images) provides
a more realistic and fair evaluation, while the second setting serves only as a supplementary analysis.

Forgery Analysis Results. We employ GPT-4 as an evaluator on the ForgeryAnalysis-Eval dataset to
assess the quality of textual analysis and reasoning. The evaluation considers several key dimensions:
correctness, relevance, and detail. The results are presented in Table 11 (corresponding to Figure
1 (b)). FakeShield exhibits low recall rates, further corroborating the previously discussed issue of
missed detections. Additionally, its analysis falls behind ForgerySleuth in both accuracy and level of
detail.

However, since GPT-4 itself is susceptible to hallucinations, this approach does not guarantee a fully
objective and quantitative evaluation. To address this limitation, we incorporate Semantic Textual
Similarity (STS) to measure the similarity between the generated text and the ground-truth text
in ForgeryAnalysis-Eval. The results, shown in Table 12, further confirm that our ForgerySleuth
consistently outperforms FakeShield.

Qualitative Results. We present the performance of ForgerySleuth and FakeShield in manipulation
localization and forgery analysis, as shown in Figure 8. The results demonstrate that ForgerySleuth
not only achieves higher accuracy in localizing manipulated regions, but also generates more detailed
and precise analysis.

D Experiment

D.1 Experimental Implementation Details

Implementation Details. We employ LLaVA-7B-v1-1 [14] as the base multimodal LLM (F,,,) and
use the ViT-H SAM [42] backbone for the vision encoder (F,). For training, we utilize 2 NVIDIA
80GB A800 GPUs, with training scripts optimized by DeepSpeed [62], which helps reduce memory
usage and accelerate training. We use the AdamW [63] optimizer, setting the learning rate to 0.0002
with no weight decay. The learning rate is scheduled using WarmupDecayLR, with 100 warmup
iterations. The weights for the text generation loss Ay and mask 1oss A5k are both set to 1.0, while
the BCE loss Ay and DICE loss Agice are weighted at 1.0 and 0.2, respectively. The batch size per
device is 4, with gradient accumulation steps set to 4.
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This image is <FAKE>, and the
manipulation region is [SEG]...
The interaction between the
tiger and the bird is highly
unusual. In a natural setting,
tigers are apex predators...

Tampered

Sure, this is a <REAL> image
with no modifications detected.
[SEG] is used to output mask.

Authentic

This image is <REAL> without
tampered region. [SEG] is used
to output mask.

Figure 6: Predictions of ForgerySleuth on authentic and tampered images.

Table 13: Human evaluation results for the forgery analysis task.

Method Samples Recall Correctness Relevance Detail Overall

QWen2 139 353% 4.95 5.10 285 4.1
GPT-40 134 65.7% 8.06 8.32 577 7.18
Ours 147 91.2% 9.48 9.53 9.61 9.44

D.2 Manipulation Detection Results

Modeling the natural laws of real samples and distinguishing them from tampered images is crucial.
We utilized two special tokens, <REAL> and <FAKE>, which indicate the detection results. In addition,
the output mask provides valuable information for verifying image authenticity. Figure 6 illustrates
the ForgerySleuth detection results for authentic and manipulated images, including the predicted
tampering masks and textual analysis. Our method achieves real/fake classification accuracies of
0.989 on Columbia and 0.910 on CASIA1, demonstrating its effectiveness in manipulation detection.

D.3 Forgery Analysis Results

We leverage GPT-4 for evaluation based on the ForgeryAnalysis-Eval dataset to assess the quality of
text reasoning and explanations. Ratings are based on several dimensions, including the correctness
of tampered objects, the relevance of clues to manipulation, and the detail of analysis, reflecting
the capability of comprehension, reasoning, and correctness. We collect responses from each M-
LLM, and GPT-4 assigns scores from 1 to 10 for each response, with higher scores indicating better
performance. Beyond scoring, GPT-4 provides explanations for its ratings, ensuring transparency
and consistency in the evaluation process. Figure 18 illustrates the prompt structure used for the
evaluation and the response of GPT-4. To ensure consistent and fair scoring, the evaluation prompt
includes clear scoring criteria for assessment aspects, including correctness, relevance, and details.
GPT-4 assigns a score for each evaluation dimension and provides detailed comments to justify the
rating.

To directly assess the ability to detect manipulated images, we explicitly instruct the evaluated
M-LLMs through prompts to additionally output <FAKE> or <REAL> to indicate their detection results.
All models, except LISA-7B-v1-explanatory, can provide the required response. We use the recall
rate to reflect the ability to correctly identify tampered images.

Human Evaluations. We also conduct human evaluations under the same experimental setup as the

evaluation using GPT-4 described above. A total of 14 volunteers participated, each scoring for 30
random samples. The results are summarized in Table 13.

D.4 Qualitative Results

We present additional results of our ForgerySleuth in both forgery analysis and manipulation localiza-
tion tasks. We also provide forgery analysis results from existing M-LLMs (GPT-40 and Qwen-VL)
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This image is <FAKE>... The presence
of small animals, specifically cats,
wearing helmets and space gear is
highly unrealistic and uncommon...
The lighting on the tampered objects
(cats) is inconsistent with the...

@
This image is <FAKE>... The altered
section features a individual holding a
distinctly shaped or sized object that
does not align with the scene's context
or expected items in such a setting.
This object's atypical...

o

Tampered

Figure 7: Failure cases in predictions of ForgerySleuth.

and segmentation masks from traditional image manipulation detection (IMD) methods, illustrating
the advantages of our proposed IMD assistant in terms of accuracy and explainability. These cases
are from public datasets IMD20 and NIST16, demonstrating the generalization capabilities of our
method.

In the example in Figure 9, both M-LLMs classify the image as real without detecting manipulation.
Similarly, most IMD methods, except CAT-Net2, fail to localize the manipulated regions accurately.
However, ForgerySleuth identifies the tampered regions and provided a detailed tampering analysis.
Figure 10 presents a case with more apparent tampering traces. GPT-40 and Qwen-VL both exhibit
varying degrees of overthinking, leading to inaccurate analysis. Our method demonstrates higher
localization precision and analytical accuracy. In the case of Figure 11, ForgerySleuth precisely
localizes the tampered regions, even including the shadow of the person. Compared to the textual
outputs of M-LLMs, the mask generated by ForgerySleuth provides a more intuitive and accurate
detection result.

E Limitation and Future Work

E.1 Failure Cases
We analyzed ForgerySleuth’s detection failures and identified two representative error patterns.

Semantic Description Inaccuracies. In these cases, our model can accurately localize manipulated
regions, but its textual analysis contains description errors. For instance, in the first example in
Figure 7, the model misidentifies dogs as cats. Importantly, this does not impact the detection logic
or localization accuracy. These errors often arise when specific semantic concepts in images are
challenging to detect clearly. Future work could improve this by enhancing the visual understanding
capabilities of MLLM and LLM backbone models.

Failures with Small Manipulations in Complex Scenes. In complex image content with small
manipulated regions, the model’s localization precision can degrade, sometimes leading to incorrect
textual analysis and, consequently, a detection failure. For example, in the second instance in Figure
7, where a spliced cartoon character is present, the model only localized a partial manipulation (e.g.,
the guitar in hand) while overlooking the character itself, primarily due to the small proportion of
the manipulation and the image’s overall complexity. Detecting small region manipulations remains
a significant challenge, and MLLMs tend to focus on global semantic information rather than fine-
grained local details. Therefore, developing methods to effectively detect anomalies in small regions
is a crucial research direction.

E.2 Constraints in Evaluation Methods

Our paper evaluates analysis accuracy using GPT-40 and STS methods on the ForgeryAnalysis-eval
dataset. However, our evaluation methods are subject to specific constraints: our assessment relies
on GPT-40, a large external model that may exhibit inherent biases or hallucinations, and STS
only reflects semantic similarity between two sentences. Thus, exploring more comprehensive and
objective evaluation methods, including the quantitative assessment of model hallucinations, is an
important direction for future work.

21



E.3 Model Scale and Inference Costs

While leveraging LLMs to complement traditional image manipulation detection methods, which
often primarily focus on low-level traces, this approach increases the model’s scale and computational
cost of generating detailed explanations. In the future, we plan to investigate model light-weighting
solutions. This includes developing a version where generating such detailed output is optional,
which would significantly reduce inference time. Alternatively, we could explore distilling LLM
capabilities into smaller models, retaining only the essential knowledge for manipulation detection.
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1. Whether the picture has been tampered with / Description of the tampered area: The picture has not been tampered with. It
appears to be a genuine photograph taken directly by a camera.

2. Judgment basis: The lighting and shadows in the image are consistent, with the light source appearing to come from above,
casting natural shadows under the fish and on the person's arm. The edges of the objects, such as the fish, the person's hand, and
the kayak, are smooth and show no signs of unnatural pixel distribution or editing. The resolution across the image is uniform,
without any areas of blurring or jaggedness that would suggest manipulation. The perspective and scale relationships within the
image are realistic; the fish is proportionate to the person's hand and the kayak, and the background elements, such as the trees
and water, align with the expected depth of field. The reflections on the water are appropriate for the lighting conditions and the
ripples in the water suggest movement consistent with the kayak's activity. There are no signs of unnatural text or logos, and the
content of the picture does not violate any physical laws. The image's elements interact with each other in a physically plausible
manner.

This is a <FAKE> image with modifications detected in the [SEG]. We have identified the following clues,
where high-level anomalies are doubts, and lower-levels clues are evidence.

# High-Level Semantic Anomalies:

1. Content Contrary to Common Sense: The image shows a person's body with a dog’s face, which is
anatomically impossible. This unnatural combination lacks logical coherence in real-world scenarios,
confirming manipulation.

2. Misleading Content: It is evident that this does not depict reality, as biologically, a human body cannot
have a dog's head. The content is misleading as it presents an unnatural scenario intended for humor or
deception.

# Middle-Level Visual Defects

1. Boundary Artifacts: The boundary around the region shows irregularities and unnatural edges where the dog's face meets the
human neck. These artifacts result from poor blending techniques in image manipulation.

2. Perspective: There is a discrepancy in the perspective and proportions of the dog's face compared to the human body. The size
and angle of the face do not align correctly with the body, further confirming tampering.

# Low-Level Pixel Statistics

1. Color Inconsistency: The color tone and balance of the dog's face do not match the skin tone and lighting on the human body and
arm, indicating manipulation.

2. Textural and Sharpness: The texture on the dog's face lacks the same sharpness and detail level as seen on the person's body.
The dog's face appears smoother or grainier than the human body, suggesting that the face was pasted onto the original image.

1. Whether the picture has been tampered with / Description of the tampered area: The picture has been
tampered with. The tampered area is located on the lower right side of the image, near the bottom edge,
and is adjacent to the person's right side. It appears to be a dog lying on the ground.

2. Judgment basis: The shadows cast by the dog do not match the lighting in the rest of the image. The
dog's shadow is inconsistent with the direction and quality of the shadows seen elsewhere in the photo,
suggesting that the dog may have been added into the scene. Additionally, the edges around the dog are
slightly blurred and do not blend seamlessly with the ground, indicating a possible composite. The dog's
fur also seems to have a different resolution compared to the rest of the image, appearing slightly more
pixelated which could be a sign of tampering.

This image is <FAKE>, and the tampered region is [SEG]. Through our analysis, we have discovered
several key indicators of tampering. High-level semantic anomalies raise serious concerns, while middle-
level and low-level findings provide solid evidence.

# High-Level Semantic Anomalies:

## Misleading or Inciting Content: The combination of the hat, hand-held object, and the entire setting
creates deceptive messages, implying an attempt to manipulate the viewer or change the context of the
original picture.

## Content Contrary to Common Sense: The presence of specific items, such as the uniquely designed
hat and the object resembling a gun, seems incongruous in an otherwise ordinary scene, suggesting
digital alteration.

# Middle-Level Visual Defects

## Lighting Inconsistency: The hat and the object in the hand exhibit lighting that is not compatible with the rest of the scene. The
shadows and reflections on these components fail to harmonize with the overall lighting direction.

## Perspective Relationships: The placement and dimensions of the hat and the hand-held object do not align with the scene's
perspective. These items appear hurriedly inserted, disregarding the scene's natural depth and scale.

## Traces of Tampered Region: Discernible lines mark the altered areas. For example, the edges of the hat and the object being
held are unnaturally crisp and fail to blend smoothly with their surroundings.

# Low-Level Pixel Statistics

## Noise Inconsistency: The sections with the gun-like object, the hat, and the item near the dog reveal noise pattern discrepancies
when compared to adjacent regions, indicating tampering.

## Color Discrepancy: The shades in the altered areas slightly differ from their surroundings, particularly evident in the hat and the
item held by the individual.

Figure 8: Comparison of results between ForgerySleuth and FakeShield.
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The image appears to be real, depicting a scene from a roller derby event. The participants are wearing protective gear such as
helmets, knee pads, and elbow pads, which is typical for the sport. The expressions and body language of the individuals suggest
they are actively engaged in the game. There are no obvious signs of digital manipulation, such as inconsistent lighting, shadows, or
distorted proportions that would indicate the image has been altered. Additionally, the background shows spectators watching the
event, adding to the authenticity of the scene.

The image appears to be authentic based on several factors:

1. **Lighting and Shadows**: The lighting is consistent throughout the image. Shadows and highlights align with the assumed light
sources.

2. **Proportions and Perspective**: The subjects' proportions and perspective match the setting. There are no noticeable
inconsistencies with size or angle that often indicate manipulation.

3. **Blending and Edges**: The edges of the subjects are clean and well-defined with no visible signs of cut-and-paste operations,
such as blurred or overly sharp outlines.

4. **Environment and Interaction**: The people in the scene interact naturally with each other and their surroundings. Details like
the roller skates’ contact with the floor and the interaction between individuals are logical and cohesive.

Overall, the elements in the image work together harmoniously, suggesting it is not manipulated.

% This is a <FAKE> image with modifications detected in the [SEG]. We have found several clues, where
high-level anomalies create substantial doubts, and other-level findings contribute reliable evidence.

# High-Level Semantic Anomalies
1. **Content Contrary to Common Sense**:
- The presence of a man in casual clothes amidst a group of roller derby players seems unusual, which
raises suspicion. It is uncommon for an amateur player to be seen in the middle of the action along with
the players.
# Middle-Level Visual Defects
1. **Lighting Inconsistency**:
- The lighting on the tampered figure does not align with the lighting conditions of the surrounding environment. For instance, the
shadows and highlights on the amateur player do not match the expected lighting direction and intensity observed on the other
roller derby participants.
2. **Perspective Relationships**:
- The perspective of the amateur player is slightly misaligned with the rest of the group. The positioning and relative size of the
amateur player do not match naturally with the surrounding players, indicating that the figure was not part of the original scene.
3. **Physical Constraints**:
- The amateur player's interaction with the other players is awkward. There is a lack of natural contact or engagement between the
referee and the surrounding skaters, suggesting that the amateur player was added without considering the physical dynamics of
the scene.
# Low-Level Pixel Statistics
1. **Noise Inconsistency**:
- The tampered region shows a different noise pattern compared to the surrounding areas. The amateur player has a smoother
texture that does not match the natural noise present in the background.
2. **Color Discrepancies**:
- There are subtle differences in color grading between the tampered figure and the rest of the image. The amateur player has skin
tones and lighting that do not perfectly match the other elements in the scene.
3. **Sharpness Variations**:
- The edges of the amateur player are unnaturally sharp compared to the rest of the image. This disparity in sharpness indicates
that the figure was cut and pasted from another source.

»
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Figure 9: Comparison of results between our ForgerySleuth, existing multimodal large language
models, and traditional image manipulation detection methods. The image is c93gg4y_0.png from
the IMD20 dataset.
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The image appears to be manipulated due to several inconsistencies:

1. **Cat's Position**: The cat is positioned in an unnatural way, with its legs extended upwards as if it were floating or being
thrown into the air. Cats typically do not react like this when placed in water.

2. **Water Splash**: The splash of water around the tube does not seem consistent with the position of the boy and the cat.

3. **Lighting and Shadows**: The lighting and shadows on the cat do not match those on the boy and the tube. This suggests that
the cat may have been added to the image after the original photo was taken.

4. **Edges and Blurring**: There are some areas where the edges of the cat appear slightly blurred or out of focus compared to the
rest of the image, which can be a common indicator of digital manipulation.

These factors combined suggest that the image has been altered, most likely by adding the cat to the scene.

# Analysis of Manipulation Detection:
1. **Semantic Inconsistency**:

- The scene depicts a child and a cat together on a water slide, with the cat in an extremely unnatural posture (especially with its
leg raised high). This is highly unlikely in a real scenario, particularly given that cats generally avoid water.

- While the inflatable tube’s yellow surface blends reasonably well with the background, its style and lighting characteristics still
seem slightly out of place, suggesting potential manipulation.
2. **Lighting and Physical Consistency**:

- ¥*Cat**: The lighting on the cat’s body, particularly its raised leg, does not fully align with the bright environment of the water
slide. The cat lacks strong reflective highlights that are visible on other objects.

- **Inflatable Tube**: The tube’s edge lighting appears slightly over-softened, and its sharpness compared to the background
suggests potential blending issues.
3. **Edge Transition**:

- Examining the contact between the cat and the inflatable tube reveals blending artifacts, particularly where the cat’s hind leg
meets the tube. The edges appear overly smoothed, hinting at post-processing.

- Similarly, the inflatable tube’s edge where it meets the water slide shows signs of digital manipulation, such as inconsistent
reflections and mismatched textures.
4. **Behavioral Logic**:

- It is highly implausible for a cat to participate in such an activity without showing fear or discomfort. The calm demeanor of the
cat and the pose seem unnatural for this context.
Conclusion: Based on the above observations, both the cat and the inflatable tube exhibit signs of manipulation. The image is
ultimately judged as **composite and manipulated (FAKE)**.

This is a <FAKE> image with modifications detected in the [SEG]. After a thorough examination, we have

identified the following clues. High-level anomalies raise significant doubts requiring attention, while

middle-level and low-level findings provide solid evidence.

# High-Level Semantic Anomalies

1. **Common Sense Content**: The scenario depicted is highly unlikely. A cat calmly sitting in a flotation

device on a water slide is unrealistic behavior, indicating manipulation.

2. **Misleading Content**: This image presents a false scenario intended to evoke humor or amusement,

which is inherently misleading.

# Middle-Level Visual Defects

1. **Lighting Inconsistency**: The lighting on the tampered region does not align with the rest of the image. Reflections on the
water and the boy's body are inconsistent with the lighting direction and intensity.

2. **perspective Relationships**: The positioning and perspective of the cat in the flotation device do not naturally align with a
human occupant. The cat appears unnaturally positioned, lacking the expected interaction with the water and surroundings.

3. **physical Constraints**: The size and position of the cat relative to the boy indicate tampering. The cat is unnaturally large
compared to the boy and is placed in an awkward position that defies physical realism.

# Low-Level Pixel Statistics

1. **Noise Inconsistency**: The noise pattern in the tampered region differs from the surrounding areas. The texture of the water
and the flotation device around the cat exhibit different levels of graininess and noise, indicating manipulation.

2. **Color Discrepancy**: The color tones in the tampered region, particularly the cat, do not blend seamlessly with the
surrounding water and the boy's skin. This suggests that the cat was added from a different source with different lighting conditions.
3. **Sharpness Variations**: The edges of the tampered region, particularly around the cat's body, appear unnaturally sharp
compared to the rest of the image, indicating a cut-and-paste operation.

Manra-Net MVSS-Net PSCC-Net CAT-Net2

Figure 10: Comparison of results between our ForgerySleuth, existing multimodal large language
models, and traditional image manipulation detection methods. The image is c8zfOhg_0.jpg from the
IMD20 dataset.
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The image appears to be manipulated for several reasons:

— 1. **Foreground Subject**: The person holding the baseball bat is not naturally integrated into the scene. The lighting, shadows,
and overall quality of the person do not match the background. The edges around the person, especially at the bottom, appear to
have been cut out digitally.

2. **Background Context**: The setting looks like a race track or a car show, which is an unusual place for someone to be playing
baseball. This mismatch in context suggests that the person has been added to the image artificially.

3. **Lighting and Shadows**: The lighting on the person does not align with the lighting in the rest of the image. The shadows cast
by the cars and other objects in the background do not correspond with the position of the person.

4. **Image Quality**: There is a noticeable difference in the resolution and clarity between the person and the background. The
person's image is sharper and more detailed compared to the slightly blurred background.

These factors collectively indicate that the image has been manipulated.

<FAKE>

Analysis:

1. **Lighting and Shadows**: The shadow of the person holding the bat does not align well with the other shadows in the scene,
indicating a possible manipulation. The shadow is also very sharp and dark compared to the rest of the scene, which suggests
inconsistency.

2. **Alignment and Perspective**: The person with the bat does not appear to be integrated smoothly into the environment. The
size and angle of the figure seem off compared to the surrounding elements, like the cars.

3. **Integration with Background**: The person holding the bat appears to be layered on top of the existing background. The edge
around the figure looks too clean and sharp, lacking the natural blending seen in real-world images.

4. **Context Clarity**: A person in a baseball uniform standing in a car racing environment seems out of context, adding to the
suspicion of image manipulation.

% This is a <FAKE> image with modifications detected in the [SEG]. We have found several clues, where
high-level anomalies create substantial doubts, and other-level findings contribute reliable evidence.

# High-Level Semantic Anomalies
1. **Content Contrary to Common Sense**: The presence of a professional baseball player in a full
uniform, standing in a parking lot next to sports cars, is contextually odd. Such a scenario is
improbable, suggesting that the image was staged or the player was placed into this environment ”~
unnaturally.
2. **Misleading Content**: The image may give the impression that the athlete is involved in or l
supports a particular car brand, which could be considered advertorial content without clear disclosure.
# Middle-Level Visual Defects
1. **Lighting Inconsistency**: The lighting on the athlete does not align with the lighting direction and intensity of the cars and
background. Shadows and highlights on the athlete do not correspond naturally with the sunlight and shadows cast by the cars,
indicating manipulation.
2. **Boundary Traces**: Noticeable edges where the athlete meets the background indicate possible cut-and-paste manipulation.
These boundary artifacts are not smooth and visible, suggesting improper blending.
3. **Perspective Relationships**: The athlete is standing in a manner that does not fit naturally within the scene's perspective. The
athlete's position and the angle are not aligned with the cars and the background, indicating that the image of the athlete was
inserted from a different source.
# Low-Level Pixel Statistics
1. **Noise Inconsistency**: The noise pattern in the tampered region differs from that of the surrounding background. The athlete's
section has a different grain or noise texture than the rest of the image, suggesting manipulation.
2. **Color Discrepancy**: The color tones and saturation levels of the athlete do not match the surrounding environment. The
lighting on the athlete's uniform does not correspond with the overall lighting direction of the scene, indicating tampering.
3. **Sharpness/Blurriness**: There is a noticeable difference in sharpness between the tampered region and the background. The
edges around the athlete are too sharp compared to the rest of the image, suggesting manipulation.

Mantra-Net OSN MVSS-Net PSCC-Net CAT-Net2

Figure 11: Comparison of results between our ForgerySleuth, existing multimodal large language
models, and traditional image manipulation detection methods. The image is NC2016_7312.jpg from
the NIST16 dataset.
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Assuming that you have detected this is a <FAKE> image with "AI-generate” manipulation, and the exact tampered region is
highlighted with color in another reference image (and your detection IS correct). Please analyze your detection decision according
to clues of different levels and aspects including but not limited to low-level pixel statistics (such as noise, color, textural, sharpness,
and Al-generation fingerprint), middle-level visual defects (such as traces of tampered region or boundary, lighting inconsistency,
perspective relationships, and physical constraints), and high-level semantic anomalies (such as content contrary to common sense,
inciting and misleading content), etc. There is no need to include all aspects and views in your analysis, give some of your most
confident points.

This is a FAKE image manipulated using AI-generated content, specifically targeting the bus in the center of the image, which is
highlighted in red in the reference. Below is a breakdown of the detection clues across various levels:

Low-Level Pixel Statistics:

- Noise and Texture Discrepancies: The overall scene, which depicts a post-disaster landscape, contains natural graininess, subtle
noise, and rough textures consistent with debris and rubble. However, the bus in the middle shows different characteristics, it
appears smoother and lacks the same level of noise as its surroundings, indicating that it was generated or inserted separately. This
noise discrepancy is a common marker of Al-generated content.

- Color and Sharpness Anomalies: The bus has unnaturally vivid colors (yellow and black), which stand out in contrast to the muted
tones of the devastated environment. The sharpness of the bus also does not match the slightly blurred background, implying that it
was not part of the original scene. This sharpness inconsistency indicates a different image source or digital generation.

Middle-Level Visual Defects:

- Boundary Traces: The edges of the bus appear unnaturally smooth, especially around the rear end and where it blends into the
background. This smoothness is in stark contrast to the jagged debris and uneven structures in the environment. The lack of
blending or transition between the bus and its surroundings, especially along its base, highlights its insertion into the scene.

- Lighting Inconsistency: The overall lighting in the image is diffused and soft, typical of overcast post-disaster conditions. The bus,
however, shows inconsistent lighting, with reflective surfaces that suggest stronger light sources that do not exist in the surrounding
scene. The shadows on the bus are less pronounced and don't match the diffused light in the image, further indicating manipulation.
- Perspective and Physical Constraints: The bus appears floating or elevated, which defies the physical laws of gravity and common
sense. There is no clear indication of support or ground contact for the bus, suggesting it was artificially placed in this environment.
Moreover, the size and angle of the bus do not match the perspective of the background elements, further reinforcing the
hypothesis that it was generated and inserted unnaturally.

High-Level Semantic Anomalies:

- Contrary to Common Sense: From a high-level contextual perspective, the bus being suspended in such a chaotic, disaster-
stricken environment is illogical. Buses do not float mid-air, and there are no physical cues in the scene (such as debris lifting or
supporting the bus) to explain its position. This is a direct indication of content manipulation.

- Inappropriate Object Placement: In a disaster scenario like this, objects like vehicles are usually scattered, damaged, or buried
within the debris. The bus, however, appears undamaged and disproportionately out of place. The placement of the bus in this
specific location within the scene is highly unnatural and lacks coherence with the overall narrative of destruction.

Conclusion:

This image has been manipulated using Al-generated content, with the tampered region being the floating bus in the middle. The
analysis of noise patterns, boundary traces, lighting inconsistencies, and semantic illogic clearly indicate that the bus was artificially
inserted into the scene. This manipulation disrupts the overall realism of the disaster environment and highlights the telltale signs of
Al-generated imagery.

This image is <FAKE>, and the tampered region is [SEG]. We have identified the following clues, where the high-level anomalies
are significant doubts worth attention, and the middle-level and low-level findings are reliable evidence.

# High-Level Semantic Anomalies

- Contrary to Common Sense: From a high-level contextual perspective, the bus being suspended in such a chaotic, disaster-
stricken environment is illogical. Buses do not float mid-air, and there are no physical cues in the scene (such as debris lifting or
supporting the bus) to explain its position.

- Inappropriate Object Placement: In a disaster scenario like this, objects like vehicles are usually scattered, damaged, or buried
within the debris. The bus, however, appears undamaged and disproportionately out of place.

# Middle-Level Visual Defects

- Lighting Inconsistency: The overall lighting in the image is diffused and soft, typical of overcast post-disaster conditions. The bus,
however, shows inconsistent lighting, with reflective surfaces that suggest stronger light sources that do not exist in the surrounding
scene. The shadows on the bus are less pronounced and don't match the diffused light in the image.

- Perspective and Physical Constraints: The bus appears floating or elevated, which defies the physical laws of gravity and common
sense. There is no clear indication of support or ground contact for the bus, suggesting it was artificially placed in this environment.
Moreover, the angle of the bus does not match the perspective of the background elements.

# Low-Level Pixel Statistics

- Noise and Texture Discrepancies: The overall scene contains natural graininess, subtle noise, and rough textures. However, the
bus in the middle shows different characteristics. It appears smoother and lacks the same level of noise as its surroundings. This
noise discrepancy is a common marker of Al-generated content.

- Color Anomalies: The bus has unnaturally vivid colors, which stand out in contrast to the muted tones of the devastated
environment.

- Sharpness Anomalies: The sharpness of the bus also does not match the slightly blurred background, implying that it was not part
of the original scene. This sharpness inconsistency indicates a different image source or digital generation.

Figure 12: Illustration of the Forgery Analysis dataset creation process. The data is initially generated
by GPT-4o0, then revised by experts to ensure the accuracy of the analysis, with clues organized in the
Chain-of-Clues (CoC) format.
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# High-Level Semantic Anomalies:

1. **Content Contrary to Common Sense**:

- The phrase "UNDER 20 IN DOG YEARS" in the lower window sign is semantically unusual and unlikely
to be displayed in such a context. Typically, age restrictions are set in human years, highlighting the fakeness
of the alteration.

# Middle-Level Visual Defects:

1. **Traces of Tampered Regions or Boundaries**:

- The tampered letters have borders that look slightly abrupt against the background, revealing the typical telltale
signs of cut-and-paste operations. The edges around the tampered text appear mismatched and inconsistent.

2. **Lighting Inconsistency**:

- The lighting on the tampered area of the sign in the window's lower right corner ("UNDER 20 IN DOG YEARS")
does not reflect the lighting conditions of the surrounding environment. The natural reflections and shadows do not
match the rest of the image.

3. **Perspective Relationships**:

- There is a slight perspective inconsistency in the alignment of the tampered letters "R" and "K". The letters do
not perfectly follow the perspective lines of the original text's plane.

# Low-Level Pixel Statistics:

1. **Noise and Texture Inconsistency**:

- The tampered text "TOBARKO" shows inconsistencies in noise patterns and textural details when compared with
the rest of the image. The non-edited parts have a finer texture, while the "R" and "K" characters in "TOBARKO"
show slightly different graininess.

2. **Color Discrepancies**:

- There is a subtle mismatch in the color tones of the tampered letters compared to the original characters. The
tampered letters display a less natural integration with the background color gradient.

3. **Sharpness and Blurring**:

- The tampered areas, especially the letters "R" and "K", exhibit different sharpness levels compared to their
surroundings. This indicates they have been copied and pasted from a different source.

CASE 1. Semantically abnormal text.

# **High-Level Semantic Anomalies:**

- **Uncommon Content:** The presence of a cartoon character interacting with real-world elements is
semantically odd and unlikely, alerting viewers to potential manipulation.

- **Contradiction to Physical Reality:** The cartoon character, by nature, does not adhere to real-world physical
constraints. Its existence and interaction within the scene defy common logical and physical expectations, such as
shadow casting and 3D interaction with the environment.

# **Middle-Level Visual Defects: **

- **Boundary Traces:** The boundaries around the cartoon character are not seamless. Upon close inspection,
there can be visible traces of tampering work, such as edge haloing or pixel misalignment.

- **Lighting Inconsistency:** The lighting on the cartoon character does not match the lighting conditions of the
actual scene. The cartoon's illumination seems uniform, while the real-world elements show natural lighting
variations and shadows.

- **Perspective Issues:** The cartoon character is visually inconsistent in perspective alignment with the rest of
the scene. The size, posture, and depth are not coherent with the surrounding real objects, making it evident that
it was digitally inserted.

# **Low-Level Pixel Statistics: **

- **Noise Inconsistency:** The tampered region exhibits a different noise pattern compared to the rest of the
image. For example, the cartoon character's area has smoother textures, whereas the surrounding image has
more pronounced noise granularity.

- **Color Anomalies:** The color blending around the intersection of the cartoon character and the real-world
objects shows inconsistencies. Specifically, the transition at the boundary is not smooth and does not match the
surrounding color palette.

- **Sharpness Disparities:** The boundary between the natural image elements and the inserted cartoon
character exhibits differences in edge sharpness. The cartoon edges are unnaturally sharp compared to the organic
nature of the rest of the scene.

CASE 2. Presence of elements with different styles.
Figure 13: Examples from the ForgeryAnalysis-Eval dataset. The data is initially generated by

GPT-40 and then cross-revised by multiple experts. The manipulation type for these images is
“splice”.
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# High-Level Semantic Anomalies:

1. **Duplicated Content:** The presence of two identical figures sitting in the exact same position,
wearing the same attire, and having identical poses and damages is highly unnatural and contrary to
real-world circumstances. This resemblance is typically an indicator of image cloning or copy-paste
tampering.

2. **Common Sense Violation:** The scenario depicted breaks the general rules of common sense and realism,
where identical individuals appearing as zombies and mirroring each other's positions is highly improbable,
confirming suspicions of artificial manipulation.

# Middle-Level Visual Defects:

1. **Lighting Inconsistencies:** There is a noticeable difference in shadow and lighting. The shadows and
highlights on the manipulated person (on the right side) reflect slight inconsistencies compared to the image's rest.
2. **perspective Discrepancy:** The perspective of the manipulated figure does not align perfectly with natural
physics.

# Low-Level Pixel Statistics:

1. **Noise Inconsistency:** Upon close inspection, the noise pattern in the tampered region is slightly different
from the rest of the image.

CASE 3. Duplicated content.

# High-Level Semantic Anomalies

1. **Content Contrary to Common Sense**:

- Knowing the historical and cultural context of the Great Sphinx, having two Sphinxes side-by-side is
historically inaccurate. This anomaly contradicts common historical knowledge.

- Semantic understanding of heritage sites indicates that only one Great Sphinx exists, making the duplicated
Sphinx a blatant anomaly.

# Middle-Level Visual Defects

1. **Lighting Inconsistencies**:

- The right Sphinx reveals subtle differences in shadow and lighting compared to the copied region, hinting at the
inconsistency.

2. **Perspective Relationships**:

- The proportions and alignment between the pyramid and the tampered Sphinx area exhibit perspective
mismatches.

# Low-Level Pixel Statistics

1. **Noise Patterns**:
- Upon close inspection, the tampered region exhibits a different noise level or pattern compared to the rest of the
image.

2. **Textural Mismatches**:
- Fine details such as erosion patterns on the Sphinx show unnaturally replication.

CASE 4. Contradict common historical knowledge.
Figure 14: Examples from the ForgeryAnalysis-Eval dataset. The data is initially generated by

GPT-40 and then cross-revised by multiple experts. The manipulation type for these images is
“copy-move”.
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# High-Level Semantic Anomalies

1. **Contextual Irregularities**: A noticeable gap in the snow where tracks should have been continuous or an
expected object that is now missing disrupts the logical flow of the scene. This suggests something unusual and

[} w potentially manipulated.

e # Middle-Level Visual Defects

1. **Boundary Traces**: Subtle but identifiable boundaries are present around the tampered area, where the
‘ snow's texture and color slightly mismatch. This suggests a poorly executed removal of an object or person.
2. **Lighting Inconsistency**: The lighting and shadows within the tampered region do not align with natural light
sources evident in the rest of the image, highlighting the artificial modification.
3. **perspective and Physical Constraints**: The perspective of the snow tracks around the tampered region
i w appears unnatural. It seems that a segment of the tracks has been removed or modified, disrupting the
ww logical flow and creating a physical inconsistency in the snow-covered environment.

# Low-Level Pixel Statistics

‘ ' 1. **Noise Inconsistency**: The tampered area has a noticeably smoother noise pattern compared to
surrounding pixels, lacking the natural randomness of noise seen in the rest of the image.
2. **Color Discrepancies**: The color balance in the tampered region appears off, with slight shifts in tones that
do not match adjacent areas.
3. **Sharpness and Clarity**: Edges around the tampered region show unusual blurriness compared to the natural
sharpness gradient in the untouched parts of the image, suggesting imperfect integration.

CASE 5. Noise inconsistency.

# High-Level Semantic Anomalies

1. **Content Contrary to Common Sense**:
- The presence of a leash and its shadow suggests a pet (such as a dog) should be visible, but it is
missing, which contradicts common sense and indicates manipulation.

# Middle-Level Visual Defects

1. **Traces of Tampered Region/Boundary**:

- The boundary of the tampered area shows unnatural lines and edges, indicating manipulation. These traces
suggest an object was removed without seamlessly blending the surrounding pixels.

2. **Lighting Inconsistency**:

- The lighting in the manipulated region, including the reflection, does not match the direction and intensity of the
light in the rest of the scene, revealing tampering.

3. **Perspective Relationships**:

- The reflection in the water suggests that an object was there, but the size and shape of the reflection do
not align with the surrounding reflections, indicating image editing.

# Low-Level Pixel Statistics

1. **Noise Distribution**:

- The noise pattern in the tampered region is inconsistent with the rest of the image, appearing more smoothed,
which indicates manipulation.

2. **Color Discontinuity**:

- There is a color mismatch between the tampered region and its surroundings, with the tones and hues in the
reflection not perfectly matching the water and beach.

3. **Sharpness and Blurriness**:

- The boundaries of the tampered region are either unnaturally sharp compared to the rest of the image,
suggesting poor blending during the editing process.

CASE 6. Unusual shadows and reflections.
Figure 15: Examples from the ForgeryAnalysis-Eval dataset. The data is initially generated by

GPT-40 and then cross-revised by multiple experts. The manipulation type for these images is
“remove”.
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# High-Level Semantic Anomalies

1. **Content and Common Sense**:
- The flower's appearance and positioning are slightly off, given the natural posture and handling by
the young child.

# Middle-Level Visual Defects

1. **Traces of Tampered Region or Boundary**:

- The boundary of the manipulated area appears overly distinct and does not merge well with the natural
contextual edges of other original elements in the image. There are visible aberrations along the edges where the
tampered section meets the natural photo.

2. **Lighting Inconsistency**:

- The lighting on the manipulated rose does not match the natural lighting on the child's face and hands. The
direction and intensity of shadowing on the tampered area are inconsistent with the rest of the scene, suggesting
an addition that does not conform to the natural light sources in the original image.

3. **Physical Constraints**:

- Upon close inspection, the way the child's fingers interact with the flower appears unnatural, with slight
misalignment, further confirming that the flower has been digitally manipulated into the scene.

# Low-Level Pixel Statistics

1. **Noise Inconsistencies**:

- While the background and the rest of the child's features have consistent noise distribution, the tampered part of
the rose exhibits a smoother texture, indicating noise reduction typical in composite images.

2. **Color and Textural Mismatches**:

- The color gradient and shading on the tampered part of the rose do not blend seamlessly with the surrounding
real elements.

3. **Sharpness Discrepancies**:

- The boundary of the tampered region is unusually sharp compared to its surroundings. The difference in
sharpness is a strong low-level clue that suggests an overlay.

CASE 7. Unnatural interaction.

# High-Level Semantic Anomalies:

1. **Content Plausibility**: While somewhat plausible, the suspended plane in this context is unusual. Most cranes
are not designed for such delicate operations, and the scene might evoke skepticism regarding its realness, raising
suspicion of manipulation.

2. **Physical Constraints**: The suspension points and the way the plane is held appear physics-defying.
The ropes and balance don't align with the expected real-world weight distribution and gravitational effects on such
an object.

# Middle-Level Visual Defects:

1. **Lighting Inconsistency**: The lighting on the plane doesn't match the lighting on other objects and people in
the scene. Specifically, look at the shadows on the plane in the marked region-they appear unnatural compared to
how light interacts with the surrounding environment.

2. **Boundary Traces**: There are subtle boundary artifacts around the tampered plane region. The boundaries of
the plane show a certain level of pixel interpolation which often occurs during copy-paste tampering, leading to
visible seams upon close inspection.

3. **Perspective Relationships**: There is a slight perspective mismatch between the plane and the surrounding
elements, including the rope and the ship. The alignment and proportions appear off, which indicates a
manipulation.

# Low-Level Pixel Statistics:

1. **Noise Patterns**: The noise in the tampered region (the plane) is inconsistent with other parts of the image.
Typically, authentic images have uniform noise distribution, while Al-generated manipulations often have differing
noise characteristics in tampered parts.

2. **Color and Sharpness**: The colors in the tampered region are slightly more saturated, and the edges are
sharper compared to the rest of the image. Authentic objects tend to blend naturally with the ambient softness and
color consistency of the picture.

CASE 8. Physics defying.
Figure 16: Examples from the ForgeryAnalysis-Eval dataset. The data is initially generated by

GPT-40 and then cross-revised by multiple experts. The manipulation type for these images is
“Al-generate”.
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# High-Level Semantic Anomalies

1. **Content Contrary to Common Sense**:

- The presence of a prominent, well-known individual on a trash fire is highly unusual and unlikely in real-world
contexts, raising immediate suspicion about the image's authenticity.

2. **Inciting and Misleading Content**:

- The juxtaposition of a public figure with such an explosive and destructive background can be misleading and
potentially inciting. This unusual context strongly suggests an intent to provoke a reaction or convey a false
narrative.

# Middle-Level Visual Defects

1. **Boundary Traces**:

- The edges around the tampered region are irregular and show unnatural transitions. Evidence of this includes
slight color and texture mismatches along the perimeter of the face.

2. **Lighting Inconsistency**:

- The lighting on the face does not match the rest of the scene. The smoke and flames surrounding the face
should exhibit the same lighting effects (reflection, shadow, glow); however, the tampered region shows
inconsistent lighting, which is a strong indicator of manipulation.

3. **Perspective Relationships**:

- The perspective of the face does not align well with the rest of the object ( trash can and flames ). It seems as if
the face has been pasted onto the image without considering the overall perspective, making it look out of place.

# Low-Level Pixel Statistics

1. **Noise and Texture**:

- The tampered region (the face) exhibits different noise patterns compared to the rest of the image. The texture
of the face is smoother, while the surrounding smoke and flames have more granular noise, indicating
manipulation.

2. **Color and Sharpness**:

- The tones and sharpness of the face do not match the rest of the scene. The face is well-defined, while the
surrounding elements appear slightly blurred due to the smoke and fire.

# High-Level Semantic Anomalies

1. **Content Contrary to Common Sense**:

- The presence of a person in a roller coaster seat without any visible means of support is contrary to common
amusement park rides, where riders are typically seated in enclosed cars or restrained in some manner.

- The absence of such restraints, as well as the lack of seat belt or barrier in the vehicle, makes the scenario
implausible.

# Middle-Level Visual Defects

1. **Lighting Inconsistency**:

- The lighting on the person in the tampered region does not match the lighting conditions of the rest of the scene.
For instance, the roller coaster lacks shadows or reflections that should correspond to the person if they were
genuinely there.

2. **Traces of Tampered Region or Boundary**:

- Upon close inspection, the boundaries of the tampered area reveal subtle artifacts such as unnatural edges or
blending issues, suggesting it was superimposed onto the scene.

# Low-Level Pixel Statistics

1. **Noise Analysis**:

- The tampered region shows a different noise pattern compared to the rest of the image. The natural noise in the
roller coaster seat should be consistent, but the tampered area displays irregular noise levels that differ from the
background.

2. **Color Consistency**:

- There are slight color mismatches between the person and the background. The tampered region has a different
hue and saturation, which suggests that the person was added from a different source image with different lighting
conditions.

3. **Sharpness**:

- The region and edges around the person are unnaturally sharp compared to the rest of the image, indicating
they were superimposed onto the scene.

Figure 17: Examples from the ForgeryAnalysis-PT dataset. The data is automatically generated by
our data engine ForgeryAnalyst.
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Given the tampered image, the reference forgery analysis text, and the generated analysis text, assess the quality of the generated
analysis based on the following criteria. Please note! TAMPERED OBJECTS refer to "dog," "face," "grass," etc., while "boundary
artifacts" or "lighting inconsistencies" serve as CLUES.

1. Correctness of Tampered Object (NOT Clues) Detection

- 8-10 points: ALL clues accurately identify major tampered objects and describe alterations but may miss subtle details.
- 4-7 points: ALL clues reveal the tampered regions but lack clarity or miss some regions.

- 1-3 points: Score in this range if ANY clues fail to identify tampered objects, or ANY incorrect detection is present.

2. Relevance of Clues to Tampered Object

- 8-10 points: ALL or MOST clues directly relate to tampered elements, logically supporting the analysis.

- 4-7 points: SOME clues are loosely related and lack a clear connection to the tampered content.

- 1-3 points: ALL Clues are irrelevant or misleading, not contributing to the tampering analysis.

3. Detail of Clues and Analysis

- 9-10 points: Provides comprehensive and well-explained clues with thorough reasoning.

- 6-8 points: Contains good detail but may lack depth in some aspects.

- 3-5 points: Limited detail with some clues inadequately explained.

- 1-2 points: Minimal detail with insufficient reasoning or vague explanations.

Assign separate scores on a scale of 1 to 10 for each criterion, with a higher score reflecting better performance. Provide the scores
and concise comments explaining the assessment in the format: "Scorel: {score}/10 \n Comment1: {text} \n Score2: {score}/10
\n Comment2: {text} \n Score3: {score}/10 \n Comment3: {text}"

Reference Analysis Text: {

We have identified the following clues, where high-level anomalies are doubts, and lower-levels clues are evidence.

# High-Level Semantic Anomalies: ## Content Contrary to Common Sense: The dog's face on a person's body is impossible and
contrary to common sense. This unnatural combination lacks logical coherence in real-world scenarios, confirming manipulation. The
content is misleading as it presents an unnatural scenario intended for humor or deception...

Generated Analysis Text: {

<FAKE> The image appears to be digitally manipulated. The most obvious clue is the fish being held by the person's hand. Fish do
not have hands, so this element seems out of place and artificial. Additionally, the human's face looks like it has been edited onto
the fish, which further suggests that the image was altered post-production. There are no visible signs of tampering at the pixel
level, but the overall composition and elements present in the image indicate that it has been edited.

Scorel: 1/10
Commentl: The generated analysis fails to correctly identify the tampered objects present in the reference analysis. Instead of
recognizing the dog's face on the human body, it incorrectly discusses a fish being held, which is not mentioned in the reference text.

Score2: 1/10
Comment2: The clues provided in the generated analysis are irrelevant to the tampered object discussed in the reference analysis.
The mention of a fish is misleading and not related to the actual tampered content, which involves a dog's face on a human body.

Score3: 2/10

Comment3: The detail in the generated analysis is minimal and not aligned with the actual tampering described in the reference text.
The analysis lacks depth, particularly in explaining the clues, and incorrectly focuses on detecting non-existent elements, providing
no useful insight into the actual manipulation.

Figure 18: Illustration of the prompt and GPT-4 response of text analysis quality evaluation. The
evaluation prompt includes clear scoring criteria for the assessment aspects, ensuring consistent and
fair scoring.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state our main contributions, the
scope of our method, and these are well-supported by the results presented in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in the Appendices due to page con-
straints.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper focuses on a novel method and a new dataset for image manipulation
detection and does not include theoretical results like theorems or formal proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of our method, relevant training config-
urations, and evaluation protocols. For our novel dataset, we thoroughly describe its
construction, composition, and splits. These details are sufficient for reproducing our main
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code, data, and model weights are already open-sourced. To facilitate
reproducibility while ensuring reviewer anonymity, we provide access to the code and data
as described in our supplementary material. While the pre-trained model weights are also
open-sourced, due to their significant size, they are not directly included in the current
supplementary package. We are committed to providing public links for resources in the
abstract of the camera-ready paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Comprehensive details, including hyperparameters, optimizer types, learning
rates, batch sizes, and other critical training and testing specifics, are thoroughly introduced
in the Appendices.

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To ensure fair comparisons, our experimental setup and evaluation protocols
are consistent with established state-of-the-art methods in the field. While comprehensive
statistical significance tests are not uniformly standard practice in this research domain, we
address potential experimental variability. For experiments involving stochastic elements,
we conduct evaluations twice and report the average performance.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details on the computational resources used for our experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper has been conducted with careful consider-
ation of the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: This paper discusses the broader societal impacts of our work. A significant
positive impact is the potential to enhance the authenticity of visual content in media, which
can help combat the spread of misinformation. However, we also acknowledge potential
negative impacts. One key concern is the possibility of inaccurate detections, which could
lead to the mislabeling of legitimate content.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have implemented several safeguards. The model weights are hosted on an
authoritative platform. Moreover, access to the data is controlled via an application process,
which allows us to carefully review and approve user requests.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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14.

15.

Justification: For every asset used in this paper, we have properly cited the corresponding
original paper or source. We have also ensured that our use fully complies with the respective
licenses and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All assets introduced in this paper are well documented, and this documentation
is provided alongside the assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The instructions given to participants are provided in the appendices.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The potential risks involved in our user study, such as time expenditure, were
disclosed to the participants within the annotation system and user experiment system.
The experiments, conducted under limited risk conditions, received approval from our
laboratory’s review process.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Large Language Models (LLMs) constitute an important component of the
core methodology in this research. The relevant aspects of their usage are described in detail
within the main body of the paper.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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