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ABSTRACT

Trustworthy AI encompasses many aspirational aspects for aligning AI systems
with human values, including fairness, privacy, robustness, explainability, and un-
certainty quantification. However, efforts to enhance one aspect often introduce
unintended trade-offs that negatively impact others, making it challenging to im-
prove all aspects simultaneously. In this paper, we review notable approaches to
five aspects and systematically consider every pair, detailing the negative interac-
tions that can arise. For example, applying differential privacy to model training
can amplify biases in the data, undermining fairness. Drawing on these findings,
we take the position that addressing trustworthiness along each axis in isolation is
insufficient. Instead, to achieve better alignment between humans and AI, efforts
in Trustworthy AI must account for intersectionality between aspects and adopt
a holistic view across all relevant axes at once. To illustrate our perspective, we
provide guidance on how researchers can work towards integrated trustworthiness,
and a case study on how intersectionality applies to the financial industry.

1 INTRODUCTION

Artificial intelligence (AI) systems have become widespread for automated decision making across
industries, and as productivity aids for consumers. Industries such as banking and insurance in-
creasingly rely on predictive AI models that directly impact customers, while the healthcare sector
explores AI-driven advancements in patient care. Increased scrutiny by regulators and concerns
around the trustworthiness of these systems call for a more measured approach to AI development
with considerations beyond raw performance. In response, the field of Trustworthy AI (TAI) has
blossomed, with the general goal of aligning AI to human values. Chief among the tenets of TAI
are fairness, privacy, robustness, explainability, and uncertainty quantification – each of which is a
noble pursuit, but all of which must be harmonized to promote deep trust.

These five core concepts are well-studied individually in machine learning (ML). However, as we
will extensively discuss, isolated study fails to account for the complex interactions between TAI as-
pects. Layering multiple methodologies designed for individual aspects tends to produce unforeseen
consequences and negative intersectionalities1, ultimately undermining trust rather than reinforcing
it. Many such negative interactions have been documented, but their prevalence and severity may
not yet be fully realized due to the diverse and clustered nature of research on TAI. By collating them
in one place, we aim to bring these interactions to light and highlight that a more holistic approach
to TAI is needed to achieve the goal of aligning AI with human values. To this end, we broaden the
definition of alignment to account for intersectionality between TAI aspects.

2 TRUSTWORTHY AI ASPECTS

Throughout the discussions below we will typically consider a classification model Fθ : X → Y
parameterized by θ, which maps a feature space X to a discrete set of labels Y . We use capital letters
(e.g. X and Y ) to denote random variables, while lower case (e.g. x ∈ X and y ∈ Y) indicates data
instances. Fθ is trained to minimize a loss function L over its training set Dtrain. Softmax outputs
are denoted as fθ : X → [0, 1]m, such that Fθ(x) = argmaxi∈Y fθ(x)i.

1In social sciences, “intersectionality” describes how overlapping social identities create unique experiences
(Crenshaw, 1989). In this spirit, we use “intersectionality” to describe how overlapping TAI aspects interact in
positive or negative ways.
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In the following subsections we provide a brief overview of five TAI aspects, whose interactions we
consider in Section 3. These reviews are intentionally selective, not comprehensive, and focus on
a limited set of topics to highlight that the negative interactions we examine are commonplace, not
arbitrarily chosen from a wide-ranging body of literature.

2.1 FAIRNESS

Fairness is a foundational pillar in the development of TAI, ensuring systems treat diverse popula-
tions equally or equitably. Since fairness is a nuanced and highly contextual topic, it cannot be boiled
down into a single set of guidelines to follow in all cases. Instead, TAI researchers and practitioners
must consider the appropriate fairness definitions and methodologies to use in each circumstance.

We consider the case where the data is partitioned into ng groups based on an attribute a ∈ A =
{1, ..., ng} (e.g. age bins). The objective of fair ML is to create a model Fθ which treats all groups
fairly by equalizing its prediction behaviour. Exactly how this is defined varies from one application
to the next. We present several common viewpoints.

Consider the dichotomy between procedural and substantive fairness. Procedural fairness empha-
sizes treating all individuals equally (Grgić-Hlača et al., 2016). A model which does not have access
to group identifiers cannot treat individuals differently based on that information, leading to fairness
through unawareness (Zemel et al., 2013; Kusner et al., 2017). Disparate Treatment can result when
systems are not procedurally fair. Meanwhile, substantive fairness aligns with the concept of equity,
and encourages treating individuals differently to achieve comparable outcomes, so-called fairness
through awareness (Dwork et al., 2012). If individuals do not receive the same beneficial outcomes
from a model, there is Disparate Impact. Both Disparate Treatment and Impact are commonly used
concepts in legal and regulatory frameworks (OCC, 2025). Disparate Impact can be measured in
terms of the target outcome of the model, for instance through accuracy disparity

∆acc = max
a,b∈A

[acc(Fθ,Da)− acc(Fθ,Db)], (1)

where Da denotes the subset of D belonging to group a.

Minimizing ∆acc is one example of a fairness goal, and can be pursued at several stages includ-
ing pre-processing (e.g. balancing data across groups before training), in-processing (e.g. adding
fairness regularization terms to the loss L), or post-processing (e.g. using model scores differently
across groups when making decisions). These fairness interventions are examples of intentionally
treating groups differently so that outcomes will be more similar.

2.2 PRIVACY

Privacy has become a crucial area of research in TAI as systems increasingly rely on sensitive data
for training (Liu et al., 2021). The use of personal information, such as health records, financial
transactions, and social media activity, has led to growing concerns about privacy breaches, unau-
thorized data access, and the risk of re-identification.

In the context of ML, privacy concerns are usually demonstrated adversarially, where an attack is
employed to extract as much private information as possible from the model itself, or its outputs.
The standard example is a membership inference attack (MIA) (Shokri et al., 2017; Ye et al., 2022b)
in which the adversary tries to determine if a test datapoint xtest was included in Dtrain. MIAs help to
demonstrate when a system can fail to preserve privacy, but an unsuccessful MIA does not indicate
the system is safe; there could always exist a stronger adversarial attack that would succeed. Hence,
privacy researchers rely on future-proof frameworks that provide statistical guarantees on privacy
protection.

Differential privacy (DP) (Dwork et al., 2006) is the primary framework for quantifying how much
private information could be exposed by an ML model. Formally, let M be a probabilistic function
acting on datasets D. We say that M is (ϵ, δ)-differentially private if for all subsets of possible
outputs S ⊆ Range(M), and for all pairs of datasets D and D′ that differ by the addition or removal
of one element,

Pr[M(D) ∈ S] ≤ exp(ϵ)Pr[M(D′) ∈ S] + δ. (2)

This inequality guarantees that the function M cannot strongly depend on any one datapoint, and
hence the amount of information that can be extracted about any datapoint is bounded. Strong DP
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guarantees (i.e. ϵ and δ both close to 0) have been empirically shown to be effective defenses against
MIAs and other privacy attacks (Rahman et al., 2018; Ye et al., 2022a). Importantly, no amount of
post-processing on the outputs on M can weaken its guarantee.

DP is typically achieved in ML through DPSGD (Abadi et al., 2016), a stochastic gradient de-
scent method that satisfies Equation (2). It first computes per-sample gradients and clips them, then
aggregates them before adding noise. For samples xi, yi in a batch B, and per-sample gradients
gi = ∇θL(θt;xi, yi), the DPSGD gradient update is

θt+1 = θt − λ

[
1

|B|
∑
i∈B

clipC (gi) +
σC

|B|
ξ

]
, (3)

where λ is the learning rate, C is the clipping bound, σ is the noise level, and ξ ∼ N (0, I) is
Gaussian noise. As training with DPSGD progresses, more privacy budget is consumed (ϵ and δ
increase), which is usually accounted numerically (Mironov et al., 2019; Yousefpour et al., 2021).

2.3 ROBUSTNESS

Robustness broadly refers to the ability of a model to maintain its performance and reliability under a
variety of conditions. Since stable performance is desired even in unforeseen situations, researchers
commonly test robustness adversarially. An attacker will actively try to produce unintended be-
haviour by perturbing the input of a model, often in ways that are imperceptible to humans (Biggio
et al., 2013; Szegedy et al., 2013). Adversarial examples can be created through optimization by
maximizing the model’s loss on the correct answer rather than minimizing:

x†(θ, xi, yi) = argmax
x∈B(xi,ε)

L(θ;x, yi), (4)

where x† is constrained to be “close” to xi, for instance within a ball B(xi, ε) of radius ε around
xi. Such attacks can be defended against by exposing the model to adversarially perturbed inputs
during training (Goodfellow et al., 2014):

θt+1 = θt − λ
1

|B|
∑
i∈B

∇θL(θt;x†(θt, xi, yi), yi). (5)

2.4 EXPLAINABILITY

Explainability enables researchers and practitioners to understand, validate, and trust decisions made
by complex models, and gives the ability to audit those decisions retroactively. When humans
manually accept or reject a model’s prediction, explanations help them understand the reasoning
behind the decision and compare it to their own expertise.

Some ML models are inherently more interpretable, such as shallow decision trees and linear mod-
els, but deep neural networks are not. Methods to explain complex models may focus on global
explanations, providing an overarching understanding of model behavior, or local explanations,
which shed light on individual predictions (Linardatos et al., 2021). We will focus on local expla-
nations, especially model-agnostic, feature-based explanations due to their applicability across ML
algorithms (Islam et al., 2021). These methods interpret behavior by analyzing the importance of
input features for a given prediction, regardless of the underlying architecture. For an input x, in ad-
dition to the model’s output Fθ(x), a local explainability method also provides some form of feature
importance Eθ(x), a quantification of how important each element of x is for predicting Fθ(x).

We recount one popular method as a typical example, Local Interpretable Model-agnostic Expla-
nations (LIME) (Ribeiro et al., 2016). LIME aims to provide local explanations that preserve lo-
cal fidelity – that the explanations correspond to the model’s actual behaviour in the vicinity of x.
LIME’s explanations take the form of a model, one that is inherently more interpretable than Fθ(x),
namely a sparse linear model that locally approximates Fθ at x. The weights of the linear model are
returned as Eθ(x) and communicate how important each corresponding feature is.

2.5 UNCERTAINTY QUANTIFICATION

Typical ML models output a point prediction (e.g. a single label for classification) and are not
designed to quantify confidence in those predictions. We note that softmax outputs fθ(x) are unre-
liable because of miscalibration (Guo et al., 2017; Minderer et al., 2021). ML models that quantify
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their uncertainty are more trustworthy, as the user can judge when to ignore the model in favor of
alternatives (Soize, 2017). While there are several major approaches to uncertainty quantification,
we focus on one increasingly popular method, conformal prediction (CP) (Vovk et al., 2005; An-
gelopoulos & Bates, 2021). The idea of CP is to output sets of predictions (e.g. several class labels)
where larger sets indicate greater model uncertainty. CP takes a heuristic notion of uncertainty, like
fθ(x), and calibrates it using a held-out dataset Dcal to give statistically grounded uncertainty quan-
tification. CP defines a conformal score function s : X × Y → R, where larger values indicate
worse agreement between fθ(x) and y. After computing s on the ncal calibration datapoints, one
finds the ⌈(ncal+1)(1−α)⌉

n quantile q of the conformal scores, using a free parameter α ∈ (0, 1). For
a new datapoint xtest, prediction sets Cq are generated by including all output values for which the
conformal score is below the threshold q,

Cq(xtest) = {y ∈ Y | s(xtest, y) < q}. (6)

Notably, CP provides a coverage guarantee over the true label ytest,

P[ytest ∈ Cq(xtest)] ≥ 1− α, (7)

as long as xtest is exchangeable with the calibration data drawn from P. Hence, the user can specify a
maximum error rate, α, ensuring that the sets generated during testing will exclude the ground truth
no more often than α. For equal coverage levels, the usefulness of prediction sets is judged by their
size, with smaller average set sizes E|Cq| indicating more confident predictions.

2.6 OTHER ASPECTS

Our discussion focuses on the five aspects recounted above. There are, however, many addi-
tional aspects one may strive to achieve when building TAI, including safety (Amodei et al., 2016;
Hendrycks, 2024), alignment (Russell, 2019; Gabriel, 2020; Sorensen et al., 2024), diversity (Buo-
lamwini & Gebru, 2018; Fazelpour & De-Arteaga, 2022), reproducibility (Pineau et al., 2021),
accountability (Cooper et al., 2022), and human agency (Fanni et al., 2023). While intersectional
TAI strives to encompass as many aspects as possible, examining five aspects in detail is sufficient
for us to motivate the need for an intersectional approach.

3 NEGATIVE INTERACTIONS BETWEEN TRUSTWORTHY AI ASPECTS

To demonstrate that negative interactions are commonplace, not the exception, we exhaustively con-
sider every pairwise combination of our five aspects of Fairness (F), Privacy (P), Robustness (R),
Explainability (E), and Uncertainty Quantification (UQ). For each pair we give examples of negative
implications on one aspect from the application of the other, and cover both directions. For two TAI
aspects A and B, we use the shorthand A ⇀ B to indicate that applying a concept or method from A
has a negative impact on B. While there are also examples of positive interactions, we focus on neg-
ative interactions to demonstrate the potential harms of failing to consider intersectionality in TAI.

3.1 FAIRNESS AND PRIVACY

F ⇀ P: At the most basic level, evaluating or correcting the fairness of an ML model with respect to
some group usually necessitates collecting information on the group identifier A. These identifiers,
like age, gender, or race, are often sensitive personal information – exactly the type of information
that should be afforded privacy. Collecting, storing, and using this information for fairness purposes
exposes individuals to greater risk of conventional data leaks or hacks.

Beyond conventional privacy leaks, Section 2.2 discussed how trained models can leak private in-
formation through MIAs which exploit the differences in model behaviour between populations.
Fairness interventions during training can reduce the differences between populations, and hence
better protect against standard MIAs (Tonni et al., 2020). However, such techniques actually in-
crease vulnerability to specialized MIAs which are also group-aware (Tian et al., 2024). Generally,
fairness-aware ML algorithms tend to memorize from underrepresented groups, improving model
accuracy, but weakening privacy (Chang & Shokri, 2021).

P ⇀ F: Some individuals or groups in the data can be more vulnerable to privacy attacks than
others (Long et al., 2020). When vulnerability is unequal, applying privacy-enhancing tech-
niques can improve the privacy of some groups more than others, an example of Disparate Impact
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(Kulynych et al., 2022). Protecting a vulnerable group by removing it from the training set is coun-
terproductive, as the vulnerability merely shifts to a different group (Carlini et al., 2022).

While DPSGD is the de facto standard method for achieving privacy guarantees on ML models, it is
well-known to cause Disparate Impact by increasing accuracy disparity (Equation (1)) as compared
to ordinary SGD (Bagdasaryan et al., 2019). Suppose some group a ∈ A in the data is underrep-
resented, or is otherwise more difficult to correctly predict on. In ordinary SGD, data points from
this group would have higher loss, and hence larger gradients, which would increase their relative
influence on the optimization. In DPSGD (Equation (3)), large gradients with ∥gi∥ > C are clipped,
making them relatively less influential on the optimization process. This uneven clipping introduces
bias into the gradients which is the primary source of Disparate Impact (Tran et al., 2021; Esipova
et al., 2023).

3.2 FAIRNESS AND ROBUSTNESS

F ⇀ R: When groups in the dataset are underrepresented, fairness interventions to reduce model
bias (Section 2.1) can increase the relative influence of those groups. Unfortunately, this increased
influence can make the very same groups more susceptible to adversarial attacks (Chang et al., 2020;
Xu et al., 2021). Tran et al. (2024) show that fairness interventions can reduce the average distance
from training samples to the decision boundary, which makes them more vulnerable to adversarial
examples (Madry et al., 2018).

R ⇀ F: The main method to improve adversarial robustness, namely adversarial training, adds per-
turbed versions x† of inputs x to training batches (Equation (5)). The side-effects of adversarial
training include decreased overall accuracy on unperturbed samples, but more importantly for fair-
ness, larger disparities in class-wise performance (Nanda et al., 2021; Xu et al., 2021; Benz et al.,
2021). This robustness bias has been attributed to properties of the data distribution like feature
distributions across groups (Benz et al., 2021), differences in the intrinsic difficulty of classes (Xu
et al., 2021), and biased representations learned during pre-training (Nanda et al., 2021).

3.3 FAIRNESS AND EXPLAINABILITY

F ⇀ E: Fairness interventions can inadvertently alter the relative importance of features in expla-
nations. Pre-processing modifies the training data through re-balancing or other transformations
(Caton & Haas, 2024) which can obscure the true relationships between features and outcomes,
making it challenging to interpret model behavior accurately. For instance, if minority groups are
oversampled to increase their representation, an explainability method may correspondingly overem-
phasize the importance of features associated to that group. The same issue can occur from in-
processing (Wan et al., 2023) as the influence of various features is altered by, for example, fairness
constraints added to the loss. Meanwhile, post-processing methods that modify predictions without
altering the underlying model can create a disconnect between the model’s internal decision-making
process and the actual predictions that are used (Di Gennaro et al., 2024).

E ⇀ F: Explanations introduce another potential source of bias in modeling. Even if a model’s
predictions are considered fair, the fidelity of explanations may be inconsistent across groups – that
is, for some groups the features identified as important in the explanation may not truly reflect the
features driving the model’s predictions. Fidelity disparity can lead to the model’s predictions being
trusted more for some groups than others, such that the benefits of the model are not evenly expe-
rienced across groups (Balagopalan et al., 2022). Dai et al. (2022) found that post hoc explanation
methods used on neural networks quite commonly have disparate fidelity across groups.

Alternatively, explanations may hide biases in an unfair model. For instance, explanations may fail to
accurately represent that a model is relying on sensitive attributes, covering up active discrimination
(Lakkaraju & Bastani, 2020; Slack et al., 2020).

3.4 FAIRNESS AND UNCERTAINTY QUANTIFICATION

Background: In conformal prediction the coverage guarantee in Equation (7) holds marginally
over the entire distribution P. Hence, it is possible that some groups within the distribution have
lower coverage than others, leading to tension between fairness and UQ. A stronger guarantee is
group-wise conditional coverage with respect to pre-defined groups A,

P[y ∈ C(x) | A = a] ≥ 1− α, ∀ a ∈ A. (8)
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Group-wise conditional coverage can easily be obtained by partitioning Dcal by groups, and perform-
ing CP on each Da, giving distinct thresholds qa. At test time, sets are generated using Equation (6)
with the appropriate qa (Vovk et al., 2003).

F ⇀ UQ: The idea of providing equal levels of coverage across groups A for the sake of fairness was
discussed by Romano et al. (2020a), who argued that Equalized Coverage should be the standard of
fairness for CP. Using notation similar to Equation (1), we can express Equalized Coverage as

∆Cov = max
a,b∈A

(P[y ∈ C(x) | A = a]− P[y ∈ C(x) | A = b]) ≈ 0. (9)

Marginal coverage gives no guarantee that Equation (9) will hold, but group-wise conditional cov-
erage does. However, Equalized Coverage negatively impacts the usefulness of prediction sets for
uncertainty quantification by increasing their average size, meaning the model expresses a greater
level of uncertainty than it would using marginal CP (Romano et al., 2020b; Gibbs et al., 2025; Ding
et al., 2024). Additionally, partitioning Dcal means each individual calibration is done with fewer
datapoints ncal. This increases variance, and the probability that the desired coverage level 1− α is
breached in practice (Angelopoulos & Bates, 2021).

UQ ⇀ F: Classes Y in a decision problem often represent mutually exclusive actions, hence a
prediction set cannot be acted on by itself. Instead, prediction sets can be given to a human decision
maker as a form of model assistance (Straitouri & Gomez Rodriguez, 2024; Cresswell et al., 2024).
The usefulness of prediction sets is correlated to set size – humans have higher accuracy on tasks
when given smaller prediction sets (Cresswell et al., 2024). Average set sizes E|Cq| typically vary
across groups when the underlying model fθ has some accuracy disparity ∆acc > 0 (Equation (1)).
As a result, human accuracy will improve more for groups which have smaller sets on average,
causing Disparate Impact (Cresswell et al., 2025).

Equalized Coverage makes this unfairness worse. If a group in the data is under-covered using
marginal CP, equalizing its coverage requires increasing set sizes, harming downstream accuracy
even more. Substantive fairness – achieving comparable accuracy across groups – would be better
served by equalizing set sizes (Cresswell et al., 2025).

3.5 PRIVACY AND ROBUSTNESS

P ⇀ R: Models trained with DPSGD (Equation (3)) tend to be less adversarially robust than the
same models trained without DP guarantees. The clipping and noise addition steps in DPSGD
slow the convergence of models (Tramèr & Boneh, 2021) giving decision boundaries that are less
smooth (Hayes et al., 2022) which has a strong impact on adversarial robustness (Fawzi et al., 2018).
Empirical tests confirm this intuition (Boenisch et al., 2021; Tursynbek et al., 2021).

R ⇀ P: Adversarial training (Equation (5)), designed to improve adversarial robustness, can increase
the influence of individual datapoints on the model. This in turn makes the model more susceptible
to MIAs (Yeom et al., 2020). Song et al. (2019) tested six common adversarial defence methods and
found all six increased the success rates of MIAs compared to the same model trained without any
specific defence.

Incorporating DP alongside adversarial defences to protect against MIAs is also non-trivial, as the
methodologies conflict in practice. Adversarial training creates several augmentations x† of data
points x, and backpropagates gradients over them in a batch. By comparison, DPSGD computes
per-sample gradients, which is on its own computationally inefficient (Yousefpour et al., 2021). In-
corporating augmented data points would drastically increase the time and memory costs of training,
and require careful accounting of how much privacy budget is consumed by the use of augmented
versions of x (Wu et al., 2024).

3.6 PRIVACY AND EXPLAINABILITY

P ⇀ E: DPSGD is designed to obscure the details of any single element of Dtrain, but its addition
of noise to gradient updates can degrade the fidelity of post hoc explanations by clouding the true
relationships between input and output variables (Patel et al., 2022). Saifullah et al. (2024) found
severe deterioration of explanation fidelity across many model architectures and data domains when
DPSGD was used.

Applying DPSGD during training protects elements of Dtrain, but not inference data xtest whose
predictions need to be explained. DP can be applied to the explanation mechanism to protect xtest
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(Patel et al., 2022), but since DP requires randomization, explanations will necessarily differ each
time they are generated for the same xtest. Unstable and potentially inconsistent explanations under-
mine the notion that we can understand the reasons behind model predictions.

E ⇀ P: Local explanations Eθ(x) are supplemental to the model’s outputs Fθ(x), and as such pose
an additional avenue for private information about x or Dtrain to leak from the model. Explanations
are designed to reveal details about how specific inputs influence model predictions, so it is unsur-
prising that they can be exploited to make MIAs more effective (Shokri et al., 2021). For instance,
the explanations generated by LIME (Section 2.4) consist of a simple model that locally approx-
imates Fθ(x) around x. The behaviour of these local models will vary depending on whether x
was included in Dtrain, and attackers can exploit these differences in their MIAs (Quan et al., 2022;
Huang et al., 2024).

3.7 PRIVACY AND UNCERTAINTY QUANTIFICATION

P ⇀ UQ: Conformal Prediction could be applied to any model trained with DPSGD without af-
fecting the privacy of Dtrain, because CP is merely post-processing on the privatized model fθ(x).
However, CP requires an additional calibration set Dcal which would not inherit any DP guarantee
and hence could be vulnerable to privacy attacks. To mitigate the risk to Dcal, one can generate
private prediction sets via a DP quantile routine (Angelopoulos et al., 2022), such that prediction
sets Cq(x) would satisfy Equation (2) for Dcal and D′

cal differing by one element. However, the noise
added for DP degrades the empirical coverage of Cq(x), requiring larger prediction sets to retain the
same coverage 1− α, hence overestimating the true model uncertainty.

Even without protecting the privacy of Dcal, the quality of UQ with a differentially private model
will suffer compared to a non-private model. The per-example clipping used in DPSGD causes mis-
calibration (Bu et al., 2023; Zhang et al., 2022), which affects the utility of CP, again by increasing
the size of prediction sets (Xi et al., 2024).

UQ ⇀ P: Uncertainty quantification techniques by design provide additional information to sup-
plement the model’s prediction, which broadens the attack surface. As proof of concept, Zhu et al.
(2024) developed and tested MIAs targeting prediction sets, showing empirically that an attacker
who receives prediction sets has a higher rate of successfully identifying datapoints x that were used
in Dtrain.

3.8 ROBUSTNESS AND EXPLAINABILITY

R ⇀ E: Adversarial training fundamentally alters the representations that are learned by Fθ(x)
(Tsipras et al., 2019; Zhang & Zhu, 2019). In image classification, features learned with adversarial
training are often more interpretable to humans (Ilyas et al., 2019), but other data modalities do
not share the same alignment between robust features and human-perceptible patterns (Jia & Liang,
2017; Carlini & Wagner, 2018). In such domains, adversarial training can lead to unexplainable
behaviours and reduced explanation fidelity (Zhou et al., 2025).

E ⇀ R: Post hoc explanations are susceptible to adversarial perturbations which do not change the
model’s prediction Fθ(x), but greatly change the explanation Eθ(x) (Ghorbani et al., 2019). Users
may expect there to be a single, interpretable explanation for any given prediction, and hence the
possibility of non-robust explanations casts doubt on the veracity of all explanations. Alternatively,
adversarial examples can be used to generate explanations from methods like LIME (Section 2.4)
which are not faithful to the model’s actual behaviour (Slack et al., 2020).

3.9 ROBUSTNESS AND UNCERTAINTY QUANTIFICATION

R ⇀ UQ: Conformal prediction sets may fail to be robust if the underlying model is non-robust.
Standard CP methods use softmax scores fθ(x) to compute the conformal score s(x, y) (Romano
et al., 2020b), so if the elements of fθ(x

†
test) vary wildly, so will Cq(x†

test). Hence, adversarial training
on the underlying model may appear to be a natural defence for CP. However, Liu et al. (2024)
demonstrated that adversarial training increases the overall uncertainty of models, leading to larger
set sizes even for clean datapoints xtest.

UQ ⇀ R: CP techniques are highly susceptible to adversarial attacks because they introduce ad-
ditional assumptions on the test data which can easily be violated by an attacker. The coverage
guarantee (Equation (7)) relies on exchangeability of xtest with Dcal, but adversarial perturbations
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can imperceptibly force xtest out-of-distribution (Gendler et al., 2022). Prediction sets under attack
will grossly overestimate the certainty of predictions and often fail to cover the true label. Alter-
natively, xtest can be perturbed such that coverage is maintained, but prediction set sizes are greatly
increased, which reduces the utility of those sets (Ghosh et al., 2023).

3.10 EXPLAINABILITY AND UNCERTAINTY QUANTIFICATION

E ⇀ UQ: When generating explanations of a model’s predictions, not only should we quantify
the uncertainty in the predictions, but also in the explanations themselves. Explanations help users
determine when to rely on predictions, investigate potential issues, and confirm that predictions are
not influenced by biases. However, high uncertainty about the validity of explanations can erode
trust (Kindermans et al., 2019; Bykov et al., 2020; Ahn et al., 2023; Löfström et al., 2024). For
example, Slack et al. (2021) highlighted that the feature importances Eθ(x) generated by LIME
strongly depend on the random noise introduced when constructing the sparse linear model around
x, and on the number of perturbed samples used. These factors can lead to significant variations
in the rank order of important features, indicating a considerable degree of uncertainty in LIME’s
explanations that is often overlooked.

UQ ⇀ E: To help practitioners understand the limitations of a model, explanations should be given
as to why it is more uncertain on some inputs than others (Antoran et al., 2021). For CP, explanations
must extend to prediction sets Cq(x). However, the task of explaining why the model has predicted
the entire set is inherently more difficult than explaining the top prediction Fθ(x), especially when
some elements of the set may be contradictory or incompatible with others. Yapicioglu et al. (2024)
recognize this as an issue and develop techniques to explain the relative impact different features
have on the coverage and size of Cq(x).

4 TRUSTWORTHY AI MUST ACCOUNT FOR INTERSECTIONALITY

The overall goal of Trustworthy AI research is to enable not one or two aspects of trust, but many
simultaneously. Current research in TAI very commonly follows the same formula: one or two TAI
aspects are selected and genuine issues with typical AI models are used to motivate improving these
aspects. Then, technical solutions are developed and evaluated to show improvement on the selected
aspects; possible interactions with aspects outside the ones selected are rarely considered. The most
straightforward attempt to achieve the overall goal of trust would be to overlay several technical so-
lutions. However, the examples from Section 3 demonstrate that negative interactions between TAI
aspects are not rare, are sometimes unexpected, and may only be documented years after a method
is first deployed. Based on these observations we take the position that combining solutions to in-
dividual TAI aspects will not resolve the trust and alignment problems facing AI. Trustworthiness
is not achieved by overlaying isolated technical solutions, but emerges from integrating TAI aspects
within a holistic framework that accounts for intersectionality.

Intersectional TAI considers all relevant aspects simultaneously, not in a sequential or siloed manner.
It relies on interdisciplinary expertise from ethicists, legal experts, and of course computer scientists,
to bring together knowledge from disparate fields. It is context-aware and adapted to its deployment
domain, taking account of specific requirements - like the primacy of patient safety in healthcare.
Trust in AI systems will be achieved not solely through technical solutions, but by aligning AI with
societal needs, and recognizing real-world constraints.

To advance intersectional TAI, we provide guidance to researchers and practitioners on how to
achieve it in practice, acknowledging the likelihood of negative interactions, trade-offs, and chal-
lenges from combining many objectives.

• Prior to model development, enumerate all relevant TAI aspects and prioritize them by
importance in the application at hand. Involve stakeholders including developers, users,
and subjects of the model.

• Establish clear metrics and develop automated tests for each relevant aspect when possible,
but also recognize soft goals and constraints within the deployment context.

• Deliberately analyze how TAI aspects could interact, positively and negatively, before im-
plementing technical solutions or optimizing for metrics.

• Evaluate the potential risks of negative interactions by quantifying their likelihood and
severity.
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• When applying technical solutions to improve any single aspect, perform ablations to mea-
sure impact on all other aspects, not just accuracy.

• When negative interactions or trade-offs are observed, assess the impacts to each aspect
and manage compromises according to the pre-established priorities.

These steps will help to develop a risk-based prioritization of TAI aspects and balance competing
constraints, enabling users to proactively anticipate, measure, and mitigate negative interactions.

4.1 CASE STUDY: FINANCIAL INDUSTRY

We now provide a case study to demonstrate how a siloed approach to TAI might fail to establish
trust. SiloBank is a very typical (but fictional) regulated financial institution (FI) that uses AI to
automate decisions on credit card applications. Like many FIs, SiloBank manages model risk using
“three lines of defence” (Bantleon et al., 2021), where the 1st line are the developers who build and
operate models, the 2nd line provides oversight and independent challenge to the 1st line, while the
3rd line is an internal audit function that assesses the effectiveness of the 1st and 2nd lines.

Due to regulations, SiloBank must ensure that its models preserve data privacy, are fair across groups
protected by law, can provide actionable explanations to customers, and are robust enough to with-
stand sudden shifts in the lending environment. To achieve these goals, SiloBank established spe-
cialized teams within the 2nd line to provide expert oversight on their subject matter areas. The
Privacy team, of course, certifies that data privacy is protected at all times, Regulatory Compliance
evaluates models for fairness, while Model Validation tests models for their robustness and ability
to generate meaningful explanations. By hiring experts in each area, SiloBank’s leadership feels
confident that each aspect of TAI will be accounted for.

Excited by recent developments in ML, the 1st line has created a new credit card decision model
that greatly outperforms what SiloBank has in place. Eager to put the model to use, the 1st line
shows their work to each 2nd line team. Model Validation approves the model’s robustness and
explainability aspects, while Compliance confirms the model is unbiased. However, Privacy requests
better protection against information leaks. Upon revision, the developers decide that retraining their
model with DPSGD (Equation (3)) would provably protect customer’s data, and Privacy is satisfied
with the mathematically rigorous approach. With all 2nd line teams on board, the model is deployed.

Several months later, SiloBank finds itself in the headlines. A married couple who share finances
both applied for the same credit card, but became frustrated when only one of them was approved.
More stories begin to surface of denied applications from financially secure women, and customers
leave the bank. Internally, SiloBank’s 3rd line audit team begins investigating and finds the new credit
card model heavily disadvantages women, despite Compliance’s earlier findings to the contrary.

While each 2nd line team was composed of experts in their field, no team effectively managed risks
across jurisdictions. The 1st line failed to account for the negative interactions that DPSGD can
cause, and did not build in automated tests that would run after each model change. In the end,
Audit recommends that leadership break down siloed divisions and instead establish intersectional
teams that account for the interactions between TAI aspects.

4.2 BEYOND PAIRWISE INTERACTIONS

In Section 3 we surveyed a wide range of literature that has considered specific pairwise interactions.
We briefly mention work that has gone beyond pairwise interactions and considered the intersection
of multiple TAI aspects in the direction we are advocating. Ferry et al. (2023) systematically review
three aspects, fairness, privacy, and explanability, pointing out the isolated nature of prior research.
They survey the literature on pairwise interactions considering all three combinations, but stop short
of considering novel challenges of integrating all three aspects at once. Sharma et al. (2020) integrate
fairness and robustness into their explainability method by design in the spirit of intersectional TAI,
but do not propose a holistic framework that goes beyond these three aspects. Meanwhile, Li et al.
(2023) discuss many TAI aspects including fairness, privacy, robustness, and explainability, building
a framework of when to consider each aspect throughout the model lifecycle. While advocating for
the combination of many TAI aspects, they do not give detailed insights on the negative interactions
that can occur.
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gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Machine
Learning and Knowledge Discovery in Databases: European Conference, pp. 387–402, 2013.

Franziska Boenisch, Philip Sperl, and Konstantin Böttinger. Gradient masking and the underesti-
mated robustness threats of differential privacy in deep learning. arXiv:2105.07985, 2021.

Zhiqi Bu, Hua Wang, Zongyu Dai, and Qi Long. On the convergence and calibration of deep learning
with differential privacy. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in com-
mercial gender classification. In Proceedings of the 1st Conference on Fairness, Accountability
and Transparency, volume 81 of Proceedings of Machine Learning Research, pp. 77–91. PMLR,
23–24 Feb 2018.
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