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Abstract— This study explores the use of vision foundation
models to enhance 3D representations of cloth-like deformable
objects. By focusing on the distillation of semantic information
from RGB images, we examine the potential of pre-trained
Visual-Language Models in capturing complex folded configu-
rations of cloth. Our investigation reveals the challenges and
preliminary successes in leveraging semantic information to
improve the understanding and tracking of deformable object
states.

I. INTRODUCTION AND RELATED WORK

Manipulation of deformable objects, such as clothes, has
been a long-standing challenge in robotic manipulation [1].
The deformable nature of these objects poses significant
challenges for state estimation and tracking under self-
occlusion. These often lead to incomplete information about
the cloth state and hinders the robot’s ability to plan optimal
manipulation strategies [2], [3].

A common way to describe cloth states is using 3D
representations such as graphs or point clouds, due to their
potential to improve generalization and sim-to-real transfer
over traditional image representations [4], [5]. However,
point clouds are often ambiguous due to self-occlusions,
making it difficult to distinguish between different layers
of the cloth when being folded [6]. Graph-based representa-
tions, while theoretically capable of capturing the underlying
structure of the cloth under occlusions, prove difficult to be
effectively used in real-world scenarios due to the challenges
of tracking the deformation [7], [8]. Recent applications
of vision foundation models for manipulation tasks have
demonstrated their potential in augmenting 3D represen-
tations of rigid objects with semantic information, facili-
tating improved understanding and interaction with these
objects [9], [10]. However, the application of these models to
deformable objects, particularly for extracting and distilling
semantic information, remains underexplored.

In this work, we evaluate the capability of vision foun-
dation models to distill semantic information of cloth-like
deformable objects. We explore two commonly used models
in robotic manipulation, Grounded SAM [11] and DINOv2
[12], [13]. We evaluate these models through image-level and
pixel-level visual tasks, focusing on semantic segmentation
and dense feature extraction. Since object-level semantics
may not fully capture the cloth’s deformed state (e.g. Fig 1),
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Fig. 1: The top row displays RGB images of cloths in various folded
states, while the following rows depict their 3D representations
at different abstraction levels (Object-Layer-Dense). Notably, the
object-level representations fall short in accurately depicting the
folded states due to their inability to precisely show the alignment
between the top and bottom layers..

our study delves into two abstraction levels: layer descriptors
(upper and lower layers) and dense pixel-level descriptors.
Specifically, we assess the performance of Grounded SAM
in visually segmenting the cloth’s upper and bottom layers.
We also investigate the temporal consistency of the dense se-
mantic descriptors of DINOv2, by using it to track keypoints
while the cloth undergoes deformations.

This work aims to evaluate how existing vision foundation
models perform in distilling features for 3D representations
of cloth-like deformable objects. By doing so, we seek to
extend the utility of these models beyond rigid objects and
explore their potential in more complex, real-world applica-
tions involving deformable objects such as cloths. This work
also highlights rich research opportunities in modifying and
extending foundation models for deformables.

II. INSTANCE SEGMENTATION

To evaluate Grounded SAM on an instance segmentation
task, we consider multiple rectangular cloths, and query the



Fig. 2: Example of the mask selection process. For each prompt
C = {C1, C2, C3, C4}, Grounded SAM provides one or multiple
masks with different confidence values. The colors of each box
match the prompt that generated the mask, where we used as
prompts C = { “rectangular cloth”, “upper colored half cloth”,
“black bottom half cloth”, “grasped central cloth” }. Our ensemble
approach aggregates all these masks and filters them to obtain the
corresponding masks of the full, bottom, and upper layers of the
cloth.

model to segment the upper and bottom halves of the cloth at
every time step of a folding interaction. We color one of the
two halves of each cloth in black to better distinguish them
during the manipulation. The goal consists of processing
RGB-D observations into a semantically labeled point cloud
P = PU ∪ PB that represents the upper and bottom halves
of the cloth, respectively. A planner could leverage these
labels to achieve the desired fold, otherwise impossible with
object-level representations such as unlabeled point clouds.

A. Point Cloud Labeling

Given an RGB-D image It, we first find the segmentation
mask of the cloth from the RGB observation using Grounded
SAM [14], [15]. Then, we transform the masked depth into
a point cloud corresponding to the observable points of the
cloth Pt using the camera’s intrinsic matrix.

We introduce a novel mask selection strategy that con-
siders an ensemble of prompts C = {C1, . . . , Cn}, with
n the number of prompts. We set C = { “rectangular
cloth”, “upper colored half cloth”, “black bottom half cloth”,
“grasped central cloth” }, and aggregates the obtained masks
based on the following heuristics:
Full: We obtain the mask of the full cloth Mf by aggre-
gating all the masks from the set of prompts C, where the
aggregation corresponds to a logical OR operation.
Bottom: We assume that the bottom layer has a predefined
color. Leveraging this assumption, we select the masks
corresponding to the bottom layer by initially imposing a
color threshold r on each resulting masked RGB image.
Subsequently, we aggregate only the masks with many pixels
satisfying this threshold, thereby obtaining Mb. Differently
from standard color threshold techniques, we utilize this
threshold as a soft voting mechanism without accurately
choosing r and tuning it for every different cloth.
Upper: Given the two previous steps, the upper mask is

Fig. 3: Visualization of cases where the Greedy approach wrongly
segments (red frames) the desired mask. The box label specifies the
desired mask. The Ensemble approach, on the other hand, is able
to obtain the correct segmentations (green frames).

TABLE I: Evaluation of the MAE of the IoU estimated with
different point cloud representations. Arrows indicate the direction
of improvement of the metric.

Cam. No Semantic ↓ Greedy ↓ Ensemble ↓

Front 0.40± 0.17 0.21± 0.20 0.10± 0.11
Back 0.29± 0.15 0.20± 0.21 0.07± 0.11
Both 0.32± 0.14 0.22± 0.21 0.04± 0.08

easily obtained as the difference between the full and the
bottom mask: Mu = Mf − Mb. In Fig. 2, we present an
example of the masks selected by our procedure.

We find this approach to be more robust compared to rely-
ing on SAM’s confidence values to select masks. Common
failure instances involved improper segmentation of either
the upper or lower half of the cloth, resulting in a complete
cloth mask rather than the intended half, or conversely,
segmenting only one half when the entire cloth was desired.

We repeat this process for images {I1t , I2t } recorded from
two calibrated cameras to reduce the effect of self-occlusions.
The resulting point clouds are then transformed into a
common reference frame, for example, the robot base frame.
This step aggregates the point clouds to derive the final cloth
state Pt = PU

t ∪PB
t , which can be further voxelized to make

the density of the points uniform across the cloth surface.

B. Evaluation

We use the intersection over union (IoU) of the two halves
as a quantitative description of the cloth state, where the
higher the IoU, the better folded the cloth is. We used a set of
the real-world trajectories recorded while folding the cloths
in half, and we manually annotated the mask belonging to
the upper or bottom half of the cloth to extract PU and PB

and compute the ground truth IoU.
We compare the representations with semantic descriptors

obtained through our mask selection approach (Ensemble)
against the one derived from a greedy selection of the highest
confidence mask from the Grounded SAM (Greedy). We
further consider a point cloud lacking semantic descriptors as
object-level baseline representation (No Semantic). Ad-
ditionally, we integrate the comparison between one and
two camera points of view. As an evaluation metric, we
use the mean absolute error (MAE) between the ground
truth IoU and the one estimated from the different cloth
representations.



TABLE II: Final MSE (10−3) between the tracked keypoints and
the ground truth keypoints. We repeated the tracking 5 times for
each combination of method and configuration of cameras (Cam.).
Arrows indicate the direction of improvement of the metric.

Cam. DINO ↓ D3F ↓ C ↓ C+DINO ↓

Front 10.0± 0.3 11.7± 0.5 16.5± 0.3 15.6± 0.1
Back 6.6± 0.3 6.2± 1.0 2.9± 0.2 2.9± 0.3
Both 7.1± 0.6 5.3± 0.4 1.4± 0.3 1.5± 0.1

As shown in Table I, the No Semantic representation
obtained the worst results, confirming that object-centric
representations do not allow the state of the cloth to be ac-
curately quantified. While the Greedy approach performed
better than the No Semantic, considering only the highest
confident mask was still prone to error. On the other hand, the
Ensemble approach consistently achieved the lowest MAE,
suggesting that the proposed filtering technique improved
the quality of the representation due to a more accurate
segmentation, as visualized in Fig. 3. Optimal results were
obtained using observations from both cameras, underscoring
the impact of occlusions on the cloth state estimation.

These results confirm that vision foundation models can
provide a relevant prior to segmenting different instances
of cloths and improve 3D state representations. Still, they
might provide overly confident results for this specific class
of objects despite our simplification of introducing halves
with different colors.

III. KEYPOINT TRACKING

In this section, we explore pixel-level abstraction repre-
sented by dense semantic descriptors. We consider a keypoint
tracking task to assess the temporal robustness of these
descriptors while the cloth undergoes deformations during
the manipulation.

A. Tracking with Dense Descriptors

Similarly to the previous section, given an RGB-D image
It we obtain the point cloud Pt at time t from the masked
depth observation. The semantic descriptors fpi ∈ R1024 of
each point pi ∈ P are extracted from RGB observations
using DINOv2 [13]. We merge descriptors from different
camera views as proposed in [16], and select a set of key-
points K ⊂ P from the observed point cloud using farthest
point sampling. Let fpj

t represent the semantic descriptor
of keypoint kjt ∈ Kt at time t. We formulate the problem
of tracking the next position of the keypoint kjt+1 as an
optimization problem that finds the best matching descriptor
fpj

t+1 across consecutive times:

kjt+1 = argmin
pi∈Pt+1

∥fpi

t+1 − fpj

t ∥, (1)

where fpi

t+1 is the semantic descriptors of the point
pit+1 ∈ Pt+1. As suggested in [16], solely relying on seman-
tic features for tracking leads to unstable training. To mitigate
the issues, the authors introduce a loss term to minimize
the distance of keypoints from the observed surface and
a rigid constraint to maintain structural consistency. Given

the inadequacy of rigid constraints for deformable objects,
we modify the framework to optimize the displacement
∆kit ∈ R3 of the keypoints kit ∈ Kt at time t, such that
kit+1 = kit +∆kit. Specifically, we minimize the Chamfer
Distance [17] between the observed point cloud Pt+1 and
the set of displaced keypoints Kt+1.

B. Evaluation

We evaluate DINOv2 features on a synthetic dataset of
cloths collected using SoftGym [18], as ground truth key-
points of deformable objects are challenging to extract from
real-world data. Specifically, the dataset consists of RGB-D
observations from two camera views of a rectangular cloth
folded by randomly choosing pick and place positions.

To evaluate the effectiveness of DINOv2 descriptors, we
compare four different loss combinations used to optimize
the keypoint tracking. We denote DINO as the variant that
uses only the loss over the semantic descriptors, D3F the loss
proposed in [16], where we removed the rigid constraint and
optimized the spatial displacement of each keypoint. We then
consider the tracking using only the Chamfer loss as C, while
the combination of the Chamfer loss with the loss over the
semantic descriptors as C+DINO.

The quantitative results of the tracking shown in Table II
confirm that solely relying on semantic descriptors leads to
poor results. The D3F method showed lower performance
than C as the distance loss used for the optimization does
not directly optimize for the closest surface point, instead
minimizing the distance to any visible surface point. The
authors demonstrated their approach to be highly performant,
as the rigid constraint helped retain geometric information,
which is not the case for deformable such as cloth. Interest-
ingly, integrating semantic features into the optimization loss,
C+DINO, did not help improve the tracking performance. We
attribute the loss in performance of C+DINO with respect to
C to the inconsistency of DINOv2 features across different
deformed states. In particular, we noted that the semantic
features were not temporally consistent across various time
intervals while the cloth was deformed.

These results on deformable objects suggest that dense
descriptors distilled from foundation models such as DINOv2
do not yet provide as strong results as shown for rigid objects
for keypoint tracking. This points at a promising direction for
future research.

IV. CONCLUSION AND FUTURE WORK

In this work, we investigated the potential and limitations
of current visual foundation models for distilling semantic
features of 3D cloth representations during manipulation.
Our investigation revealed that although models like Ground-
edSAM and DINOv2 are effective with rigid objects, they
struggle with deformable objects like cloth. The introduction
of structural priors, such as graph-based methods, emerges
as a potential pathway to enhance the overall model per-
formance. Furthermore, extending the capabilities of these
models to out-of-distribution objects, like textureless cloth,
will enable the next generation of autonomous agents.
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