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ABSTRACT

While inference-time computation and post-training optimization have significantly
advanced multimodal large language models (MLLMs), these advancements remain
constrained by the capabilities of foundation models. We argue that effective model
advancement requires strong synergy among pre-training, inference-time computa-
tion, and post-training optimization. In this paper, we introduce Self-Improving
cognition (SICOG), a self-learning framework for building next-generation foun-
dation MLLMs by imparting multimodal knowledge and enhancing systematic
cognitive capabilities through multimodal pre-training with self-generated data.
Specifically, we propose Chain-of-Description for step-by-step visual understand-
ing and integrate structured Chain-of-Thought (CoT) reasoning to support in-depth
multimodal reasoning. SICOG first equips a base model with systematic perception
and reasoning using minimal external supervision. The enhanced models then
generate candidate image captions and CoT reasoning responses for unlabeled
images and image-question pairs across diverse tasks, which are filtered through
a semantic-similarity-guided self-consistency mechanism. These high-quality,
self-generated samples enable large-scale multimodal pre-training, creating a self-
improvement loop. Experiments demonstrate SICOG’s effectiveness in developing
MLLMs with enhanced multimodal cognition. Using only 213K self-generated
pre-training samples, SICOG achieves significant improvements, including +3.6%
on MMStar and +3.5% on AI2D, outperforming previous pre-training approaches.
When combined with post-training techniques for CoT reasoning, SICOG yields
+9% gains on MM Vet and +8.5% on ScienceQA.

1 INTRODUCTION

ScienceQA

Chain-of -Description A2D  Mathvista
" . = G, Unlabeled N
s oo ot N Cany, ergy; OCRBench "\ RealWorldQA
!-& ‘,e'\ perc i @ a,,d'dare ah’@ Images = s 652 enora

Describe the image N 20N C"Pr/o,,S :

step-by-step ... s° Improved iz 8 2878
................... Perception DocVQA 73 1% POPE
Caption: i \ /

. . Self-
Step 1: Extract salient ... @ Next-Generation Curati R
MLLM urating ChartQA MMVet
Base . Candidate s
. nstruction - 6
Cham-of-Thoughf MLLM Constructio Captions & Responses MMStar 1598 MMBench
A Self-Learning during Pre-Training MME

2\ + Question @ LLaVA-Qwen2-78-UHD

4L % Ny (Base Model)
i ) i Qwen2-VL-72B-Instruct-LLaVA-Qwen2-7B-UHD

Answer the question ste,, “elopy “dd(\‘\g 6% B (Strong-to-Weak Distillation)

step-by-step ... "Iaf,»r 2 9 62" @es® Multi-Experts-LLaVA-Qwen2-7B-UHD
-------- RREEREEEEE s, 540 B (Multi-Agent Collaboration)
Response: Ming  Improved  co Unlabeled Image Sicog-LLaVA-Qwen2-7B-UHD
Step 1: Clarify the task ... Reasoning & Questions ¥ (self-improving Cognition)

(a) Self-Improving cognition (Slcog) Framework (b) Performance Comparison

Figure 1: (a) SICOG enhances an MLLM’s systematic cognition during multimodal pre-training
using self-generated data, enabling next-generation foundation MLLMs. (b) With up to 213K
self-generated pre-training samples, SICOG produces foundation MLLMs with superior cognitive
capabilities, showing benchmark-leading performance compared to prevalent pre-training approaches.
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Recent efforts in inference-time computation (Teng et al.l 2025) and post-training optimization (Guo
et al.,|2025}; [Feng et al.,[2025)) have significantly enhanced the capabilities of MLLMs (Yang et al.,
2024b; |Bai et al.|, 2023)), particularly in areas such as multimodal reasoning (Xu et al.,2025). However,
these advancements remain largely constrained by the foundational knowledge and capabilities
of the models (Shah} 2024} [Liu et al., [2025}; |(Gandhi et al., [2025)), which are determined during
pre-training (Sutskever, 2024)). We argue that effective model advancement requires a strong
synergy between pre-training and downstream mechanisms, such as inference-time computation
and post-training optimization. Pre-training provides the essential foundation, and its seamless
integration with downstream processes is crucial for achieving robust and scalable performance.

In this paper, we focus on the effective advancement of foundation MLLMs (Li et al., 2024a), a
critical step toward enabling real-world understanding (Bordes et al., [2024). Prevalent multimodal
pre-training approaches for foundation MLLM construction (Chen et al.,2024a; |Fang et al.,[2024)
typically rely on large-scale training with high-quality image—caption data generated by advanced
MLLMs (OpenAlL 2023} [Liu et al., 2024b) to equip models with diverse multimodal knowledge
and fine-grained visual perception skills (Deng et al.| [2024; [Sun et al.| 2024). Nonetheless, these
generated captions often lack comprehensiveness and accuracy. To improve coverage, some methods
incorporate fine-grained attributes using annotations from multiple expert models (Sun et al., 2024;
Fang et al., [2024). However, the resulting captions often lack fluency and coherence due to the
absence of an underlying logical structure. Moreover, these pre-training approaches tend to neglect
the development of multimodal reasoning capabilities (Xu et al., [2025)), which are essential for
extending the practical utility of MLLMs in real-world applications (Li et al.,[2024b).

Inspired by human experiential learning (a.k.a. human cognitive development) (Khatun et al., 2023
Silver & Sutton, |2025)), we introduce SICOG, a self-learning framework that imparts multimodal
knowledge and enhances MLLMs’ systematic cognitive abilities—including both perception and
reasoning—during multimodal pre-training with self-generated data for next-generation foundation
MLLM construction. Central to SICOG is Chain-of-Description (CoD), which enables an MLLM
to interpret visual content through structured, step-by-step analysis. CoD sequentially focuses on
four critical aspects—salient content, fine-grained details, relational attributes, and peripheral
context—before generating a coherent and logically grounded description. This design ensures
comprehensive coverage while mitigating hallucinations. We further incorporate structured CoT
reasoning (Xu et al.}[2025)), which has been shown to significantly enhance complex reasoning by
enabling in-depth multimodal analysis prior to answer generation and fostering coherent integration
of visual and textual information. As illustrated in Figure ] (left), SICOG first develops an MLLM’s
systematic perceptual and reasoning capabilities using minimal external supervision. This is achieved
by fine-tuning a base model on a small set of high-quality caption data enriched with our proposed
Chain-of-Description, along with a limited amount of structured CoT reasoning data (post-training
optimization). The fine-tuned model then generates multiple candidate captions and responses
for unlabeled multimodal data across diverse tasks. To avoid dependence on external models,
we apply a self-consistency mechanism (Wang et al., [2022; Wu et al., [2024) to curate these self-
generated outputs, selecting higher-quality samples based on semantic coherence (inference-time
computation). Finally, the curated data are used for large-scale multimodal pre-training, completing
a self-learning cycle, resulting in a more capable, cognitively grounded foundation MLLM.

Following |Korbak et al.| (2023)), we prioritize the comparison with various pre-training approaches.
Specifically, we evaluate SICOG on both low-resolution and high-resolution MLLMs across diverse
benchmarks. Extensive experimental results (Figure [T} right) demonstrate that SICOG produces
stronger foundation models with enhanced multimodal cognition, significantly outperforming preva-
lent pre-training methods (Li et al., 2024a}; [Fang et al., [2024)). In addition, SICOG enhances post-
training performance and promotes continual self-improvement in newly constructed models. In
summary, our contributions are three-fold:

* We propose SICOG, a self-learning framework that enhances MLLMs’ systematic cognition
for constructing next-generation foundation MLLMs through multimodal pre-training with
self-generated data.

* We introduce Chain-of-Description, a structured visual understanding mechanism that enables
step-by-step interpretation of visual content to improve perceptual quality.

* We demonstrate SICOG’s effectiveness across various benchmarks on both low- and high-
resolution MLLMs, significantly surpassing previous approaches.
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2 RELATED WORK

Multimodal Pre-Training. Multimodal (vision-language) pre-training has proven highly effec-
tive in imparting multimodal knowledge and enhancing the perceptual capabilities of MLLMs by
leveraging diverse, high-quality image—caption datasets (Lu et al.,[2024a}; |Ba1 et al., [2023}; |L1iu et al.,
2024b). However, the construction of such datasets often depends on proprietary or open-source
models to generate detailed captions (Chen et al., [2024a} |Li et al., |2024d), or on expert visual
models to extract fine-grained attributes (Peng et al., 2023)), which are subsequently integrated into
descriptive captions (Fang et al., 2024; Xu et al.| |2024a; [Sun et al., [2024)). To reduce reliance on
external annotations, we leverage the model’s inherent visual instruction-following and generalization
capabilities to generate detailed caption data for self-improvement, similar to Fang et al.| (2024); Deng
et al.|(2024)). Beyond perception, we further enhance the model’s multimodal reasoning abilities by
incorporating self-generated visual instruction-tuning data, including both direct answers and CoT
formats. This enables a shift from focusing solely on perception to advancing cognitive capabilities.
Detailed discussion is provided in Appendix

3 METHODOLOGY: THE SICOG FRAMEWORK

In this section, we introduce SICOG, a self-learning framework for constructing next-generation
foundation MLLMs. We begin with a comprehensive overview in Section [3.1] then delve into the
details of Chain-of-Description for systematic perception enhancement in Section [3.2] followed by
structured CoT for systematic reasoning enhancement in Section[3.3] A comprehensive introduction
to SICOG is available in Appendix B}

3.1 OVERVIEW

The goal of SICOG is to advance MLLMs by equipping them with rich multimodal knowledge and
systematic cognitive capabilities—namely, systematic visual understanding (“how to observe”) and
in-depth multimodal reasoning (“how to think”)—during multimodal pre-training, with minimal
reliance on external annotations. As illustrated in Figure 2] SICOG operates through four key steps.

Step 1: Developing Systematic Multimodal Cognition with Minimal Annotations. We enhance
the MLLM, M (parameterized by 6), by fine-tuning it to systematically interpret and integrate
multimodal information using minimal annotated data. This includes two main components:

* Systematic multimodal perception. To improve the MLLM’s ability to systematically observe
and interpret images, we fine-tune M using minimal high-quality image-captioning datasets

: e . Percepti . .
DPereeption regulting in an enhanced perception model, M """, These datasets include images

v, prompts z, step-by-step analyses s, and descriptions y, structured in two formats: Detailed
Description (DD) and Chain-of-Description (CoD). Details of the Chain-of-Description strategy
and data collection are provided in Section[3.2]

) P ) b )
Perception _ D[;:r[(;emlon + DC?(r)Cgptlon = {(vi’ xi, yl)}i\il + {(vi, i, 5@'7?/2')}2']\;1’ (@))]
where [V is the number of training samples.

* Systematic multimodal reasoning. To improve reasoning, we fine-tune M with minimal visual

instruction-tuning datasets DRe#OMne resulting in ME“*"" These datasets include images v,
questions ¢, intermediate step-by-step rationales 7, and answers a, structured as Direct Answer
(DA) and Chain-of-Thought (CoT). Details of data curation are provided in Section[3.3]

i Reasoni Reasoni / /
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where M is the number of samples.

Step 2: Generating Candidate Captions and Responses for Pre-Training Data Collection. We

construct multimodal pre-training data by leveraging the improved models, Mgereepﬁm and Mgeasoni"g ,

to generate candidate image captions and visual instruction responses. This step involves:

* Image caption candidate generation. Given a set of unlabeled images {vk}kK:l, we prompt
MEEEPEON (with policy p Pnion) USING tWO types of instructions to generate detailed descrip-
tions and induce Chain-of-Description perception:

1. “Please generate a detailed caption of this image.” (xpp).
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Figure 2: The SICOG framework comprises four steps: (i) Developing multimodal cognitive ca-
pabilities by finetuning an MLLM with minimal annotated image-captioning data (with Chain-
of-Description) and visual instruction-tuning data (with structured Chain-of-Thought), enhancing
systematic perception and reasoning (upper left). (if) Generating candidate captions and responses
for pre-training by sampling from the improved models (upper right). (iii) Curating self-generated
pre-training data through self-consistency-guided quality evaluation, selecting the most semantically
consistent candidates for learning (lower right). (iv) Constructing a next-generation foundation
MLLM by performing multimodal pre-training on the curated data (lower left). For brevity, language
ability preservation is omitted; see FigureE] for the complete version.

2. “Please generate ... Describe the image step by step.”
(xCOD)'
For each image vy, M{*"" generates multiple candidate captions via sampling:
{yAk} ~ ngercep&ion ( | Vi, :EDD), {(élw gk)} ~ ngerceplion ( ‘ Vk, ZL’COD), (3)

where {gy, } is the set of detailed descriptions, and {(3j, §x)} is the set of step-by-step analyses
with descriptions. The resulting dataset includes captions in two formats.
* Visual instruction candidate response generation. For a set of unlabeled images {v,}Z_,
with corresponding questions ¢, we prompt ME3M (with polic ing) USING tWO types
p gq 4z, We prompt M PONCY P pqReasoning g yp

of instructions to generate direct answers and induce Chain-of-Thought reasoning:

1. “<original question>.” (qpa).

2. “<original question> Answer the question step by step.”

(gcor)-
For each image v, and question g., My produces multiple candidate responses:
{a=} ~ pyresonne (- | 0z, gD ), {(F2, 2) } ~ Py gresonne (- | 02, goor) 4)

where {a,} is the set of direct answers, and { (7., d.)} is the set of step-by-step rationales with
answers. The resulting dataset includes responses in two formats.

Step 3: Curating Self-Generated Pre-Training Data via Self-Consistency-Guided Quality
Evaluation. To ensure the quality of self-generated pre-training data across diverse tasks, we
employ self-consistency (Wu et al., 2024} |Li et al., |2024c) to evaluate candidate samples without
external supervision. This method is based on the principle that higher-quality candidates exhibit
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greater semantic consistency. The most consistent candidates are selected for further self-refinement
during multimodal pre-training.

Specifically, we apply a semantic-similarity-guided self-consistency evaluation function, f(-). For
each instance (e.g., an unlabeled image), it assesses the quality of candidates (e.g., candidate captions)
by comparing each candidate against all others based on semantic similarity and selects the candidate
with the highest consistency score, provided it exceeds a predefined threshold 7 (i.e., otherwise, the
instance and its candidates are skipped):

Ncand chmd
. 1 .
_ ; (4) ; ()
c}) = arg max sim(c,cV’), st max E sim(c, ¢ >7, (5
f({ }) gce{c} Ncand =1 ( ) ce{c} Ncand i=1 ( )

where Neanq is the number of candidate samples being compared, and {c} represents the candidate
set. As illustrated in the lower-right part of Figure |2} we apply this method as follows:

+ Image caption curation. For each image vy, we apply f(-) to evaluate the quality of candidate
captions by comparing each generated description ¢, against all others. The caption with the
highest semantic consistency is selected as the final self-generated caption, resulting in a curated

. Perception
dataset of selected captions Dg g -

* Visual instruction response curation. For each image v, and question ¢, f(-) evaluates candi-
date responses by comparing each generated answer @ against all others. The most consistent

Reasoning
Selected *

response is selected, resulting in a curated dataset D

In addition, to preserve language capabilities, we prompt the backbone LLM, M s, to generate
candidate responses for unlabeled text-only instructions. These responses are then curated using

a similar process, resulting in DX Combining all three curated datasets yields the final self-
|V g Selected g y

generated pre-training dataset DPre-training,

Step 4: Constructing the Next-Generation MLLM through Multimodal Pre-Training. To build
the next-generation foundation MLLM, we introduce an intermediate multimodal pre-training stage,
Stage 1.5, within the standard two-stage training strategy, following (Liu et al.,|2024b; |Li et al.| 20244).
This stage improves the MLLM using curated self-generated pre-training data. The complete training
strategy consists of three stages, as shown in the lower left part in Figure (i) Stage 1: Modality
alignment. Align image features with the text embedding space. Following (Li et al., [2024al),
only the vision-language connector is trained on image-text pairs during this stage. (ii) Stage 1.5:
Self-learning via multimodal pre-training. Train the model on curated pre-training data DPre-training
to acquire multimodal knowledge and integrate systematic perception and reasoning. During this
stage, all model components are fully trainable. (iii) Stage 2: Visual instruction-tuning. Fine-tune
the model on instruction-tuning data to develop robust visual instruction-following capabilities. All
model components remain fully trainable.

3.2 ENHANCING SYSTEMATIC PERCEPTION WITH Chain-of-Description

We introduce Chain-of-Description (CoD) to enable systematic perception, equipping the MLLM
with the ability to logically analyze and describe visual information step by step (“how to observe”).
This step-by-step approach enhances thorough visual interpretation. As shown in Figure {4 (left),
Chain-of-Description consists of five sequential stages: (i) Step 1: Extract salient content. Identify
the key elements that define the overall context and meaning of the image, laying the foundation
for basic visual recognition. (ii) Step 2: Analyze detailed information. Focus on instance-level
attributes, such as low-level and fine-grained details, e.g., “the guitar is a classic wooden brown with
light-colored frets.” This step ensures a precise and detailed interpretation of the image. (iii) Step
3: Consider relational-level attributes. Analyze interactions between elements and their spatial
organization, e.g., “the person is seated on the bed,” leading to a richer and more comprehensive
understanding of visual relationships. (iv) Step 4: Examine marginal or peripheral content. Pay
attention to less prominent or background details, e.g., “the dresser in the background,” to ensure
no important information is overlooked. (v) Step 5: Organize all observations. Synthesize all
findings into a cohesive, detailed description, enabling comprehensive coverage and holistic image
understanding. Due to space constraints, details regarding the data preparation for minimally
annotated CoD data are provided in Appendix [B.1]
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3.3 IMPROVING SYSTEMATIC REASONING WITH STRUCTURED CHAIN-OF-THOUGHT

We adopt structured CoT (Xu et al., 2025) to enhance MLLMS’ systematic reasoning capabilities. As
shown in Figure 4] (right), this approach decomposes complex multimodal tasks into logical steps,
enabling progressive analysis and reasoning. The structured CoT process follows four key stages: (i)
Step 1: Clarify the task objective. Identify the problem’s requirements to establish a foundational
understanding. (ii) Step 2: Extract crucial visual information. Identify relevant visual elements to
inform the reasoning process. (iii) Step 3: Generate detailed reasoning. Construct a logical chain
of intermediate steps based on the visual and textual context. (iv) Step 4: Conclude with an answer.
Synthesize the reasoning steps into a coherent and accurate response. Due to space limitations, details
on the data preparation for minimally annotated CoT data are provided in Appendix

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics. We evaluate the efficacy of SICOG on the following well-
established benchmarks, using the open-source evaluation toolkit VLMEvalKit (Duan et al., [2024):
(i) Multimodal Comprehensive Understanding: MMStar (Chen et al.,2024c), MMBench (Liu
et al.,[2024d), MM Vet (Yu et al.,[2024b)) (report accuracy). (ii) Hallucination: POPE (Li et al.,|[2023)
(report F1 score). (iii) Chart/Table Understanding: OCRBench (Liu et al., 2024¢), DocVQA (Tito
et al.,[2021), ChartQA (Masry et al., 2022) (report accuracy). (iv) Knowledge-Oriented Tasks:
MathVista (Lu et al., 2024b), ScienceQA (Lu et al., 2022), AI2D (Kembhavi et al., |2016) (report
accuracy). (v) Real-World Understanding: RealWorldQA (X.Al, [2024) (report accuracy).

Compared Methods. We compare SICOG against the following representative MLLM pre-training
approaches (as discussed in Section . Differences are considered significant at p < 0.01: (i)
Strong-to-Weak Distillation (Perception) (Li et al.| 2024a): Pre-training with re-caption data
containing detailed descriptions (DD) generated by stronger models. (ii) Multi-Agent Collaboration
(Perception) (Fang et al.,|2024)): Pre-training with re-caption data containing detailed descriptions
and fine-grained attributes (DD-FGA) generated by base and expert models. Due to space limitations,
we provide Implementation Details in Appendix [M]

4.2 CAN SELF-IMPROVED SYSTEMATIC COGNITION YIELD NEXT-GENERATION
FOUNDATION MLLMSs?

Table|[T| presents the comprehensive evaluation results. Following Korbak et al.|(2023)), we prioritize
comparisons with various pre-training approaches rather than emphasizing state-of-the-art (SOTA)
performance. The key observations are summarized as follows:

SICOG yields next-generation foundation MLLMs with self-improved cognitive capabilities.
SICOG consistently improves both high-resolution and low-resolution foundation MLLMs across di-
verse tasks, achieving gains of 2%-3.5% on MMStar for comprehensive tasks, 2%—-3% on perception
tasks (e.g., DocVQA and ChartQA), and 2%—4% on reasoning tasks (e.g., ScienceQA and AI2D).

Systematic perception through self-learning strengthens foundation MLLMs. SICOG (Percep-
tion), which leverages self-generated captions with detailed descriptions and Chain-of-Description,
achieves comparable or superior accuracy across benchmarks relative to strong-to-weak distillation
and multimodal collaboration methods. Unlike these alternatives, which heavily rely on extensive
external annotations, SICOG reduces this dependence through self-learning.

Integrating systematic reasoning into pre-training proves more effective than prioritizing
perception alone. SICOG (Perception + Reasoning) boosts multimodal reasoning, surpassing
perception-only methods by 2.5%—4% on ScienceQA while preserving strong perception capabilities.
Notably, perception-only pre-training degrades performance on hallucination tasks (a 0.5%—1% drop
on POPE), whereas systematic reasoning mitigates this issue and maintains robustness. Incorporating
self-generated text-only instruction-tuning data during pre-training further enhances performance,
especially for high-resolution MLLMs. This observation aligns with findings in (Lu et al., 2024a).

Stronger foundation MLLL.Ms enable more effective self-improvement. SICOG achieves greater
performance gains when applied to LLaVA-Qwen2-7B-UHD (higher baseline capabilities) compared
to LLaVA-Llama3.1-8B-UHD (lower baseline capabilities), showing that base model performance
significantly influences self-improvement potential, with stronger MLLMs yielding better results.
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Table 1: Evaluation results on eight benchmarks (direct answer inference). The only difference
between the compared methods is the pre-training data utilized in Stage 1.5 (see details in Step 4 of
Section . Results marked with an asterisk (x) are cited from the OpenVLM Leaderboard (Duan
et al.| 2024). Some results are provided in Appendix E}

Method

Train Data

Comprehensive Hallu. Chart/Table

Stage 1.5

Knowledge

MMBen. MMStar POPE DocV. Chart.

. Math. Science. AI2D

Open-Sourced Models (For holistic analysis, not for comparison)

VITA-1.0-Mixtral-8x7B* (Fu et al.|2024a} . - 4660 - - - 4450 - 72380
LLaVA-v1.5-13B* (Liu et al.|2024a} - 69.20 3430 8840 - 1820 27.70 72.60 61.10
ShareGPT4V-13B* (Chen et al.][2024b) - 69.80 3830 87.50 - 24.60 29.40 72.60 61.40
Molmo-7B-O* (Deitke et al.]|2024] - 7220 5010 8670 - 3650 43.90 88.80 75.70
Eagle-X5-13B* (Shi et al.][2024] - 7260 4370 89.80 -  69.60 40.80 71.80 77.00
CogVLM2-19B-Chai™ (Chen et al.]|[2025} - 7390 5050 8340 - 33.00 38.70 90.20 73.40
LLaVA-NeXT-8B* (Li et al.][2024a} - 7480 4390 87.10 - 68.70 37.70 73.10 72.80
Cambrian-1-8B* (Tong et al.|[2024] - 7460 5070 8640 - 72.60 48.10 81.00 74.60
XGen-MM-Instruct-Interleave-vI.5* (Xue et al.}|2024) - ) 78.30 48.40 8720 - - 40.60 88.30 74.20
Janus-Pro-7B* (Chen et al.|[2025) Surrzzlﬁ?&g:j%‘;'g;f“y 62.60 4650 78.90 - - 4250 8320 68.10
DeepSeck-VL-7B* (Lu et al.|[2024a) Sufficient bigh-duality 7340 4050 8560 - 5910 3720 80.90 65.30
VILA1.5-13B* (Cin ot al| 024} Sufficient high-quality 7440 4420 8500 - - 4230 79.10 69.90
Low-Resolution
Base Model
LLaVA-Qwen2-7B (Liu et al.|2023} - 7444 46.67 84.55 50.62 5272 38.00 7491 73.77
Strong-to-Weak Distillation (Perception)
LLaVA-NeXT-34B-LLaVA-Qwen2-7B HBK Caption W/ DDOY 7618 4673 8372 5126 52.68 36.60 75.56 7438
. ) 118k Caption w/ DD by
Qwen2-VL-72B-Instruct-LLaVA-Qwen2-7B Qwen2 VL 72B.mstruat 7984 4820 83.84 5085 5256 36.10 7615 74.87
Multi-Agent Collaboration (Perception)
Multi-Experts-LLaVA-Qwen2-7B 118k Caption w/ DD-FGA by 751 4760 84.12 51.06 53.36 38.90 75.46 74.97
base and expert models
Self-Improving Cognition (Perception & Reasoning)
SIcoG-LLaVA-Qwen2-7B Self-generated
(Perception) 118k caption w/ DD&CoD 7534 4827 83.89 50.83 5488 3850 7471 7513
Self-generated
Sgl‘;grgjt];g:‘}’g‘s‘j;ﬁ'? 118k caption w/ DD&CoD, 7601  48.67 84.10 5270 55.20 38.10 78.88 76.78
ption, g 45k VQA w/ DA&CoT
Self-generated
SIcoG-LLaVA-Qwen2-7B 118k caption w/ DD&CoD,
(Perception, Reasoning, Language) 45k VQA w/ DA&COT, | 7545 48.60 8435 52.52 5448 3880 7744 7620
50k textual QA
High-Resolution
Base Model
LLaVA-Qwen2-7B-UHD (Guo et al.|[2024] - 7763 4893 87.31 70.18 69.96 38.90 77.29 74.94
Strong-to- Weak Distillation (Perception)
LLaVA-NeXT-34B-LLaVA-Qwen2-7B-UHD 1Bk Caption W/ DOPY 7775 50.60 8646 71.20 71.56 3690 7838 76.00
. ) 118k Caption w/ DD by
Qwen2-VL-72B-Instruct-LLaVA-Qwen2-7B-UHD Quen2 VL 72B-Instruat 7775 5187 8643 7105 7240 3830 79.42 76.52
Multi-Agent Collaboration (Perception)
Multi-Experts-LLaVA-Qwen2-7B-UHD 118K Caption w/DD-FOADY 7797 4987 86.48 7127 7180 37.90 77.79 7662
ase and expert models
Self-Improving Cognition (Perception & Reasoning)
SIcoG-LLaVA-Qwen2-7B-UHD Self-generated
(Perception) 118k caption w/ DD&CoD 7808 5160 87.03 7242 73.04 3950 77.34 77.59
Self-generated
SIC?&E;“X‘;Q&‘;‘;;E‘FHD 118k caption w/ DD&CoD,  77.19  50.13 8732 73.70 73.12 39.50 79.23 77.91
ption, 2 45k VQA w/ DA&CoT
Self-generated
SIcoG-LLaVA-Qwen2-7B-UHD 118k caption w/ DD&CoD,
(Perception, Reasoning, Language) 45k VOA w/ DA&COT, | 7780 5247 87.84 7305 7224 4140 79.42 78.40
50k textual QA
LLaVA-Llama3.1-8B-UHD - 72.14 4393 87.85 64.32 64.64 33.90 74.96 71.70
SIcoG-LLaVA-Llama3.1-8B-UHD Self-generated
(Perception) 118k caption w/ DD&CoD  71:92 4480 87.37 65.09 6496 3570 74.52 7111
Self-generated
5ICOfl;];rch"l’?(;IE';*'e‘gsézl‘iﬁB)‘UHD 118k caption w/ DD&CoD, 7203 4320 87.38 65.78 65.56 3590 76.15 72.05
pion, g 45k VQA w/ DA&CoT
Self-generated
SIcoG-LLaVA-Llama3.1-8B-UHD 118k caption w/ DD&CoD,
(Perception, Reasoning. Language) 45k VQA w/ DA&CoT, | 7231 4307 8721 6495 6500 3330 7556 7076
50k textual QA

Additionally, SICOG achieves leading performance in fine-grained evaluations of six core capa-
bilities (Appendix [K). Scaling up self-generated data further enhances SICOG’s performance
(Appendix[G). SICOG remains effective when varying recaptioned images (Appendix [H) and con-
tributes to next-generation foundation MLLMs through continuous cognitive self-improvement
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(Appendix|[l). These findings collectively demonstrate SICOG’s effectiveness in advancing multimodal
cognitive abilities in MLLMs.

4.3 CAN SIcOG FACILITATE A STRONGER REASONING FOUNDATION FOR PROTOTYPING
CHAIN-OF-THOUGHT REASONERS DURING POST-TRAINING?

Table 2: Evaluation results of fine-tuning foundation MLLMs to build a CoT reasoner via supervised
fine-tuning on 35k CoT reasoning examples (curated in Section[3). P., R., and L. refer to perception,
reasoning, and language, respectively.

Comprehensive Hallu. Chart/Table Knowledge
Method Inference

MMBen. MMStar MM Vet POPE DocV. Chart. Math. Science. AI2D
Base Model
LLaVA-Qwen2-7B-UHD Direct  77.63 4893 38.26 87.31 70.18 69.96 38.90 77.29 74.94

LLaVA-Qwen2-7B-UHD

+ Finetune w/ 35k VQA (CoT)
Self-Improving Cognition
SIcoG-LLaVA-Qwen2-7B-UHD (P, R., L.)
+ Finetune w/ 35k VQA (CoT)

CoT 72.09  49.87 41.06 85.32 69.08 77.48 4490 84.88 72.12

CoT 7197  51.00 47.29 86.34 70.76 79.24 45.70 85.77 74.09

We validate the efficacy of SICOG in strengthening the reasoning foundation for constructing CoT
reasoners during post-training. Specifically, we adopt a supervised fine-tuning approach, refining
both the base model, LLaVA-Qwen2-7B-UHD, and SICcOG-LLaVA-Qwen2-7B-UHD on the 35k
CoT reasoning dataset curated in Section [3]

SICOG establishes a stronger foundation for prototyping a CoT reasoner. Table 2] demonstrates
that post-training the SICOG-LLaVA-Qwen2-7B-UHD outperforms the post-trained baseline across
most benchmarks, with up to 6% higher accuracy on MM Vet.

Solely enhancing CoT reasoning may compromise perception abilities. We observe a significant
performance drop on MMBench, which assesses a diverse range of perception tasks. This suggests that
prioritizing CoT reasoning in MLLMs can inadvertently impair perception capabilities, underscoring
the trade-off between reasoning and perception and the need for balanced optimization. Moreover,
we provide an in-depth analysis (both quantitative and qualitative) of how SICOG enhances the
reasoning capabilities of foundation MLLM:s in Appendix [F

4.4 CAN PREFERENCE LEARNING SUPPORT SICOG’S SYSTEMATIC PERCEPTION AND
REASONING DEVELOPMENT?

Table 3: Evaluation results of different training methods for developing perception and reasoning in
LLaVA-Qwen2-7B during Step 1 of SICOG (post-training optimization, Section .

Method Capability Comprehensive Hallu. Chart & Table Knowledge
Development  y/\igen. MMStar MMVet POPE DocV. Chart. Math. Science. AIZD

Base Model

LLaVA-Qwen2-7B - 74.44 46.67 38.85 84.55 50.62 52.772 38.00 7491 73.77

Self-Improving Cognition

SIcoG-LLaVA-Qwen2-7B
(Per., Rea., Lan.)

SFT (Per., Rea.) 7545  48.60 37.84 84.35 5252 5448 38.80 77.44 76.20
DPO (Per.), SFT (Rea.) 76.18  48.40 38.72 83.53 52.20 54.80 39.20 77.49 75.78
DPO (Per., Rea.) 7483  49.00 38.90 84.85 52.54 55.64 41.00 76.20 76.33

We explore the application of preference learning to enhance MLLMs’ multimodal perception and
reasoning capabilities during Step 1 of SICOG (post-training optimization, Section[3). Specifically,
we construct preference caption pairs by selecting high-quality captions from the annotated caption
dataset (Section [3) as preferred captions and pairing them with corresponding low-quality (dispre-
ferred) captions. The low-quality captions are generated by corrupting the associated images (details
provided in Appendix [E]). We fine-tune the MLLM on these caption preference pairs using the Direct
Preference Optimization (DPO) algorithm (Rafailov et al., 2023) to initialize systematic perception
capabilities. Similarly, we extend preference learning to foster systematic reasoning development.

Preference learning is more effective than supervised fine-tuning for systematic perception and
reasoning development. Preference learning with DPO consistently surpasses standard supervised
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fine-tuning across all benchmarks for initializing systematic perception and reasoning in SICOG.
For example, on MathVista, preference learning improves accuracy by approximately 2% on the
low-resolution model LLaVA-Qwen2-7B, which is particularly challenging to enhance due to inherent
visual perception limitations. These results underscore the importance of learning not only from
correct examples but also from avoiding mistakes, thereby fostering more robust skill development.
We provide a detailed analysis in Appendix

4.5 How Do Chain-of-Description AND CHAIN-OF-THOUGHT IMPROVE COGNITION?

Table 4: Evaluation of re-captioning quality comparing the perception-enhanced models fine-tuned
on curated caption data in three formats: detailed description (Detailed D), Chain-of-Description
(CoD), and their combination (Section E]) Metrics (rated 1-5): salient content, fine-grained details,
relational attributes, peripheral content, faithfulness, and world knowledge. “Caption”: standard
format; “Multi.”: CoD step-by-step format (see Table [TT]in Appendix [M] for details). Complete
results in Appendix I}

# Avg. Systematic Perception General Performance
Method Tokens
Sali. Fine-Grain. Rela. Peri. Faith. Know.

LLaVA-Qwen2-7B-UHD 135.08 4.77 4.30 399 381 441 3.84
+ Finetune w/ Detailed D 140.73 4.71 4.52 392 391 420 3.77
+ Finetune w/ CoD (Caption) 12693 4.78 4.58 4.11 390 4.57 3.93
+ Finetune w/ CoD (Multi.) 453.13 4.82 4.80 474 429 457 4.01
+ Finetune w/ Detailed D & CoD (Detailed D) 136.50 4.76 4.67 401 3.82 451 3.88
+ Finetune w/ Detailed D & CoD (CoD Multi.) 453.26 4.91 4.87 478 432 4.1 4.05
LLaVA-NeXT-34B (Liu et al.|[2024b) 206.50 4.77 451 4.04 395 459 4.12

How Does Chain-of-Description Facilitate Multimodal Perception? (Quantitative Analysis.)
We analyze captions for 100 images randomly sampled from BLIP-558k (Li et al.,|2022)), which is
used as unlabeled image captioning data in Section[d] These captions are generated by perception-
enhanced models fine-tuned on annotated caption data in three formats: detailed description (Detailed
D), Chain-of-Description (CoD), and their combination (as implemented in SICOG, described in
Section[3). Using GPT-4 with the prompt shown in Table 21] we evaluate six key dimensions. For a
holistic analysis, we also include LLaVA-NeXT-34B, a leading open-source MLLM known for its
strong captioning capabilities (Li et al.,[2024a). Table [0]shows that the base model, regardless of
resolution, consistently underperforms in salient content, fine-grained details, relational attributes,
and peripheral content. These results highlight the importance of the four-step perception analysis
design used in CoD.

Chain-of-Description shows strong efficacy in facilitating systematic perception across six key
dimensions. Perception-enhanced models fine-tuned with Chain-of-Description outperform those
trained on detailed descriptions in both single-step (caption-only) and multi-step formats. Notably,
their combination achieves the highest evaluation scores, surpassing LLaVA-NeXT-34B in five of the
six dimensions. Furthermore, Chain-of-Description generates the longest average caption lengths
(approximately 430-450 tokens), indicating a robust perceptual capacity. Additional analysis is
provided in Appendix [[] Due to space constraints, we provide the qualitative analysis of Chain-of-
Description and a detailed discussion of structured Chain-of-Thought in Appendix

5 CONCLUSION

We present SICOG, a self-learning framework for constructing next-generation foundation MLLMs
by injecting multimodal knowledge and enhancing systematic cognition through multimodal pre-
training with self-generated data. Extensive experiments demonstrate that SICOG produces a next-
generation MLLM with significantly enhanced cognitive abilities, outperforming existing pre-training
approaches across a wide range of benchmarks. Notably, we empirically validate that integrating
pre-training with downstream mechanisms—such as post-training optimization and inference-time
computation—enables more effective model development, establishing a foundation for a complete
self-improving paradigm. For future work, we aim to incorporate embodied experiential data (Zhao
et al.| 20235) to further enhance real-world application capabilities.
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ETHICS STATEMENT

Throughout our research, we have adhered to ethical guidelines that prioritize privacy, fairness, and
the well-being of all individuals and groups. All benchmark datasets used in this study are intended
solely for research purposes and do not contain any personally identifiable information, thereby
safeguarding user privacy. To elicit Chain-of-Description data, we carefully designed prompts to
avoid language that could be biased or discriminatory toward any individual or group. These measures
were implemented to minimize potential negative impacts on users. Furthermore, all self-generated
datasets were manually verified to ensure they are free from offensive content, misinformation, and
personally identifiable information. To ensure ethical integrity, prompts used for data generation were
carefully designed to exclude biased or discriminatory language. All generated data was manually
reviewed to confirm it contains no offensive material, misinformation, or personally identifiable
information.

REPRODUCIBILITY STATEMENT

We provide all necessary implementation details in Section 4| and Appendix [M] The source code
and raw data are included in the supplementary materials, along with detailed instructions in the
README . md file. All results are easily reproducible.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we utilized LLMs, specifically GPT-40 (Hurst et al., [2024), for two limited purposes:
(1) to evaluate the quality of generated captions using our specially designed rubrics (detailed in
Appendix [I)); and (2) to assist in refining the manuscript’s language for clarity and fluency. LLMs
were not involved in research ideation, experimental design, or drafting the initial version of the

paper.
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B THE COMPREHENSIVE ILLUSTRATION OF SICOG

Step 1: Developing Systematic Multimodal
Cognition With Minimal Annotations
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Figure 3: The SICOG framework consists of four steps: (i) Enhancing multimodal cognition: Fine-
tune an MLLM using minimal annotated data—image-captioning data in the Chain-of-Description
format and visual instruction-tuning data with structured CoT—to improve systematic perception
and reasoning (upper left). (ii) Generating candidate data: Use the improved models to sample
candidate captions and responses for pre-training (upper right). (iii) Curating pre-training data:
Apply self-consistency-guided quality evaluation to select the most semantically consistent, self-
generated candidates for learning (lower right). (iv) Constructing the next-generation MLLM:
Perform multimodal pre-training on the curated data to build a foundation MLLM with enhanced

self-improving cognition (lower left).

The goal of SICOG is to advance MLLMs by equipping them with rich multimodal knowledge and
systematic cognitive capabilities—namely, systematic visual understanding (“how to observe”) and
in-depth multimodal reasoning (“how to think”)—during multimodal pre-training, with minimal
reliance on external annotations. As illustrated in Figure[2] SICOG operates through four key steps.

Step 1: Developing systematic multimodal cognitive capabilities with minimal annotated data.
We first equip a given MLLM M, parameterized by 6, with systematic perception and reasoning
abilities while using minimal annotated multimodal data. This involves fine-tuning the model to
develop structured, multi-step perception and reasoning chains, enabling it to systematically process

and integrate multimodal information.

Specifically, this step consists of the following two core components:
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» Systematic multimodal perception. To enhance the MLLM'’s ability to systematically
observe and interpret images, we fine-tune M using a combination of image-captioning
datasets, yielding a model with improved perception, Mp<“"", Specifically, these datasets
consist of images v, prompts x, intermediate step-by-step analyses s, and descriptions ¥,
structured in two formats of captions: Detailed Description (DD) and Chain-of-Description

(CoD) (see Section [3.2]for details on the Chain-of-Description strategy and data collection.)

Percepti P ti P ti N N
Drereeion — PPN + Doy = {(vi, zi, yi) ity + {(vis w50, 91) Fity,  (6)
where N is the number of samples in each dataset. The model is fine-tuned using the
following objective, improving its multimodal perception:

N
Mgerceptlon — j& (DPerceptmn) _ Z[logpe (y ‘ v, x) + Inge(S, y | v, :L‘)] (7)
i=1

¢ Systematic multimodal reasoning. Similarly, to strengthen the model’s systematic and
in-depth reasoning capabilities, we fine-tune M using a mix of visual instruction-tuning
datasets, yielding a model with enhanced reasoning, Mg **"® These datasets consist of
images v, questions ¢, intermediate step-by-step rationales r, and answers a, structured in
two formats of responses: Direct Answer (DA) and Chain-of-Thought (CoT) (see Section[3.3]

for details on data curation).

DReasoning - 'DRDeZSO“i"g + DRC‘?;_?"i“g = {(via qi, ai)}ij\il + {(Ui7 qi, T, ai)}i\ila (8)

where M is the number of samples in each dataset. The model is fine-tuned using the
following objective, fostering its multimodal reasoning:

M
Mlgeasonmg A (DReasoning) = Z[logpe (a | v, q) + logpa (T, a ‘ v, q)] )

i=1

Step 2: Generating candidate captions and responses for pre-training data collection. Next, we

construct multimodal pre-training data by leveraging the improved models, Mge”ep”"" and M‘S““““‘g ,

to generate candidate image captions and visual instruction responses. Additionally, to mitigate
potential degradation of the MLLM’s language capabilities during multimodal pre-training, we
prompt the backbone large language model (LLM), M1, to generate candidate responses for
text-only instructions.

This step consists of three key components:

. . . . . . K
* Image caption candidate generation. Given a collection of unlabeled images {vj },_,, we
Perception

prompt M, (with policy p , jrercepion) USIng two types of prompts to generate detailed
0
descriptions and induce Chain-of-Description perception:

1. "Please generate a detailed caption of this image. Be as
descriptive as possible.” (xpp).

2. “Please generate a detailed caption of this image.
Describe the image step by step.” (Zcop).

Specifically, for a given image vy, the model M P"" generates multiple candidate

captions via sampling:
{yAk} ~ pMI(-’]erceplion ( | Vi, LCDD),

. (10)
{(Sk,yk)} ~ le;ercepli()n(' | Uk,.”L’COD),

where {g; } represents the set of detailed descriptions, and { (S, Jx)} represents the set

of step-by-step analyses along with corresponding detailed descriptions. This results in a
collection of candidate image captions in two formats:

Do = { (v, zpp, {6 ) Hy + {(vk 2o, { (55 9 P Hs. (11)
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* Visual instruction candidate response generation. Similarly, given a collection of un-
labeled images {v,}Z_; with corresponding questions q., we prompt Mléeasonmg (with

policy p Ml;easoning) using two types of prompts to generate direct answers (DA) and induce
Chain-of-Thought (CoT) reasoning:
1. “<original question>.” (qpa).
2. “<original question> Answer the question step by step.”
(gcor).
Reasoning

Specifically, for a given image v, and corresponding question ¢, the model M,
generates multiple candidate responses:
{&z} ~ ngeasoning (’ ‘ Uz, qDA),
PO (12)
{(Tz» az)} ~ nge“Sf’"i"Q(‘ ‘ Vz, QCOT)v

where {a, } represents the set of direct answers, and {(7,, a.)} represents the set of step-by-
step rationales along with corresponding answers. This results in a collection of candidate
visual instruction responses in two formats:

Deama " = {(v2yapa, {1}y + {02, qoor, { (72, a2) )Yy (13)

* Text-only instruction candidate response generation. To maintain language capabilities,

we generate textual instruction responses using the backbone LLM, M s (With policy
DM, .. )» based on a collection of unlabeled text prompts {x;}7_;.

Specifically, for a given prompt x, the model M .15 generates a set of candidate responses:

{@t} ~ pMLLM(' | ajt)v (14)
resulting in a collection of candidate textual instruction responses:
Deana ™ = {(ae {3} (15)

Step 3: Curating self-generated pre-training data via self-consistency-guided quality evaluation.
To ensure the quality of self-generated pre-training data, we employ self-consistency to evaluate
candidate samples without external supervision. This method is based on the principle that higher-
quality candidates exhibit greater semantic consistency (Wu et al., 2024). The most consistent
candidates are selected for further self-refinement during multimodal pre-training.

Specifically, we apply a semantic-similarity-guided self-consistency evaluation function, f(-). For
each instance (e.g., an unlabeled image), it assesses the quality of candidates (e.g., candidate captions)
by comparing each candidate against all others based on semantic similarity and selects the candidate
with the highest consistency score, provided it exceeds a predefined threshold 7 (i.e., otherwise, the
instance and its candidates are skipped):

Neand

. 1
; ()
sim(c,cV)), st max
( ) ce{c} Neand 3

Neand
sim(c, ¢9)) > 7, (16)
=1

Cy) = arg max
f({e}) = arg max 2

where Ngang is the number of candidate samples being compared, and {c} is the candidate set.

We apply this method as follows:

* Self-generated image caption curation. For each image vy, we apply f(-) to assess the
quality of candidate captions by comparing each generated description in the caption against
all others. The most consistent caption is selected as the final self-generated caption:

yselected \ (éselecteda gselected) = f({gk} U {(§ka yk)})
1 Ncand
_ ; (4)
= ar max sumiy, B
gye{@k}u{(ém??k)} Neand ; (y Y )
Ncand

1 _
> sim(y,y?) >

max
y€{ 9k YU{(5r,91)} Neand =

s.t. 7_Percepuon .

7)
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where Neana = {9k} U {(8k, §) }| is the total number of candidate captions for each image.
The curated dataset of self-generated image captions is:

Perception ~ ~ ~ K
Dselecg;d = {(U, DD, yselected) \ (U7 TCoD > Sselected s yselecled)}k:1- (18)

* Self-generated visual instruction response curation. Similarly, for each image v, and
corresponding question ¢, we apply f(+) to evaluate candidate responses, selecting the most
consistent response:

dselected Vv (/ﬁselecleda &selected) = f({dz} U {(f'zv dz)})

1 Neand
= arg max sim(a, a),
a€{a:}U{(72,d:)} Neand =
1 Neand
s.t. max sim(a, @) > pReasoning
a€{a.}U{(72,a-)} Neand 722:1 ’

(19)
where Neana = [{G.} U {(#,,a.)}| is the total number of candidate responses for each
question. The curated set of self-generated visual instruction responses is:

Reasoni . . . z
,DseelaesC(:::]ng = {(Uza dDA, aselected) \ (Uz7 qCoT 5 T'selecteds aselecled)}zzl . (20)

* Self-generated text-only instruction response curation. Similarly, for each prompt x;, we
apply f(-) to evaluate candidate responses, selecting the most consistent response:

:&t-selected = f({gt})

Neand

! : ()
= arg max sim(y;, y
ye€{gt} Neand j; ( b )

(21)
Neand

1
s.1. max
ye€{Us } Ncand i

sim(yt, ygj)) > 7_Language.
=1

where Neana = |{9:}| is the total number of candidate responses for each question. The
curated set of self-generated textual instruction responses is:

L ~ T
Ds;r;%l::fe = {(xtv yl—selected)}tzl- (22)

Finally, we obtain the curated self-generated multimodal pre-training dataset:

prretnte = Ded” + Dscioced - + Dseleaed - (23)
Step 4: Constructing the next-generation MLLM through multimodal pre-training. To build
the next-generation foundation MLLM, we introduce an intermediate multimodal pre-training stage,
Stage 1.5, within the standard two-stage training strategy, following [Liu et al.| (2024b); L1 et al.
(2024a). This stage refines the MLLM using curated self-generated pre-training data. The complete
training strategy consists of three stages, as shown in the lower left part in Figure 2}

* Stage 1: Modality alignment. In this stage, image features are aligned with the text
embedding space. Following |Li et al.| (2024a), we train only the vision-language (VL)
connector using image-text pairs from DAIE™ent " ywhile keeping the vision encoder (e.g.,
vision transformer) and large language model (LLM) frozen.

» Stage 1.5: Self-learning via multimodal pre-training. The model undergoes training
with curated self-generated pre-training data DP-Tining o acquire multimodal knowledge
from these self-generated samples and internalize its systematic multimodal perception and
reasoning abilities. During this stage, all model components are fully trainable.
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* Stage 2: Visual instruction-tuning. In the final stage, the model is fine-tuned using
instruction-tuning data Pstuction-Tuning ¢ deyelop robust visual instruction-following capa-
bilities, with all model components fully trainable.

This three-stage training process is formulated as follows, resulting in the next-generation foundation

MLLM with self-improved cognition MNext:

Ml “— ﬁiﬁage 1(DAlignment)
M1.5 . ﬁiﬁage L5 (DPre—training) (24)

MNext P £Stage 2 (Dlnsuuction—Tuning)
® .

B.1 ENHANCING SYSTEMATIC PERCEPTION WITH Chain-of-Description

~ Chain-of-Descripton (3 =
for Enhancing Systematic Perception 1.’

Instruction:

Please provide a vivid
description of the image.
Describe the image
step-by-step.

Step 1: Extract salient content by identifying key elements.

The image depicts a person ... with red hair ... on a bed, playing
... guitar. An open laptop positioned on a small table ...

Step 2: Analyze detailed information, focusing on instance-
level attributes, e.g., low-level and fine-grained details.

The guitar is a classic wooden brown with light-colored frets.
... warm ambiance, enhanced by soft lighting ...

Step 3: Consider relational-level attributes, analyzing
interactions between elements and their spatial organization. -

The person is seated on the bed, ... guitar resting on ... lap. The
string lights and wall hangings are positioned ...

Step 4: Examine marginal or peripheral content to
ensure no important information is missed.

The room's decor, including the string lights and wall hangings, ...
The dresser in the background, with its assortment of items, further ...

Step 5: Organize all observations into
a detailed, cohesive description.

The image features a person with long, red hair sitting cross-legged
on a bed, playing an acoustic guitar. They are wearing a dark blue
shirt with rolled-up sleeves and black pants, appearing focused on
the instrument. The guitar is a classic wooden brown with ...

Chain-of-Thought
for Improving Systematic Reasoning

Instruction:
C In the right triangle ABC,
£C =90°, point D is a point
D on AC, DE L AB at point E,
AB=10,BC=6,DE =24,

7. | 5 thenthelength of ADis ()

E A.1.2B.3C.4D.5 Answer
the question step-by-step.

Step 1: Clarify the task objective.

To solve this problem, | will use the properties of similar
triangles and the known measurements provided. By identifying ...

Step 2: Extract the crucial visual information from the image.

The image shows right triangle ABC with £C = 90°. Point D is on
segment AC, and DE is perpendicular to AB at point
E. Measurements are given as AB = 10, BC = 6, and DE = 2.4.

Step 3: Generate detailed reasoning to solve the task.

... triangle ADE is similar to triangle ABC by Angle-Angle similarity.
AD _ AB
We can set up the proportion: DE ~ BC
AD _ 10

Substituting the known values:
10
Simplifying the right side: & =

AD _5
Thus, the proportion becomes: 55 =3

2.
b
3

5
Solving for AD: AD =3 x2.4=4

Step 4: Conclude the task with an answer.
c

Figure 4: Illustration of Chain-of-Description (left) for enhancing systematic perception and struc-
tured Chain-of-Thought (right) for strengthening reasoning capabilities.

We introduce Chain-of-Description (CoD) to enable systematic and comprehensive perception,
equipping the MLLM with the ability to logically analyze and describe visual information step by
step (“how to observe”). This structured approach enhances the MLLM’s efficiency in thoroughly
interpreting visual content. Specifically, Chain-of-Description perception is organized into the

following five steps (Figure [d] left):

» Step 1: Extract salient content. Identify the key elements that define the overall context
and meaning of the image, laying the foundation for basic visual recognition.

* Step 2: Analyze detailed information. Focus on instance-level attributes, such as low-level
and fine-grained details, e.g., “the guitar is a classic wooden brown with light-colored frets.”
This step ensures a precise and detailed interpretation of the image.
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» Step 3: Consider relational-level attributes. Analyze interactions between elements and
their spatial organization, e.g., “the person is seated on the bed,” leading to a richer and
more comprehensive understanding of visual relationships.

* Step 4: Examine marginal or peripheral content. Pay attention to less prominent or
background details, e.g., “the dresser in the background,” to ensure no important information
is overlooked.

» Step 5: Organize all observations. Synthesize all findings into a cohesive, detailed
description, enabling comprehensive coverage and holistic image understanding.

Data preparation. To enable systematic perception in MLLMs, we utilize GPT-40 (Hurst et al.,
2024) with manually curated prompts (Table 20) to generate detailed, step-by-step analyses of visual
features. Specifically, we prompt GPT-4o to recaption 35k images from the Vision-Flan dataset (Xu
et al.| 2024b), which provides diverse visual content. A detailed example is presented in Table

B.2 IMPROVING SYSTEMATIC REASONING WITH STRUCTURED CHAIN-OF-THOUGHT

We adopt a structured Chain-of-Thought (CoT) approach (Xu et al., [2025)) to enhance systematic
and in-depth reasoning. For completeness, we briefly summarize this approach. It enables the
MLLM to decompose problem-solving into logical steps: analyzing multimodal questions, gathering
relevant visual information, and answering progressively. Specifically, the structured CoT process
(Figure El, right) follows four logical steps: (i) Step 1: Clarify the task objective. Identify the
problem’s requirements and constraints, establishing a foundational understanding. (ii) Step 2:
Extract crucial visual information. Identify and extract relevant visual elements to enhance
multimodal comprehension. (iii) Step 3: Generate detailed reasoning. Construct a logical sequence
of intermediate steps based on the extracted information to derive an answer systematically. (iv)
Step 4: Conclude with an answer. Synthesize the reasoning steps into a coherent and accurate final
response.

Data preparation. To enable systematic reasoning in the MLLM, we revise the dataset curated
by (Xu et al}[2025). Specifically, we randomly select 35k training examples from LLaVA-CoT, cov-
ering ten well-studied QA tasks, and replace the special tags (e.g., <SUMMARY> and </SUMMARY>)
with curated step-by-step instructions. A detailed example is shown in Table [23]

The complete training process is summarized in Algorithm [T} with implementation details in Sec-

tion[4.T]and Appendix
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Algorithm 1 SICOG: A Self-Learning Framework for Systematic Multimodal Cognition

: Input: Pretrained MLLM M, parameterized by 6

Systematic perception data: DPereeption — pFerception | pyPerception

Systematic reasoning data: DRexsoning — pisasonine | pReasoning

Default alignment data: DA™t ingtruction-tuning data: PImstruction-Tuning

Unlabeled data: (1) unlabeled image sets {vy } with prompts x, (2) unlabeled image sets {v, }
with questions ¢, (3) unlabeled text-only prompts ¢
: Goal: Enable systematic visual understanding and reasoning via self-learning
: Mo+~ M # Initialize model
cforn=1,...,Ndo # Iterative foundation MLLM update, when applicable
Step 1: Systematic Multimodal Cognitive Training

Fine-tune perception, reasoning models:

—_

S0V ®I

MPercepnon . j@ ('DPemeption), MReasomng — Ja (DReasoning)

n—1 n—1

11: Step 2: Generating Candidate Captions and Responses
12: Generate image captions: # Foster multimodal perception

{0k}, {5k, Gr) } ~ p ppeepion (- [ 0, )

13: Generate visual instruction responses: # Enhance multimodal reasoning
{a-},{(7:,a.)} ~ pMiéfgni"g(' | v2,q)

14: Generate text-only responses: # Maintain language

{gt} ~ pMLLM(' | xt)
15: Step 3: Self-Consistency Selection

16: Select the optimal candidates based on self-consistency, using the predefined threshold 7:
i . , 1 , , .
,Dgzlrec;itéon — arg Il’l;LX Z 51m(y, y(J)) s.t mg?‘x = Z 51m(y, y(])) > Perception
j 75
DESBOMIE ¢ arg max Z sim(a,a?) sz max - Z sim(a, a(?)) > rReasoning
a = a je
J J
) ) . 1 ) .
Dé:lrgittx:dge — arg Hzax Z Sll’n(yt7 ygj)) s.1. H%/aX ; Z Sll’n(yt7 ygj)) > sLanguage
t ~ t -
J J
17: Construct refined pre-training dataset:

Pre-training __ qyPerception Reasoning Language
D - DSelected + DSelected + DSelected

18: Step 4: Constructing the Next-Generation Foundation MLLM
19: Stage 1: Modality Alignment

M}, « E(S;age 1 (DAlignmem)
20: Stage 1.5: Multimodal Pre-Training # Pre-train on curated self-generated data
M:L.S — £Zlage 1.5 (DPre-training)
21: Stage 2: Visual Instruction-Tuning
Mlv\iext — EilageZ(DInslruction-Tuning)

22: end for
23: Output: Next-generation foundation MLLM with self-improved cognition MNeXt
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C MATHEMATICAL PROOF OF SICOG

C.1 DEFINITIONS

To formalize the proof for this self-improving cycle, we establish the following definitions:

e Let M, be the base pre-trained model at the start of iteration .
* Let Dy s be the large-scale pre-training dataset used to train M; from scratch.

e Let D4 be a separate, high-quality annotated dataset used for capability enhancement via
fine-tuning.

* Let M/ be the enhanced model created by fine-tuning M; on the dataset D 4. This model is
used for data generation but is discarded at the end of the iteration.

» Let Dg, be the new dataset curated at iteration ¢ by applying a quality filter to the outputs
of the enhanced model 1/].

* Let Dprety1 be the augmented pre-training dataset for the next iteration: Dper1 =
Dpre,t U DS,t~

* Let My, be the new base pre-trained model for the next iteration, produced by training a
model from scratch on the complete augmented dataset Dy ;1.

* Let J(M) be the capability of a model M, defined as its expected true utility on a represen-
tative test distribution.

» Let U(D) be the average true utility of the examples within a dataset D.

C.2 THE ITERATIVE CYCLE

At each iteration ¢, the framework executes the following steps:

1. Capability Enhancement (Post-Training Optimization): The current base model M, is
fine-tuned on the high-quality dataset D 4 to produce an enhanced model, M;.

2. Data Generation and Curation (Inference-Time Computation): The enhanced model
M is used to generate a large corpus of outputs. These are filtered to create a high-quality
curated dataset, Dg ;.

3. Corpus Augmentation: The curated dataset Dg; is added to the previous pre-training
corpus Dy ¢ to form a new, larger corpus Dipre ;41.

4. Re-training from Scratch: A new base model, M 1, is initialized with random weights
and trained from scratch on the entire augmented dataset Dpre ¢11.

The objective remains to prove that this process ensures J(M;41) > J(My).

C.3 CORE ASSUMPTIONS

The proof now relies on three fundamental assumptions.

Assumption 1 (Beneficial Fine-Tuning). Fine-tuning the base model M, on the high-quality annotated
dataset D4 results in an enhanced model M, with capability that is greater than or equal to the
original model. This captures the benefit of the fine-tuning step.

J(M]) > J(My) (25)

Assumption 2 (Effective Curation). The curation process is effective. It selects a subset of self-
generated data, Dg,, whose average utility is strictly greater than the capability of the model that
generated it, which is now the enhanced model }/;.

U(Ds,) > J(M]) (26)
Assumption 3 (Monotonic Pre-training on Augmented Data). This assumption remains the same but

is crucial. It posits that training a model from scratch on an augmented dataset results in a better (or
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equal) base model, provided the added data is of sufficiently high quality relative to the original base
model M;.
If U(Dgy) > J(My), then J(Myyq) > J(My) (27)

This assumption connects the quality of the new data to the improvement of the next-generation base
model.

C.4 THE PROOF OF NON-DECREASING CAPABILITY

We will now prove that J(M;1) > J(M;) by following the steps of the iterative self-improving
cycle.

1. The process begins at iteration ¢ with the base model M;, which has capability J(M;).

2. The model M; is fine-tuned on D4 to create the enhanced model M/. By Assumption 1
(Beneficial Fine-Tuning), we have:

J(M) = J (M) (28)

3. The enhanced model M is used to generate and curate the new dataset, Dg ;. By Assump-
tion 2 (Effective Curation), the quality of this new data is superior to the capability of the
model that generated it:

U(Dsy) > J(M]) (29)

4. We can now combine the inequalities from steps 2 and 3. From equation[29)and equation 28]
we can form a logical chain:

U(Dsy) > J(M]) = J(M,) (30)

This chain implies that the utility of the new data is strictly greater than the capability of the
original base model:
U(Ds,t) > J(M;y) (3D
5. A new base model, My 1, is then trained from scratch on the augmented pre-training corpus,
Dpre,tJrl = Dpre,t V) DS,t~
6. We are now in the exact scenario described by Assumption 3 (Monotonic Pre-training on
Augmented Data). We have:
* An original base model M,.
* A new base model M;_ trained on Dy ; U Dg ;.
* A guarantee from inequality equation [31]that the quality condition U (D) > J(My)
1S met.

7. Therefore, by directly applying Assumption 3, we can conclude that the capability of the
new base model is greater than or equal to the capability of the original base model:

J(Miy1) > J(M;y) (32)

We have formally demonstrated that even with the intermediate fine-tuning step, the iterative self-
improving cycle ensures a monotonically non-decreasing sequence of base model capabilities. This
holds true as long as our three core assumptions are valid. The dataset D 4 now plays a critical role
as an “enhancer” within the loop, helping to generate even higher-quality data (Dg ;) than the base
model could on its own, thereby driving the improvement of the entire system.
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D DETAILED DISCUSSION ON RELATED WORK

Table 5: Comparison of multimodal (vision-language) pre-training methods for enhancing multimodal
capabilities. For VILAZ2, /() indicates a hybrid approach combining bootstrapped captions with
fine-grained attributes from expert models. Detailed D (Detailed Description), DD-FGA (Detailed
Description with Fine-Grained Attributes, Direct A (Direct Answer).

w/o External Caption Type VQA Type

Method i
Annotation Detailed D DD-FGA CoD DirectA CoT

Detailed (Re-)Captioning (Perception)
ALLaVA (Chen et al.| 2024a)

LLaVA-NeXT (L1 et al.| 20244) . v
DCE (Sun et al.;[2024)
MMGIC (Xu et al.; 20244) X v
VILA? (Fang et al.,[2024) (x) v
Detailed Re-Captioning & Visual Instruction Tuning (Perception & Reasoning)
SIcoG (Ours) v v v v

Improving multimodal perception abilities of MLLMs. Although MLLMs demonstrate strong
multimodal perception capabilities (Liu et al., 2024a; [Lu et al., 20244), they often struggle with
fine-grained tasks such as OCR (Fu et al., [2024b; Liu et al.,2024d; Yin et al., [2024; |Lai et al., 2023
Li et al.l|2024d; |[Peng et al.| 2023)). These challenges arise primarily from the reliance on popular
large-scale caption datasets (i.e., image-text pairs) (Sharma et al.| [2018; [Schuhmann et al.| [2022;
Changpinyo et al.,[2021) for modality alignment, which often contain short, coarse-grained captions,
restricting their ability to extract detailed visual information (Chen et al.| [2024bza; |Lai et al., [2024).
One common solution is additional pre-training with high-quality, detailed captions (Chen et al.,
2024aj|Li et al., 2024d; |Lu et al.| 20244} |Bai et al.,|2023; [Yu et al.| 2024a) or captions enriched with
fine-grained attributes (Xu et al.l 2024aj |Sun et al.,[2024; [Fang et al.| 2024)), improving their ability
to capture visual details. In contrast, we propose Chain-of-Description, which explicitly models
the perception process. This approach trains models to systematically acquire and interpret visual
information through step-by-step analysis and decomposition of complex scenes, enabling deeper
understanding of fine-grained details.

Improving multimodal reasoning abilities of MLLMs. Complex multimodal reasoning tasks that
require integrating visual information into reasoning processes, such as mathematical computation,
present significant challenges for MLLMs (Yue et al.,[2024bj |Chen et al., |2024d; [Hao et al., 2025;
Xu et al) [2025). Recent studies (Chen et al.l 2024d; (Cheng et al. 2024} [Zhang et al.l |2024c)
enhance reasoning capabilities by incorporating chain-of-thought (CoT) reasoning (Wei et al., 2022;
Zhang et al.| 2023), prompting or fine-tuning models to generate intermediate reasoning steps before
producing final answers. Structured and systematic extensions of CoT (Xiang et al., [2024} | Xu
et al., 2025} |(Cheng et al., 2024} Dong et al., [2024) further improve performance through step-by-
step logical processes. While these approaches prove effective during post-training, we investigate
incorporating CoT reasoning during pre-training, recognizing this stage as foundational to MLLMs’
overall capabilities.
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E CAN PREFERENCE LEARNING SUPPORT SICOG’S SYSTEMATIC
PERCEPTION AND REASONING DEVELOPMENT?

Motivated by the great success of preference learning in adapting MLLMs to follow instructions
during the post-training stage (Rafailov et al., 2023} [Zhang et al.,[2024a)), we explore its application
to enhance MLLM’s multimodal perception and reasoning capabilities during Step 1 of SICOG
(Section[3). Specifically, we construct preference caption pairs by using high-quality captions from the
annotated caption dataset (Section [3) as preferred captions and pairing them with corresponding low-
quality (dispreferred) captions. The low-quality captions are generated by corrupting the associated
images through the following methods (Figure [3): (i) introducing random noise to hinder key
information capture, (ii) altering object colors to disrupt fine-grained detail perception, (iii) mirroring
and rotating images to distort relation-level attributes, and (iv) masking peripheral objects to obscure
peripheral content. We fine-tune the MLLM on these caption preference pairs using the Direct
Preference Optimization (DPO) algorithm (Rafailov et al, 2023) to initialize systematic perception
capabilities. Similarly, we extend preference learning to develop systematic reasoning capabilities.

(b) Four Types of Image Corruption
)

“

(a) Original Image

(i) Introducing Random Noise (ii) Altering Object Colors

(iii) Mirroring and Rotating (iv) Masking Peripheral Objects
Figure 5: Illustration of (a) the original image and (b) the four types of image corruption.

Preference learning supports SICOG’s systematic perception and reasoning development. As
shown in Table[6] preference learning with DPO significantly enhances MLLMs’ systematic percep-
tion and reasoning, enabling their self-improvement via SICOG, e.g., achieving a 2.5% accuracy gain
on MMstar.

Table 6: Evaluation results of different training methods for developing perception and reasoning in
LLaVA-Qwen2-7B during Step 1 of SICOG (post-training optimization, Section E[)

Method Capability Comprehensive Hallu. Chart & Table Knowledge
Development  y/n 1B en. MMStar MMVet POPE DocV. Chart. Math. Science. AI2D

Base Model

LLaVA-Qwen2-7B - 74.44 46.67 38.85 84.55 50.62 52.72 38.00 7491 73.77

Self-Improving Cognition

SIcoG-LLaVA-Qwen2-7B
(Per., Rea., Lan.)

SFT (Per., Rea.) 7545  48.60 37.84 84.35 52.52 5448 3880 77.44 76.20
DPO (Per.), SFT (Rea.) 76.18 4840 3872 83.53 5220 54.80 39.20 77.49 75.78
DPO (Per., Rea.) 7483  49.00 38.90 84.85 52.54 55.64 41.00 76.20 76.33

Preference learning is more effective than supervised fine-tuning for systematic perception and
reasoning development. Preference learning with DPO consistently surpasses standard supervised
fine-tuning across all benchmarks for initializing systematic perception and reasoning in SICOG.
For example, on MathVista, preference learning improves accuracy by approximately 2% on the
low-resolution model LLaVA-Qwen2-7B, which is particularly challenging to enhance due to inherent
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visual perception limitations. These results underscore the importance of learning not only from
correct examples but also from avoiding mistakes, thereby fostering more robust skill development.

F How DOES SIcoG ENHANCE THE REASONING CAPABILITIES OF
FOUNDATION MLLMS?

Table 7: Evaluation results of SICOG variants on LLaVA-Qwen2-7B-UHD in two inference settings:
direct answer and CoT for reasoning abilities.

Method Infer. Train Data Comprehensive Hallu. Chart/Table Knowledge
Stage 2 MMBen. MMStar MM Vet POPE DocV. Chart. Math. Science. AI2D

Base Model

LLaVA-Qwen2-7B-UHD Direct - 77.63 4893 38.26 87.31 70.18 69.96 38.90 77.29 74.94

Self-Improving Cognition

Direct - 77.80 5247 40.14 87.84 73.05 72.24 4140 79.42 78.40
SICOG-LLaVA-Qwen2-7B-UHD Direct+\§5g_‘angi§§%§%k 7612 5100 39.82 88.02 74.15 73.12 42.90 80.61 78.21
(Perception, Reasoning, Language) + Self-generated 45k

VoA B ARG 6519 4460 4092 8736 7248 7620 36.90 7293 73.19

Quantitative Analysis. We validate the efficacy of SICOG (perception, reasoning, language) in
enhancing the reasoning capabilities of MLLMs under two inference settings: direct answer and CoT.
The absence of CoT reasoning annotations in the instruction-tuning data (Zhang et al.| |2024b; [Liu
et al., |2024a) used in stage 2 limits the model’s ability to generate CoT reasoning. To address this
limitation, we incorporate 45k self-generated visual instruction-tuning examples—originally used
during the pre-training stage (stage 1.5)—into the instruction-tuning stage (stage 2) (see details in
step 4 of section[3).

Incorporating self-generated visual instruction-tuning data for instruction-tuning further im-
proves multimodal reasoning. As shown in Table (/| incorporating self-generated visual instruction-
tuning data in stage 2 enhances SICOG’s performance on most reasoning-intensive tasks across both
inference settings. For instance, it provides an additional accuracy gain of approximately 1-4%
on ChartQA. On benchmarks such as POPE and ScienceQA, direct answer inference outperforms
CoT inference, likely due to the overwhelming prevalence of direct answer annotations compared
to CoT annotations in the instruction-tuning data. In addition, we observe a performance drop on
perception-heavy benchmarks like MMBench and MMStar. We suspect this decline stems from a
data distribution shift introduced by the additional reasoning-focused data.

30



Under review as a conference paper at ICLR 2026

Question:

Is the sum of largest two bars is greater then the sum
of smallest 3 bars?

Ground Truth:

No

Direct Answer

Visual Question-Answering -
(generated by LlaVA-Qwen2-7B-UHD)

”

Chain-of-Thought (generated by Sicog-LlaVA-Qwen2-7B-UHD)

Step 1: Clarify the task objective.

To solve the problem, | will analyze the image to identify and compare the values of the largest two bars and the smallest
three bars. Then, | will calculate their sums to determine if the sum of the largest two bars is greater than the sum of the
smallest three bars.

Step 2: Extract the crucial visual information from the image.

The image is a bar chart showing the share of people who strongly agree or somewhat agree that vaccines are important

is not greater than the sum of the smallest three bars.
Step 4: Conclude the task with an answer.
No @

Figure 6: Qualitative comparison of responses generated by LLaVA-Qwen2-7B-UHD and SICOG-
LLaVA-Qwen2-7B-UHD for the visual instruction-following task.

Qualitative Analysis. We compare the responses generated by the base LLaVA-Qwen2-7B-UHD
and SICOG-LLaVA-Qwen2-7B-UHD (enhanced with self-generated VQA data in Stage 2) on an
image-question pair from ChartVQA.

Figure |§| illustrates that, unlike LLaVA-Qwen2-7B-UHD, which produces an incorrect answer,
SIcoG-LLaVA-Qwen2-7B-UHD effectively integrates multimodal information into a systematic
reasoning process, yielding an accurate and coherent response. Specifically, SICOG-LLaVA-Qwen2-
7B-UHD first clarifies the task requirements and extracts key visual information, such as “United
Arab Emirates (94%)” and “Mauritania (91%)”. It then systematically leverages this information,
identifying the two largest bars—United Arab Emirates (94%) and Mauritania (91%)—and the
three smallest bars—Armenia (73%), South Korea (72%), and Spain (88%). By performing precise
reasoning and calculations, SICOG-LLaVA-Qwen2-7B-UHD ultimately derives the correct answer.
These findings confirm the efficacy of SICOG in enhancing the systematic reasoning capabilities of
MLLMs, aligning with the results observed in the quantitative analysis.
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G How DOES SCALING SELF-GENERATED PRE-TRAINING DATA AFFECT
THE PERFORMANCE OF SIC0G?

The primary objective of multimodal pre-training
is to refine and enhance knowledge acquisition

from image captioning datasets (Li et al., |2024al). 90.0
In this context, we analyze the effect of scaling e
self-generated pre-training data on SICOG-LLaVA- 875\~ TH-——R-—-—-_g

Qwen2-7B-UHD (perception, reasoning, language) -
by prioritizing an increase in the number of self-
generated caption data. Specifically, we assess the
performance of SICOG across four dimensions on
ten benchmarks: comprehensive understanding (MM-
Bench, MMStar, MM Vet), hallucination (POPE),

OCR and chart/table understanding (OCRBench, === Hallucination
DocVQA, ChartQA), and knowledge-intensive tasks 255&@232 & Tablp

Accuracy (%)
(2] (o]
(4] ~
o 3]

o
N
&)

(MathVista, ScienceQA, AI2D) (Figure 7). 60.0 Comprehensive
Scaling up self-generated captions improves the 57.5
performance of SICOG. Increasing the quantity
of self-generated caption data results in consistent 55.0
0 118k 236k 354k 558k

performance improvements across three dimensions:
comprehensive understanding (up to approximately
2%), OCR and chart/table understanding (up to
around 2.5%), and knowledge-intensive tasks (up to Figure 7: Impact of scaling self-generated
around 3%), while maintaining stable performance on captions on SICOG-LLaVA-Qwen2-7B-UHD
hallucination tasks. These improvements underscore during multimodal pre-training, evaluated
the importance of scaling caption data in enhancing across four dimensions on ten benchmarks.
SIcoG’s ability to improve MLLMs’ multimodal cog-

nition. However, a slight performance decline occurs when the amount of caption data is increased
without proportionally adjusting the quantities of visual and text-only instruction tuning data. We
hypothesize that this decline arises from the overwhelming dominance of caption data, which creates
an imbalanced data ratio and hinders effective model optimization.

# Self-Generated Captions

H DoES SIcoG REMAIN EFFECTIVE WHEN VARYING RECAPTIONED
IMAGES?

Table 8: Evaluation results of varying unlabeled image datasets for recaptioning on SICOG-LLaVA-
Qwen2-7B-UHD across eleven benchmarks.

Method Comprehensive Hallu. Chart & Table Knowledge Vision
MMBen. MMStar MM Vet POPE OCR. DocV. Chart. Math. Science. AI2D Realworld.

Base Model

LLaVA-Qwen2-7B-UHD 77.63 4893 38.26 87.31 55.20 70.18 69.96 38.90 77.29 7494 63.53

Self-Improving Cognition

SIcoG-LLaVA-Qwen2-7B-UHD (P, R.,L.) 77.80 5247 40.14 87.84 57.70 73.05 72.24 41.40 79.42 78.40 63.92
(Recap. w/ BLIP 118k (Li et al.![2022))

SIcoG-LLaVA-Qwen2-7B-UHD (P, R.,L.) 77.07 5193 38.67 87.50 56.40 73.45 73.60 40.20 79.38 77.85 67.19

(Recap. w/ V-FLAN 148k (Xu et al.|2024b))

We validate the effectiveness of SICOG across varying corpora by employing different unlabeled
image datasets for recaptioning. Specifically, we randomly sample 148k images from the Vision-Flan
(V-Flan) dataset (Xu et al.,|2024b), which provides a diverse range of images and ensures zero overlap
with the curated data described in Section[3

SICOG is robust to variations in recaptioned images. As shown in Table [8] SICOG-LLaVA-
Qwen2-7B-UHD (Perception, Reasoning, Language) consistently outperforms the base model,
LLaVA-Qwen2-7B-UHD, achieving an approximate 4% accuracy gain on RealworldQA. This result
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underscores the role of image diversity in enhancing real-world understanding and demonstrates the
robust generalizability of SICOG across different corpora.
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I CAN SIcOG CONTRIBUTE TO THE CONSTRUCTION OF NEXT-GENERATION
FOUNDATION MLLMS THROUGH CONTINUOUS COGNITIVE
SELF-IMPROVEMENT?

5 1 -
Iteration 1
X4 +4.0 N Iteration 2
~ 3.6 3.6
c = h 435,33
83 +2.9+2 . +3.0
- +2.5
> +2.2 +2.3 121323
Vo +1.9
©
-
=]
CER
< +0.4 +0.5+0.6
O_
(77.63) (48.90) (38.26) (87.31) (70.18) (69.96) (38.90) (77.29) (74.94)
MMBench MMStar MMVet POPE DocVQA ChartQA  MathVista ScienceQA AI2D
Benchmarks

Figure 8: Evaluation results for next-generation foundation MLLM construction through continuous
self-improvement using SICOG. Accuracy gains are reported as absolute improvements over the base
model LLaVA-Qwen2-7B-UHD, with the base model’s performance shown in parentheses.

The multimodal pre-training stage is specifically designed to expand the model’s knowledge base
let al.| (2024b). In this paper, we explore how self-learning can help expand the model’s knowledge base
during multimodal pre-training. We investigate the potential of SICOG in advancing next-generation
foundational MLLM construction through continuous cognitive self-improvement. Specifically, we
consider SICOG-LLaVA-Qwen2-7B-UHD (perception, cognition, language) from Table [I] as the
foundational MLLM obtained in the first iteration. In the second iteration, 148K images from the
V-Flan dataset are newly recaptioned, resulting in a self-curated dataset comprising caption data
(118K from BLIP and 148K from V-Flan), VQA data (45K), and textual QA data (50K).

SICOG drives next-generation foundational MLLM construction via continuous cognitive self-
improvement. Figure[8|presents absolute accuracy gains over the initial base MLLM, LLaVA-Qwen2-
7B-UHD. The results show that SICOG-LLaVA-Qwen2-7B-UHD improves MLLM cognition across
most benchmarks in the second iteration, achieving an additional 1.5% accuracy gain on MM Vet.

However, performance regressions on certain benchmarks may stem from an overrepresentation of
caption data.
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J How DO Chain-of-Description AND CHAIN-OF-THOUGHT IMPROVE
COGNITION?

We examine two key factors underlying SICOG’s efficacy: (i) the role of Chain-of-Description
in facilitating multimodal perception, and (ii) the contribution of structured chain-of-thought to
multimodal reasoning.

J.1 How DOES Chain-of-Description FACILITATE MULTIMODAL PERCEPTION?

Quantitative Analysis. We analyze captions for 100 images randomly sampled from BLIP-558k (Li
et al.| [2022), which is used as unlabeled image captioning data in Section[d] These captions are gen-
erated by perception-enhanced models fine-tuned on annotated caption data in three formats: detailed
description (Detailed D), Chain-of-Description (CoD), and their combination (as implemented in
SIcOG, described in Section[3). Using GPT-4 with the prompt shown in Table 21} we evaluate six
key dimensions: salient content, fine-grained details, relational attributes, peripheral content, faithful-
ness, and world knowledge. For a holistic analysis, we also include LLaVA-NeXT-34B, a leading
open-source MLLM known for its strong captioning capabilities (Li et al.| 2024a)). Table 0] shows that
the base model, regardless of resolution, consistently underperforms in salient content, fine-grained
details, relational attributes, and peripheral content. These results highlight the importance of the
four-step perception analysis design used in Chain-of-Description.

Table 9: Evaluation of re-captioning quality comparing the perception-enhanced models fine-tuned
on curated caption data in three formats: detailed description (Detailed D), Chain-of-Description
(CoD), and their combination (Section [3). Metrics (rated 1-5): salient content, fine-grained details,
relational attributes, peripheral content, faithfulness, and world knowledge. “Caption”: standard
format; “Multi.”: CoD step-by-step format (see Table for details).

# Avg. Systematic Perception General Performance
Method Tokens
Sali. Fine-Grain. Rela. Peri. Faith. Know.

Low-Resolution
LLaVA-Qwen2-7B 129.36  4.51 4.21 382 3.67 4.07 3.63
+ Finetune w/ Detailed D 129.68 4.59 4.49 3.88 3.88 4.13 3.87
+ Finetune w/ CoD (Caption) 130.55 4.73 4.52 406 392 436 3.90
+ Finetune w/ CoD (Multi.) 458.09 4.71 4.69 4.62 422 432 4.01
+ Finetune w/ Detailed D & CoD (Detailed D) 130.13 4.75 4.54 413 397 449 3.95
+ Finetune w/ Detailed D & CoD (CoD Multi.) 436.53 4.89 4.81 476 4.26 4.67 4.05

High-Resolution
LLaVA-Qwen2-7B-UHD 135.08 4.77 4.30 399 3.81 441 3.84
+ Finetune w/ Detailed D 140.73 4.71 4.52 392 391 420 3.77
+ Finetune w/ CoD (Caption) 126.93 4.78 4.58 4.11 390 4.57 393
+ Finetune w/ CoD (Multi.) 453.13 4.82 4.80 474 429 457 4.01
+ Finetune w/ Detailed D & CoD (Detailed D) 136.50 4.76 4.67 401 3.82 451 3.88
+ Finetune w/ Detailed D & CoD (CoD Multi.) 453.26 4.91 4.87 478 432 4.71 4.05
LLaVA-NeXT-34B (Liu et al.|[2024b) 206.50 4.77 4.51 4.04 395 459 4.12

Chain-of-Description shows strong efficacy in facilitating systematic perception across six key
dimensions. Perception-enhanced models fine-tuned with Chain-of-Description outperform those
trained on detailed descriptions in both single-step (caption-only) and multi-step formats. Notably,
their combination achieves the highest evaluation scores, surpassing LLaVA-NeXT-34B in five of the
six dimensions.

Furthermore, Chain-of-Description generates the longest average caption lengths (approximately
430-450 tokens), indicating a robust perceptual capacity. Additional analysis is provided in Ap-

pendix [[]

Qualitative Analysis. We compare two caption examples generated by LLaVA-Qwen2-7B-UHD
and perception-enhanced LLaVA-Qwen2-7B-UHD (adopted in SICOG) on an image from V-FLAN
148k, as referenced in Table
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In Figure O] the results reveal that Chain-of-Description enables MLLMs to capture richer and
more detailed visual information across all six dimensions, whereas captions generated by the base
LLaVA-Qwen2-7B-UHD often include inaccuracies, e.g., hallucinations (Bai et al.l 2024). For
instance, Chain-of-Description allows MLLMs to identify nuanced details such as “the road appears
wet” and “the lighting conditions are subdued” in step 4, suggesting “recent rain” and an “overcast
day.” In contrast, the base LLaVA-Qwen2-7B-UHD fails to capture these details, resulting in an
inaccurate description of “a clear sky.” This observation aligns with quantitative findings, confirming
Chain-of-Description’s effectiveness in enhancing systematic perception.

Image Captioning
Z Detailed Description (generated by LlaVA-Qwen2-7B-UHD)

The image captures a blue city bus on a roadway, prominently displaying the
route number "535" and destination "BELLEVUE" at the top front. The bus
features large windows, a windshield with wipers, and headlights, suggesting it
is designed for public transit. Mounted on the front are two bicycles, indicating
the bus accommodates bike-friendly policies. A visible license plate
reads "238024". The bus is in motion, as indicated by its forward position
relative to the road markings. In the background, a red car is slightly blurred,
suggesting motion or a slower shutter speed. A sign reading "DO NOT ENTER"
: - is partially visible on the right side, indicating traffic restrictions. The setting
e, appears to be a suburban area with trees and a clear sky. Q

Chain-of-Description (generated by perception-enhanced LlaVA-Qwen2-7B-UHD)

Step 1: Extract salient content by identifying the key elements that define the image.

'The image shows a large public transportation bus positioned on a roadway. The bus is predominantly blue with white
accents and displays the route number "535" along with the destination "BELLEVUE" at the top front. A bicycle is mounted
on the front bike rack of the bus, which is currently empty.

Step 2: Analyze detailed information, focusing on instance-level attributes such as low-level and fine-grained
details.

'The bus's design includes a large windshield and multiple windows along its side. The bike rack is clearly visible, holding
the bicycle securely. The bus is in motion, as indicated by the blurred background, suggesting the photo was taken while
the bus was traveling.

Step 3: Consider relational-level attributes, analyzing interactions between elements and their spatial
organization.

In the background, there is a red car partially visible behind the bus, and a road sign reading "DO NOT ENTER" is
prominently displayed to the right. The scene is set against a backdrop of trees and an overcast sky, contributing to the
overall atmosphere of the image.

Step 4: Examine marginal or peripheral content to ensure no important information is missed.

The road appears wet, suggesting recent rain, and the lighting_conditions are subdued, indicating an overcast day. These
environmental details enhance the context of the image, providing insight into the setting of day.

Step 5: Organize all observations into a detailed, cohesive description.

'The image depicts a large public transportation bus on a roadway, predominantly painted blue with white accents. The bus
has the route number "535" and destination "BELLEVUE" displayed at the top front. A bicycle is mounted on the front bike
rack of the bus, which is currently empty. The bus features a large windshield and multiple side windows. In the
background, a red car is partially visible behind the bus, and a road sign reading "DO NOT ENTER" is prominently
displayed to the right. The scene is set against a backdrop of trees and an overcast sky, with the road appearing wet,
suggesting recent rain. The lighting conditions indicate an overcast day. {4

Salient Fine-grained Relational Peripheral Unfaithfulness World
Content Details Attributes Content (Inaccuracy) Knowledge

Figure 9: Qualitative comparison of captions generated by LLaVA-Qwen2-7B-UHD and perception-
enhanced LLaVA-Qwen2-7B-UHD across six key dimensions in the image captioning task.

Chain-of-Description avoids redundancy through systematic step-wise analysis. While Chain-of-
Description generates comprehensive and detailed descriptions, it maintains efficiency by eliminating
information overlap in its step-by-step analysis. For instance, peripheral elements such as “a red
car” and “a road sign reading ‘do not enter”” are described with precise spatial relations in step
3. Subsequently, step 4 focuses exclusively on new observations, such as “the road appears wet,”
ensuring non-redundant content progression and avoiding verbosity.

J.2  How DOES STRUCTURED CHAIN-OF-THOUGHT ENHANCE MULTIMODAL REASONING?
Quantitative Analysis. We evaluate the accuracy of answers for 1k image-question pairs randomly

sampled from the 63k LLaVA-CoT split, which is used as unlabeled pre-training VQA data in
Section ] These answers are generated by reasoning-enhanced models fine-tuned on curated
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reasoning data in three formats: direct answer, structured CoT, and their combination (as implemented
in SICOG). As shown in Table[T0] models fine-tuned with structured CoT improve the base models’
performance by 9% in EM. The combination of CoT and direct answer achieves the best results,
outperforming other methods by 2% to 5% EM, demonstrating the effectiveness of structured CoT in
enhancing multimodal reasoning in MLLMs. However, models fine-tuned solely with CoT perform
comparably or slightly worse than those fine-tuned with direct answers, likely due to insufficient CoT
reasoning data in the base models’ training set.

Table 10: Evaluation of self-generated reasoning quality, comparing reasoning-improved models
fine-tuned on curated reasoning data in three formats: direct answer (Direct), chain-of-thought (CoT),
and their combination (Section [3). Exact Match (EM) scores are used to assess the correctness of
final answers.

Low-Resolution High-Resolution
Method Correct. (EM)|Method Correct. (EM)
LLaVA-Qwen2-7B 26 LLaVA-Qwen2-7B-UHD 33
+ Finetune w/ Direct Answer 35 + Finetune w/ Direct Answer 43
+ Finetune w/ Chain-of-Thought (CoT) 35 + Finetune w/ Chain-of-Thought (CoT) 42
+ Finetune w/ Direct Ans. & CoT (Direct) 37 + Finetune w/ Direct Ans. & CoT (Direct) 47
+ Finetune w/ Direct Ans. & CoT (CoT) 37 + Finetune w/ Direct Ans. & CoT (CoT) 47

Qualitative Analysis. We compare the responses generated by the base LLaVA-Qwen2-7B-UHD
and the reasoning-enhanced LLaVA-Qwen2-7B-UHD (used in SICOG) on an image-question pair
from the 63k LLaVA-CoT split.

In Figure [T0] our analysis demonstrates that the structured CoT enables the MLLM to generate
systematic, logical, and in-depth reasoning step-by-step, resulting in accurate answers. Specifically,
CoT first helps clarify the task requirements and captures critical visual information. Then, CoT
enables the MLLM to utilize key visual details, such as “212.22 million U.S. dollars” and “354
million U.S. dollars,” to perform accurate reasoning and calculations.

Question:

,,,,, What is the sum of box office revenue of Raiders of the Lost Ark?
(in million U.S. dollars)
H“ Ground Truth:
566.22
PSR- Direct Answer (generated by LlaVA-Qwen2-7B-UHD)

© 46946 € |
Chain-of-Thought (generated by reasoning-enhanced LlaVA-Qwen2-7B-UHD) (&

Step 1: Clarify the task objective.

To solve the problem, | will examine the image to identify and sum the box office revenues of "Raiders of the Lost Ark" in
both North America and worldwide. This involves reading the values from the relevant section of the bar chart.

Step 2: Extract the crucial visual information from the image.

The image is a bar chart comparing box office revenues for four Indiana Jones movies: "Indiana Jones and the Kingdom of
the Crystal Skull," "Raiders of the Lost Ark," "Indiana Jones and the Last Crusade," and "Indiana Jones and the Temple of
Doom." Each movie has two bars representing North America (in blue) and worldwide (in dark blue) revenues, with figures
displayed next to each bar.

Step 3: Generate detailed reasoning to solve the task.

To find the total box office revenue for "Raiders of the Lost Ark," | need to look at its corresponding section in the bar chart.
The North American revenue is marked as_212.22 million U.S. dollars, and the worldwide revenue is marked as 354 million
U.S. dollars. Adding these two figures together gives the total worldwide box office gross.

Step 4: Conclude the task with an answer.

566.22 (9

Visual Question-Answering

Figure 10: Qualitative comparison of responses generated by LLaVA-Qwen2-7B-UHD and reasoning-
enhanced LLaVA-Qwen2-7B-UHD in the visual question-answering task.
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K FINE-GRAINED EVALUATION ACROSS SIX CORE CAPABILITIES

Instance Fine-Grained
Reasoning Perception

53, Coarse
Perception

Mathematics Science & Technology

LLaVA-Qwen2-7B-UHD
(Base Model)

Qwen2-VL-72B-Instruct-LLaVA-Qwen2-7B-UHD
(Strong-to-Weak Distillation)
Multi-Experts-LLaVA-Qwen2-7B-UHD
(Multi-Agent Collaboration)

Slcog-LLaVA-Qwen2-7B-UHD
(Self-lImproving Cognition)

Figure 11: Fine-grained evaluation of six core capabilities on LLaVA-Qwen2-7B-UHD using the
MMStar benchmark (direct answer).

The fine-grained evaluation of six core capabilities in Figure [[T|highlights the effectiveness of SICOG
in advancing multimodal cognitive abilities in MLLMs.
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Figure 12: Distribution of caption token lengths: perception-enhanced LLaVA-Qwen2-7B-UHD
(fine-tuned on curated captions using the standard detailed description format and the mixture of
detailed description and Chain-of-Description formats) vs. LLaVA-NeXT-34B.

Figure [I2] compares token length distributions, showing that Chain-of-Description consistently
produces longer captions across all images, suggesting a robust perceptual ability.
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M IMPLEMENTATION DETAILS

Table 11: Three different caption formats used for Chain-of-Description conversion during the
multimodal pre-training stage (1/2).

Three Caption Formats for Chain-of-Description Conversion in Multimodal Pre-Training

Format 1: Standard caption-only.

Human: <image>\nPlease provide a thorough description of this image.

Model: The image showcases a modern spiral staircase with a unique design. The staircase
features a curved, wooden handrail that is dark brown in color, contrasting with the lighter wooden
steps. The railings are made of the same dark wood and have a horizontal slat design, giving
a sense of movement along the staircase’s curve. The staircase itself appears to be constructed
from polished wood, giving it a sleek and contemporary look. Below the staircase, the flooring
is light beige, complementing the warm tones of the wooden staircase. The room surrounding
the staircase is spacious, with large windows that allow natural light to enter, enhancing the
brightness of the space. There are no people or objects in the immediate vicinity of the staircase,
emphasizing the architectural features. The overall color scheme is warm, with the wood tones
being the dominant feature.

Format 2: Step-by-step elicitation.

Human: <image>\nPlease provide a thorough description of this image. Explain your description
step by step.

Model: Step 1: Extract salient content by identifying the key elements that define the image.
The image depicts a modern spiral staircase with a striking design. The staircase features a curved,
wooden handrail that is dark brown in color, contrasting with the lighter wooden steps. The
railings are made of the same dark wood and have a horizontal slat design, providing a sense of
movement along the staircase’s curve.

Step 2: Analyze detailed information, focusing on instance-level attributes such as low-level and
fine-grained details.

The staircase is constructed from polished wood, which gives it a sleek and contemporary
appearance. The flooring below the staircase is light beige, complementing the warm tones of the
wooden staircase. The room surrounding the staircase is spacious, with large windows that allow
natural light to enter, enhancing the brightness of the space.

Step 3: Consider relational-level attributes, analyzing interactions between elements and their
spatial organization.

The staircase’s design is both functional and aesthetic, with its spiral form creating a dynamic
visual element within the room. The natural light from the windows highlights the warm tones of
the wood and adds depth to the space. The absence of people or objects in the room emphasizes
the architectural features of the staircase.

Step 4: Examine marginal or peripheral content to ensure no important information is missed.
The room’s architecture is modern, with clean lines and minimalistic design elements. The
combination of the staircase’s curved form and the natural light creates an inviting and open
atmosphere in the space.

Step 5: Organize all observations into a detailed, cohesive description.

The image showcases a modern spiral staircase with a unique design. The staircase features a
curved, wooden handrail that is dark brown in color, contrasting with the lighter wooden steps.
The railings are made of the same dark wood and have a horizontal slat design, giving a sense of
movement along the staircase’s curve. The staircase itself appears to be constructed from polished
wood, giving it a sleek and contemporary look...

M.1 COMPARED METHODS.

We compare SICOG against the following representative MLLM pre-training approaches (as discussed
in Section2)). Differences are considered significant at p < 0.01:

* Strong-to-Weak Distillation (Perception) (Li et al.,2024a): Pre-training with re-caption data
containing detailed descriptions (DD) generated by stronger models.

¢ Multi-Agent Collaboration (Perception) (Fang et al.|[2024): Pre-training with re-caption data
containing detailed descriptions and fine-grained attributes (DD-FGA) generated by base and
expert models.
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Table 12: Three different caption formats used for Chain-of-Description conversion during the
multimodal pre-training stage (2/2).

Three Caption Formats for Chain-of-Description Conversion in Multimodal Pre-Training

Format 3: Multi-turn conversation.

Human: <image>\nWhat are the crucial details that define the image?

Model: The image depicts a modern spiral staircase with a striking design. The staircase features
a curved, wooden handrail that is dark brown in color, contrasting with the lighter wooden steps.
The railings are made of the same dark wood and have a horizontal slat design, providing a sense
of movement along the staircase’s curve.

Human: Can you analyze the image for instance-level attributes and low-level details?

Model: The staircase is constructed from polished wood, which gives it a sleek and contemporary
appearance. The flooring below the staircase is light beige, complementing the warm tones of the
wooden staircase. The room surrounding the staircase is spacious, with large windows that allow
natural light to enter, enhancing the brightness of the space.

Human: What is the relationship between the components, and how are they arranged?

Model: The staircase’s design is both functional and aesthetic, with its spiral form creating a
dynamic visual element within the room. The natural light from the windows highlights the warm
tones of the wood and adds depth to the space. The absence of people or objects in the room
emphasizes the architectural features of the staircase.

Human: Is there anything in the margins or borders of the image worth noting?

Model: The room’s architecture is modern, with clean lines and minimalistic design elements.
The combination of the staircase’s curved form and the natural light creates an inviting and open
atmosphere in the space.

Human: How would you describe the image in a well-organized and cohesive manner?

Model: The image showcases a modern spiral staircase with a unique design. The staircase
features a curved, wooden handrail that is dark brown in color, contrasting with the lighter wooden
steps. The railings are made of the same dark wood and have a horizontal slat design, giving a
sense of movement along the staircase’s curve. The staircase itself appears to be constructed from
polished wood, giving it a sleek and contemporary look...

Table 13: Hyperparameters, training configurations, and inference time for the SICOG implementation
in Step 4 (Section [3). Inference time is reported by data generation mode: Detailed Descriptions (D)
and Direct Answers (A) on unlabeled images from the 118k BLIP dataset, and Chain of Thought
(CoT) and CoD on unlabeled image—question pairs from the 63k LLaVA-CoT dataset.

Model LLaVA-Qwen2-7B LLaVA-Qwen2-7B-UHD LLaVA-Llama3.1-8B-UHD
Training Stage Stage 1 Stage 1.5 Stage2 Stage 1 Stage 1.5 Stage2 Stagel Stage 1.5 Stage?2
Learning Rate 2e-4 2e-5 2e-5 2e-4 2e-5 2e-5 2e-4 2e-5 2e-5
Batch Size 256 128 128 256 128 128 256 128 128
Sequence Length 4096 4096 4096 4096 4096 4096 4096 4096 4096
Epochs 1 1 1 1 1 1 1 1 1
Training Time S50min  40min  5.2h 1h 1.5h 9.5h lh 1.8h 123 h
Resource (GPUs) 4x8 NVIDIA A100 80GB 4x8 NVIDIA A100 80GB 4x8 NVIDIA A100 80GB
Inference Time (Self-Generating Pre-training Data)

Detailed Descriptions / CoD 4h/125h 4h/13h 3h/65h

Direct Answers / CoT 2h/85h 1.5h/9h 1.5h/95h
Resource (GPUs) 4x8 NVIDIA A100 80GB 4x8 NVIDIA A100 80GB 4x8 NVIDIA A100 80GB

¢ Self-Improving Cognition (Perception & Reasoning — Ours): Pre-training with self-generated
data, including re-caption data containing detailed descriptions (DD) and Chain-of-Description
(CoD), visual instruction-tuning data with direct answers (DA) and structured CoT, as well as
text-only instruction-tuning data.

M.2 IMPLEMENTATION DETAILS.
(i) Models: We utilize both low-resolution (LLaVA-Qwen2-7B (Liu et al., 2023)) and high-resolution

(LLaVA-Qwen2-7B-UHD (Guo et al., [2024) and LLaVA-Llama3.1-8B-UHD) models for our inves-
tigation. Specifically, we employ CLIP-ViT-L/14-336 (Radford et al.,|2021) as the visual encoder,
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Qwen2-7B-Instruct (Yang et al.,[2024a) and LLama-3.1-8B-Instruct (Grattafiori et al.|[2024) as the
backbone LLMs.

(ii) Self-Generated Data Source: We recaption the images used for modality alignment and self-
annotate 63k image-question pairs randomly selected from LLaVA-CoT, ensuring zero overlap
with the curated training data in Section[3] Additionally, we self-annotate 100k text-only prompts
randomly sampled from OpenHermes-2.5 (Teknium, [2023).

(iii) Data Utilized in the Three-Stage Training Strategy: During the self-refinement step (Step
4 in Figure [2), we use BLIP-558k caption data (Radford et al [2021) for modality alignment,
following (Liu et al.,2024b)). For multimodal pre-training, we use self-generated data along with
858k instruction-tuning samples organized by (Zhang et al.,2024b), which include the widely adopted
LLaVA-Mix665k (Liu et al., 2024a) and 160k samples from UReader (Ye et al., [2023)).

(iv) Implementing Step 2 of SICOG: To collect pre-training data, we prompt the model multiple times
to sample candidate outputs using a temperature of 0.7 and top-p of 0.95:

* For image captioning, we sample three candidate captions (two in Chain-of-Description
format and one as a detailed description).

* For visual instruction tuning, we sample three candidate responses (two in chain-of-thought
(CoT) format and one as a direct answer).

* For text-only instruction tuning, we sample three candidate responses.

(v) Implementing Step 3 of SICOG: To ensure the quality of self-generated pre-training data, we
use NV-Embed-v2 (Lee et al.,[2024) to generate candidate embeddings and calculate their semantic
similarity. The data is curated based on similarity scores and predefined thresholds. Specifically, we
apply the following curation strategies:

e Curation of Self-Generated Image Captioning Data: We set the similarity threshold

rPerception — () and retain all top-1 ranked self-generated captions in a mixture of two
formats: detailed descriptions and Chain-of-Description. To preserve the MLLM’s multi-
turn conversational ability, we convert the top-1 ranked Chain-of-Description captions with
a consistency score higher than 0.85 into a multi-turn conversational format. Detailed
examples are provided in Tables[TT]and [T2]
In addition, Table [T4] presents a comparison of two perception-enhancement approaches
for SICOG: (i) fine-tuning with 35 detailed descriptions and (ii) Chain-of-Description in
three formats (standard caption-only, step-by-step elicitation, and multi-turn conversation,
as shown in Tables[IT)and[T2Z). The results suggest: (1) the efficacy of the proposed Chain-
of-Description approach in enhancing richer visual understanding. (2) the impact of the
three different Chain-of-Description formats on the overall performance of SICOG.

* Curation of Self-Generated Visual Instruction-Tuning Data: We set the similarity
threshold 7Fereeption — (.95 and retain all top-1 ranked self-generated responses in two
formats: direct answers and chain-of-thought (CoT).

¢ Curation of Self-Generated Text-Only Instruction-Tuning Data: We set the similarity
threshold 7Pereeption — () 8 and retain only the first 50k text-only prompt-response pairs based
on their similarity score rankings.

Extensive experiments and analyses are conducted using 128 A100 80G GPUs. Table [[3]| summarizes
the hyperparameters used to implement SICOG in Step 4 (Section [3)); the same settings are also
applied in Step 1 to develop the MLLM'’s capabilities during Stage 2.

M.3 IMPLEMENTATION DETAILS OF COMPARED METHODS.

(i) Implementing Weak-to-Strong Distillation: Following (Li et al.,2024a), we prompt Qwen2-VL-
72B-Instruct (Wang et al.||2024) and LLaVA-NeXT-34B (Liu et al.}[2024b)), two leading open-source
MLLM:s known for their strong captioning capabilities, to generate high-quality captions for unlabeled
images. These captions are used as multi-modal pre-training data to construct smaller foundation
MLLMs, resulting in models such as Qwen2-VL-72B-Instruct-LLaVA-Qwen2-7B-UHD, LLaVA-
NeXT-34B-LLaVA-Qwen2-7B-UHD, and others. Generating captions for 118k unlabeled BLIP
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Table 14: Comparison of two perception-enhancement approaches for SICOG: (i) fine-tuning with
35k detailed descriptions and (if) Chain-of-Description in three formats (as shown in Tables
and[T2). Refer to Table 0] for a detailed discussion. The self-generated caption data used are sampled
only once, without filtering.

Method Perception Train Data Comprehensive Hallu. Chart/Table Knowledge
Enhancement Stage 1.5 MMBen. MMStar POPE DocV. Chart. Math. Science. AI2D

Base Model

LLaVA-Qwen2-7B-UHD - - 77.63 48.93 87.31 70.18 69.96 38.90 77.29 74.94

Fintune Self-generated 118k
w/ 35k DD caption w/ DD 77.19  50.67 85.74 71.43 71.96 37.70 78.14 7594

Self-generated 118k
caption w/ CoD (caption)
Self-generated 118k
caption w/ CoD (multi.)
Self-generated 118k
caption w/ CoD (conv.)
Self-generated 118k

caption w/ CoD 7752  50.60 86.86 71.84 72.32 41.60 77.44 76.75
(caption, multi., conv.)

7825  50.93 86.80 71.48 72.12 40.30 77.84 76.81

SIcoG-LLaVA-Qwen2-7B-UHD
(Perception) Fintune
w/ 35k CoD

78.48 5020 86.22 71.74 72.52 4120 76.95 76.33
78.53  50.87 87.19 71.67 72.16 40.00 78.24 76.62

images using Qwen2-VL-72B-Instruct requires approximately 110 hours on a cluster of 4x8 NVIDIA
A100 80GB GPUs. To facilitate reproducibility, we directly utilize the open-sourced recaptioned
dataset generated by LLaVA-NeXT-34B (Liu et al., [2024b).

(ii) Implementing Multi-Agent Collaboration: Following (Fang et al. 2024), we employ three
specialized modules—Spatial Specialist, OCR Specialist, and Grounding Specialist—to extract
fine-grained attributes. These attributes are combined with self-generated detailed descriptions to
form rich pre-training captions. Specifically, we prompt Qwen2-VL-72B-Instruct to generate spatial
attributes using the instruction: “Elaborate on the visual and narrative elements of the image in
detail, with a focus on spatial relations.” This annotation process, applied to the 118k unlabeled
BLIP images, requires approximately 100 hours on a cluster of 4x8 NVIDIA A100 80GB GPUs.
For OCR-based annotations, we utilize PaddleOCR (PaddlePaddle Team| |2020), retaining only
outputs with a confidence score above 0.9. For object grounding, we adopt GroundingDINO (Liu
et al., 2024c) with a detection threshold of 0.435. The OCR and grounding annotation processes
take approximately 1 hour on 8 NVIDIA A100 80GB GPUs. After extracting all attributes, we
use Qwen2-VL-72B-Instruct to rephrase the outputs for improved fluency and clarity. Finally, we
concatenate the self-generated detailed descriptions with the spatial, OCR, and grounding attributes
to construct multi-turn conversational caption data, following the methodology of (Fang et al., 2024).

42



Under review as a conference paper at ICLR 2026

N ANALYSIS OF COMPUTATIONAL COST

Table 15: Computational analysis of the compared pre-training approaches for generating the pre-
training data.

Hardware Time Est. GPU-Hours

Method Generation Task Model(s) Used (A100 80G) (Hours) (Total)
External Model Distillation
Strong-to-Weak 1y . .i14 Descriptions Qwen2-VL-72B-Instruct 32 GPUs ~110 ~3,520
Distillation
Spatial Attributes Qwen2-VL-72B-Instruct 32 GPUs ~100 ~3,200
Multi-Agent OCR Annotation PaddleOCR 8 GPUs ~1 ~8
Collaboration  Gy4unding Information GroundingDINO 8 GPUs ~1 ~8
Detailed Descriptions Qwen2-VL-72B-Instruct 32 GPUs ~115 ~3,680
Self-Improving (Ours)
Post-Training Optimization LLaVA-Qwen2-7B-UHD 32 GPUs ~2 ~64
SICOG Detailed Captions (DD & CoD) LLaVA-Qwen2-7B-UHD 32 GPUs ~21 ~672
VQA Responses (DA & CoT) LLaVA-Qwen2-7B-UHD 32 GPUs ~12 ~384
Text-Only Responses Qwen2-7B-Instruct 8 GPUs ~8 ~64
Candidate Filtering NV-Embed-v2 8 GPUs ~20 ~160

(Captions, VQA, Text-only)

The core difference between pre-training approaches lies in how multimodal pre-training data is
obtained. Table[I5|presents a computational cost analysis of the compared approaches for generating
multimodal pre-training data. While SICOG involves more training stages compared to prevalent
approaches that rely on external advanced or expert models, it significantly reduces computational
cost in terms of GPU hours.

We would also like to emphasize that SICOG is not designed to directly compete with existing
pre-training methods that depend on external annotations. Instead, it is tailored for scenarios where
high-quality external annotations are unavailable—such as when model capabilities surpass human
performance, when obtaining annotations is prohibitively expensive, or when no stronger model
exists to provide annotations. Additionally, SICOG can complement methods that leverage external
annotations when such resources are accessible.
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O MITIGATING POTENTIAL PERFORMANCE SATURATION AND ERROR
PROPAGATION

Table 16: Exploration of Mitigating Potential Performance Saturation

Method Comprehensive Hallu. Chart/Table Knowledge
MMBen. MMStar POPE DocV. Chart. Math. Science. AI2D
LLaVA-Qwen2-7B-UHD 77.63 48.93 87.31 70.18 69.96 38.90 77.29 74.94
Self-Caption-LLaVA-Qwen2-7B-UHD 77.41 49.30 86.67 70.16 71.32 38.90 76.40 75.87
SIcoG-LLaVA-Qwen2-7B-UHD 78.08 52.47 87.84 73.70 73.12 41.40 79.42 78.40

Table 17: Exploration of Mitigating Error Propagation

Method Comprehensive Hallu. Chart/Table Knowledge
MMBen. MMStar POPE DocV. Chart. Math. Science. AI2D
LLaVA-Qwen2-7B-UHD 77.63  48.93 87.31 70.18 69.96 38.90 77.29 74.94
SIcoG-LLaVA-Qwen2-7B-UHD w/o Filtering 77.97  50.87 87.56 72.97 73.64 39.50 77.84 76.98
SIcoG-LLaVA-Qwen2-7B-UHD 78.08 5247 87.84 73.70 73.12 41.40 79.42 78.40

To mitigate the potential risks of relying on the model to generate its own data, particularly in terms
of performance saturation and error propagation. To mitigate these risks, we have implemented the
following measures:

Mitigating Performance Saturation. Our framework enhances the model’s perception and reasoning
abilities using minimal annotations during Stage 1. By ensuring meaningful improvements in the base
model before initiating self-improvement iterations, we establish a robust self-improving paradigm.
Below, we provide results leveraging the model’s self-generated detailed captions as pre-training
data (since the base model cannot generate chain-of-thought reasoning). This variant is referred to as
“Self-Caption-LLaVA-Qwen2-7B-UHD.” In Table[16] we observe that SICOG-LLaVA-Qwen2-7B-
UHD achieves superior performance, highlighting the value of fine-tuning with minimal annotated
data during Stage 1 to ensure performance improvements.

Avoiding Error Propagation. We employ a robust data filtering mechanism to select high-quality
self-generated data for pre-training, as detailed in Section |3} This minimizes the impact of noisy
or biased outputs. Below, we present results after removing the filtering mechanism (denoted as
“w/o Filtering”). In Table[T7] SIcOG-LLaVA-Qwen2-7B-UHD demonstrates improved performance
when the filtering mechanism is applied, underscoring its importance in enhancing the self-improving
paradigm.

While these measures address the immediate risks, we acknowledge the importance of further
refinement. We aim for SICOG to serve as a starting point for advancing self-improvement techniques
and are committed to exploring additional strategies to ensure robustness in future iterations.
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P ADDITIONAL EXPERIMENTAL RESULTS

Table 18: Additional evaluation results on MMMLU-Val (Yue et al., [2024a).

Method Type MMMLU

LLaVA-Qwen2-7B-UHD - 55.38
Qwen2-VL-72B-Instruct-LLaVA-Qwen2-7B-UHD Strong-to-Weak Distillation 52.25
Multi-Experts-LLaVA-Qwen2-7B-UHD Multi-Experts 52.25
SIcoG-LLaVA-Qwen2-7B-UHD Self-Learning 56.88

Table 19: Comparison with other pre-training methods.

Method Comprehensive Hallu. Chart/Table Knowledge
MMBen. MMStar POPE DocV. Chart. Math. Science. AI2D
LLaVA-Qwen2-7B-UHD 77.63 4893 87.31 70.18 69.96 38.90 77.29 74.94
Self-Caption- 77.41 49.30 86.67 70.16 71.32 3890 76.40 75.87
LLaVA-NeXT-34B-Caption- 7775 50.60 86.46 71.20 71.56 36.90 78.38 76.00
LLaVA-NeXT-34B-Caption-GPT-40-Reason- 77.80  51.27 87.00 72.20 72.80 37.80 78.93 77.49
SIcoG-LLaVA-Qwen2-7B-UHD 78.08 5247 87.84 73.70 73.12 41.40 79.42 78.40

Results on MMMLU. Due to space limitations, we present the results on the MMMLU-Val dataset
in Table[I8]

Comparison with other pre-training methods. Existing open-source models lack the ability for
systematic perception and reasoning. Specifically, directly prompting these models to generate
Chain-of-Description (CoD) captions and structured Chain-of-Thought (CoT) reasoning data (Xu
et al.l [2025) is impractical. Furthermore, none of the backbone models used in this work possess
multimodal CoT reasoning abilities, as their training data does not include multimodal CoT reasoning
examples. This provides a clear framework to evaluate how incorporating self-generated CoT data
during pre-training impacts model performance.

We also provide additional results in Table [T}

1. Comparison with pre-training using re-captioned data generated via prompting the base model
(Self-Caption-LLaVA-Qwen2-7B-UHD).

2. Comparison with pre-training using re-captioned data from a stronger captioning model and
CoT reasoning data. Specifically, we use LLaVA-NeXT-34B for captioning and GPT-40 for CoT
reasoning data, curated in Xu et al.| (2025)) (LLaVA-NeXT-34B-Caption-GPT-40-Reason-LLaVA-
Qwen2-7B-UHD).

Our approach, SIcoG-LLaVA-LLaVA-Qwen2-7B-UHD, outperforms these methods, demonstrating
the effectiveness of incorporating self-generated CoT data during pre-training.
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Q PROMPTS

Table 20: The prompt utilized by GPT-40 for eliciting Chain-of-Description for image-captioning
training datasets.

Prompt Used by GPT-4o for eliciting Chain-of-Description

You are an expert Al assistant tasked with analyzing an image and generating a detailed, step-by-step
description. You are provided with an original description as a reference. Your goal is to ensure accuracy,
clarity, and logical progression in your response. Follow these guidelines:

Guidelines:

1. Ensure Comprehensive Coverage: Identify and include all relevant details visible in the image. Avoid
unnecessary repetition or irrelevant information.

2. Avoid Adding Imaginary Details: Base your reasoning strictly on what is visible in the image or provided
in the description. Do not include fabricated or unverifiable details.

3. Incorporate Relevant Context: Add factual, relevant context to enhance understanding where appropriate,
but ensure it aligns strictly with the visible or provided content.

4. Prevent Inaccuracies: Stick to the given data. Avoid assumptions or deviations from the available
evidence.

Step-by-Step Process:

Step 1: Extract salient content by identifying the key elements that define the image.

Example: The image is a monochrome photocopy of a document that appears to be a page of meeting or
project notes. It contains both typed and handwritten text, with a focus on tasks and progress updates related
to paper-related issues. The document includes a reference number at the bottom and a source URL.

Step 2: Analyze detailed information, focusing on instance-level attributes such as low-level and
fine-grained details.

Example: The document lists several tasks, such as checking with "KC" on the possibility of putting bands
"long-ways," which is marked as "In progress." Other tasks include checking on "shrinking" paper, which is
also "In progress," and checking the commercial viability of banded papers, marked as "Okay." There are
handwritten notes and checks next to some points, indicating their status.

Step 3: Consider relational-level attributes, analyzing interactions between elements and their spatial
organization.

Example: The tasks are organized in a list format, with some items having associated handwritten notes that
indicate completion or ongoing status. The name "Jimmy Wu" is associated with an action item regarding
a DC work request with KC banded papers, awaiting approval for banded additives. The document also
mentions running "GPC KS and KOOL KS on RIP-4 (LCC)" and notes that KC is running "cross-hatch"
papers.

Step 4: Examine marginal or peripheral content to ensure no important information is missed.
Example: The document specifies that the next meeting is scheduled for Monday, February 7, at 9:00 a.m. in
the International Conference Room. The reference number "584100571" is located at the bottom of the page,
and the source URL is included at the bottom.

Step 5: Organize all observations into a detailed, cohesive description.

Example: The image is a monochrome photocopy of a document that appears to be a page of meeting or
project notes, containing both typed and handwritten text. The document lists several tasks related to paper-
related issues, such as checking with "KC" on the possibility of putting bands "long-ways," which is marked
as "In progress," and checking the commercial viability of banded papers, marked as "Okay." Handwritten
notes and checks next to some points indicate their status. The name "Jimmy Wu" is associated with an
action item regarding a DC work request with KC banded papers, awaiting approval for banded additives.
Other items include running "GPC KS and KOOL KS on RIP-4 (LCC)" and KC running "cross-hatch"
papers. The next meeting is scheduled for Monday, February 7, at 9:00 a.m. in the International Conference
Room. The document is marked with a reference number "584100571" at the bottom, and a source URL is
included.

Important Notes:

- *¥*Steps 1-4**: Write concise observations in one or two sentences each.

- **Step 5**: Summarize all observations into a detailed paragraph or two, as descriptive as necessary.
Input: I<image>| Question: Could you please transcribe the image into a descriptive paragraph? Explain
your description step-by-step. Original description: I<caption>|

Output:
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Table 21: The prompt utilized by GPT-40 for evaluating the quality of re-captioned data.

Prompt Used by GPT-40 to Evaluate Image Caption Quality

You are an expert Al assistant tasked with evaluating the quality of captions for images. Your job is
to assess the caption’s quality based on specific criteria and provide a clear, concise critique followed
by structured evaluation scores. Ensure your response follows the exact format below and adheres to
the evaluation criteria.

Evaluation Process:

1. Critique First: Begin by generating a concise critique of the caption. Highlight both its strengths
and weaknesses in plain language. Focus on how well the caption describes the image and aligns
with the criteria.

2. Score Each Criterion: After the critique, provide a score for each evaluation criterion on a scale
from 1 to 5. Ensure the scores are consistent with the critique and avoid contradictions.

Evaluation Criteria:

Evaluate the caption based on the following eight dimensions:

1. Salient Content: Does the caption highlight the key elements and most important details of the
image?

2. Fine-Grained Details: Does the caption include specific attributes, such as textures, colors, or text
found in the image?

3. Relational Attributes: Does the caption describe interactions or spatial relationships between
elements in the image?

4. Peripheral Content: Does the caption include additional relevant details that enhance completeness
without being redundant?

5. Faithfulness: Does the caption accurately describe what is visible in the image without adding
imaginary or false information?

6. World Knowledge: Does the caption incorporate relevant world knowledge, such as context or
implied meaning, to enhance its coherence?

Scoring Rubric:

- **Poor (1)**: Fails to meet the criterion.

- **Fair (2)**: Partially meets the criterion but has noticeable shortcomings.

- **Average (3)**: Adequately meets the criterion but lacks depth or sophistication.

- **Good (4)**: Strongly aligns with the criterion and demonstrates nuanced understanding.

- **Excellent (5)**: Perfectly aligns with the criterion with high-quality descriptions.

Output Format: Follow this structured format exactly:

1. **Critique**: Write a concise critique (2-4 sentences), summarizing the strengths and weaknesses.
2. **Scores**: Provide a score for each dimension using the following format:

- Salient Content: Score = [[ Your Score]]

- Fine-Grained Details: Score = [[Your Score]]

- Relational Attributes: Score = [[Your Score]]

- Peripheral Content: Score = [[Your Score]]

- Faithfulness: Score = [[ Your Score]]

- World Knowledge: Score = [[Your Score]]

Important Notes:

- Focus solely on the caption’s alignment with the criteria and the image content.

- Be objective, impartial, and avoid introducing biases.

- Do not let the caption’s length, style, or structure influence your evaluation unless it directly affects
quality.

- Ensure your response is clear, concise, and follows the exact output format.

Input: I<image>| Caption: I<caption>l|

Output:
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R TRAINING EXAMPLES

Table 22: An example from the image captioning training dataset curated to elicit systematic
multimodal perception.

Image Captioning Data for Enhancing Systematic Multimodal Perception

Example with Detailed Description Caption Format

Prompt:

Please provide a vivid description of the image.

Caption:

The image features a person with long, red hair sitting cross-legged on a bed, playing an acoustic guitar. They
are wearing a dark blue shirt with rolled-up sleeves and black pants, appearing focused on the instrument. The
guitar is a classic wooden brown with light-colored frets. In front of them, an open laptop on a small table
or stand suggests they might be following music or a tutorial. The room exudes a warm ambiance with soft
lighting, and the colorful bedspread adds vibrancy. Decorations like string lights and wall hangings contribute to
a bohemian aesthetic, while a dresser with various personal items in the background adds a personal touch to the
space.

Example with our proposed Chain-of-Description Caption Format

Prompt:

Please provide a vivid description of the image. Describe the image step-by-step.

Caption:

Step 1: Extract salient content by identifying the key elements that define the image.

The image depicts a person with long, red hair sitting cross-legged on a bed, playing an acoustic guitar. The
person is dressed in a dark blue shirt with rolled-up sleeves and black pants. An open laptop is positioned on a
small table or stand in front of them, suggesting they might be using it for guidance, such as following music
sheets or a tutorial.

Step 2: Analyze detailed information, focusing on instance-level attributes such as low-level and fine-
grained details.

The guitar is a classic wooden brown with light-colored frets. The room has a warm ambiance, enhanced by soft
lighting. The bedspread is colorful, adding vibrancy to the scene. Decorations such as string lights and wall
hangings contribute to a bohemian aesthetic. In the background, there is a dresser with various personal items,
adding to the lived-in feel of the space.

Step 3: Consider relational-level attributes, analyzing interactions between elements and their spatial
organization.
The person is seated on the bed, with the guitar resting on their lap, indicating engagement with the instrument.
The laptop’s placement suggests it is being actively used, possibly for learning or playing along with music. The
string lights and wall hangings are positioned to create a cozy and artistic environment.

Step 4: Examine marginal or peripheral content to ensure no important information is missed.
The room’s decor, including the string lights and wall hangings, adds a personal touch and suggests a creative or
artistic personality. The dresser in the background, with its assortment of items, further personalizes the space.
Step 5: Organize all observations into a detailed, cohesive description.
The image features a person with long, red hair sitting cross-legged on a bed, playing an acoustic guitar. They
are wearing a dark blue shirt with rolled-up sleeves and black pants, appearing focused on the instrument. The
guitar is a classic wooden brown with light-colored frets. In front of them, an open laptop on a small table
or stand suggests they might be following music or a tutorial. The room exudes a warm ambiance with soft
lighting, and the colorful bedspread adds vibrancy. Decorations like string lights and wall hangings contribute to
a bohemian aesthetic, while a dresser with various personal items in the background adds a personal touch to the
space.
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Table 23: An example from the visual instruction-following training dataset designed to enhance
systematic multimodal reasoning.

Visual Instruction-Following Data for Enhancing Systematic Multimodal Reasoning
Example 1: Open-Ended Problem

Cl

D

4 i B

Example with Direct Answer Response Format
Question:
In the right triangle ABC, ZC = 90°, point D is a pointon AC, DE | AB atpoint £, AB = 10, BC' = 6,
DE = 2.4, then the length of AD is ()
A.12 B.3 C.4 D.5
Response:
C

Example with Chain-of-Thought Response Format
Question:
In the right triangle ABC, ZC = 90°, point D is a pointon AC, DE | AB atpoint £, AB = 10, BC' = 6,
DE = 2.4, then the length of AD is ()

A.12 B.3 C.4 D.5
Answer the question step by step.
Response:
Step 1: Clarify the task objective.
To solve this problem, I will use the properties of similar triangles and the known measurements provided.
By identifying similar triangles, I can set up a proportion to find the length of AD.
Step 2: Extract the crucial visual information from the image.
The image shows right triangle ABC' with ZC' = 90°. Point D is on segment AC, and DFE is perpendicular
to AB at point E. Measurements are given as AB = 10, BC' = 6, and DE = 2.4.
Step 3: Generate detailed reasoning to solve the task.
In the right triangle ABC, ZC = 90°. DF is perpendicular to AB, making ZAFED also equal to 90°.
Because both triangles ADE and ABC share angle A, triangle ADF is similar to triangle ABC by AA
similarity (Angle-Angle). Using the similarity of triangles ADE and ABC, we can set up the proportion:

AD _ AB
DE  BC
Substituting the known values:
AD _ 10
24 6
Simplifying the right side:
0_5
6 3
Thus, the proportion becomes:
AD 5
24 3
Solving for AD:
AD = 5 X 2.4 =
3

Step 4: Conclude the task with an answer.
C
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Table 24: An example from the visual instruction-following training dataset designed to enhance
systematic multimodal reasoning.

Visual Instruction-Following Data for Enhancing Systematic Multimodal Reasoning

Example 2: Multiple-Choice Problem

Example with Direct Answer Response Format
Question:
Why is the person in the air?
A. Grabbing a frisbee  B. Falling C. Angry D. Bouncing
Response:
A

Example with Chain-of-Thought Response Format
Question:
Why is he in the air?

A. grab frisbee B.falling C.angry D. bouncing
Answer the question step by step.
Response:
Step 1: Clarify the task objective.
I will analyze the image to determine why the person is in the air by examining relevant visual
clues. I'll then follow a reasoning process to arrive at the correct answer.
Step 2: Extract the crucial visual information from the image.
The image shows an indoor sports setting with a person in mid-air holding an object that resembles
a frisbee. The individual is wearing athletic gear, and there is a goal visible in the background,
suggesting a sports activity.
Step 3: Generate detailed reasoning to solve the task.
Considering the context and the object in hand, it appears the person is actively participating in
a sport involving a frisbee. The position of the person suggests they might be jumping to grab
or throw the frisbee. The presence of a goal could imply that the activity requires throwing the
frisbee accurately, which aligns with the action of jumping.
Step 4: Conclude the task with an answer.
A
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S LIMITATIONS

While our experimental results are promising, we consider these findings preliminary, as many aspects
of this field remain unexplored.

Dealing with Trade-Offs between Structured and Unstructured Data. We currently adopt two
structured methodologies to elicit high-quality multimodal data. While effective, these approaches
may serve as a “temporary shortcut” for enhancing model capabilities (We1 & Chungl 2024). To
encourage “describing or (implicit) thinking freely,” we also incorporate a mix of detailed descrip-
tions and direct answers. Future work may further explore the trade-offs between structured and
unstructured data.

Balancing Data Ratios and Formats in Self-Generated Pre-Training Data. Our study primarily
aims to establish a starting point for building next-generation foundation MLLMs through a fully
self-improving paradigm. As such, we did not focus on optimizing the balance of data types or
formats within the self-generated pre-training corpus. Nevertheless, Appendix [G|shows that varying
the proportions of caption data, visual instruction tuning data, and text-only prompts significantly
impacts SICOG’s performance. Furthermore, Table [I4]demonstrates that even when using the same
CoD data, different formatting yields different results. Future work may investigate how balancing
data ratios and formats can further optimize self-improvement.

Leveraging More Advanced Quality Evaluation Methods. We employ a simple but effective
self-consistency mechanism to select high-quality outputs for unlabeled images, image—question pairs,
and text-only prompts, based on semantic coherence. Future work may benefit from incorporating
more advanced quality evaluation methods to further enhance data selection.
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