
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPIKING DECISION MAKING BOTTLENECK FOR OF-
FLINE REINFORCEMENT LEARNING WITH SPIKING
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs), with their event-driven low-power character-
istics, provide key technological support in energy-constrained embodied intel-
ligence applications, particularly in offline Reinforcement Learning (RL) tasks.
However, offline RL, which relies solely on precollected data for policy training
and cannot interact with the environment in real time, is limited by the inherent re-
dundancy in offline data. This limits the model’s ability to learn compact and gen-
eralizable representations, leading to degraded policy performance and reduced
robustness. To address this issue, we propose the Spiking Decision Making Bot-
tleneck (SDMB), a novel information compression framework designed for offline
RL based on SNNs. The framework aims to guide the network in learning abstract
and relevant trajectory representations for efficient policy learning. Specifically,
it minimizes the mutual information between the input and latent representations,
thereby suppressing input redundancy and promoting sparse, decision-relevant ac-
tivations. To prevent over-compression and the consequent loss of critical behav-
ioral information, SDMB further incorporates the principle of maximum entropy
to ensure sufficient informational diversity is preserved during policy optimiza-
tion. Experimental results on D4RL benchmark tasks validate the effectiveness
of SDMB in extracting key spiking features in offline RL settings. Compared
to both SNNs and Artificial Neural Networks (ANNs) methods,the performance
of SDMB surpasses the state-of-the-art and achieves lower energy consumption,
demonstrating dual advantages in energy efficiency and strategy generalization.

1 INTRODUCTION

Offline reinforcement learning (RL) algorithms hold great potential—transforming vast datasets into
powerful decision engines. Efficient offline RL methods can extract the most useful strategies from
precollected behavioral datasets Levine et al. (2020), driving the automation of decision-making in
diverse fields such as healthcare, education, and robotics. However, despite significant progress in
Artificial Neural Networks (ANNs)-based offline RL methods, such as conditional state modeling
Chen et al. (2021); Janner et al. (2021) and value function approximation Kostrikov et al. (2021);
Kumar et al. (2020), they often come with high computational and energy consumption costs, mak-
ing them difficult to adopt in energy-constrained embodied intelligent applications.

As the third generation of neural networks Maass (1997), Spiking Neural Networks (SNNs) feature
sparse, event-driven computations, where spikes are triggered only when a neuron’s membrane po-
tential reaches a threshold, making SNNs significantly more energy-efficient than ANNs and an ideal
choice for embodied intelligent applications. Recent research has applied SNNs in Transformer-
based architectures for tasks like image classification or object detection Deng et al. (2022); Fang
et al. (2021); Guo et al. (2023); Kumar et al. (2022); Luo et al. (2024); Vaswani et al. (2017), yet
offline reinforcement learning based on SNNs Peng et al. (2019); Tan et al. (2021); Huang et al.
(2025) is still in its early exploratory stages.

Applying SNNs to offline RL presents unique challenges. One key issue is how to learn a more
compact decision representation from offline data to enhance the robustness and generalization of
the SNN model. During offline RL, precollected data inevitably contains noise generated by the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

...

Return

action

state

Return

action

state···

···

···

···

···

···

1l N
s
− +

1
ˆ
l N
R

− +

l N
a

−

l
s

ˆ
l
R

1l
a

−

···

···

···

1l N
s
− +

1
ˆ
l N
R

− +

l N
a

−

l
s

ˆ
l
R

1l
a

−

min ([,];)t t tI S A Z

max ()tH Z

Rényi-α

NN #1

NN #2

NN #3

NN #m

Index

...

F
R

NN #1

NN #2

NN #3

NN #m

Index

...

F
RE

m
b
ed

d
in

g
E

m
b
ed

d
in

g

P
red

ictio
n

 H
ead

···1l̂ N
a

− + l̂
a···1l̂ N

a
− + l̂

a

...

max (;)
t l

I Z R

redundant
noisy

Figure 1: Spiking Decision Making Bottleneck Framework Diagram.This figure shows the overall
flow of the SDMB strategy based on the SNNs reinforcement learning framework. The model takes
the state s, reward Rt, and action sequence at as inputs, and encodes them through a network layer
to form the representation Zt in the SNNs layer. The spike firing rate (FR) of the neural layer is used
to estimate the latent representation Zt. In the model, the information compression is performed
based on the Rényi-α entropy, which aims to minimize the mutual information between the input
information and the latent representation I ([St, At];Zt) in order to remove noise. At the same time,
to optimize the strategy’s performance in terms of maximizing task-related information, the model
maximizes the mutual information I (Zt;Rt) between the latent representation Zt and reward Rt.
Additionally, SDMB introduces the max entropy term maxH(Zt), which helps mitigate the loss of
information due to compression and improves the robustness of the latent representation. Finally,
the latent representation is used to predict the action sequence at, which is output by the model. This
framework combines the spiking neural network with reinforcement learning principles, providing
insights into the interpretability and explainability of the model’s decision-making process.

inherent randomness of the environment, sensor errors, uncertainty in behavior strategies, and data
processing errors. On the other hand, due to the inherent similarity of state-action spaces, temporal
correlations, limitations or preferences in behavior strategy exploration, and data collection biases,
sampled data often contains redundant information. Since the model uses precollected data for
policy training without real-time environmental interaction to correct data, reduce noise, and elim-
inate redundant information, existing SNN-based offline RL methods, relying solely on the neural
network architecture, struggle to learn a more compact decision representation from offline data
containing noise and redundancy, leading to limitations in model robustness and generalization.

To address this, in this study, we propose the Spiking Decision Making Bottleneck (SDMB), an
SNNs-based information compression framework specifically tailored for offline reinforcement
learning. As illustrated in Figure 1, in offline reinforcement learning, the trajectories generated by
the behavior policy consist of states, actions, and rewards. Within the SDMB framework, we have
constructed a Rényi-α entropy estimator using pulse frequency encoding. By adjusting the value
of α, we compress the mutual information between behavior trajectories and their latent represen-
tations, effectively suppressing the impact of noise and redundant information in the offline data
on the encoding distribution. This allows the model to more easily learn compact representations
from the behavior trajectories. Specifically, SDMB estimates the Rényi-α entropy of the state-action
representations through statistical analysis of pulse frequencies in a low-dimensional space, and op-
timizes this entropy value to regulate the expressive power of the latent variables. This mechanism
not only enhances the stability of training but also significantly improves the policy generalization
performance in the presence of noise. Additionally, to enhance the bottleneck layer’s ability to
express useful task information, we introduce a maximum entropy regularization mechanism into
the information compression objective, encouraging latent representations to retain rich informa-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tion while compressing redundancy. The maximum entropy alleviates the information loss caused
by excessive compression, allowing SDMB to achieve an optimal balance between robustness and
expressiveness.

We summarize our contributions as follows: 1) We propose the SDMB, which is the first application
of the information bottleneck principle to offline reinforcement learning based on SNNs. This ap-
proach addresses the issue of limited model generalization due to noise and redundant information,
providing a new possibility for learning compact and relevant trajectory representations from offline
data. 2) To mitigate the information loss caused by excessive compression, we introduce the princi-
ple of maximum entropy, ensuring the preservation of sufficient informational diversity during the
compression process. This allows for a balanced trade-off between the compactness and expressive-
ness of the feature representations. 3) Experimental results on the D4RL benchmark demonstrate
that, under the same multi-task setup, our method outperforms the current state-of-the-art by 15.0%,
and shows exceptional performance in noisy environments. Thanks to more efficient feature extrac-
tion, the proposed method also reduces theoretical energy consumption by 49.7%.

2 RELATED WORKS

2.1 OFFLINE REINFORCEMENT LEARNING

Offline RL is a variant of reinforcement learning where an agent learns from pre-collected historical
data Levine et al. (2020), rather than interacting with the environment in real-time during training.
Unlike traditional reinforcement learning methods, which typically require continuous interaction
with the environment to receive feedback and improve, Offline RL relies on fixed datasets that in-
clude states, actions, and associated rewards. Additionally, Offline RL faces challenges related to
data quality and coverage. Since historical data may contain noise or be incomplete, the agent may
learn incorrect behaviors from suboptimal data. In offline reinforcement learning, early methods
such as Behavior Cloning methods Torabi et al. (2018); Peng et al. (2019); Ashvin et al. (2020)
treat offline data as supervised learning samples, directly learning the mapping from states to ac-
tions. However, such methods cannot surpass the behavior policy and are sensitive to suboptimal
data. Subsequently, pessimistic value-based methods such as Conservative Q-Learning Kumar et al.
(2020; 2022); Kostrikov et al. (2019) were introduced, which incorporate pessimistic bias in the Q-
value estimates to suppress optimistic estimates for unseen state-action pairs. Recent Transformer-
based methods Decision Transformer Chen et al. (2021); Trajectory Transformer Bucker et al.
(2022) have transformed offline reinforcement learning into a Conditional Sequence Modeling prob-
lem Zhang et al. (2023), using Transformer to predict future actions, reducing the complexity of
value function-guided optimization and enhancing model generalization. Other approaches lever-
age inverse reinforcement learning Kostrikov et al. (2021); IQ-Learn Garg et al. (2021) to infer the
reward function and optimize the policy to maximize that reward.

2.2 SNNS METHODS FOR OFFLINE RL

Offline RL methods based on SNNs is a novel approach that integrates biologically inspired neural
computing models with reinforcement learning techniques. In the Offline RL framework based on
SNNs, SNNs are used to model the states, actions, and rewards from historical data. During the of-
fline learning process, SNNs can gradually learn policies by extracting features from historical data
without the need for real-time exploration. Currently, the vast majority of mainstream offline rein-
forcement learning methods are based on ANNs (include citations from the previous paragraph). Un-
like traditional ANNs, Spiking Neural Networks, as the third generation of neural networks Maass
(1997), achieve low-power operation through sparse, event-driven computation, making them partic-
ularly suitable for energy-constrained embodied learning scenarios. However, current SNNs-based
offline reinforcement learning is still in its preliminary exploratory stage, with existing research
mainly focusing on two paths: one approach first executes traditional offline RL strategies on ANNs
architectures, then converts them into equivalent SNNs for performance inference deployment Peng
et al. (2019); Tan et al. (2021). The other approach involves efficient trajectory modeling and pol-
icy learning through an SNNs model within the Decision Transformer (DT) framework, without
introducing any additional value function-based regularization terms Huang et al. (2025). Although
these methods can achieve low-power inference processes, the limited offline data, as well as in-
herent noise and redundant information in the data, constrain the generalization ability of SNNs

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

models. To address this issue, this study employs the information bottleneck principle to extract a
more compact representation from offline data for decision-making, thereby enhancing the model’s
robustness and generalization.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

SNNs are a class of neural network models that mimic biological neural systems, characterized by
information transmission through spikes rather than continuous signals, as seen in traditional neural
networks. In SNNs, neurons generate spikes upon receiving external stimuli, and when the mem-
brane potential reaches a certain threshold, a spike is emitted, which is then transmitted to other
neurons through synaptic connections. Unlike traditional artificial neural networks, SNNs rely not
only on the intensity of the input signal but also heavily on the timing and temporal differences of
the signals. The spike emission of neurons is discrete and event-driven, making SNNs particularly
efficient in processing temporal information and tasks driven by events, such as dynamic perception
and time-series prediction. Additionally, SNNs are known for their low power consumption since
computation only occurs when neurons emit spikes, making them especially suitable for embedded
systems and neuromorphic computing platforms. Despite the significant advantages of SNNs in sim-
ulating biological neural systems, they still face substantial challenges in training and optimization
compared to traditional deep learning networks. Due to their nonlinearity and temporal nature, the
training process of SNNs is more complex. To improve the trainability of SNNs, researchers have
proposed various methods based on spike coding, Spike-Timing-Dependent Plasticity (STDP), and
other techniques, gradually advancing the application of SNNs in fields such as image processing,
speech recognition, and robotic control.In the spiking neuron layer, we use the Leaky Integrate and
Fire (LIF) model, which is a classical model for the membrane potential dynamics and spike gener-
ation mechanism of neurons. This model assumes that the membrane potential of a neuron increases
over time due to incoming current and spikes once the membrane potential exceeds a threshold. The
update equation for the membrane potential is given by:

U t = Ht−1 + It (1)

where Ht−1 is the membrane potential at the previous time step and It is the input current at the
current time step. This equation describes the update process of the membrane potential.

St = Hea(U t − Uth) (2)

where St is the condition for spiking at time step t, and Hea(·) is a Heaviside function. When U t

exceeds the threshold Uth, the neuron fires, and St = 1; otherwise, St = 0.

Ht = UresetS
t + γU t(1− St) (3)

If the neuron spikes, i.e., St = 1, the membrane potential is reset to Ureset; otherwise, the membrane
potential decays based on the parameter γ.

3.2 OFFLINE RL

Reinforcement learning is often based on Markov decision processes (MDP), which provide a formal
framework to describe reinforcement learning problems. An MDP is defined as a tuple (S,A, P,R),
where S is the state space, A is the action space, P (s′|s, a) is the state transition probability, rep-
resenting the probability of moving from state s to state s′ when action a is taken, and R(s, a) is
the reward function, representing the reward obtained by taking action a in state s. In reinforce-
ment learning, the agent’s goal is to learn an optimal policy π that maximizes the expected reward
E[R(τ)], where τ represents a trajectory. The expected cumulative reward is defined as:

E[R(τ)] = E

[
T−1∑
t=0

γtrt

]
(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where rt is the reward obtained at time step t, γ is the discount factor, and T is the length of the
trajectory. The offline reinforcement learning dataset D is given by:

D = { (s0, a0, r0, s1), (s1, a1, r1, s2), . . . ,
(st−1, at−1, rt−1, st)

(5)

which contains the states and actions generated by the policy πB .

4 METHODS

In this study, we propose an offline reinforcement learning strategy based on SNNs — the Spiking
Decision-Making Bottleneck (SDMB) — aimed at enhancing the extraction of key spike features
during the decision-making process. This method combines the principles of Information Bottle-
neck and maximum entropy regularization, utilizing Renyi-α entropy to compress redundant infor-
mation, thereby enhancing the model’s robustness and generalization capability by learning compact
representations from offline data. The methodological framework is provided in the Appendix.

4.1 SDMB: MAIN IDEA AND OBJECTIVE

We first briefly introduce the Information Bottleneck (IB) principle. In supervised learning, the goal
of the IB principle is to learn a compact representation Z given input data X and target variable
Y , such that Z preserves the information relevant to Y while compressing irrelevant information as
much as possible.

In offline reinforcement learning, since interaction with the environment is not possible, the training
data often contains a large amount of redundant information or noise, which severely affects the
robustness and generalization ability of SNNs models. Therefore, this paper proposes SDMB, which
introduces the IB principle to build a latent representation Z from noisy offline data that contains
redundant information, enabling the extraction of decision-relevant features.

The objective of SDMB is to learn the most compact latent representation Z from input variable
X , while preserving the information relevant to the target variable Y . Considering both objectives
and introducing a Lagrange multiplier β, the objective function can be written as: max I(Z;Y) -
βI(Z;X) ,where I(Z;Y) represents the mutual information between the latent representation Z
and the target variable Y , and I(Z;X) is the mutual information between the latent representation
Z and the input variable X .

4.2 IMPLEMENTATION OF SDMB IN SNN-BASED OFFLINE RL

In the reinforcement learning task based on SNNs, where an MDP is defined by the tuple
(S,A, P,R). Therefore, we treat the state-action pair (St, At) as the input variables to SDMB,
and the reward variable Rt as the target variable Y . The objective function of SDMB is as follows:

max I(Zt;Y)− βI ([St, At] ;Zt) (6)

In SNNs, the activity of neurons is often represented by the spike frequency. The firing rate of neu-
rons in a given time window reflects the degree of response of the neurons to the input stimulus. In
reinforcement learning and decision-making models, the important information regarding neuronal
activity can also serve as a key optimization indicator for the model.

In our model, the calculation of firing rates is based on the number of spikes of each neuron at
each time step. Specifically, we calculate the number of spikes from neurons at a given time step
and normalize it by the time steps to obtain the average firing rate. This can be mathematically
expressed as:

rt =
1

T

N∑
i=1

δ(ti − t) (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where rt represents the firing rate within a time step, T is the number of time steps, N is the number
of neurons in the time step, and δ(ti − t) is an indicator function that specifies whether a spike
occurred at time step t.

Through this method, we are able to evaluate the activity of neurons more accurately and further treat
the processing as a base for optimization. The firing rate of neurons not only helps correct the rules
of the neural network but can also enhance the decision-making process with efficient compression
and information transmission.

To measure the information between the state-action pair (St, At) and the encoded representation
rt, SDMB introduces the Rényi-α entropy as the compression indicator, which is defined as:

Iα ([St, At] ; rt) =
1

α− 1
logE

[(
p(rt|St, At)

p(rt)

)α]
(8)

where α is a parameter for controlling the entropy. By minimizing this entropy, we effectively con-
trol the compression degree of the input information. By varying the value of α, the sensitivity of
the entropy measure can be adjusted. When α approaches 1, the Rényi-α entropy degenerates to
the classic Shannon entropy. When α is less than 1, the entropy measure becomes more sensitive to
low-probability events, whereas when α is greater than 1, the sensitivity to high-probability events
increases. Therefore, Rényi-α entropy provides a more flexible information measure than Shan-
non entropy, which can be adjusted based on specific application needs.This entropy measure has
widespread applications in various fields, including data compression, image processing, and infor-
mation transmission. In complex systems and machine learning, Rényi-α entropy is often used to
assess the uncertainty of a system and to analyze the properties of high-dimensional and sparse data.
By selecting an appropriate α value, Rényi-α entropy offers a more adaptive measure than Shannon
entropy, especially when dealing with extreme data distributions, where it performs better.

Maximum Entropy is a method widely used in statistics, information theory, and physics to infer
distributions under conditions of incomplete information. The basic idea is that, under certain con-
ditions, we select the probability distribution that maximizes the entropy. The more uncertain a
system is, the greater its entropy, and thus the maximum entropy principle suggests that the most
appropriate probability distribution is one that maximizes uncertainty under the given constraints.
Mathematically, maximum entropy is achieved by selecting the probability distribution that maxi-
mizes the entropy function, usually subject to known constraints such as expected values or marginal
distributions.Maximum entropy methods have broad applications in various fields. In statistical in-
ference, they are commonly used to infer the most appropriate probability distribution, especially
when there is insufficient prior knowledge, thus avoiding biases in the data distribution. In natu-
ral language processing (NLP), maximum entropy models, such as the maximum entropy Markov
model (MEMM), are widely used for classification tasks. In machine learning, maximum entropy
methods are used to construct probabilistic models that solve optimization problems by maximiz-
ing entropy. Due to its lack of bias and flexibility, the maximum entropy principle has become a
powerful tool, especially in situations with incomplete information.

To avoid over-compression leading to loss of relevant task-related information, SDMB also intro-
duces the maximum entropy regularization term to maintain diversity and generalization ability:

Lentropy = −λH(rt) (9)

where the entropy H(rt) is given by:

H(rt) = −
∫

p(rt) log p(rt) drt (10)

Finally, the loss function for SDMB is as follows:

LSDMB =I ([St, At] ;Zt)− βI (Zt;Rt)− λH(Zt)

=Ep(St,At) [log p(Zt| [St, At])]

−βEp(zt) [log p(Rt|Zt)]− λH(Zt)

(11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on MuJoCo.The strengthened digits denote the highest scores.

MuJoCo Tasks BC CQL DT FCNet SpikeGPT SpikeBert PSSA SDMB
halfcheetah-m-e 35.8 62.4 86.8±1.3 91.2±0.3 23.6±4.5 24.3±6.0 87.5±0.3 87.9±0.0
walker2d-m-e 6.4 98.7 108.1±0.2 108.8±0.1 22.6±4.8 92.5±22.4 108.7±0.1 109.0±0.0
hopper-m-e 111.9 111.0 107.6±1.8 110.5±0.5 32.7±5.4 84.1±8.8 91.5±0.2 98.7±0.3

halfcheetah-m 36.1 44.4 42.6±0.1 42.9±0.4 26.9±0.8 20.0±3.5 42.8±0.3 42.8±0.0
walker2d-m 6.6 79.2 74.0±1.4 75.2±0.5 16.4±10.2 22.9±10.4 75.2±1.4 78.3±0.1
hopper-m 29.0 58.0 67.6±1.0 57.8±6.0 25.1±6.4 31.4±4.9 58.3±4.3 63.5±28.4

halfcheetah-m-r 38.4 46.2 36.6±0.8 39.8±0.8 21.8±2.0 32.2±8.0 38.8±0.7 38.4±0.4
walker2d-m-r 11.3 26.7 66.6±3.0 63.5±7.5 16.7±3.3 21.2±6.4 71.7±3.6 73.0±0.9
hopper-m-r 11.8 48.6 82.7±7.0 85.8±1.7 51.5±7.1 30.1±8.6 86.3±0.3 87.3±24.1

MuJoCo mean 31.9 63.9 74.7 75.1 26.4 39.9 73.8 75.4

where p(rt|St, At) is the probability distribution of the pulse rate matrix given the state-action pair,
and p(Rt|rt) is the probability of the reward given the encoded representation.

The loss function combines the information bottleneck framework, aiming for maximum compres-
sion and regularization of the input information. The goal is to effectively balance the accuracy of
reward prediction and the diversity of variations in the model, thereby facilitating efficient learning
through the use of off-line data.

In order to measure the model’s generalization ability, we introduce the generalization bound. The
following equation provides a measure for the maximum deviation between the true model and the
trained model based on the training data:

L(h)− L̂s(h) ≤ c ·

√
2Ha (Zt; [St, At]) + 2H(Zt) + log 1

δ

n
(12)

In the equation above, the left-hand side represents the generalization error, i.e., the deviation be-
tween the model on actual data and the loss on the sample set. The right-hand side shows the bound
on this error, including terms that account for the information and the diversity of the sample size n,
ensuring that the generalization error is controlled.

In the previous analysis, we introduced the generalization error bound for the model’s generalization
ability. This theoretical result provides a measure for the model’s ability to generalize to unseen data.
Through this equation, we quantify the gap between the model’s performance on training data and
its performance on test data, and the potential for generalization error.

The key factors influencing generalization include model complexity, the diversity of the data, the
representation of data, and the sample size. However, improvements in generalization are not only
based on theoretical error bounds, but also closely related to the amount of data required for training.
Thus, we proceed to derive a further bound for the generalization ability of the model, which helps
ensure that the model’s generalization ability remains within a given range of error. This is achieved
by considering factors such as mutual information and the sample size.

By applying this framework, we can measure the impact of different factors (such as mutual infor-
mation, and maximum entropy) on model generalization. To estimate this model’s generalization
ability, we use the following bound based on the loss function:

n ≥ 2L2

ϵ2
(LSDMB (Zt; [St, At]) + βI (Zt;Rt)

+ (λ+ 1)H(Zt)

(13)

In this case, L is the Lipschitz constant in the hypothesis space, LSDMB is the SDMB loss function,
and H(Zt) is the entropy regularization term. β and λ are the hyperparameters used to balance the
compression and prediction objectives.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results on Adroit.The strengthened digits denote the highest scores.

Adroit Tasks BC CQL DT FCNet SpikeGPT SpikeBert PSSA SDMB
pen-e 85.1 107.0 110.4±20.9 108.0±11.3 30.5±10.3 46.2±19.5 122.0±17.8 129.1±0.5
door-e 34.9 101.5 95.5±5.7 102.9±2.9 65.3±16.9 96.4±4.6 105.2±0.1 105.4±0.0

hammer-e 125.6 86.7 89.7±24.6 121.1±6.1 51.1±18.7 71.3±16.5 127.2±0.3 127.2±0.8
relocate-e 101.3 95.0 15.3±3.6 50.0±6.0 0.7±0.9 0.3±0.5 108.4±2.2 106.6±0.6

pen-h 34.4 37.5 -0.2±1.8 57.7±11.1 29.8±11.7 20.0±16.7 75.7±25.1 89.8±5.6
door-h 0.5 9.9 0.1±0.0 0.4±0.5 0.1±0.0 0.2±0.0 0.2±0.0 21.9±29.3

hammer-h 1.5 4.4 0.3±0.0 1.2±0.0 0.3±0.0 0.3±0.0 0.2±0.0 2.7±1.3
relocate-h 0.0 0.2 0.2±0.2 0.0±0.0 0.1±0.0 0.0±0.0 0.0±0.0 0.5±0.1

pen-c 56.9 39.2 22.7±17.1 50.4±24.1 17.0±22.0 17.6±29.0 44.8±14.7 73.3±12.2
door-c -0.1 0.4 0.1±0.0 -0.2±0.0 0.2±0.0 0.2±0.0 0.0±0.0 11.6±0.7

hammer-c 0.8 2.1 0.3±0.0 0.2±0.0 0.3±0.0 0.3±0.5 0.2±0.0 2.7±1.3
relocate-c -0.1 -0.1 -0.3±0.0 -0.2±0.0 0.1±0.0 0.0±0.5 -0.2±0.0 0.0±0.0

Adroit Mean 36.7 40.3 27.8 41.0 16.3 21.1 48.6 55.9

Table 3: Ablation Study

Methods Door-e Door-h Door-c Average
SDMB 105.5 28.2 12.1 48.6
SDMB w.o.
Lentropy

104.9 15.3 7.8 42.7

PSSA 105.2 0.2 0.0 35.1

Table 4: Energy consumption of vari-
ous components of the model (µJ) on
hopper-medium-replay dataset.

DT PSSA SDMB
Embedding 0.9 0.9 0.9
Self-Attention 168.2 31.0 15.7
MLP 241.2 56.7 31.5
Prediction Head 0.2 0.2 0.2
Total 410.5 96.1 48.3

5 EXPERIMENTS

In this section, we evaluate the SDMB using the D4RL benchmark Fu et al. (2020) for a com-
prehensive assessment and report normalized scores following the protocol Fu et al. (2020) in ,
where a score of 100 represents expert-level performance, and a score of 0 reflects random agent
performance. For specific experimental settings, refer to the Appendix. We compare SDMB with
the following approaches: (1) Behavior Cloning Torabi et al. (2018). This method employs ex-
pert demonstrations to train the intelligent agent. (2) Conservative Learning Kumar et al. (2019).
This method ensures stability and avoids overfitting through robust learning techniques, optimizing
Q-values. (3) The Transformer method Chen et al. (2021), which uses sequence-to-sequence learn-
ing and applies Transformer architecture for sequence modeling in reinforcement learning. (4) The
deep control network model Tan et al. (2024), which incorporates deep learning advantages such
as backpropagation and frequency analysis for control tasks. It offers an effective control strategy,
especially when dealing with complex sequences and periodic tasks. Additionally, there are mod-
els based on ANN, such as SpikeGPT Zhu et al. (2023), and SpikeBERT Lv et al. (2023), which
combine the benefits of ANNs and SNNs models.

Finally, we discuss the current SOTA method, DSFormer Huang et al. (2025), which designs a
DT framework to build a model using position self-attention (PSSA) for capturing dependencies
between the sequence order and positional features necessary for learning tasks.

5.1 THE MAIN RESULTS

Results on MuJoCo We evaluate the performance of all methods on HalfCheetah, Hopper, and
Walker2d, as shown in Table 1, which presents the experimental results demonstrating the superior-
ity of SDMB. In this table, ‘m’ stands for ‘medium’; ‘m-r’ stands for ‘medium-replay’; ‘m-e’ stands
for ‘mediumexpert’, which combines both the medium and expert policies. SDMB ranks second in
all subtasks and achieves the highest average score. This is because MuJoCo tasks typically have
a high-dimensional action space, with large amounts of noise and unreliable information, while
SDMB can reduce irrelevant information from the action space, resulting in more efficient action

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

selection. Further analysis is provided in the ablation study. The poor performance of other SNNs
methods is due to the shortcut connection in SpikeBERT that introduces integer values, disrupting
residual propagation and affecting spike characteristics, while SpikeGPT, designed for NLP, suffers
from the limited data in offline RL.

Results on Adroit To evaluate the model’s performance in handling precise manipulation and com-
plex interactions, we tested all methods on four tasks in the Adroit dataset: Pen, Door, Hammer,
and Relocate. The experimental results are shown in Table 2, where ‘e’ stands for ‘expert’, ‘h’
stands for ‘human’, and ‘c’ stands for ‘cloned’, representing the respective policies. The results
show that SDMB significantly outperforms other ANN and SNNs methods, surpassing human pol-
icy strategies and behavior cloning strategies. This is because, compared to expert policy strategies,
the high-dimensional action space generated by human policy strategies contains more noisy infor-
mation, and the SDMB framework effectively reduces irrelevant information, aiding the model in
capturing the key behaviors of action strategies. Further analysis is provided in the ablation study.

5.2 ABLATION

To investigate the roles of various components of the loss function, we compare SDMB and the
SDMB w.o. the largest entropy constraint Lentropy on the Adroit dataset’s ’Door’ task. This helps
to avoid random behavior due to the entropy constraint.In the experiment, we use the same random
seed (seed=2025). The results, shown in Table 3, indicate that adding the largest entropy constraint
improves the accuracy of each sub-task. This means that the largest entropy constraint prevents
overfitting and ensures that SDMB retains a balanced amount of information during the strategy
optimization process.

5.3 POWER CONSUMPTION

We begin by analyzing the computational power consumption of the SDMB model in SNNs and
comparing it with the performance of both ANNs and SNNs models. First, we calculate the FLOPs
based on the spike firing rates of individual neurons in each layer and then aggregate these to com-
pute the total computational cost of the entire model. The final FLOP and power consumption re-
sults are presented in Table 4. The results show that the SDMB model exhibits lower computational
power consumption compared to the ANN-based DT model. When compared to the SNN-based
PSSA, SDMB demonstrates a reduction in computational power consumption by 49.7%. This indi-
cates that SASIB effectively compresses input data, thereby improving the energy efficiency of the
model.

6 CONCLUSION

This research proposes a strategy called SDMB, which aims to address the challenge of offline learn-
ing in SNNs. By constructing an estimator based on Rényi- entropy for mutual information, SDMB
reduces the bottleneck caused by noise and irrelevant information in the compressed data, allowing
the model to efficiently perform strategy learning. Meanwhile, SDMB introduces the largest possi-
ble filter to prevent excessive compression and the resulting loss of key information, ensuring that the
strategy optimization process retains the most relevant information, which is essential for maintain-
ing the model’s dynamic equilibrium. Experimental results show that SDMB significantly improves
model performance compared to previous methods, while also significantly reducing computational
complexity. This work highlights the new potential applications of SNNs in areas requiring high
computational efficiency, demonstrating a new approach for extracting relevant features efficiently.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Nair Ashvin, Dalal Murtaza, Gupta Abhishek, and L Sergey. Accelerating online reinforcement
learning with offline datasets. CoRR, vol. abs/2006.09359, 2020.

Arthur Bucker, Luis Figueredo, Sami Haddadin, Ashish Kapoor, Shuang Ma, Sai Vemprala, and
Rogerio Bonatti. Latte: Language trajectory transformer. arXiv preprint arXiv:2208.02918, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Yufei Guo, Xiaode Liu, Yuanpei Chen, Liwen Zhang, Weihang Peng, Yuhan Zhang, Xuhui Huang,
and Zhe Ma. Rmp-loss: Regularizing membrane potential distribution for spiking neural net-
works. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
17391–17401, 2023.

Wei Huang, Qinying Gu, and Nanyang Ye. Decision spikeformer: Spike-driven transformer for
decision making. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 19241–19250, 2025.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. arXiv preprint arXiv:1912.05032, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. arXiv preprint arXiv:2211.15144,
2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. In
European Conference on Computer Vision, pp. 253–272. Springer, 2024.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge dis-
tillation. arXiv preprint arXiv:2308.15122, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Hengkai Tan, Songming Liu, Kai Ma, Chengyang Ying, Xingxing Zhang, Hang Su, and Jun Zhu.
Fourier controller networks for real-time decision-making in embodied learning. arXiv preprint
arXiv:2405.19885, 2024.

Weihao Tan, Devdhar Patel, and Robert Kozma. Strategy and benchmark for converting deep q-
networks to event-driven spiking neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 9816–9824, 2021.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen, Bowen Wang, Yongzhe Chang, Xueqian Wang,
Bo Yuan, and Dacheng Tao. Saformer: A conditional sequence modeling approach to offline safe
reinforcement learning. arXiv preprint arXiv:2301.12203, 2023.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

A APPENDIX

A.1 ETHICS STATEMENT

This paper focuses on the study of Spiking Neural Networks (SNNs) with the aim of improving the
compactness of offline data extraction and optimizing the generalization and robustness of SNNs
models. We ensure that all research adheres to the principles outlined in the ICLR Code of Ethics
and does not involve any violations of ethical guidelines.

A.2 REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of the results presented in this paper. In the
appendix, we provide details of the experimental setup, as well as the corresponding pseudocode for
the methods. Additionally, we will release the full code of this work on GitHub once the paper is
publicly published, allowing the community to reproduce the results.

A.3 LARGE LANGUAGE MODELS USAGE STATEMENT

The present study was conducted without the use of any Large Language Models (LLMs) or LLM-
based tools throughout its entire process, including conceptualization, experimental design, data
processing, result analysis, and manuscript preparation. All text composition, figure generation,
and analytical work were independently performed by the authors, relying solely on conventional
academic methodologies and human expertise. The findings presented herein represent the original
contributions of the research team, without reliance on generative AI systems.

A.4 PSEUDOCODE

This pseudocode describes the training process of the SDMB in offline reinforcement learning.
SDMB is an information compression framework aimed at optimizing the learning process of neu-
ral networks by minimizing the redundancy between input data and latent representations, thereby

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

improving the efficiency and generalization capability of policy learning. The training process pri-
marily consists of two stages: the forward pass and the backward pass, each of which involves
updating the network weights and microscopic parameters.

Algorithm 1 Training Process of SDMB

1: Input: Event data (X); label (Y)
2: Output: Updated network weights (W); updated microscopic parameters (λ′, β′)
3: Parameters: SNN neuron parameters (λ′, β′); SASIB hyperparameters (λ, β); batch size (B);

4: training epochs (TE); learning rate (r); network depth (H); neuronal membrane potential
(V) and spike output (O)

5: Forward Pass:
6: 1: Initialize model and optimizer
7: 2: Preprocess input data to obtain batch data
8: for i← 1 to TE do
9: Fetch a mini-batch B

10: for h← 1 to H − 1 do
11: Calculate Vh and Oh

12: end for
13: Calculate spike rates and trajectory representation
14: Calculate Vh and Oh

15: Calculate the loss Lloss = SASIB(I, Lflow(Y, Ŷ), β,H(T))
16: end for
17: Backward Pass:
18: for h← H to 1 do
19: if h ̸= H then
20: Update the network weights
21: ∆Wh =

∑ ∂Lloss
∂Wh

22: Wh ←Wh − r∆Wh

23: Update the microscopic parameters
24: ∆λh =

∑ ∂Lloss
∂λh

25: λh ← λh − r∆λh

26: ∆βh =
∑ ∂Lloss

∂βh

27: βh ← βh − r∆βh

28: else
29: Update the network weights
30: ∆Wh =

∑ ∂Lloss
∂Wh

31: Wh ←Wh − r∆Wh

32: end if
33: end for
34: Helper Functions:
35: Calculate Spiking Rate:
36: spiking rate = 1

T

∑N
i=1 δ(ti − t)

37: Calculate Maximum Entropy:
38: H(Z) = −

∑
ρ(z) log p(z)

39: Mutual Information Calculation:
40: I(Zt, Y) = max (I(Zt, Y)− β · I(St, At, Zt))

First, the training process begins by initializing the model and optimizer. The model initialization
phase includes initializing the network weights (W) and microscopic parameters (λ′, β′), as well as
setting hyperparameters such as the learning rate (r) and network depth (H). During each training
epoch, the forward pass begins by fetching a mini-batch of data, followed by computations for
each layer’s neurons to obtain membrane potentials (Vh) and spike outputs (Oh). Next, the spiking
rates for each neuron layer are computed, and the SDMB framework is used to calculate the mutual
information loss (Iloss) and the maximum entropy loss (max entropy loss). The SDMB loss function

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

combines mutual information minimization and maximum entropy regularization, yielding the total
loss (Lloss), which provides the basis for parameter updates during the backward pass.

During the backward pass, the network weights are updated starting from the final layer. If the
current layer is not the final layer (h ̸= H), the network weights (Wh) and microscopic parameters
(λh, βh) for that layer are updated. The network weights are updated using gradient descent by
calculating the gradient of the loss function with respect to the weights. Similarly, the microscopic
parameters are updated using the same method. Once the backward pass is complete, the network
weights and microscopic parameters are updated.

At the end of each training epoch, the model continues to update the network weights until the pre-
determined number of training epochs (TE) is reached. This iterative process enables the network
to progressively optimize its learning, ensuring better generalization and low energy consumption in
offline reinforcement learning environments.

Additionally, the pseudocode includes helper functions to compute the spiking rate, maximum en-
tropy, and mutual information. These functions are crucial to the optimization process, ensuring that
the network can efficiently handle sparse data while maintaining information diversity.

Overall, this pseudocode combines SNNs with the SDMB framework, utilizing maximum entropy
and mutual information minimization for policy learning. It provides an effective solution to address
the issue of data redundancy in offline reinforcement learning.

A.5 THE SELECTION OF DATASETS

A.5.1 CHARACTERISTICS OF MUJOCO DATASETS

The MuJoCo dataset typically refers to collections of trajectory data generated within the Mu-
JoCo physics engine simulation environment (e.g., scenarios widely used in benchmark datasets
like D4RL). Its core characteristics stem from MuJoCo’s high-fidelity physics engine and special-
ized task design, making it an ideal testbed for Reinforcement Learning and Information Bottleneck
tasks. Key attributes include high-dimensional continuous state and action spaces, precise and ef-
ficient physical simulation, rich contact dynamics modeling, diverse task configurations and diffi-
culty gradients, large-scale standardized trajectory data, and inherent potential for low-dimensional
structured representations. Firstly, the MuJoCo physics engine provides exceptionally realistic and
computationally efficient simulations of rigid bodies, soft bodies, and contact dynamics. It ac-
curately models complex physical phenomena like gravity, joint friction, collision responses, and
actuator dynamics. This high-fidelity physics forms the bedrock of MuJoCo datasets, ensuring
that generated trajectories (containing state sequences, action sequences, reward signals, etc.) re-
flect core challenges from real-world robotic or biomechanical control tasks (e.g., balance mainte-
nance, goal-directed locomotion, disturbance rejection). Consequently, RL agents trained on this
data learn strategies with potential physical realism and transferability value. Secondly, MuJoCo
tasks typically involve high-dimensional, continuous state spaces (e.g., joint angles, angular ve-
locities, end-effector positions, object poses) and high-dimensional, continuous action spaces (e.g.,
direct joint torque or target angle outputs). This continuous high-dimensional nature closely mirrors
the essence of real-world robotic control problems (e.g., humanoid walking, robotic arm manipula-
tion), avoiding simplifications inherent in discrete spaces. It compels RL algorithms to effectively
handle high-dimensional input-output mapping, the exploration-exploitation trade-off, and continu-
ous policy fine-tuning, providing a robust test of an algorithm’s generalization capability, stability,
and sample efficiency in complex scenarios.

This continuous high-dimensionality makes MuJoCo a natural application ground for the Informa-
tion Bottleneck principle. High-dimensional observations (like raw joint sensor streams) inevitably
contain streams of information redundant or potentially detrimental for predicting future states or
maximizing cumulative rewards. The IB objective precisely requires learning a compressed, inter-
mediate representation retaining only task-relevant information, filtering out noise or task-irrelevant
physical details. The structured constraints inherent in MuJoCo’s physics (e.g., kinematic chain
constraints, chain reactions of contact forces) provide a clear environment for verifying potential
optimal solutions for this information compression and purification. Physical systems exhibit strong
spatiotemporal regularities, suggesting the existence of compact, task-relevant representations. Mu-
JoCo datasets allow explicitly quantifying how IB techniques extract these representations from

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

high-dimensional sensory data by minimizing the mutual information between the representation
and the raw input while preserving information about future states or rewards. Thirdly, MuJoCo
tasks are highly modular and diverse (e.g., different robot morphologies like Ant, HalfCheetah,
Hopper, Walker, Humanoid, or object interaction tasks like door-opening, hammer-wielding). Stan-
dard datasets (e.g., D4RL) provide large-scale, standardized offline trajectory data generated under
various policy levels, including expert demonstrations, sub-optimal policies, random exploration,
and partially observable perturbations, covering a broad spectrum from near-optimal behavior to
random exploration. This richness and standardization are crucial for RL:

• It supports Offline RL algorithm training and evaluation. Researchers can test how effec-
tively algorithms learn optimal or near-optimal policies solely from fixed, static datasets
while avoiding dangerous or erroneous extrapolation errors (out-of-distribution actions).

• Task diversity ensures comprehensive algorithm evaluation, mitigating the risk of overfit-
ting to a single environment and demonstrating broader applicability.

For IB research, this multi-task, multi-policy dataset introduces crucial variables: task objective (dif-
ferent reward signals), behavior policy (data source), and state representation (raw or encoded). This
allows researchers to precisely quantify and optimize the mutual information between the learned
state representation and critical variables (e.g., the behavior policy or the task reward) under the con-
straint of maximizing task performance. This validates whether applying the IB framework within
RL pipelines enhances robustness, generalization, and policy interpretability by forcing the repre-
sentation to ignore irrelevant distractors. The ability to compare representations learned from differ-
ent policy distributions (expert vs. random) is particularly valuable for disentangling task-relevant
information from artifacts of data collection. Finally, while providing high physical accuracy, Mu-
JoCo simulations maintain relatively high computational efficiency, enabling rapid generation of
vast amounts of interaction data. This is crucial for training deep RL models and optimizing IB
representations, both of which often require massive amounts of experience.

Simultaneously, the underlying physical laws exhibit explicit structural characteristics:

• Local Smoothness: State space dynamics are locally smooth under physical constraints.
Small changes in state/action lead to predictable changes in next state/reward.

• Sparsity and Temporal Dependency: Contact dynamics exhibit sparsity (few significant
contacts at any moment) and strong instantaneous dependencies.

• Low-Dimensional Control: Complex motion patterns often emerge from low-dimensional
latent variables (e.g., gait phase).

These characteristics provide inherent justification for learning low-dimensional representations (the
core goal of IB). An agent can theoretically leverage these structures to discard redundant high-
dimensional information (e.g., tiny joint tremors) and focus on critical features like gait phase, con-
tact state flags, or goal-related vectors. This pursuit of a Minimal Sufficient Statistic is a quintessen-
tial application of the IB principle. MuJoCo datasets inherently encapsulate this structured infor-
mation, making them an ideal proving ground for verifying that IB methods improve RL agents’
robustness, generalization, and interpretability.

In summary, MuJoCo datasets, characterized by their physical fidelity, high-dimensional continu-
ous spaces, task complexity, data richness, and inherent structured information properties, provide
an unparalleled platform. They serve as a core pillar for testing and advancing methodologies at
the intersection of Reinforcement Learning and Information Bottleneck theory. The dataset’s real-
ism enables transfer studies, while its well-defined simulation structure offers control and precise
measurement essential for theoretical analysis of information flow and representation learning.

A.5.2 CHARACTERISTICS OF THE ADROIT DATASET AND COMPARISON WITH MUJOCO
BENCHMARKS

The Adroit dataset represents a specialized benchmark constructed on the MuJoCo physics en-
gine, focusing exclusively on high-dexterity manipulation tasks using a sophisticated 24-degree-
of-freedom (DoF) anthropomorphic robotic hand model. This dataset preserves MuJoCo’s founda-
tional characteristics of high-fidelity physical simulation and continuous high-dimensional state/ac-
tion spaces, where states typically encompass joint angles, velocities, end-effector positions, object

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

poses, and even fingertip tactile forces, while actions involve precise control of joint torques or target
angles. However, Adroit introduces distinctive characteristics that significantly diverge from con-
ventional MuJoCo locomotion tasks (such as Ant, Hopper, or Walker environments that primarily
involve balance and movement), establishing it as a more advanced testing ground for cutting-edge
algorithms.

The defining characteristics of Adroit stem primarily from its exceptional task complexity and pre-
cision requirements. Unlike the relatively macroscopic mobility or balance objectives in MuJoCo,
Adroit demands agents to coordinate multiple finger joints with extreme precision to execute sequen-
tial operations involving tool usage, fine grasping, force modulation (such as holding a pen with-
out slipping or crushing it), and complex object interactions. This anthropomorphic manipulation
paradigm naturally produces extreme reward sparsity, where success signals (such as fully hammer-
ing a nail, completely opening a door lock, or completing a pen twirl) typically emerge only at the
conclusion of lengthy and precise action sequences, rendering the vast majority of exploratory trajec-
tories reward-free and creating substantial exploration bottlenecks. Furthermore, Adroit’s sensory
inputs exhibit increased complexity and multimodality, augmenting basic proprioception (joint data)
with tactile feedback and often exteroceptive information, resulting in higher-dimensional, more het-
erogeneous input streams. Additionally, Adroit tasks are inherently long-horizon and multi-phase,
with successful outcomes typically requiring the correct sequential completion of interdependent
subtasks (e.g., approaching a door handle, grasping it, rotating it, and finally pulling the door open),
imposing substantial demands on long-term planning and policy robustness. Finally, given the ex-
ceptional difficulty of these tasks, the Adroit dataset heavily relies on expert demonstration data,
supplemented by suboptimal or random policy data, creating a crucial yet exceptionally challenging
foundation for offline reinforcement learning.

When compared against the broader landscape of MuJoCo benchmarks, both environments share
core physics engines and continuous high-dimensional spaces. The crucial distinctions emerge in:
task category (Adroit: dexterous object manipulation versus MuJoCo: locomotion/balance), agent
morphological complexity (Adroit: anthropomorphic multi-fingered hand versus MuJoCo: rela-
tively simpler limbs or torsos), sensory modality richness (Adroit: proprioception + tactile + ex-
teroception ¿ MuJoCo: primarily proprioception), reward sparsity characteristics (Adroit: extreme
sparsity versus MuJoCo: typically denser rewards, often including velocity incentives), temporal
structure (Adroit: long-horizon, multi-phase versus MuJoCo: shorter, cyclic patterns), exploration
difficulty (Adroit: exceptionally high versus MuJoCo: moderate), and data composition (Adroit:
heavy dependence on expert demonstrations versus MuJoCo: broader data sources including RL
agent interactions). The distinctive characteristics of the Adroit dataset establish it as an exem-
plary platform for evaluating and advancing reinforcement learning methodologies, directly tar-
geting critical limitations in contemporary algorithms. The combination of extreme reward spar-
sity and high-precision manipulation requirements creates an exceptionally challenging exploration
problem where traditional random exploration-based RL methods prove largely ineffective. This
necessity compels the development of sophisticated exploration mechanisms such as intrinsic moti-
vation or curiosity-driven approaches, or alternatively, demands highly efficient utilization of expert
prior knowledge through imitation learning or demonstration-enhanced RL. Concurrently, the long-
horizon, multi-phase nature of tasks complicates long-term credit assignment, requiring temporal
difference methods and policy gradient algorithms to precisely attribute eventual success to early
critical decisions despite sparse and delayed reward signals. The complex multimodal state space
coupled with high-dimensional continuous action spaces continuously tests the representational ca-
pacity and optimization stability of function approximators like deep neural networks. Moreover, the
Adroit dataset, particularly through its inclusion of expert demonstrations and mixed-quality trajec-
tories, positions it as a foundational benchmark for offline reinforcement learning. Algorithms must
learn high-performance policies exclusively from static datasets, avoiding catastrophic extrapolation
errors due to distributional shift while potentially striving to surpass demonstrator performance. The
inherent complexity and phased structure of the tasks also naturally connects to research in hierar-
chical reinforcement learning and transfer learning, creating opportunities to explore skill reuse or
compositional sub-policy architectures within these demanding manipulation contexts.

The Adroit dataset presents a uniquely valuable and challenging environment for applications of In-
formation Bottleneck theory. Its high-dimensional, heterogeneous, multimodal state space, integrat-
ing joint kinematics, tactile sensations, and object pose information, inherently contains substantial
redundancy and irrelevant data. The core IB objective—learning compressed representations that

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

minimize information from the raw input while maximizing relevance to task objectives like future
states or cumulative reward—becomes particularly crucial here. IB provides a principled frame-
work to guide models in filtering out noise, such as minor joint vibrations or irrelevant contact
point signals, and instead focus on extracting features vital to the task, such as indicators of sta-
ble grasps, effective tool contact points, or precursors to slippage, which are essential for efficient
decision-making in dexterous manipulation. Facing the challenge of extreme reward sparsity, the
IB principle can steer the learning of representations that maximize predictive information about
future task progression or eventual reward. This capability helps agents identify subtle perceptual
cues (like minute object movement trends or specific force patterns) potentially predictive of suc-
cess during the early stages of extended action sequences lacking immediate feedback. The inherent
over-parameterization of control in high-dimensional dexterous tasks suggests significant scope for
information compression. IB’s pursuit of minimal sufficient statistics aids in discovering the most
parsimonious and robust control representations, enhancing policy generalization and interpretabil-
ity. Furthermore, the common inclusion of multi-source data in Adroit offers unique potential for IB
to disentangle task-relevant information from strategy-specific idiosyncrasies. This enables learning
representations that encode only the core physical constraints and object properties essential to the
task, independent of a particular demonstrator’s habitual motions, which is critical for generaliza-
tion beyond demonstrations and subsequent performance improvement. Finally, IB methods hold
promise for effectively processing and fusing multimodal inputs with disparate noise profiles and
temporal characteristics, extracting complementary information necessary to support robust manip-
ulation policies.

Building upon the MuJoCo physics simulation foundation, the Adroit dataset, through its special-
ized focus on anthropomorphic robotic hand dexterity tasks, introduces critical challenges including
extreme reward sparsity, complex multimodal perception, and long-horizon multi-phase decision-
making. These characteristics markedly differentiate it from general MuJoCo locomotion bench-
marks, pushing the boundaries of reinforcement learning difficulties—particularly concerning effi-
cient exploration and long-term credit assignment—to unprecedented levels, while simultaneously
establishing high standards for offline reinforcement learning research. For information bottleneck
investigations, Adroit’s high-dimensional heterogeneous state space and intrinsic information re-
dundancy create a fertile ground for learning and validating minimally sufficient representations
capable of efficiently filtering noise, extracting task-critical features, processing multimodal inputs,
and decoupling policy styles. Consequently, Adroit serves not only as the preeminent benchmark
for assessing RL algorithms tackling real-world-grade manipulation challenges but also stands as
an ideal proving ground for developing and evaluating Information Bottleneck theory in enhancing
agent perception, decision robustness, and interpretability within embodied artificial intelligence
systems striving for human-level dexterity.

A.6 THEORETICAL ENERGY EVALUATION

The main indicator for evaluating the energy consumption of neuromorphic chips is the average en-
ergy consumption through spike-driven transmissions, which is a key factor in the energy consump-
tion of the entire processing system and plays an important role in the overall energy consumption.
For hardware-related theoretical analysis, we view the whole system as a single spiking operation
(SOP), and treat the energy consumption per SOP as a constant. The models of SDMB and the con-
trol group are shown in Table 4. The energy consumption model for this approach can be expressed
as:

E = CE ·#SOP = CE ·
∑
i

sici (14)

where CE represents the energy consumption of each spiking operation, and #SOP =
∑

i sici
represents the total number of spiking operations. For each spiking neuron i, si represents the spike
count of the neuron, while ci represents the synaptic connection count of the neuron. It is worth
noting that this energy consumption model may not be suitable for all hardware architectures. We
believe it is particularly suitable for high-density and sparse architectures.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Operation DT PSSA SDMB
Embedding DsrcDN DsrcDN DsrcDN

Q,K, V 3D2N 3D2NRm 3D2NRm

f(Q,K, V) (2D + 3)N2 TDN2R̂ TSDN2Rm

Attn Linear D2N D2NRm D2NRm

MLP Linear1 4D2N 4TD2NRm 4TD2NRm

MLP Linear2 4D2N 4TD2NRm 4TD2NRm

Prediction Head DtgtDN DtgtDN DtgtDN

Table 5: The FLOPs of various operations. Rm and R̂ refer to the sum of spike firing rates across
different spiking matrices.

A.7 THE PROOF OF THE FORMULA

A.7.1 THE PROOF OF GENERALIZATION ERROR BOUND

I suggest first defining the model’s generalization error and training error, and then considering
how to reduce generalization error by increasing the sample size. Generalization error is typically
expressed as:

Lgen = Ltrain +O
(

1√
n

)
(15)

where Ltrain is the training error and n is the sample size. This bound indicates that as the sample
size increases, the generalization error tends to decrease. The second part of the formula indicates
the difference between the error on the training data set and the error on the true data set. We
derive an upper bound of the generalization error by comparing the error between different data
sets. Assuming we have training error and the model’s generalization ability:

L(h)− L̂S(h) ≤ c×
(
2H · [Zt|St, At] + 2λH(Zt) + log

1

δ

)
(16)

By comparing the training error and generalization error between data sets, we derive the relation-
ship between them. Finally, we aim to reduce the generalization error by increasing the sample size
n, thereby improving the model’s generalization ability.

A.7.2 COMPLEXITY BOUND DERIVATION

We derive the complexity bound formula in the context of model training and generalization. The
complexity bound is influenced by the model’s Lipschitz constant, the loss function, and the sample
size. The formula we are deriving is as follows: The generalization error is typically expressed as:

Lgen = Ltrain +O
(

1√
n

)
(17)

where Ltrain is the training error, and n is the sample size. This bound indicates that as the sample
size increases, the generalization error will decrease. The second part of the formula represents the
difference between the error on the training data set and the true data set. We derive the upper bound
of generalization error by comparing errors across different data sets. Assuming we have training
error and the model’s generalization ability, the error bound is expressed as:

L(h)− L̂S(h) ≤ c×
(
2H · [Zt|St, At] + 2λH(Zt) + log

1

δ

)
(18)

The formula for the complexity bound is derived as follows:

n ≥ 2L2

ϵ2
(LSDMB + βI(Zt, Rt) + (λ+ 1)H(Zt)) (19)

where:L is the Lipschitz constant of the model. LSDMB is the SDMB loss function. β and λ are
regularization parameters. I(Zt, Rt) is the information gain between state Zt and reward Rt.H(Zt)
represents the entropy of Zt. n is the sample size.ϵ is the error tolerance. The formula gives the
minimum number of samples n required to achieve a specified complexity level in terms of general-
ization error. It shows that, as n increases, the model can handle more complex data, allowing it to
refine its performance.

17

	Introduction
	Related Works
	Offline Reinforcement Learning
	SNNs Methods for Offline RL

	Preliminaries
	Spiking Neural Networks
	Offline RL

	Methods
	SDMB: Main Idea and Objective
	Implementation of SDMB in SNN-based Offline RL

	Experiments
	The Main Results
	Ablation
	Power Consumption

	Conclusion
	Appendix
	Ethics statement
	Reproducibility statement
	Large Language Models Usage Statement
	Pseudocode
	The Selection of Datasets
	Characteristics of MuJoCo Datasets
	Characteristics of the Adroit Dataset and Comparison with MuJoCo Benchmarks

	Theoretical Energy Evaluation
	The proof of the formula
	The Proof of Generalization Error Bound
	Complexity Bound Derivation

