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Abstract

Graphons offer a powerful framework for modeling large-scale networks, yet es-
timation remains challenging. We propose a novel approach that leverages a
low-rank additive representation, yielding both a low-rank connection probabil-
ity matrix and a low-rank graphon–two goals rarely achieved jointly. Our method
resolves identification issues and enables an efficient sequential algorithm based
on subgraph counts and interpolation. We establish consistency and demonstrate
strong empirical performance in terms of computational efficiency and estimation
accuracy through simulations and data analysis.

1 Introduction

With advances in data collection, modeling network data has become increasingly important
across domains such as brain networks [Maugis et al., 2020], co-authorship networks [Isfandyari-
Moghaddam et al., 2023], and biological systems [Kamimoto et al., 2023]. A key challenge is under-
standing the generative mechanisms underlying these networks, which informs tasks like studying
dynamics [Pensky, 2019], link prediction [Gao et al., 2016], and community detection [Jin et al.,
2021].

A powerful framework for modeling networks is based on exchangeable graphs, where node per-
mutations leave the edge distribution invariant. By the Aldous-Hoover theorem [Kallenberg et al.,
2005], such graphs are characterized by a graphon, a symmetric measurable function. Graphons
offer a unified perspective, supporting tasks such as asymptotic analysis of subgraph counts [Bickel
et al., 2011] and graph equivalence testing [Maugis et al., 2020]. They also underpin widely used
models, including the stochastic block model (SBM) [Holland et al., 1983], random dot product
graphs (RDPG) [Young and Scheinerman, 2007], and latent space models [Hoff et al., 2002].

A graphon is a symmetric, measurable bivariate function and serves as the limit object for sequences
of dense graphs [Lovász and Szegedy, 2006]. Without further assumptions, it cannot be directly
estimated from a single network. However, its eigenvalue-eigenfunction decomposition offers a
practical solution: by truncating to the leading components—analogous to principal component
analysis—we obtain a low-rank approximation. The resulting connection probability matrix P , con-
structed by evaluating the graphon at observed nodes, inherits this low-rank structure.

∗Equal contribution.
†Corresponding author.
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Contributions. We propose a novel low-rank approach to graphon modeling that simultaneously
captures the low-rank structure of both the graphon and the connection probability matrix. While
prior work has focused primarily on estimating the connection matrix, our method uniquely recovers
both the graphon function and the matrix with the same rank, offering a unified framework that fills
a gap in existing literature.

The method builds on the key observation that a rank-r matrix can be decomposed into a sum of
r rank-1 components. By counting O(r) carefully selected subgraphs, we efficiently extract these
components and solve the resulting system to estimate the connection matrix P . The graphon f
is subsequently recovered by sorting and interpolation. Crucially, while sorting is a powerful tool
for recovering one-dimensional latent structures as in our approach, it is generally ineffective when
applied directly to P estimated by other methods, which lack the rank-1 aligned structure necessary
for accurate graphon recovery. This sequential design ensures that the estimated graphon inherits
the correct rank of P , leading to a tuning-free, scalable method that performs robustly across a range
of settings, including sparse networks, as validated in our experiments.

In addition to our methodological advances, we deliver several key theoretical contributions that
deepen the understanding of low-rank graphon models. First, we establish sharp perturbation bounds
for solutions to stochastic systems of equations (Lemmas L.5 and L.6), shedding light on how esti-
mation errors propagate through the model. Second, we prove a novel result (Lemma L.7) showing
that, in low-rank graphon settings, the appropriately scaled number of fixed-length paths from a node
uniformly approximates its conditional expectation given the latent variable. This insight forms the
backbone of our eigenfunction estimation strategy and provides a fresh analytical tool for studying
low-rank network models. Finally, all our convergence results (Theorems 3.1, 3.2, and 3.6) are de-
rived under the sup-norm, delivering stronger uniform guarantees than those based on average-error
metrics commonly used in the literature. Collectively, these contributions offer a robust theoretical
foundation and significantly enhance the practical impact of our approach.

Literature review. Existing graphon estimation methods generally fall into two categories: those
that directly estimate the graphon and those that estimate the connection probability matrix P . A
central challenge in both is reconciling the low-rank structure of P with that of the underlying
graphon, often resulting in inconsistencies.

Graphon-based approaches include Olhede and Wolfe [2014], who approximate the graphon with
a step function by partitioning it into blocks. Their method requires permutation maximization
via a greedy algorithm, which is computationally intensive (see Section 4). Chan and Airoldi [2014]
refine this by reordering nodes by degree and applying total variation minimization, assuming strictly
monotonic marginals, an assumption that excludes models like the SBM. Moreover, the resulting P
is not guaranteed to be low-rank.

In contrast, P -based methods include Chatterjee [2015], who assume low rank and use Universal
Singular-Value Thresholding (USVT), treating the adjacency matrix as a noisy version of P . Zhang
et al. [2017] propose neighborhood smoothing to estimate P , achieving near-minimax optimality.
Gao et al. [2016] introduce a combinatorial least-squares estimator, later extended by Wu et al.
[2025] to non-exchangeable networks. However, these methods do not directly recover the graphon.
The latent variables are unknown and unordered, preventing P from being viewed as a lattice sample
of the graphon, which complicates alignment. Moreover, further analysis of the estimated P , such
as through eigenvalue decomposition, is challenging, especially to achieve sup-norm consistency.
Most prior work focuses on mean squared error bounds. These limitations underscore the need for
methods bridging graphon and P estimation. Our approach offers a unified framework enabling
sup-norm consistency in both.

Finally, we note that extensive research has been devoted to graphon models, therefore, we provide
a broader literature review in Section B of the appendix.

Structure. The paper is organized as follows: Section 2 introduces the low-rank graphon framework.
Section 3 presents the estimation procedures and algorithms for both r = 1 and r ≥ 2. Section 4
reports simulation studies illustrating the method’s efficiency and accuracy. Section 5 concludes
with a discussion and future research directions. Additional details, including the significance of
graphon estimation, time complexity, simulation settings, rank selection, sensitivity analysis, real
data examples, proofs, and technical lemmas, are provided in the appendix.
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Notations. For a real number x, ⌊x⌋ denotes the greatest integer less than or equal to x. For
positive real numbers a and b, we define a ∨ b = max(a, b) and a ∧ b = min(a, b). Let ∥A∥F
be the Frobenius norm of matrix A, and Aij denote its element at the i-th row and j-th column.
For two sequences of positive real numbers an and bn, we write an = O(bn) or an ≲ bn if there
exist constants N and C such that an ≤ Cbn for all n > N . For random variable sequences
Xn and Yn, we write Xn = Op(Yn) if for any ε > 0, there exists a constant Cε > 0 such that
supn P(|Xn| ≥ Cε|Yn|) < ε.

2 Low-rank Approaches

We consider a random graph G = (V,E) within the graphon model framework. For i = 1, . . . , n,
where n is the network size, each node i is associated with an i.i.d. random variable Ui ∼
Uniform(0, 1). The edges Eij are independently drawn as Eij ∼ Bernoulli(f(Ui, Uj)) for i < j,
where f(·, ·) is a symmetric, measurable function f : [0, 1]2 → [0, 1], the graphon. We impose
Eii = 0 and Eij = Eji for i > j. While we focus on undirected graphs without self-loops, our
methods extend to graphs with self-loops or directed graphs. Many large-scale real-world networks
exhibit low-rank features, such as group memberships or communities, which popular models like
SBM and RDPG capture. For further discussions and real-data examples, see Athreya et al. [2018],
Thibeault et al. [2024], and Fortunato [2010].

To incorporate low-rank structure into graphon models, we introduce the following parsimonious
model:

f(Ui, Uj) =

r∑
k=1

λkGk(Ui)Gk(Uj), (1)

where |λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0, Gk is a measurable function with
∫ 1

0
G2

k(u) du = 1

for k = 1, . . . , r, and
∫ 1

0
Gk(u)Gl(u) du = 0 for k ̸= l. This model represents a truncated

eigen-decomposition of the graphon, as suggested by the Hilbert-Schmidt theorem [Szegedy, 2011].
Model (1) includes both the SBM and RDPG as special cases. If the Gk functions are step functions,
it reduces to an SBM with r blocks. When all λk values are positive, the model simplifies to a rank-r
RDPG.

Introducing low-rank structures in graphon models enhances their ability to capture real-world net-
work features, such as community structures and latent memberships, while also offering com-
putational advantages through the models additive separability. We propose a novel, computa-
tionally efficient, and theoretically grounded method for estimating the connection probabilities
{f(Ui, Uj)}ni,j=1 and the full graphon function f . Notably, practical methods for estimating general
graphon functions in polynomial time are scarce [Gao and Ma, 2021].

3 Methodology and Theory

Let pij = f(Ui, Uj) represent the connection probability between the i-th and j-th nodes, with
P = (pij)i,j as the connection probability matrix. To provide an intuitive understanding, we first
focus on the estimation of P and f for r = 1 in Section 3.1. We then extend the discussion to the
general case where r ≥ 2 in Section 3.2.

3.1 r = 1: Low-rank Modeling with Rank-1

To provide clarity, we begin by considering the case where r = 1, i.e., f(Ui, Uj) =
λ1G1(Ui)G1(Uj). Without loss of generality, assume that infu∈[0,1] G1(u) ≥ 0; otherwise, we
can replace G1(u) with |G1(u)|. A key observation is that the degree of the i-th node, denoted
di =

∑
j Eij , satisfies the following equation:

E(di | Ui)

n− 1
=

1

n− 1

∑
j ̸=i

∫ 1

0

f(Ui, Uj) dUj = λ1G1(Ui)

∫ 1

0

G1(u) du, (2)
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which is proportional to G1(Ui). Furthermore, by Lemma L.1, we have the following bound:

sup
i=1,...,n

|di − E(di | Ui)|
n− 1

= Op

(√
log(n)

n

)
. (3)

Thus, G1(Ui) can be learned by di

n−1 , and as a result, pij can be estimated by didj

(n−1)2 , up to a
multiplicative constant. To account for the sparsity of the graph G, we apply a moment estimation
to determine this multiplicative factor. Note that the method of moments (MoM) is widely used in
network analysis, for example, Bickel et al. [2011] employed MoM to estimate parameters based
on subgraph counts, while Zhang and Xia [2022] analyzed the finite-sample distribution of MoM
estimators for network motifs using Edgeworth expansions. The estimation procedure for pij is
summarized in Algorithm 1.

Algorithm 1 Estimation for {pij}ni,j=1 in Rank-1 Model.

Require: The graph G = (V,E).
1: For i = 1, . . . , n, let di =

∑
j:j ̸=i Eij .

2: Let c1 =
∑

i,j:i ̸=j Eij

/∑
i,j:i ̸=j didj .

3: For any (i, j) pair, i ̸= j, let the estimator of pij be p̂ij = 1 ∧ (c1didj).
4: Let p̂ii = 0 for i = 1, . . . , n.
5: Output {p̂ij}ni,j=1.

Algorithm 1 is straightforward and leverages the low-rank assumption with r = 1. Its time com-
plexity is O(n2), which is efficient given that there are O(n2) values of pij to learn. In contrast,
SVD-based methods (e.g., Xu [2018]) typically require O(n3) time complexity, making them less
efficient. We remark that when the connection probability matrix is known a priori to be rank-1, a
truncated version of Xu [2018] can, in principle, be accelerated to O(n2) time by computing only
the leading singular value and its corresponding singular vectors through efficient procedures such
as the power iteration method (see also Section J). It should be noted, however, that although the
power iteration method is often effective in practice, it generally lacks rigorous convergence guaran-
tees and theoretical justification. The run times for these methods are shown in Table 1 for various
ranks r.

We now present the theoretical results for the estimates p̂ij .

Theorem 3.1. For r = 1, assume that
∫ 1

0
G1(u) du > 0. Applying Algorithm 1 to obtain the

estimates p̂ij , we have

sup
i,j
|p̂ij − pij | = Op

(√
log(n)

n

)
.

The assumption in Theorem 3.1 is mild and does not require the continuity of the function G1.
This flexibility allows our model to accommodate various block structures, including the SBM with
a rank-1 connection probability matrix. Additionally, the estimated connection probability matrix
P̂ = (p̂ij)i,j retains the rank-1 structure, consistent with the rank of P . The result supi,j |p̂ij−pij | =

Op

(√
log(n)

n

)
also implies convergence in the Frobenius norm, specifically:

∥P̂ − P∥2F
n2

= Op

(
log(n)

n

)
,

a standard metric used in the literature, such as in Zhang et al. [2017] and Gao et al. [2015].

Estimating the graphon function f(u, v) is generally more challenging due to identification issues
arising from measure-preserving transformations [Borgs et al., 2015, Diaconis and Janson, 2007,
Olhede and Wolfe, 2014]. As a result, many prominent methods, including those in Gao et al.
[2016] and Zhang et al. [2017], focus on estimating the connection probability matrix, as we do
in Theorem 3.1. In the case with r = 1, we can mitigate the non-identifiability issue by defining a
canonical, monotonically non-decreasing graphon through rearrangement. Specifically, let G†

1(u) =
inf {t : µ(G1 ≤ t) ≥ u} , where µ(·) denotes the Lebesgue measure. As shown in Barbarino et al.
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[2022], the function G†
1(u) is the monotone rearrangement of G1(u), making it monotonically non-

decreasing, left-continuous, and measure-preserving. Moreover, G†
1(u) is continuous if G1(u) is

continuous. Consequently, we can focus on the canonical graphon f†(u, v) := λ1G
†
1(u)G

†
1(v).

To estimate f†(u, v), we propose a degree sorting and interpolation method. Let σ(k) denote the
index i corresponding to the k-th smallest value in the sequence {di}ni=1, i.e., dσ(1) ≤ dσ(2) ≤ · · · ≤
dσ(n). Then, for any (u, v) ∈ [0, 1]2, we define

f̂†(u, v) := 1 ∧ (c1h(u)h(v)) ,

where h(v) is defined as follows. Let s = v(n+ 1) and k = ⌊s⌋. Then, h(v) = dσ(k)(k + 1− s) +
dσ(k+1)(s − k), for k ∈ [0, n], with the convention that dσ(0) = dσ(1) and dσ(n+1) = dσ(n). We
remark that the degrees with ties can be ordered in any sequence, and the resulting h(v) will remain
unchanged. This further ensures the uniqueness of f̂+(u, v).

Theorem 3.2. For r = 1, assume that G1(u) is Lipschitz continuous on the interval [0, 1], i.e., there
exists a constant M > 0 such that for any u1, u2 ∈ [0, 1], |G1(u1)−G1(u2)| ≤M |u1 − u2|. Then,

sup
u,v∈[0,1]

|f̂†(u, v)− f†(u, v)| a.s.,L2−→ 0, and = Op

(√
log(n)

n

)
.

The estimation rate of our method matches that of Chan and Airoldi [2014], with convergence in the
sup-norm, which is stronger than the mean squared error (MSE)-based approaches of Xu [2018],
Olhede and Wolfe [2014], and Chan and Airoldi [2014]. While MSE focuses on average error,
the sup-norm ensures uniform convergence, controlling the error at every point. This distinction
underscores the robustness and precision of our approach.

3.2 r > 1: Low-rank Modeling with Rank-r

For r ≥ 2, the connection probability pij = f(Ui, Uj) in (1) is additive. To estimate pij , it is neces-
sary to recover each λk and Gk for k = 1, . . . , r. A central difficulty lies in the fact that estimating
λk requires eliminating the dependence on the unknown components G1, . . . , Gr. A key concep-
tual insight is that this disentanglement can be achieved by leveraging subgraph count statistics.
Subgraphs, or “motifs”, are crucial both theoretically [Maugis et al., 2020, Bravo-Hermsdorff et al.,
2023, Ribeiro et al., 2021] and practically [Milo et al., 2002, Dey et al., 2019, Yu et al., 2019]. Their
expectations are expressed via the graphon function. Consider a cycle of length a passing through
node i, whose count in the sample can be written as

C
(a)
i =

∑
{i1,...,ia−1}∈Ia−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3, (4)

where Ia = {i1, · · · , ia distinct , ik ̸= i, 1 ≤ k ≤ a}. Its expectation is given by

E(C(a)
i ) =

a−1∏
j=1

(n− j)

 r∑
k=1

λa
k, (5)

which is independent of all Gk. Moreover, under an appropriate normalization, C(a)
i concentrates

around E(C(a)
i ), as established in Lemma L.4. Consequently, by counting cycles of different lengths,

we can recover all λk.

Similarly, consider a simple path of length a that has node i as an endpoint, whose count in the
sample is

L
(1)
i =

∑
i1

Eii1 , L
(a)
i =

∑
{i1,...,ia}∈Ia

Eii1

a∏
j=2

Eij−1ij for a ≥ 2. (6)
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Its expectations are given by

E(L(a)
i |Ui) =

 a∏
j=1

(n− j)

 r∑
k=1

λa
kGk(Ui)

∫ 1

0

Gk(u) du, (7)

E(L(a)
i ) =

 a∏
j=1

(n− j)

 r∑
k=1

λa
k

(∫ 1

0

Gk(u) du

)2

.

Moreover, by Lemma L.4 and Lemma L.7, L
(a)
i , E(L(a)

i |Ui),E(L(a)
i ) are close under suitable

normalizations. Therefore, after estimating λk, we can first use L
(a)
i to obtain an estimate of∫ 1

0
Gk(u)du, and then proceed to estimate Gk(Ui). Substituting these estimates into equation (1)

yields an estimator for pij . To illustrate the above calculations, we provide a toy example in Sec-
tion C, while the rigorous proofs are given in our theoretical derivations in the appendix.

We summarize the procedure in Algorithm 2. Note that in Algorithm 2, we add a standardization
step in Line 4. It typically enhances performance in finite samples, benefiting both dense and sparse
graphon settings.

Algorithm 2 Estimation for {pij}ni,j=1 in Rank-r Model.

Require: The graph G = (V,E).
1: For i = 1, . . . , n, compute L

(a)
i , 1 ≤ a ≤ r and C

(a)
i , 3 ≤ a ≤ r + 2 defined in (6) and (4).

2: Solve the system of equations
yk ≥ 0, for 1 ≤ k ≤ r, |λ̂1| > · · · > |λ̂r|,∑r

k=1 λ̂
a
k = 1∏a−1

j=0 (n−j)

∑n
i=1 C

(a)
i for 3 ≤ a ≤ r + 2,∑r

k=1 λ̂
a
ky

2
k = 1∏a

j=0(n−j)

∑n
i=1 L

(a)
i for 1 ≤ a ≤ r.

(8)

to obtain (λ̂1, · · · , λ̂r, y1, · · · , yr).
3: For i = 1, 2, . . . , n, compute the estimators Ĝ1(Ui), · · · , Ĝr(Ui) from

1∏a
j=1(n− j)

L
(a)
i =

r∑
k=1

λ̂a
kykGk(Ui) for 1 ≤ a ≤ r. (9)

4: Compute the standardized estimators G̃1(Ui), · · · , G̃r(Ui) from

G̃k(Ui) = Ĝk(Ui)/

√√√√ n∑
i=1

Ĝ2
k(Ui)/n. (10)

5: For each pair (i, j), where i ̸= j, estimate pij as p̂ij =
[
1 ∧

(
0 ∨ (

∑r
k=1 λ̂kG̃k(Ui)G̃k(Uj))

)]
. Set

p̂ii = 0 for i = 1, . . . , n.
6: Output {p̂ij}ni,j=1.

Remark 3.3. The primary computational complexity of Algorithm 2 arises from counting lines and
cycles within the graph. Notably, counting paths that allow repeated nodes is considerably simpler
than counting simple paths, as the former can be achieved via matrix multiplication with a complex-
ity of O(nω), where ω = 2.373 [Williams, 2012]. Motivated by this observation, we propose an
algorithm (Algorithm 3) in Section D with matrix multiplication time complexity, while preserving
all theoretical guarantees from Theorems 3.6 and 3.9.
Remark 3.4 (Comparison with the spectral method for estimating the connection probability matrix).
Spectral methods, such as USVT [Chatterjee, 2015], estimate the connection probability matrix
through eigenvalues and eigenvectors. However, our approach differs in several ways. First, our
goal is to estimate the graphon function, not just the connection probability matrix, which leads to
a distinct methodology based on subgraph counts and moment-based techniques. Additionally, our
method achieves the minimax rate for mean squared error up to a logarithmic factor, without re-
quiring smoothness assumptions, unlike spectral methods that assume piecewise constant or Hölder-
class smoothness [Xu, 2018]. Finally, for sparse graphons, our method outperforms USVT, as shown
in Table 2.
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We impose the following mild conditions for the consistency of p̂ij .

Assumption 3.5. Assume that: (i) |λ1| > · · · > |λr| > 0,
∫ 1

0
G2

k(u)du = 1, for 1 ≤ k ≤ r, and∫ 1

0
Gi(u)Gj(u)du = 0 for 1 ≤ i ̸= j ≤ n, (ii)

∫ 1

0
Gk(u)du ̸= 0, for 1 ≤ k ≤ r, (iii) there exists a

constant K > 0 such that max1≤k≤r supu∈[0,1] |Gk(u)| ≤ K.

Assumption 3.5 (i) ensures the identifiability of the functions Gk, similar to the eigengap condition
in the RDPG model [Lyzinski et al., 2014]. Condition (ii) guarantees a unique solution for the
system of equations (8), akin to the requirement in Bickel et al. [2011]. Condition (iii) is mild and
typically holds for most graphon functions. Notably, we do not require Gk’s to be piecewise smooth,
which broadens the applicability of our model for estimating the connection probability matrix. The
theoretical result for p̂ij is presented next.

Theorem 3.6. For r ≥ 2, under Assumption 3.5, when n is sufficiently large, there exists an open
set U ⊂ R2r containing the point (λ1, · · · , λr,

∫ 1

0
G1(u) du, · · · ,

∫ 1

0
Gr(u) du) such that, with

probability 1, the system of equations in (8) has a unique solution within this region. Moreover,
for λ̂k, 1 ≤ k ≤ r, p̂ij , we have max1≤k≤r |λ̂k − λk| = Op(n

−1/2), and supi,j |p̂ij − pij | =
Op(

√
log(n)/n).

Theorem 3.6 shows that ∥P̂ − P∥2F /n2 = Op(log(n)/n), achieving a rate matching the minimax
rate (up to a logarithmic factor) in Gao et al. [2015]. The rate does not involve r since we treat it as
fixed. We leave the case where r grows with n for future work.

Estimating graphon functions is more challenging for r ≥ 2 due to the model’s additive structure.
To address this, we introduce the following assumptions for learning the graphon function in the
r ≥ 2 case:

Assumption 3.7. Assume that: (i) At least one Gk is strictly monotonically increasing; and (ii) All
Gk’s are Lipschitz continuous with constant M .

Assumption 3.7 aligns with the “canonical form” for graphon functions, where the monotone func-
tion serves as the reference marginal function. This is similar to the identification criterion in Chan
and Airoldi [2014], which requires the graphon to be monotone after integrating out one argument.
Note that Assumption 3.7 is not needed if the goal is to estimate only the connection probability
matrix. We remark that Assumptions 3.5 and 3.7 together imply that the graphon function belongs
to the 1-Hölder class. In contrast, Olhede and Wolfe [2014] assumed only α-Hölder smoothness
with 0 < α ≤ 1 when estimating the graphon via histogram methods. However, their approach
requires the selection of a bandwidth parameter.

Under Assumption 3.7, we proceed without loss of generality by assuming G1 is the reference
marginal graphon. The recovery of G1 relies on the following insight: for i.i.d. samples U1, · · · , Un,
the j-th order statistic U(j) is close to j/(n+1) with high probability. Consequently, G1(U(j)) serves
as an approximation to G1(j/(n+1)). Moreover, G1(U(j)) is itself the j-th smallest element among
{G1(Ui)}ni=1, and each Ĝ1(Ui) provides a good approximation to G1(Ui). Hence, G1(j/(n + 1))
can be effectively estimated. Since n is large and G1 is Lipschitz continuous, piecewise linear
interpolation yields a consistent approximation of G1. The estimation strategy for the other functions
Gk, k = 2, · · · , r follows an analogous approach.

Formally, we first sort the estimated pairs (Ĝ1(Ui), Ĝ2(Ui), · · · , Ĝr(Ui)) according to the first co-
ordinate. Let γ be a one-to-one permutation such that

Ĝ1(Uγ(1)) ≤ Ĝ1(Uγ(2)) ≤ · · · ≤ Ĝ1(Uγ(n)).

After sorting, we denote the reordered pairs as (Ĝ1(Uγ(i)), Ĝ2(Uγ(i)), · · · , Ĝr(Uγ(i))). We then
define the function

h1(u) = Ĝ1(Uγ(1))I(u(n+ 1) < 1) + Ĝ1(Uγ(n))I(u(n+ 1) ≥ n)

+

n−1∑
k=1

(k + 1− u(n+ 1)) Ĝ1(Uγ(k)) + (u(n+ 1)− k) Ĝ1(Uγ(k+1)))I(⌊u(n+ 1)⌋ = k)
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as an estimate of the function G1. For Gk, k ≥ 2, recognizing that Gk is a function of G1, we
define:

hk(u) = Ĝk(Uγ(1))I(h1(u) < Ĝ1(Uγ(1))) + Ĝk(Uγ(n))I(h1(u) ≥ Ĝ1(Uγ(n)))

+

n−1∑
k=1

(
Ĝ1(Uγ(k+1))− h1(u)

Ĝ1(Uγ(k+1))− Ĝ1(Uγ(k))
Ĝk(Uγ(k)) +

h1(u)− Ĝ1(Uγ(k))

Ĝ1(Uγ(k+1))− Ĝ1(Uγ(k))
Ĝk(Uγ(k+1))

)
I(Ĝ1(Uγ(k)) ≤ h1(u) < Ĝ1(Uγ(k+1))).

Finally, we define

f̂(u, v) := 1 ∧

[
0 ∨

(
r∑

k=1

λ̂khk(u)hk(v)

)]
(11)

as an estimate of the graphon f(u, v).
Remark 3.8. In practice, we can relax the previous approach by considering each Gi (i = 1, . . . , n)
as a potential reference function. For each Gi, we estimate the graphon f as described above ref-
erencing Gi, then compare the expected motif (e.g., triangles, stars) densities from the estimated f̂
with the observed motif densities in the sample. By evaluating this criterion for all i, we select the
f̂ that best matches the empirical motif distributions.

Theorem 3.9 presents the theoretical result for this estimation. Since its proof follows directly from
the proof of Theorem 3.2, we omit the details.
Theorem 3.9. For r ≥ 2, under Assumptions 3.5 and 3.7, the estimated graphon given by (11)
satisfies

sup
u,v∈[0,1]

|f̂(u, v)− f(u, v)| a.s.,L2−→ 0, and = Op(
√
log(n)/n).

Our result is based on the sup-norm, providing a stronger uniform convergence guarantee compared
to pointwise or average error metrics. The achieved rate matches Chan and Airoldi [2014], demon-
strating the optimality and robustness of our method.
Remark 3.10. When r is unknown, we can estimate it using a ratio-based method. Details are
provided in Appendix H.

4 Numerics

In this section, we evaluate our method’s effectiveness through extensive simulations. We assess the
accuracy of the learned connection probability matrix P using three metrics: Mean Squared Error
(MSE) as ∥P̂ − P∥2F /n2, maximum error maxi ̸=j |p̂ij − pij |, and time cost. The code is available
at https://github.com/Chiyuru/Low-Rank-Graphon-Learning-for-Networks.

Networks are generated using seven graphons listed in Table 5 (Appendix) with n = 2000. We also
consider sparse counterparts, where edge probabilities follow Eij ∼ Bernoulli(ρnf(Ui, Uj)), with
ρn = n−1/2 controlling sparsity. We conduct 100 independent trials per configuration and report
the average metrics.

For comparison, we include the following methods: Universal Singular Value Thresholding
(USVT): [Chatterjee, 2015], Sort-and-Smooth (SAS): [Chan and Airoldi, 2014], Network His-
togram (Nethist): [Olhede and Wolfe, 2014], Neighborhood Smoothing (N.S.): [Zhang et al.,
2017], and Power Iteration (P.I.): [Stoer et al., 1980].

All methods are implemented using the R functions provided by the respective authors with de-
fault parameters. Experiments were conducted on an Apple M1 machine with 16GB RAM, macOS
Sonoma, and R 4.2.1. For efficiency, we modified Algorithm 2 slightly, as described in Section F in
the appendix.

We summarize the results in Table 1 (dense graphons) and Table 2 (sparse graphons). In the dense
graphon cases, our method consistently matches or outperforms others in both MSE and maximum
error, achieving the best results in the first and fourth settings. It also matches the computational
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Table 1: Results for dense graphons across 100 independent trials.

ID Method
MSE

(×10−4)
Std. MSE
(×10−6)

Max. error
(×10−2)

Std. Max
(×10−3)

Run time
(s) ID

MSE
(×10−4)

Std. MSE
(×10−6)

Max. error
(×10−2)

Std. Max
(×10−3)

Run time
(s)

1

Ours 1.275 3.871 5.817 4.955 0.121

2

2.452 7.806 8.114 5.819 0.539
N.S. 7.853 5.175 16.749 9.849 115.076 12.033 9.750 17.617 8.275 115.757

Nethist 4.237 8.330 5.980 11.474 16.705 9.867 24.220 16.962 44.037 16.744
USVT 1.282 3.863 5.837 4.994 13.587 2.403 7.593 7.977 5.740 14.629
SAS 19.120 16.865 85.000 0.000 1.273 39.888 29.339 78.134 37.486 1.250
P.I. 1.280 3.860 5.837 4.994 0.304 2.400 7.590 7.977 5.740 0.274

3

Ours 1.973 6.794 10.163 8.537 0.259

4

1.826 6.172 12.898 12.559 0.627
N.S. 8.337 14.186 17.329 8.566 114.694 4.388 8.413 17.902 11.686 108.569

Nethist 7.942 27.962 17.094 10.368 20.288 3.928 16.982 18.649 15.296 22.829
USVT 1.919 6.530 9.395 7.146 13.758 7.617 17.079 13.637 13.036 10.064
SAS 26.987 77.248 94.849 20.701 1.241 18.641 90.264 97.064 24.053 1.422
P.I. 1.920 6.530 9.395 7.146 0.328 1.890 6.420 13.400 13.927 0.654

5

Ours 1.774 6.204 9.676 7.804 1.507

6

2.582 7.017 9.319 7.808 0.682
N.S. 7.101 14.996 17.473 9.156 122.995 7.527 6.960 18.312 11.119 115.813

Nethist 7.729 31.838 18.559 15.486 23.804 9.548 244.015 22.573 107.570 19.441
USVT 1.769 6.078 9.661 7.871 13.684 2.383 6.082 10.052 8.343 11.169
SAS 28.703 115.215 89.861 49.103 1.104 18.456 16.344 95.000 0.000 1.500
P.I. 4.680 7.730 29.196 56.981 0.736 2.380 6.080 10.052 8.344 0.682

7

Ours 3.768 9.091 12.721 12.233 1.316
N.S. 6.596 6.372 17.611 9.760 126.270

Nethist 41.224 1574.245 59.567 96.247 20.238
USVT 3.644 7.580 12.613 11.696 11.640
SAS 20.552 22.529 90.000 0.000 1.701
P.I. 3.640 7.580 12.613 11.696 1.005

Table 2: Results for sparse graphons characterized by ρn = 1/
√
n.

ID Method
MSE

(×10−4)
Std. MSE
(×10−6)

Max. error
(×10−2)

Std. Max
(×10−3) ID

MSE
(×10−4)

Std. MSE
(×10−6)

Max. error
(×10−2)

Std. Max
(×10−3)

1

Ours 0.036 0.127 1.784 2.548

2

0.115 0.401 2.560 3.367
N.S. 19.224 45.848 99.665 0.000 61.897 249.576 99.161 0.002

Nethist 0.116 0.460 1.115 1.594 0.391 1.536 2.112 2.926
USVT 0.051 0.077 0.335 0.000 0.352 2.524 1.790 0.017
SAS 0.153 1.990 99.665 0.000 0.946 5.704 99.160 0.013
P.I. 0.249 0.735 1.500 0.000 0.132 0.490 2.951 4.110

3

Ours 0.075 0.284 3.079 4.494

4

0.043 0.398 3.840 8.423
N.S. 40.084 119.792 99.968 0.093 14.573 43.039 99.973 0.047

Nethist 0.249 1.056 2.840 14.842 0.111 0.642 2.485 12.126
USVT 0.314 0.952 2.093 0.039 0.102 0.648 2.202 0.075
SAS 0.200 2.163 99.956 0.426 0.078 0.945 89.227 253.955
P.I. 0.099 0.445 4.255 6.704 0.115 2.704 33.130 158.566

5

Ours 0.071 0.330 2.910 4.576

6

0.105 0.536 2.571 0.909
N.S. 34.490 115.091 99.993 0.039 42.530 69.027 99.984 0.099

Nethist 0.229 0.948 3.001 20.765 0.408 1.372 4.326 3.571
USVT 0.294 0.971 1.906 0.023 0.224 1.160 4.734 3.877
SAS 0.118 0.907 75.367 325.895 0.390 1.396 89.351 3.252
P.I. 0.170 4.392 21.174 101.657 0.415 2.055 2.821 4.047

7

Ours 0.091 0.585 2.139 1.440
N.S. 29.434 103.240 99.858 1.310

Nethist 0.359 1.688 3.123 1.715
USVT 0.410 1.306 4.808 1.855
SAS 0.915 3.112 99.604 0.113
P.I. 0.259 0.924 2.813 3.071

speed of SAS and P.I., while significantly outperforming other methods in efficiency. Notably, our
method achieves accuracy similar to USVT, which is nearly minimax optimal for MSE under certain
conditions [Xu, 2018], but with much lower computational complexity. Our method requires no
tuning parameters, enhancing robustness across settings. In contrast, the power iteration method,
though effective in some cases, lacks convergence guarantees and theoretical support.

In sparse graphon cases, our method excels, consistently outperforming all other approaches in MSE.
This is expected, as it directly incorporates the sparsity parameter ρn (see equation (9)). Additionally,
we conducted additional simulations to investigate the performance of all methods as sparsity varies
from n−1/2 to 1, taking graphon 4 and 5 as illustrative examples. The results are shown in Table 7
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(Appendix). As sparsity increases, the estimation error for all methods increases. However, our
method consistently outperforms others in the sparse regime.

For estimation of functions Gk, Figure 1 shows the fitted G1 and G2 using our method, with esti-
mates closely matching the true values. Notably, G2 is continuous but not monotonic. The com-
parison between the estimated graphon and the true graphon, measured by the maximum entrywise
error (i.e., the sup-norm), is reported in Table 3. The results demonstrate that the sup-norm errors
of the graphon estimates remain well controlled, which is in line with the theoretical guarantees
established in Theorems 3.2 and 3.9.

Table 3: Sup-norms for graphon estimation across 100 independent trials.

ID Sup-norm (×10−2) Std. Dev. (×10−3)
3 12.053 10.738
4 15.539 12.037

We provide additional simulation studies in Appendix G and Appendix H, examining rank selection
when the true rank is unknown, the impact of rank mis-specification, and the scalability of our
method. Moreover, Appendix I demonstrates the practical utility of our approach through two real-
world applications: the Primary School dataset and the U.S. Political Blogs dataset.
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Figure 1: Estimation of Gk’s for the third and fourth settings.

5 Discussion

This work presents the first unified framework for simultaneously estimating both a low-rank con-
nection probability matrix and its corresponding graphon. Traditional approaches treat these com-
ponents separately, leading to inconsistencies and inefficiencies. By aligning their estimation, our
method offers a more robust, consistent, and efficient solution for modeling network structures, par-
ticularly in low-rank graphon models. We propose a computationally efficient method based on
subgraph counts, supported by rigorous theoretical guarantees for low-rank graphon models of fixed
rank r. The method’s effectiveness is validated through extensive simulations and real-data exam-
ples.

Future research directions include exploring convergence rates and optimality in sparse graphon
models, optimizing subgraph selection for better efficiency and accuracy, and extending the method
to cases where the rank r increases with n, which could have significant implications for large-scale
network analysis in high-dimensional or rapidly evolving networks.

6 Funding Disclosure

This work was supported by the High Performance Computing Center, Tsinghua University. Weichi
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the development of a novel low-
rank approach to graphon estimation, highlighting its advantages in terms of parsimony,
identifiability, and computational efficiency. These claims are substantiated by theoretical
analyses and empirical evaluations presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses several limitations, including the reliance on low-rank
assumptions for the underlying graphon structure. Further discussion is given regarding
the trade-off between model complexity and interpretability.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper clearly states the assumptions required for its theoretical results,
such as those in Assumption 14. All theorems and lemmas are formally stated and proofs
are provided in full in the supplementary material. The main text also contains intuitive
explanations and sketches of the results to guide the readers.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental setup, including data generation processes, parameter set-
tings, algorithms used, and evaluation metrics, is described in detail in Section 4. The paper
also provides the source of the analyzed real-world datasets to enable reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is available at https://github.com/Chiyuru/Low-Rank-Graphon-
Learning-for-Networks. The datasets used are publicly available and cited appropriately.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 provides complete details of the experimental setup, including data
generation schemes, model parameters (such as rank r, thresholds, and projection steps),
and justifications for their selection.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 4, the paper reports mean squared errors and maximum errors over
100 repetitions, and provides standard deviations to show the variability due to random
initialization and sampling.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies in Section 4 that experiments were conducted on a stan-
dard personal computer. The computational requirements are minimal, and all experiments
can be run efficiently on CPUs without specialized hardware. This makes the setup easily
reproducible without access to high-performance computing resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. The datasets used are
publicly available and non-sensitive, and the algorithms proposed do not pose known ethi-
cal or societal risks.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any high-risk models or datasets and poses no
identifiable risk of misuse. It uses only publicly available, well-documented data (e.g., the
US Political Blog dataset).
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites the original creators of the datasets used (e.g., the US Political
Blog dataset by Adamic and Glance). The data used is publicly available for academic use,
and appropriate attribution is given.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce any new datasets or models. It proposes a new
methodology but applies it to existing, publicly available datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any human subjects or crowdsourced data collec-
tion.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This study does not involve human subjects and does not require IRB ap-
proval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language models (LLMs) were used as part of the method develop-
ment, experimentation, or analysis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Graphon Estimation Beyond the Connection Matrix

Graphon estimation provides a richer and more general description of network structure than the
connection probability matrix. While the connection probability matrix captures marginal probabil-
ities for edges in a specific network instance, it lacks information about how edges jointly interact.
In contrast, the graphon f defines a generative model over a family of networks and encodes global
structural properties, including the distribution of motifs and other higher-order patterns.

For example, the expected density of a fixed motif F (e.g., a triangle or star) in a large random graph
generated from f is given by its homomorphism density∫

[0,1]|V (F )|

∏
(i,j)∈E(F )

f(xi, xj) dx1 · · · dx|V (F )|.

For triangles, this quantity captures the limiting probability that three nodes form a triangle, a funda-
mentally joint property that the connection probability matrix alone cannot characterize. Similarly,
the expected transitivity can be expressed as∫

[0,1]3
f(x, y)f(y, z)f(z, x) dx dy dz/

∫
[0,1]3

f(x, y)f(y, z) dx dy dz.

Graphon estimation thus enables direct prediction of such higher-order features. It also facilitates
comparison between networks of different sizes by analyzing their underlying generative mecha-
nisms, independently of the specific realizations captured in the connection probability matrix.

To substantiate the discussion, we conducted an experiment using graphons with IDs 4-6. We gener-
ated networks with 2000 nodes, randomly removed 10% of the nodes, estimated the graphon from
the subgraph, and regenerated networks from the estimate. The mean absolute errors in triangle
counts and transitivity (normalized appropriately) over 100 trials are shown below in Table 4.

Table 4: Triangle and transitivity errors across 100 repetitions.

Graphon Triangle Error (×10−4) Transitivity Error (×10−3)
ID Mean Std. Dev. Mean Std. Dev.
4 2.942 5.309 0.696 6.240
5 1.863 2.107 1.506 1.749
6 0.914 1.192 1.346 0.453

These consistently low errors demonstrate that key higher-order features are well preserved, even
with subsampling, highlighting the structural fidelity and generalizability of graphon estimation.

B A Broader Literature Review

More recently, advances have been made in understanding the minimax rates and adaptivity of
graphon estimation methods. Notably, [Klopp and Verzelen, 2019] rigorously analyzed optimal
rates under the challenging cut distance, providing sharp risk bounds for several estimator classes.
Oracle inequalities for network models, which allow for adaptivity in the presence of sparsity, were
established by [Klopp et al., 2015], while [Donier-Meroz et al., 2023] extended the graphon frame-
work to bipartite graphs with partial observability, further broadening the applicable scope of sta-
tistical models in network analysis. These works, along with related efforts by [Gao et al., 2015]
and [Lei and Rinaldo, 2015], situate the current work within a rich landscape of research focused on
both theoretical properties and practical algorithms for graphon estimation, highlighting the ongoing
evolution of this field.

Matrix completion and matrix sensing are intimately related to graphon estimation, especially when
considering networks with latent structure expressible through low-rank matrix representations.
[Chen et al., 2014] addressed the general case of completing low-rank matrices, offering provable
guarantees under mild assumptions, while the survey by [Candès and Recht, 2012] provides a foun-
dational understanding of matrix completion via convex optimization techniques. These techniques
inform approaches to graphon estimation, where the adjacency matrix of a network can often be
approximated by a low-rank structure.
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The study of smoothness assumptions further refines graphon estimation, particularly through the
establishment of rates under Hölder or Sobolev smoothness conditions. For example, [Gao et al.,
2015] analyzed community detection and graphon estimation under smoothness constraints, pro-
viding minimax rates and adaptive procedures. [Wu et al., 2025] introduced a flexible framework
for network modeling beyond exchangeability, leveraging composite and Hölder-smooth graphon
structures.

Finally, emerging works have sought to bridge graphon estimation with transfer learning and latent
variable modeling. [Jalan et al., 2024] explored leveraging knowledge across related network mod-
els for improved inference, illustrating the potential for cross-network generalization. Collectively,
these contributions provide a comprehensive landscape for graphon estimation, matrix completion,
and smoothness-adaptive procedures, informing both the theoretical boundaries and practical ap-
proaches to latent structure recovery in large-scale networks.

The significance of statistical network analysis and graphon estimation continues to grow within
the AI and machine learning communities, as evidenced by prominent work presented at leading
conferences [Li et al., 2022a, Gaucher and Klopp, 2021, Araya Valdivia and Yohann, 2019]. Our
methodology advances efficient and accurate network model estimation, with broad impact in do-
mains such as social network analysis [Li et al., 2022b] and knowledge graphs [Nickel et al., 2015].

C A Toy Example for Equations 5 and 7

Consider a rank-2 graphon f(u, v) = λ1G1(u)G1(v) + λ2G2(u)G2(v). We illustrate the above
result for C(a)

i using a = 3. Note that nC(3)
i /6 corresponds to the number of triangles in the graph.

Hence,

E

(
nC

(3)
i /6

n(n− 1)(n− 2)/6

)
=

∫
[0,1]3

f(u, v)f(v, w)f(w, u) dudvdw = λ3
1 + λ3

2,

where the last equality follows from the orthonormality of {Gj}j=1,2. Moreover, we verify the
conditional expectation of L(3)

i . Since L
(3)
i =

∑
i1,i2:i1 ̸=i2, i1 ̸=i, i2 ̸=i Eii1Ei1i2 , we have

E(L(3)
i | Ui) = E

 ∑
i1,i2:i1 ̸=i2, i1 ̸=i, i2 ̸=i

E(Eii1Ei1i2 | Ui, Ui1 , Ui2)


= (n− 1)(n− 2)E[f(Ui, Ui1) f(Ui1 , Ui2) | Ui]

= (n− 1)(n− 2)

(
λ2
1G1(Ui)

∫ 1

0

G1(u) du+ λ2
2G2(Ui)

∫ 1

0

G2(u) du

)
.

The derivation for more general cases proceeds analogously.

D A Variant Algorithm and Time Complexity

In this section, we present a modified version of Algorithm 2 that preserves all theoretical guar-
antees from Theorems 3.6 and 3.9, while achieving the time complexity of matrix multiplication,
O(nω), ω = 2.373. This variant algorithm is motivated by defining paths that permit node repeti-
tion. For i = 1, . . . , n, define the lines and cycles allowing repeated nodes as:

L̃
(1)
i =

∑
i1

Eii1 , L̃
(a)
i =

∑
i1,··· ,ia

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C̃
(a)
i =

∑
i1,··· ,ia−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3.

These quantities can be computed efficiently. Specifically, let Ea denote the a-th power of the
adjacency matrix E. Then, we have:

L̃
(a)
i =

∑
j ̸=i

(Ea)ij , C̃
(a)
i = (Ea)ii.
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The variant algorithm (Algorithm 3) uses L̃(a)
i and C̃

(a)
i instead of L(a)

i and C
(a)
i .

Algorithm 3 Fast Estimation Procedure for {pij}ni,j=1 in Rank-r Model.

Require: The graph G = (V,E).
1: For i = 1, . . . , n, compute L̃

(a)
i =

∑
j ̸=i(E

a)ij for 1 ≤ a ≤ r, and C̃
(a)
i = (Ea)ii for 3 ≤ a ≤ r + 2.

2: Set L(a)
i = L̃

(a)
i and C

(a)
i = C̃

(a)
i .

3: Follow from Line 2 of Algorithm 2 to learn {p̂ij}ni,j=1.
4: Output {p̂ij}ni,j=1.

Remark D.1 (Time Complexity of Algorithm 3). Since all L̃(a)
i and C̃

(a)
i for 1 ≤ i ≤ n and

1 ≤ a ≤ r can be computed using matrix multiplication, which has a time complexity of O(n2.373),
the overall time complexity of Algorithm 3 is also O(n2.373).

To analyze the theoretical properties, we present a key lemma showing that L̃(a)
i and L

(a)
i (as well

as C̃
(a)
i and C

(a)
i ) are sufficiently close, such that their differences do not impact the results of

Theorem 3.6 and Theorem 3.9.
Lemma D.2. For a rank-r model, under the assumptions of Theorem 3.6, we have:

max
1≤i≤n

max
1≤a≤r

∣∣∣∣∣ L̃(a)
i − L

(a)
i∏a

j=1(n− j)

∣∣∣∣∣ = op

(
1√
n

)
, max
1≤i≤n

max
3≤a≤r+2

∣∣∣∣∣ C̃(a)
i − C

(a)
i∏a−1

j=1 (n− j)

∣∣∣∣∣ = op

(
1√
n

)
.

With Lemma D.2 established, it follows straightforwardly that the following theorem holds.
Theorem D.3. Theorem 3.6 and Theorem 3.9 remain valid when the fast estimation procedure
described in Algorithm 3 is applied.

E Graphons in Simulation Studies

We list the graphons in Table 5.

Table 5: List of graphons. We learn three rank-1 graphons using Algorithm 1 and four rank-r ≥ 2
graphons using Algorithm 3.

ID Graphon f(u, v) Rank of f(u, v)
1 0.15 1
2 1.5

(1+exp(−u2))(1+exp(−v2))
1

3 1
5

(
tan

(
π
2
u
)
+ 7

6

) (
tan

(
π
2
v
)
+ 7

6

)
1

4 0.95 exp(−3u) exp(−3v) + 0.04(3u2 − 5u+ 1)(3v2 − 5v + 1) 2
5 1

2
(sinu sin v + uv) 2

6 0.05 + 0.15I(u < 0.4, v < 0.4) + 0.25I(u > 0.4, v > 0.4) 2
7 0.1 + 0.75I(u, v < 1

3
) + 0.15I( 1

3
< u, v ≤ 2

3
) + 0.5I(u, v > 2

3
) 3

F A Remark on Computaiton

In Algorithm 3, we employ L̃
(a)
i and C̃

(a)
i as approximations for L(a)

i and C
(a)
i , enabling efficient

computation. Though their equivalence has been proven in Theorem D.3, applying certain correc-
tions in practice can improve finite-sample performance. Specifically, we define:

Ľ
(3)
i = L̃

(3)
i − L̃

(2)
i − (L̃

(1)
i )2,

Č
(4)
i = C̃

(4)
i − L̃

(2)
i − (L̃

(1)
i )2,

Č
(5)
i = C̃

(5)
i − 2(L̃

(1)
i − 2)C̃

(3)
i

− 1

n

(
n∑

k=1

L̃
(1)
k

)
C̃

(3)
i − 2

n∑
k=1

EikC̃
(3)
k ,
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and use Ľ
(3)
i , Č(4)

i , and Č
(5)
i to replace L̃

(3)
i , C̃(4)

i , and C̃
(5)
i , respectively, in Algorithm 3. These

corrections ensure Ľ
(3)
i = L

(3)
i , Č(4)

i = C
(4)
i , and Č

(5)
i is closer to C

(5)
i compared to C̃

(5)
i .

G More Simulations

G.1 Additional Simulation Results on Scalability

To show the scalability of our method, we vary n from 1000 to 2000 for the rank-2 settings and report
the results and time costs in Table 6. Our method consistently shows a decrease in both metrics as n
increases, which is consistent with our theoretical results.

Table 6: Results for rank-2 settings with varying node sizes between 1000 and 2000.

ID MSE (×10−4) MSE S.D. (×10−4) Max. Error (×10−2) Max. Error S.D. (×10−2) Node Size n
4 3.677 0.143 16.618 1.745 1000

3.067 0.126 15.772 1.419 1200
2.457 0.091 14.507 1.490 1500
2.043 0.064 13.564 1.269 1800
1.826 0.062 12.898 1.256 2000

5 3.552 0.159 13.003 1.083 1000
2.995 0.396 12.252 1.819 1200
2.365 0.086 10.732 0.878 1500
2.001 0.311 10.444 2.244 1800
1.774 0.062 9.676 0.780 2000

6 5.576 0.185 12.119 1.160 1000
4.533 0.155 11.665 1.177 1200
3.535 0.108 10.378 0.938 1500
2.890 0.073 9.772 0.964 1800
2.582 0.070 9.319 0.781 2000

For time costs, we plot the logarithm of runtime against the logarithm of n in Figure 2, with n
varying from 200 to 11000. The observed asymptotic trend exhibits linear growth, aligning with the
theoretical computational complexity.

Figure 2: Average runtime of our algorithm as a function of node size, computed over 100 repetitions.
The blue line indicates the best least-squares fit.

G.2 Additional Simulation Results when Assumption 3.7 is Violated

Theoretically, Assumption 3.7 serves as a regularization condition for graphon estimation, and sim-
ilar conditions are necessary and can be commonly found in the literature (e.g., Chan and Airoldi
[2014]). If this assumption is violated, no theoretical guarantees for graphon estimation (Theo-
rem 3.9) can be made; however, the estimation of the probability matrix (Theorem 3.6) still works
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as expected. Practically, even if Assumption 3.7 is slightly violated, the estimated graphon function

can still be reasonably close. We illustrate this with an example. Let G1(u) =
√

6
17 (
√
u + 1),

G2(u) =
√

300
17 (
√
x− 7

10 ), which are non-Lipschitz orthogonal functions. We apply our method to
estimate the graphon function, and the estimated G1 and G2 are plotted below. It is evident that the
estimates exhibit the correct trend, and will be more accurate as the sample size increases.

Figure 3: Estimation of the components of the graphon function for the proposed setting.

G.3 Additional Simulation Results when the Sparsity Varies

Taking graphon 4 and 5 as illustrative examples, we conducted additional simulations to investigate
the performance of all methods as sparsity varies from n−1/2 to 1, . The results are shown in Table 7.

H Selecting r when it is unknown

In this section, we propose a method for selecting r when its value is unknown. Since λ̂k approx-
imates λk by Theorem 3.6, we can estimate r incrementally, starting from r = 1. When |λ̂k| is
significantly larger than 0, but |λ̂i| for i ≥ k + 1 are close to 0, we select r = k. The detailed
procedure for selecting r is summarized in Algorithm 4.

Algorithm 4 Procedure for selecting r.
Require: Graph G = (V,E), threshold τ .
1: For i = 1, . . . , n, compute C̃

(3)
i . Set k = 1.

2: For i = 1, . . . , n, compute C̃
(k+3)
i .

3: Solve the system of equations in (8) with 3 ≤ a ≤ k + 3 and r = k + 1 to obtain (λ̂1, . . . , λ̂k+1).

4: if
∣∣∣ λ̂k+1

λ̂k

∣∣∣ ≤ τ, then
5: Choose r = k and return r.
6: end if
7: Set k = k + 1 and go back to Line 2.
8: Output r.

We remark that Line 4 in Algorithm 4 applies the eigenratio method, which is a well-established
approach in the statistics literature (e.g., Lam and Yao [2012], Ahn and Horenstein [2013]). It offers
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Table 7: Results for sparse graphons across 100 independent trials.

Graphon ID Sparsity Parameter ρn Method
MSE

(×10−4)

Std. dev
of MSE
(×10−6)

Max. Error
(×10−2)

Std. dev
of Max. Error
(×10−3)

4

n−1/3

Ours 0.178 0.663 5.722 9.922
N.S. 31.285 140.98 99.907 0.15

USVT 0.389 1.964 6.163 24.638
Nethist 1.193 7.809 7.815 0.278

SAS 0.597 3.787 99.72 0.985

n−1/6

Ours 0.752 3.501 10.022 12.695
N.S. 8.833 86.337 98.761 0.416

USVT 1.348 6.356 12.44 11.336
Nethist 13.66 89.165 27.699 1.149

SAS 5.356 32.228 99.597 2.321

n−1/10

Ours 1.116 4.874 12.412 14.103
N.S. 3.264 10.317 38.125 129.087

USVT 2.161 10.221 15.706 14.102
Nethist 34.658 221.149 45.841 2.907

SAS 14.681 59.42 93.407 72.598

5

n−1/3

Ours 0.258 1.205 4.93 7.207
N.S. 29.992 170.322 99.969 0.167

USVT 0.9 3.584 6.231 5.969
Nethist 3.316 10.137 6.766 0.074

SAS 0.821 4.783 97.805 101.723

n−1/6

Ours 1.145 34.613 11.757 40.912
N.S. 3.624 6.686 20.814 98.466

USVT 3.039 11.992 12.511 9.675
Nethist 30.673 72.197 23.993 0.395

SAS 9.165 18.182 74.31 132.569

n−1/10

Ours 1.338 33.349 10.409 30.081
N.S. 4.852 10.989 16.784 9.73

USVT 4.626 18.243 15.865 13.431
Nethist 58.583 185.89 39.152 5.418

SAS 9.281 21.39 93.009 68.993

robustness to scaling and noise, especially in settings where the eigenvalues decay gradually or
have non-uniform magnitudes (see also Cai et al. [2024]). In our context, the use of the ratio helps
highlight significant drops in the eigenvalue sequence while mitigating the influence of slow decay
or scale variability. Algorithm 4 selects the correct rank r with high probability as the threshold τ
asymptotically approaches zero at a certain rate.

We apply Algorithm 4 to select r for the 3rd, 6th and 7th settings in Table 5, with τ = 0.2. Theoret-
ically, the threshold τ should asymptotically tend to 0. For finite sample simulations, we choose 0.2
as a heuristic value. The results are presented in Table 8. These results demonstrate that Algorithm 4
is effective in most cases.

In our simulations in the main paper, we assume the rank r is known. Estimating r first and then
applying our method leads to minimal differences because r can be chosen correctly with high
probability by our method (see Table 8) in our scenarios. For example, we apply our rank selection
algorithm to the 6th setting, and there is only an 8% probability of making an incorrect selection.
The MSE when selecting r first and then running our method is 2.4× 10−4 (with a standard error of
0.9× 10−6), which is close to the values reported in the main article.

Table 8: Selection of r for the 3rd, 6th and 7th settings across 100 independent trials.

ID True r
Estimated r

1 2 3 ≥ 4
3 1 100 0 0 0
6 2 0 92 0 8
7 3 0 0 89 11
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Moreover, we assess the impact of an incorrect rank selection by testing cases where r = 1 is mis-
specified as r = 2. The results, presented in Table 9, show that the differences in performance
are minimal compared to the original settings in Table 1, highlighting that our method is robust to
over-estimation of the rank r.

Table 9: Results for rank-1 settings when their rank is mis-selected as 2.

ID MSE (10−4) Std. MSE (10−4) Max error (10−2) Std. Max (10−2)
1 1.45 0.475 6.274 1.226
2 6.11 6.650 18.186 18.17
3 1.92 0.067 9.399 0.693

For the case where r = 2 is mis-specified as r = 1, the corresponding results are summarized in
Table 10. As shown in the table, the estimation error increases significantly when rank-2 graphons
are incorrectly selected as rank 1, since an essential component is omitted during estimation. How-
ever, our rank selection experiments (see also Table 8) indicate that while the selected rank may
sometimes be higher than the true rank, we seldom select a rank lower than the actual one, which
would otherwise lead to large errors.

Table 10: Results summary with runtime statistics.

ID MSE (×10−4) Std. MSE (×10−6) Max. error (×10−2) Std. Max (×10−3)
4 15.559 5.939 30.818 17.708
5 1.810 0.620 10.320 8.962
6 71.987 29.280 15.086 2.447

I Real-world Data Analysis

We applied our method to two real-world datasets to evaluate its performance and robustness in
practical scenarios.

I.1 Primary School Student Contact Data

Firstly, we applied our method to real contact data from a primary school, collected by the SocioPat-
terns project3 using active RFID devices that recorded data every 20 seconds. On October 1st, 2009,
from 8:40 to 17:18, contact data were gathered for 236 individuals, resulting in 60,623 records. We
constructed an undirected graph where nodes are connected if individuals had at least one contact.
Using Algorithm 4 with a threshold τ = 0.25, we selected r = 4 based on Table 11. We subse-
quently learned the connection probability matrix with Algorithm 3. The resulting heatmap, shown
on the left of Figure 4, aligns with expectations for real-world interactions.

Table 11: Learned eigenvalues for the contact data.

Rank r λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

2 0.264 0.159
3 0.266 0.146 0.0593
4 0.271 0.118 0.118 -0.0992
5 0.272 0.117 0.0813 -0.0423 -0.00721

Assuming Assumption 3.7, we learn the graphon function, using G1 as the reference marginal
graphon. The learned functions h1, . . . , h4 are shown on the right of Figure 4. The learned graphon
function f̂(u, v) for any (u, v) ∈ [0, 1]2 is computed using equation (11).

I.2 U.S. Political Blogs Data

We evaluate our method on a larger real-world dataset. We consider the U.S. Political Blog Dataset
[Adamic and Glance, 2005], which consists of 1490 nodes. This dataset captures the hyperlink net-

3http://www.sociopatterns.org
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Figure 4: Learned P (Left) and learned graphon (Right).

work among political blogs during the 2004 U.S. presidential election, where each node represents a
blog labeled as either liberal or conservative, and approximately 19000 edges between these blogs.

Using Algorithm 4 with a threshold τ = 0.25, we selected rank r = 2 based on Table 12.We mention
that our choice of rank is consistent with the known structure of the network, in which blogs affiliated
with the same political orientation tend to form two distinct communities, characterized by dense
intra-community and sparse inter-community connections.

Table 12: Learned eigenvalues for the political blog data.

Rank r λ̂1 λ̂2 λ̂3

2 0.0668 0.0326
3 0.0692 0.0304 0.00649

We subsequently estimated the connection probability matrix using Algorithm 3. The resulting
heatmap, shown in Figure 5, reveals a relatively sparse structure, reflecting the nature of the observed
political blog network.

Figure 5: Learned connection probability matrix P for U.S. political blog data.

Assuming Assumption 3.7 holds, we learn the graphon function using G1 as the reference marginal
graphon. The learned functions h1 and h2 are presented in Figure 6. The estimated graphon func-
tion f̂(u, v) for any (u, v) ∈ [0, 1]2 can be computed according to equation (11). The learning
procedure demonstrates promising performance when applied to large-scale real-world networks,
and effectively detects the latent structure of low-rank networks.
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Figure 6: Estimated components of the graphon for U.S. political blog data.

I.3 Validating the Quality of the Real-data Estimates

Using the U.S. political blog dataset as an illustrative example, we demonstrate the advantages of
our method through extensive comparisons with existing approaches.

Specifically, we estimated the underlying graphon from the observed network and computed the
expected densities of various motifs, such as triangles, squares, and 5-cycles. For competing meth-
ods, we generated synthetic networks from their estimated connection probability matrices and per-
formed motif counting on these networks. We then compared the absolute differences in motif
counts–normalized by the total possible in a complete graph of the same size–between the original
and generated networks. The results, summarized in Table 13, show that our method consistently
achieves smaller errors in motif prediction than competing approaches.

Table 13: Motif counting errors and runtime for each method.

Method Triangle counting
error (×10−4)

Runtime
(s)

Square counting
error (×10−5)

Runtime
(s)

5-cycle counting
error (×10−6)

Runtime
(s)

Ours 0.252 0.167 0.761 0.198 3.848 0.175
N.S. 1.709 119.812 3.758 120.837 9.039 123.863
Nethist 8.087 19.082 1.809 20.523 4.383 22.427
USVT 4.449 15.971 1.712 17.098 5.149 19.439
SAS 1.327 3.018 2.256 4.730 4.960 5.237

Moreover, as shown in Table 13, our approach significantly improves computational efficiency. Af-
ter estimating the graphon, the expected density of any motif in networks of any size can be quickly
approximated using the plug-in method, with only a constant number of matrix operations per sam-
ple. In contrast, existing methods require explicit motif counting in generated networks, which is
computationally expensive (see Jin et al. [2025] for details). This blend of efficiency and accuracy
is particularly beneficial for downstream tasks where motif statistics are crucial (e.g., Milo et al.
[2002]).

J Details of the power iteration method

To estimate the leading r (r ≥ 1) eigenpairs of a matrix A, we use the power iteration method itera-
tively, combined with matrix deflation. Beginning with A0 = A, each step k (from 1 to r) estimates
the dominant eigenpair (λ̂k, v̂k) of Ak−1 using the power iteration method. After normalization of
v̂k, the matrix is deflated as Ak = Ak−1 − λ̂kv̂kv̂

⊤
k . Once all r eigenpairs are computed, an approx-

imation P̃ is reconstructed as P̃ =
∑r

k=1 λ̂kv̂kv̂
⊤
k . Finally, the probability connection matrix P̂ is
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obtained via element-wise thresholding:

pij = min (1,max(0, p̃ij)) ,

ensuring all entries lie within the probability range [0, 1]. The complete algorithm is summarized in
Algorithm 5.

Algorithm 5 Iterative Power Iteration.
Require: Adjacency matrix A, rank r, maximum iterations N , tolerance ϵ.
Ensure: Estimated probability connection matrix P̂ .

1: Initialize A0 ← A.
2: for k = 1 to r do
3: Initialize vector x0 of length n with all ones and normalize: x0 ← x0/∥x0∥2.
4: for i = 1 to N do
5: Update xi ← Ak−1xi−1 and normalize: xi ← xi/∥xi∥2.
6: if ∥xi − xi−1∥2 < ϵ then
7: break
8: end if
9: end for

10: Compute eigenvalue λ̂k ← x⊤
i Ak−1xi and eigenvector v̂k ← xi.

11: Deflate the matrix: Ak ← Ak−1 − λ̂kv̂kv̂
⊤
k .

12: end for
13: Compute P̃ =

∑r
k=1 λ̂kv̂kv̂

⊤
k and threshold element-wise: p̂ij = min (1,max(0, p̃ij)).

14: Return P̂ .

For the experiments, we set the maximum number of iterations to 500 and the convergence threshold
to 10−6. Tables 14 and 15 summarize the actual number of iterations for all scenarios discussed in
this paper. In some cases, the power iteration does not converge within 500 iterations.

Table 14: Number of iterations for dense settings across 100 independent trials.

ID λ̂1 Iterations Std. Dev. λ̂2 Iterations Std. Dev. λ̂3 Iterations Std. Dev.
1 6 0
2 5 0
3 5.01 0.0995
4 9 0 17.99 0.5744
5 6 0 500 0
6 15.34 0.6200 8 0
7 27.83 1.8871 15.1 0.7416 8 0

Table 15: Number of iterations for sparse settings across 100 independent trials.

ID λ̂1 Iterations Std. Dev. λ̂2 Iterations Std. Dev.
2 13 0
3 17.15 0.3571
4 31.91 1.8713 500 0
5 17.98 0.3995 500 0

K Proofs

Proof of Theorem 3.1. By (2) and (3), we have

sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣ = Op

(√
log(n)

n

)
, (12)

where c = λ1

∫ 1

0
G1(u) du.

30



Using the property of U-statistics (see, for example, Theorem 4.2.1 in Korolyuk [2013]), we have

1

n(n− 1)

∑
i,j:i ̸=j

f(Ui, Uj) = Ef(Ui, Uj) +Op(n
−1/2). (13)

Moreover, note that

E


 1

n(n− 1)

∑
i,j:i ̸=j

Eij −
1

n(n− 1)

∑
i,j:i ̸=j

f(Ui, Uj)

2 ∣∣∣∣U1, . . . , Un

 (14)

≲ 1

n4

∑
i1,i2,j1,j2

E
(
(Ei1j1 − f(Ui1 , Uj1))(Ei2j2 − f(Ui2 , Uj2))

∣∣∣∣U1, . . . , Un

)
(15)

≲ 1

n4

∑
i1,i2

E
(
(Ei1j1 − f(Ui1 , Uj1))

2

∣∣∣∣U1, . . . , Un

)
= O

(
1

n2

)
, (16)

where the second inequality follows from the fact that the terms are nonzero only when i1 = i2, j1 =
j2, and the last equality is due to the boundedness of each term.

Combining (13) and (14), we obtain

1

n(n− 1)

∑
i,j:i ̸=j

Eij = λ1

(∫ 1

0

G1(u) du

)2

+Op(n
−1/2). (17)

Similarly,

1

n(n− 1)3

∑
i,j:i ̸=j

didj = λ2
1

(∫ 1

0

G1(u) du

)4

+Op(n
−1/2). (18)

Combining (17) and (18), we have

(n− 1)2
∑

i,j:i ̸=j Eij∑
i,j:i ̸=j didj

=
1

λ1

(∫ 1

0
G1(u) du

)2 +Op(n
−1/2).

Thus,

sup
i

∣∣∣∣∣G1(Ui)−

√∑
i,j:i ̸=j Eij∑
i,j:i ̸=j didj

di√
λ1

∣∣∣∣∣ (19)

≤ sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣+ sup
i

∣∣∣∣∣
√ ∑

i,j:i ̸=j Eij∑
i,j:i ̸=j didj

di√
λ1

− 1

c(n− 1)
di

∣∣∣∣∣ (20)

≤ sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣+
∣∣∣∣∣
√

(n− 1)2

∑
i,j:i ̸=j Eij∑
i,j:i ̸=j didj

1√
λ1

− 1

λ1

∫ 1

0
G1(u)du

∣∣∣∣∣ (21)

= Op

(√
log(n)

n

)
. (22)

By the definition of the graphon function, supu1,u2∈[0,1] λ1G1(u1)G1(u2) ≤ 1, and thus
supu∈[0,1]

√
λ1G1(u) ≤ 1.
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For c1 =
∑

i,j:i ̸=j Eij∑
i,j:i ̸=j didj

, we have

sup
i,j
|p̂ij − pij | ≤ sup

i,j
|c1didj − λ1G1(Ui)G1(Uj)|

≤ sup
i,j

∣∣∣√c1di −√λ1G1(Ui)
∣∣∣√c1dj

+ sup
i,j

∣∣∣√c1dj −√λ1G1(Uj)
∣∣∣√λ1G1(Ui)

= Op

(√
log(n)

n

)
.

Proof of Theorem 3.2. It suffices to show that

sup
u∈[0,1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, (23)

sup
u∈[0,1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ = Op

(√
log(n)

n

)
, (24)

and the subsequent steps can then be obtained by following the similar proof of Theorem 3.1, transi-

tioning from (12) to (19) by replacing (n− 1)λ1

∫ 1

0
G1(v)dv with

√ ∑
i,j:i ̸=j Eij

λ1
∑

i,j:i ̸=j didj
, and modifying

the argument from taking the maximum over all Ui to taking the supremum over all u ∈ [0, 1]. To
show (23) and (24), we consider the following two steps.

(Step 1.) In this step, we prove that

sup
u∈{1,2,··· ,n}

∣∣∣∣∣∣
h
(

u
n+1

)
(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
u

n+ 1

)∣∣∣∣∣∣ a.s.→ 0,

and

sup
u∈{1,2,··· ,n}

∣∣∣∣∣∣
h
(

u
n+1

)
(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
u

n+ 1

)∣∣∣∣∣∣ = Op

(√
log(n)

n

)
.

Let U(1), · · · , U(n) denote the rearrangement of U1, · · · , Un
i.i.d.∼ Uniform(0, 1) such that U(1) ≤

· · · ≤ U(n). By Lemma L.2, we have

sup
i=1,··· ,n

|U(i) − i/(n+ 1)| a.s.→ 0.

By Kawohl [2006] (Chapter II.2), the rearrangement function G†
1 is Lipschitz continuous with con-

stant M as long as G1 is Lipschitz continuous with constant M . As a consequence,

sup
i=1,··· ,n

|G†
1(U(i))−G†

1(i/(n+ 1))| ≤M sup
i=1,··· ,n

|U(i) − i/(n+ 1)| a.s.→ 0. (25)

Moreover, using the proof of Lemma 1 in Chan and Airoldi [2014], we have

sup
i=1,··· ,n

|U(i) − i/(n+ 1)| = Op

(√
log(n)

n

)
,

which also shows that

sup
i=1,··· ,n

|G†
1(U(i))−G†

1(i/(n+ 1))| = Op

(√
log(n)

n

)
. (26)
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By definition, for i = 1, · · · , n, h(i/(n+1)) = dσ(i). By (12) (more precisely, the similar argument
of (12) applied to G†), (25), and Lemma L.3, we have

sup
i∈{1,2,··· ,n}

∣∣∣∣∣∣
h
(

i
n+1

)
(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣∣ a.s.→ 0.

Similarly, via (12), (26), and Lemma L.3, we have

sup
i∈{1,2,··· ,n}

∣∣∣∣∣∣
h
(

i
n+1

)
(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣∣ = Op

(√
log(n)

n

)
.

(Step 2.) In this step, we prove (23). We note that

sup
u∈[0,1/(n+1)]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣
≤

∣∣∣∣∣G†
1

(
1

n+ 1

)
− h(1/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
+ sup

u∈[0,1/(n+1)]

∣∣∣∣G†
1

(
1

n+ 1

)
−G†

1(u)

∣∣∣∣
≤

∣∣∣∣∣G†
1

(
1

n+ 1

)
− h(1/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣+ M

n+ 1

a.s.→ 0, and Op

(√
log(n)

n

)
.

Similarly, we have

sup
u∈[n/(n+1),1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, and Op

(√
log(n)

n

)
.

For u ∈ (1/(n+ 1), n/(n+ 1)), let k = ⌊u(n+ 1)⌋, then∣∣∣∣∣G†
1(u)−

h(u)

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
≤ (k + 1− u(n+ 1))

∣∣∣∣G†
1(u)−G†

1

(
k

n+ 1

)∣∣∣∣
+ (k + 1− u(n+ 1))

∣∣∣∣∣∣G†
1

(
k

n+ 1

)
−

h
(

k
n+1

)
(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣∣
+ (u(n+ 1)− k)

∣∣∣∣∣∣G†
1

(
k + 1

n+ 1

)
−

h
(

k+1
n+1

)
(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣∣
+ (u(n+ 1)− k)

∣∣∣∣G†
1(u)−G†

1

(
k + 1

n+ 1

)∣∣∣∣
≤ M

n+ 1
+ sup

i∈{1,2,··· ,n}

∣∣∣∣∣∣
h
(

i
n+1

)
(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣∣ .
Therefore, by the result from (Step 1),

sup
u∈[1/(n+1),n/(n+1)]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ = Op

(√
log(n)

n

)
.

Finally, combining the results of the steps yields the proof of Theorem 3.2.
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Proof of Theorem 3.6. Without loss of generality, we assume that
∫ 1

0
Gk(u) du ≥ 0 for 1 ≤ k ≤ r.

If
∫ 1

0
Gk(u) du ≤ 0, we can replace Gk with −Gk.

For i = 1, . . . , n, recall that

L
(1)
i =

∑
i1

Aii1 ,

L
(a)
i =

∑
i1,...,ia distinct,
ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C
(a)
i =

∑
i1,...,ia−1 distinct,
ik ̸=i,1≤k≤a−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3.

Note that P(Eij = 1 | Ui, Uj) =
∑r

k=1 λkGk(Ui)Gk(Uj) and
∫ 1

0
G2

i (u) du = 1 for 1 ≤ i ≤ r. We
then have

1∏a
j=1(n− j)

E(L(a)
i | Ui) =

r∑
k=1

λa
kGk(Ui)

∫ 1

0

Gk(u) du for 1 ≤ a ≤ r,

1∏a−1
j=1 (n− j)

E(C(a)
i | Ui) =

r∑
k=1

λa
kG

2
k(Ui) for 3 ≤ a ≤ r + 2. (27)

We prove the theorem in two steps.

(Step 1.) We first show that

max
1≤k≤r

|λ̂k − λk| = Op(n
−1/2), max

1≤k≤r

∣∣∣∣yk − ∫ 1

0

Gk(u) du

∣∣∣∣ = Op(n
−1/2).

By (27), we have

1∏a
j=1(n− j)

E(L(a)
i ) =

r∑
k=1

λa
k

(∫ 1

0

Gk(u) du

)2

for 1 ≤ a ≤ r,

1∏a−1
j=1 (n− j)

E(C(a)
i ) =

r∑
k=1

λa
k for 3 ≤ a ≤ r + 2. (28)

Moreover, by the implicit function theorem, the system of equations (28) in terms of λk and(∫ 1

0
Gk(u) du

)2
for 1 ≤ k ≤ r has a unique solution if∣∣∣∣∣∣∣

λ2
1 λ2

2 · · · λ2
r

...
...

. . .
...

λr+1
1 λr+1

2 · · · λr+1
r

∣∣∣∣∣∣∣ ̸= 0,

∣∣∣∣∣∣∣
λ1 λ2 · · · λr

...
...

. . .
...

λr
1 λr

2 · · · λr
r

∣∣∣∣∣∣∣ ̸= 0. (29)

This condition is satisfied under Assumption 3.5, which assumes λk > 0 for 1 ≤ k ≤ r and λi ̸= λj

for i ̸= j.

By Lemma L.4, we have

1∏a
j=0(n− j)

n∑
i=1

(
L
(a)
i − E(L(a)

i )
)
= Op(n

−1/2) for 1 ≤ a ≤ r,

1∏a−1
j=0 (n− j)

n∑
i=1

(
C

(a)
i − E(C(a)

i )
)
= Op(n

−1/2) for 3 ≤ a ≤ r + 2.

By Lemma L.5, we have
max
1≤k≤r

|λ̂k − λk| = Op(n
−1/2).
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By Lemma L.6, we have

max
1≤k≤r

∣∣∣∣yk − ∫ 1

0

Gk(u) du

∣∣∣∣ = Op(n
−1/2).

Note that there is no ambiguity in the square root since we assume
∫ 1

0
Gi(u) du ≥ 0 for i = 1, 2.

(Step 2.) In this step, we prove that

sup
i,j
|p̂ij − pij | = Op

(√
log n

n

)
.

Recall that (G1(Ui), . . . , Gr(Ui)) is estimated by solving the system of equations with respect to
(Ĝ1(Ui), . . . , Ĝr(Ui)):

1∏a
j=1(n− j)

L
(a)
i =

r∑
k=1

λ̂a
kykĜk(Ui) for 1 ≤ a ≤ r,

where λ̂a
k and yk are defined in (8). For this linear system, we have

max
i

max
k
|Ĝk(Ui)−Gk(Ui)| = Op

(√
log n

n

)
, (30)

provided that

max
i

max
a

|L(a)
i − E(L(a)

i | Ui)|∏a
j=1(n− j)

= Op

(√
log n

n

)
,

which is guaranteed by Lemma L.7.

By (10), for every 1 ≤ k ≤ r, we have

G̃k(Ui)− Ĝk(Ui) =
Ĝk(Ui)√

1
n

∑n
i=1 Ĝ

2
k(Ui)

− Ĝk(Ui) = Ĝk(Ui)

 1√
1
n

∑n
i=1 Ĝ

2
k(Ui)

− 1

 . (31)

Since Ui’s are i.i.d., we have

1

n

n∑
i=1

G2
k(Ui)− 1 = Op(n

−1/2).

Thus,

1

n

n∑
i=1

Ĝ2
k(Ui)− 1 =

1

n

n∑
i=1

Ĝ2
k(Ui)−

1

n

n∑
i=1

G2
k(Ui) +

1

n

n∑
i=1

G2
k(Ui)− 1 = Op

(√
log n

n

)
,

which implies

1√
1
n

∑n
i=1 Ĝ

2
k(Ui)

− 1 = Op

(√
log n

n

)
. (32)

By Assumption 3.5, Gk is bounded by K. Combining (32), (31), (30), and noting that r = O(1),
we have

max
k

max
i
|G̃k(Ui)− Ĝk(Ui)| = Op

(√
log n

n

)
.

Therefore,

max
k

max
i
|G̃k(Ui)−Gk(Ui)| = Op

(√
log n

n

)
.
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As a result, for the estimation of connection probabilities, we have

sup
i,j
|p̂ij − pij | = sup

i,j

∣∣∣∣∣
[
1 ∧

(
0 ∨

(
r∑

k=1

λ̂kG̃k(Ui)G̃k(Uj)

))]
−

(
r∑

k=1

λkGk(Ui)Gk(Uj)

)∣∣∣∣∣
= Op

(√
log n

n

)
.

Proof of Lemma D.2. We show that

max
1≤i≤n

max
1≤a≤r

∣∣∣∣∣ 1∏a
j=1(n− j)

(
L̃
(a)
i − L

(a)
i

)∣∣∣∣∣ = op

(
1√
n

)
,

as the result for C̃(a)
i follows similarly.

By definition, we have

L̃
(a)
i − L

(a)
i =

∑
i1,...,ia∈M

Ei,i1

a∏
j=2

Eij−1,ij ,

where
M = {At least two of the values i, i1, . . . , ia are identical}.

Therefore,

1∏a
j=1(n− j)

∣∣∣L̃(a)
i − L

(a)
i

∣∣∣ ≤ 1∏a
j=1(n− j)

∑
i1,...,ia∈M

1 =
O(na−1)∏a
j=1(n− j)

.

As a result, we have

max
1≤i≤n

max
1≤a≤r

1∏a
j=1(n− j)

∣∣∣L̃(a)
i − L

(a)
i

∣∣∣ ≤ O(na−1)∏a
j=1(n− j)

= Op

(
1

n

)
.

L Technical Lemmas

Lemma L.1. For the rank-2 model with f(u, v) = λ1G1(u)G1(v)+λ2G2(u)G2(v), where G1, G2

are bounded by a constant M > 0, we have

sup
i=1,...,n

|di − E(di | Ui)|
n− 1

= Op

(√
log(n)

n

)
,

where di is the degree of the i-th node. Note that the model reduces to a rank-1 model when λ2 = 0.

Proof. We first note that

sup
i=1,...,n

∣∣∣∣∣∣ 1

n− 1

∑
j:j ̸=i

(λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj))

−λ1G1(Ui)

∫ 1

0

G1(u) du− λ2G2(Ui)

∫ 1

0

G2(u) du

∣∣∣∣
≤ λ1M

∣∣∣∣∣∣ 1

n− 1

n∑
j=1

G1(Uj)−
∫ 1

0

G1(u) du

∣∣∣∣∣∣+ 1

n− 1
M


+ λ2M

∣∣∣∣∣∣ 1

n− 1

n∑
j=1

G2(Uj)−
∫ 1

0

G2(u) du

∣∣∣∣∣∣+ 1

n− 1
M

 = Op(n
−1/2),
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where the last result follows from Slutsky’s theorem.

It now suffices to show that

sup
i=1,...,n

∣∣∣∣∣∣ 1

n− 1

∑
j:j ̸=i

(I (Uij ≤ λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj)) (33)

−λ1G1(Ui)G1(Uj)− λ2G2(Ui)G2(Uj))| = Op

(√
log(n)

n

)
, (34)

where Uij , i ≤ j are i.i.d. uniformly distributed random variables on [0, 1], and Uji = Uij for i > j.

Let

Zi =
1

n− 1

n∑
j=1

(I (Uij ≤ λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj)) −λ1G1(Ui)G1(Uj)− λ2G2(Ui)G2(Uj)) .

By Hoeffding’s inequality (Theorem 2.6.2 of Vershynin [2018]), for any t > 0, we have

P
(√

n|Zi| > t | U1, . . . , Un

)
≤ 2 exp(−ct2),

where c > 0 is an absolute constant.

Taking expectations, we get

P
(√

n|Zi| > t
)
= E

(
P
(√

n|Zi| > t | U1, . . . , Un

))
≤ 2 exp(−ct2).

As a result,
√
nZi are sub-Gaussian random variables. Then, using standard bounds for maxima of

sub-Gaussian variables, we have

E max
i=1,...,n

|Zi| = O

(√
log(n)

n

)
,

which implies that

max
i=1,...,n

|Zi| = Op

(√
log(n)

n

)
.

Lemma L.2. Suppose that Ui
i.i.d.∼ Uniform(0, 1), for i = 1, . . . , n. Let U(i) denote the i-th smallest

value among U1, . . . , Un, i.e., U(1) ≤ U(2) ≤ · · · ≤ U(n). Then

sup
i

∣∣∣∣U(i) −
i

n+ 1

∣∣∣∣ a.s.→ 0.

Proof. It is well-known that U(i) ∼ Beta(i, n− i+ 1), with probability density function

p(x) =
xi−1(1− x)n−i∫ 1

0
xi−1(1− x)n−i dx

.

We now proceed to bound the tail probability for any ε > 0 using Markov’s inequality. First, we
have

P
(∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣ ≥ ε

)
≤ 1

ε6
E
∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣6
=

1

ε6
5i(n− i+ 1)A

(n+ 1)6(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

≤ 1

ε6
5n2A

(n+ 1)11
,

where

A = 24(n−i+1)4+2i(n−i+1)3(13n−13i+1)+i2(n−i+1)2(24−8(n−i+1)+3(n−i+1)2)
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+2i3(n− i+ 1)2(3(n− i+ 1)2 − 4(n− i+ 1)− 12) + i4(24 + 26(n− i+ 1) + 3(n− i+ 1)2).

We note that A ≤ 12n6 + 36n5 + 24n4 ≤ 72n6. Hence, we have
∞∑

n=1

P
(
sup
i

∣∣∣∣U(i) −
i

n+ 1

∣∣∣∣ ≥ ε

)
≤

∞∑
n=1

n∑
i=1

P
(∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣ ≥ ε

)

≤ 1

ε6

∞∑
n=1

n∑
i=1

360n8

(n+ 1)11

≤ 360

ε6

∞∑
n=1

1

n2
<∞.

Therefore, by the Borel-Cantelli lemma, the result follows.

Lemma L.3. Let G(u), for u ∈ [0, 1], be a monotonically non-decreasing, Lipschitz continuous
function with Lipschitz constant L > 0. Let ai := G(i/(n + 1)), i = 1, . . . , n. Suppose that there
exists a sequence of random variables b1, . . . , bn such that supi=1,...,n |bi − ai|

a.s.→ 0. Let α be a
one-to-one permutation such that bα(1) ≤ bα(2) ≤ · · · ≤ bα(n). Let âi := bα(i). Then we have

sup
i
|âi − ai|

a.s.→ 0.

Moreover, if supi=1,...,n |bi−ai| = Op(gn), then supi |âi−ai| = Op(gn) for some gn = o(1), with
ngn →∞.

Proof. Let Mn = supi=1,...,n |bi − ai|, then Mn
a.s.→ 0. Assume without loss of generality that

1/n = oa.s.(Mn). Let Kn be a non-negative random variable such that Kn
a.s.→ 0, 3Mn ≤ Kn ≤

4Mn, and 1/n = oa.s.(Kn). For any i = 1, . . . , n, we have

|âi − ai| = |bα(i) − ai| ≤ |aα(i) − ai|+Mn.

First, consider the case where α(i) ≥ i. Assume, for the sake of contradiction, that aα(i)−ai > Kn.
Then for j = 1, 2, . . . , i+ 1, we derive that

bα(i) ≥ aα(i) −Mn > aj −
L

n+ 1
+Kn −Mn ≥ bj −

L

n+ 1
+Kn − 2Mn,

where for the second inequality, we use the monotonicity of G(u). By the construction of Kn, with
probability 1, when n is sufficiently large, we have bα(i) > bj for j = 1, 2, . . . , i + 1. This implies
that there are at least i+1 values smaller than bα(i), which contradicts the definition of α. Therefore,
aα(i) − ai ≤ Kn.

Similarly, for the case where α(i) ≤ i, we have aα(i) − ai ≥ −Kn.

We thus conclude that
sup
i
|âi − ai| = Oa.s.(Kn) +Mn

a.s.→ 0.

The statement for Op follows from the same argument.

Lemma L.4. Under the assumptions of Theorem 3.6, we have

1∏a
j=0(n− j)

n∑
i=1

(
L
(a)
i − E(L(a)

i )
)
= Op(n

−1/2) for 1 ≤ a ≤ r,

1∏a−1
j=0 (n− j)

n∑
i=1

(
C

(a)
i − E(C(a)

i )
)
= Op(n

−1/2) for 3 ≤ a ≤ r + 2,

where L
(a)
i , C

(a)
i are defined in Section 3.2.

Proof. We only show that

1∏a
j=0(n− j)

n∑
i=1

(
L
(a)
i − E(L(a)

i )
)
= Op(n

−1/2) for 1 ≤ a ≤ r,
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as the results for C(a)
i follow similarly.

Note that E(Eij |Ui, Uj) = f(Ui, Uj), and that Eij is conditionally independent of Ei1,j1 when
(i, j) ̸= (i1, j1). Then we derive that

1(∏a
j=1(n− j)

)2E
( n∑

i=1

L
(a)
i −

n∑
i=1

E(L(a)
i | U1, . . . , Un)

)2 ∣∣∣U1, . . . , Un


≲ 1

n2a+2

∑
i,i1,...,ia,k,k1,...,ka

E

Eii1

a∏
j=2

Eij−1ij − f(Ui, Ui1)

a∏
j=2

f(Uij−1
, Uij )


Ekk1

a∏
j=2

Ekj−1kj
− f(Uk, Uk1

)

a∏
j=2

f(Ukj−1
, Ukj

)

∣∣∣U1, . . . , Un


≲ n2a

n2a+2
=

1

n2
.

Since
∑n

i=1 L
(a)
i ≤

∏a
j=0(n− j), we have

1∏a
j=0(n− j)

n∑
i=1

(
L
(a)
i − E(L(a)

i |U1, . . . , Un)
)
= Op

(
1

n

)
. (35)

Moreover, by the property of U-statistics (see, for example, Theorem 4.2.1 in Korolyuk [2013]), we
have∑

i,i1,...,ia
f(Ui, Ui1)

∏a
j=2 f(Uij−1 , Uij )∏a

j=0(n− j)
=

E
∑

i,i1,...,ia
f(Ui, Ui1)

∏a
j=2 f(Uij−1 , Uij )∏a

j=0(n− j)
+Op(n

−1/2).

(36)

Note that
n∑

i=1

E(L(a)
i |U1, . . . , Un) =

∑
i,i1,...,ia

f(Ui, Ui1)

a∏
j=2

f(Uij−1
, Uij ).

Then the result follows by combining (36) with (35).

Lemma L.5. Suppose that x1, . . . , xr are r real numbers satisfying |x1| > |x2| > · · · > |xr| > 0.
Let ϵ3,n, . . . , ϵr+2,n be r random variables such that maxi |ϵi,n| = Op(n

−1/2). Then the solution
(x̃1, . . . , x̃r) to the following system of equations

r∑
k=1

x̃a
k =

r∑
k=1

xa
k + ϵa,n for 3 ≤ a ≤ r + 2 (37)

satisfies
max

i
|x̃i − xi| = Op(n

−1/2).

Proof. Let ∆i = x̃i − xi for 1 ≤ i ≤ r. By the implicit function theorem, the system of equations
(37) has a unique solution with probability tending to 1. Moreover, by the continuous mapping
theorem, we have ∆i = op(1). By the definition of ϵi,n, for any ε > 0, there exist finite constants
M and N such that

P
(
max

i
|
√
nϵi| > M

)
< ε for all n > N.

Therefore, it suffices to show that

P
(
max

i
|∆i| ≤ Cmax

i
|ϵi,n|

)
→ 1 (38)

for some constant C > 0.
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Note that
r∑

k=1

x̃a
k −

r∑
k=1

xa
k =

r∑
k=1

(xk +∆k)
a −

r∑
k=1

xa
k

=

r∑
k=1

axa−1
k ∆k +Op(max

k
∆2

k).

We then calculate that
r∑

k=1

axa−1
k ∆k = ϵ̃a,n for 3 ≤ a ≤ r + 2,

where ϵ̃a,n = δa + ϵa,n and δa = Op(maxi ∆
2
i ).

For the above linear system of equations, by our assumption on xi (similar to the arguments in (29)),
it has a unique solution of the form

∆i =

r+2∑
j=3

ai,j ϵ̃j,n, (39)

where ai,j are constants depending only on x1, . . . , xr. By combining (39) and the fact that
maxa |δa| = Op(maxi ∆

2
i ) and ∆i = op(1), we conclude that (38) follows.

Lemma L.6. Suppose that x1, . . . , xr are r real numbers satisfying |x1| > |x2| > · · · > |xr| > 0,
and that x̃1, . . . , x̃r are r random variables satisfying maxi |x̃i − xi| = Op(n

−1/2). Let y1, . . . , yr
be r non-zero real numbers, and let ϵ1,n, . . . , ϵr,n be r random variables satisfying maxi |ϵi,n| =
Op(n

−1/2). Then the solution (ỹ1, . . . , ỹr) to the following system of equations with respect to
(y1, . . . , yr):

ya ≥ 0,

r∑
k=1

x̃a
kỹ

2
k =

r∑
k=1

xa
ky

2
k + ϵa,n for 1 ≤ a ≤ r, (40)

satisfies
max

i
|ỹi − yi| = Op(n

−1/2).

Proof. Note that
x̃a
kỹ

2
k − xa

ky
2
k = (x̃a

k − xa
k)y

2
k + x̃a

k(ỹ
2
k − y2k).

Since maxi |x̃i − xi| = Op(n
−1/2), we have maxi |x̃a

i − xa
i | = Op(n

−1/2). Therefore, equation
(40) reduces to

ya ≥ 0,

r∑
k=1

x̃a
k(ỹ

2
k − y2k) = ϵ̃a,n for 1 ≤ a ≤ r,

where maxa |ϵ̃a,n| = Op(n
−1/2). Moreover, since maxk |x̃a

k| = Op(1), and noting that the above
system of equations is linear in ỹ2k − y2k for 1 ≤ k ≤ r, and that r = O(1), we have

max
k
|ỹ2k − y2k| = Op(n

−1/2).

Finally, recalling that y1, . . . , yr are non-zero, we conclude that

max
k
|ỹk − yk| = Op(n

−1/2).

Lemma L.7. Under the assumptions of Theorem 3.6, we have

max
1≤i≤n

max
1≤a≤r

∣∣∣∣∣L(a)
i − E(L(a)

i |Ui)∏a
j=1(n− j)

∣∣∣∣∣ = Op

(√
log(n)

n

)
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where

L
(1)
i =

∑
i1

Eii1 ,

L
(a)
i =

∑
i1,··· ,ia distinct,ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2.

Proof. We divide the proof into two steps. In Step 1, we show that

1∏a
j=1(n− j)

max
i
|L(a)

i − Si,0| = Op

(√
log(n)

n

)
where

Si,0 =
∑

i1,··· ,ia distinct,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a∏
j=2

f(Uij−1
, Uij ).

In Step 2, we show that

1∏a
j=1(n− j)

max
i
|Si,0 − Ti,1| = Op(n

−1/2)

where

Ti,1 = E

 ∑
i1,··· ,ia distinct,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a∏
j=2

f(Uij−1 , Uij )
∣∣∣Ui

 = E(L(a)
i |Ui).

Then the proof is complete by combining the above two equations and noticing that r is bounded.

Step 1. Let

Si,a−1 =
∑

i1,··· ,ia distinct,ik ̸=i,1≤k≤a

Eii1

a−1∏
j=2

Eij−1ijf(Uia−1 , Ui).

Then

1∏a
j=1(n− j)

(
L
(a)
i − Si,a−1

)
=

1∏a
j=1(n− j)∑

i1,··· ,ia distinct,ik ̸=i,1≤k≤a

Eii1

a−1∏
j=2

Eij−1ij

(
Eia−1ia − f(Uia−1

, Uia)
)
.

(41)

Notice that Eia−1ia = I(Uia−1,ia ≤ f(Uia−1
, Uia)) is binary, with Uia−1,ia ∼ Uniform(0, 1) inde-

pendently, and that Uij is independent of Uk for any i, j, k. By Hoeffding’s inequality in Theorem
2.6.2 of Vershynin [2018], we have for any t > 0,

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(
Eia−1ia − f(Uia−1 , Uia)

)∣∣∣∣∣∣ ≥ t
∣∣∣U1, · · · , Un

 ≤ 2 exp(−ct2)

where c > 0 is an absolute constant. Then

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(
Eia−1ia − f(Uia−1 , Uia)

)∣∣∣∣∣∣ ≥ t


= E

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(
Eia−1ia − f(Uia−1 , Uia)

)∣∣∣∣∣∣ ≥ t
∣∣∣U1, · · · , Un

 ≤ 2 exp(−ct2).
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As a result, 1√
n−a

∣∣∣∑ia ̸=i,i1,··· ,ia−1

(
Eia−1ia − f(Uia−1

, Uia)
)∣∣∣ are sub-Gaussian random variables,

and we have

Emax
ia−1

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

Eia−1ia − f(Uia−1 , Uia)

∣∣∣∣∣∣ /(n− a) = O

(√
log(n)

n

)
.

By recalling (41) and the fact that Eij’s are binary, we have

1∏a
j=1(n− j)

Emax
i
|L(a)

i − Si,a−1| = O

(√
log(n)

n

)
.

Similarly, let

Si,a−2 =
∑

i1,··· ,ia distinct,ik ̸=i,1≤k≤a

Eii1

a−2∏
j=2

Eij−1ijf(Uia−2
, Uia−1

)f(Uia−1
, Uia).

Then
1∏a

j=1(n− j)
(Si,a−1 − Si,a−2) =

1∏a
j=1(n− j)

∑
i1,··· ,ia distinct,ik ̸=i,1≤k≤a

Eii1

×
a−2∏
j=2

Eij−1ij

(
Eia−2ia−1

− f(Uia−2
, Uia−1

)
)
f(Uia−1

, Uia)

=
1∏a−1

j=1 (n− j)

∑
i1,··· ,ia−1 distinct,ik ̸=i,1≤k≤a−1

Eii1

a−2∏
j=2

Eij−1ij

(
Eia−2ia−1 − f(Uia−2 , Uia−1)

)
.

(42)
The same reasoning holds by Hoeffding’s inequality to show that

1∏a
j=1(n− j)

max
i
|L(a)

i − Si,a−2| = Op

(√
log(n)

n

)
.

Continuing this process iteratively and combining with the fact that r is bounded, we obtain

1∏a
j=1(n− j)

max
i
|L(a)

i − Si,0| = Op

(√
log(n)

n

)
. (43)

Step 2. Let

Ti,a−1 =
∑

i1,...,ia distinct,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−1∏
j=2

f(Uij−1
, Uij )E

(
f(Uia−1

, Uia) | Uia−1

)
.

Then, we have

max
i

1∏a
j=1(n− j)

|Si,0 − Ti,a−1|

= max
i

1∏a
j=1(n− j)

∣∣∣∣∣∣
∑

i1,...,ia distinct,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−1∏
j=2

f(Uij−1 , Uij )

×
(
f(Uia−1

, Uia)− E(f(Uia−1
, Uia) | Uia−1

)
)∣∣

= max
i

1∏a−1
j=1 (n− j)

∣∣∣∣∣∣
∑

i1,...,ia−1 distinct,ik ̸=i,1≤k≤a−1

f(Ui, Ui1)

a−1∏
j=2

f(Uij−1
, Uij )

× 1

n− a

∑
ia

r∑
k=1

λkGk(Uia−1
)

[
Gk(Uia)−

∫ 1

0

Gk(u) du

]∣∣∣∣∣
≤ 1

n− a

r∑
k=1

∣∣∣∣∣λkM
∑
ia

[
Gk(Uia)−

∫ 1

0

Gk(u) du

]∣∣∣∣∣ = Op(n
−1/2),
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where we use the facts that f(x, y) are bounded by 1, Gk are bounded by M , and Ui are i.i.d. random
variables.

Similarly, let

Ti,a−2 =
∑

i1,...,ia distinct,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−2∏
j=2

f(Uij−1
, Uij )E

(
f(Uia−2

, Uia−1
)f(Uia−1

, Uia) | Uia−2

)
.

Then, we have

max
i

1∏a
j=1(n− j)

|Ti,a−1 − Ti,a−2|

= max
i

1∏a
j=1(n− j)

∣∣∣∣∣∣
∑

i1,...,ia distinct,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a−2∏
j=2

f(Uij−1
, Uij )

×
(
f(Uia−2

, Uia−1
)E(f(Uia−1

, Uia) | Uia−1
)− E

(
f(Uia−2

, Uia−1
)f(Uia−1

, Uia) | Uia−2

))∣∣
≲ 1

n

∣∣∣∣∣∣
∑
ia−1

r∑
k1=1

r∑
k2=1

λk1λk2Gk1(Uia−1)Gk2(Uia−1)

∫ 1

0

Gk2(u) du

−
∑
ia−1

r∑
k=1

λ2
k

∫ 1

0

Gk(u) du

∣∣∣∣∣∣
≲ 1

n

r∑
k=1

∣∣∣∣∣∣
∑
ia−1

(
G2

k(Uia−1)− 1
)∣∣∣∣∣∣+ 1

n

∑
k1 ̸=k2

∣∣∣∣∣∣
∑
ia−1

Gk1(Uia−1)Gk2(Uia−1)

∣∣∣∣∣∣+O

(
1

n

)
= Op(n

−1/2),

where we use the facts that f(x, y) are bounded by 1, Gk are bounded by M , r is bounded,∫ 1

0
G2

k(u) du = 1,
∫ 1

0
Gi(u)Gj(u) du = 0 for i ̸= j, and that Ui are i.i.d. random variables.

Similar arguments can be performed for Ti,a−3, . . . , Ti,1. Since a ≤ r is bounded, by combining all
the results, we obtain

1∏a
j=1(n− j)

max
i
|Si,0 − Ti,1| = Op(n

−1/2), (44)

where

Ti,1 = E

 ∑
i1,...,ia distinct,ik ̸=i,1≤k≤a

f(Ui, Ui1)

a∏
j=2

f(Uij−1 , Uij ) | Ui

 .

Finally, the proof is complete by combining the results from equations (43), (44), and noting that r
is bounded.
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