
Low-Rank Graphon Learning for Networks

Xinyuan Fan*

Department of Statistics and Data Science
Tsinghua University
Beijing, China
fxy22@mails.tsinghua.edu.cn

Feiyan Ma*

Weiyang College
Tsinghua University
Beijing, China
maf21@mails.tsinghua.edu.cn

Chenlei Leng[†]

Department of Applied Mathematics
Hong Kong Polytechnic University
Hong Kong, China
chenlei.leng@polyu.edu.hk

Weichi Wu[†]

Department of Statistics and Data Science
Tsinghua University
Beijing, China
wuweichi@mail.tsinghua.edu.cn

Abstract

Graphons offer a powerful framework for modeling large-scale networks, yet estimation remains challenging. We propose a novel approach that leverages a low-rank additive representation, yielding both a low-rank connection probability matrix and a low-rank graphon—two goals rarely achieved jointly. Our method resolves identification issues and enables an efficient sequential algorithm based on subgraph counts and interpolation. We establish consistency and demonstrate strong empirical performance in terms of computational efficiency and estimation accuracy through simulations and data analysis.

1 Introduction

With advances in data collection, modeling network data has become increasingly important across domains such as brain networks [Maugis et al., 2020], co-authorship networks [Isfandyari-Moghaddam et al., 2023], and biological systems [Kamimoto et al., 2023]. A key challenge is understanding the generative mechanisms underlying these networks, which informs tasks like studying dynamics [Pensky, 2019], link prediction [Gao et al., 2016], and community detection [Jin et al., 2021].

A powerful framework for modeling networks is based on exchangeable graphs, where node permutations leave the edge distribution invariant. By the Aldous-Hoover theorem [Kallenberg et al., 2005], such graphs are characterized by a graphon, a symmetric measurable function. Graphons offer a unified perspective, supporting tasks such as asymptotic analysis of subgraph counts [Bickel et al., 2011] and graph equivalence testing [Maugis et al., 2020]. They also underpin widely used models, including the stochastic block model (SBM) [Holland et al., 1983], random dot product graphs (RDPG) [Young and Scheinerman, 2007], and latent space models [Hoff et al., 2002].

A graphon is a symmetric, measurable bivariate function and serves as the limit object for sequences of dense graphs [Lovász and Szegedy, 2006]. Without further assumptions, it cannot be directly estimated from a single network. However, its eigenvalue-eigenfunction decomposition offers a practical solution: by truncating to the leading components—analogous to principal component analysis—we obtain a low-rank approximation. The resulting connection probability matrix P , constructed by evaluating the graphon at observed nodes, inherits this low-rank structure.

*Equal contribution.

[†]Corresponding author.

Contributions. We propose a novel low-rank approach to graphon modeling that simultaneously captures the low-rank structure of both the graphon and the connection probability matrix. While prior work has focused primarily on estimating the connection matrix, our method uniquely recovers both the graphon function and the matrix with the *same rank*, offering a unified framework that fills a gap in existing literature.

The method builds on the key observation that a rank- r matrix can be decomposed into a sum of r rank-1 components. By counting $O(r)$ carefully selected subgraphs, we efficiently extract these components and solve the resulting system to estimate the connection matrix P . The graphon f is subsequently recovered by sorting and interpolation. Crucially, while sorting is a powerful tool for recovering one-dimensional latent structures as in our approach, it is generally ineffective when applied directly to P estimated by other methods, which lack the rank-1 aligned structure necessary for accurate graphon recovery. This sequential design ensures that the estimated graphon inherits the correct rank of P , leading to a tuning-free, scalable method that performs robustly across a range of settings, including sparse networks, as validated in our experiments.

In addition to our methodological advances, we deliver several key theoretical contributions that deepen the understanding of low-rank graphon models. First, we establish sharp perturbation bounds for solutions to stochastic systems of equations (Lemmas L.5 and L.6), shedding light on how estimation errors propagate through the model. Second, we prove a novel result (Lemma L.7) showing that, in low-rank graphon settings, the appropriately scaled number of fixed-length paths from a node uniformly approximates its conditional expectation given the latent variable. This insight forms the backbone of our eigenfunction estimation strategy and provides a fresh analytical tool for studying low-rank network models. Finally, all our convergence results (Theorems 3.1, 3.2, and 3.6) are derived under the sup-norm, delivering stronger *uniform* guarantees than those based on average-error metrics commonly used in the literature. Collectively, these contributions offer a robust theoretical foundation and significantly enhance the practical impact of our approach.

Literature review. Existing graphon estimation methods generally fall into two categories: those that directly estimate the graphon and those that estimate the connection probability matrix P . A central challenge in both is reconciling the low-rank structure of P with that of the underlying graphon, often resulting in inconsistencies.

Graphon-based approaches include Olhede and Wolfe [2014], who approximate the graphon with a step function by partitioning it into blocks. Their method requires permutation maximization via a greedy algorithm, which is computationally intensive (see Section 4). Chan and Airoldi [2014] refine this by reordering nodes by degree and applying total variation minimization, assuming strictly monotonic marginals, an assumption that excludes models like the SBM. Moreover, the resulting P is not guaranteed to be low-rank.

In contrast, P -based methods include Chatterjee [2015], who assume low rank and use Universal Singular-Value Thresholding (USVT), treating the adjacency matrix as a noisy version of P . Zhang et al. [2017] propose neighborhood smoothing to estimate P , achieving near-minimax optimality. Gao et al. [2016] introduce a combinatorial least-squares estimator, later extended by Wu et al. [2025] to non-exchangeable networks. However, these methods do not directly recover the graphon. The latent variables are unknown and unordered, preventing P from being viewed as a lattice sample of the graphon, which complicates alignment. Moreover, further analysis of the estimated P , such as through eigenvalue decomposition, is challenging, especially to achieve sup-norm consistency. Most prior work focuses on mean squared error bounds. These limitations underscore the need for methods bridging graphon and P estimation. Our approach offers a unified framework enabling sup-norm consistency in both.

Finally, we note that extensive research has been devoted to graphon models, therefore, we provide a broader literature review in Section B of the appendix.

Structure. The paper is organized as follows: Section 2 introduces the low-rank graphon framework. Section 3 presents the estimation procedures and algorithms for both $r = 1$ and $r \geq 2$. Section 4 reports simulation studies illustrating the method’s efficiency and accuracy. Section 5 concludes with a discussion and future research directions. Additional details, including the significance of graphon estimation, time complexity, simulation settings, rank selection, sensitivity analysis, real data examples, proofs, and technical lemmas, are provided in the appendix.

Notations. For a real number x , $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x . For positive real numbers a and b , we define $a \vee b = \max(a, b)$ and $a \wedge b = \min(a, b)$. Let $\|A\|_F$ be the Frobenius norm of matrix A , and A_{ij} denote its element at the i -th row and j -th column. For two sequences of positive real numbers a_n and b_n , we write $a_n = O(b_n)$ or $a_n \lesssim b_n$ if there exist constants N and C such that $a_n \leq Cb_n$ for all $n > N$. For random variable sequences X_n and Y_n , we write $X_n = O_p(Y_n)$ if for any $\varepsilon > 0$, there exists a constant $C_\varepsilon > 0$ such that $\sup_n \mathbb{P}(|X_n| \geq C_\varepsilon |Y_n|) < \varepsilon$.

2 Low-rank Approaches

We consider a random graph $\mathcal{G} = (V, E)$ within the graphon model framework. For $i = 1, \dots, n$, where n is the network size, each node i is associated with an i.i.d. random variable $U_i \sim \text{Uniform}(0, 1)$. The edges E_{ij} are independently drawn as $E_{ij} \sim \text{Bernoulli}(f(U_i, U_j))$ for $i < j$, where $f(\cdot, \cdot)$ is a symmetric, measurable function $f : [0, 1]^2 \rightarrow [0, 1]$, the graphon. We impose $E_{ii} = 0$ and $E_{ij} = E_{ji}$ for $i > j$. While we focus on undirected graphs without self-loops, our methods extend to graphs with self-loops or directed graphs. Many large-scale real-world networks exhibit low-rank features, such as group memberships or communities, which popular models like SBM and RDPG capture. For further discussions and real-data examples, see Athreya et al. [2018], Thibeault et al. [2024], and Fortunato [2010].

To incorporate low-rank structure into graphon models, we introduce the following parsimonious model:

$$f(U_i, U_j) = \sum_{k=1}^r \lambda_k G_k(U_i) G_k(U_j), \quad (1)$$

where $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_r| > 0$, G_k is a measurable function with $\int_0^1 G_k^2(u) du = 1$ for $k = 1, \dots, r$, and $\int_0^1 G_k(u) G_l(u) du = 0$ for $k \neq l$. This model represents a truncated eigen-decomposition of the graphon, as suggested by the Hilbert-Schmidt theorem [Szegedy, 2011]. Model (1) includes both the SBM and RDPG as special cases. If the G_k functions are step functions, it reduces to an SBM with r blocks. When all λ_k values are positive, the model simplifies to a rank- r RDPG.

Introducing low-rank structures in graphon models enhances their ability to capture real-world network features, such as community structures and latent memberships, while also offering computational advantages through the models additive separability. We propose a novel, computationally efficient, and theoretically grounded method for estimating the connection probabilities $\{f(U_i, U_j)\}_{i,j=1}^n$ and the full graphon function f . Notably, practical methods for estimating general graphon functions in polynomial time are scarce [Gao and Ma, 2021].

3 Methodology and Theory

Let $p_{ij} = f(U_i, U_j)$ represent the connection probability between the i -th and j -th nodes, with $P = (p_{ij})_{i,j}$ as the connection probability matrix. To provide an intuitive understanding, we first focus on the estimation of P and f for $r = 1$ in Section 3.1. We then extend the discussion to the general case where $r \geq 2$ in Section 3.2.

3.1 $r = 1$: Low-rank Modeling with Rank-1

To provide clarity, we begin by considering the case where $r = 1$, i.e., $f(U_i, U_j) = \lambda_1 G_1(U_i) G_1(U_j)$. Without loss of generality, assume that $\inf_{u \in [0,1]} G_1(u) \geq 0$; otherwise, we can replace $G_1(u)$ with $|G_1(u)|$. A key observation is that the degree of the i -th node, denoted $d_i = \sum_j E_{ij}$, satisfies the following equation:

$$\frac{\mathbb{E}(d_i | U_i)}{n-1} = \frac{1}{n-1} \sum_{j \neq i} \int_0^1 f(U_i, U_j) dU_j = \lambda_1 G_1(U_i) \int_0^1 G_1(u) du, \quad (2)$$

which is proportional to $G_1(U_i)$. Furthermore, by Lemma L.1, we have the following bound:

$$\sup_{i=1,\dots,n} \frac{|d_i - \mathbb{E}(d_i | U_i)|}{n-1} = O_p \left(\sqrt{\frac{\log(n)}{n}} \right). \quad (3)$$

Thus, $G_1(U_i)$ can be learned by $\frac{d_i}{n-1}$, and as a result, p_{ij} can be estimated by $\frac{d_i d_j}{(n-1)^2}$, up to a multiplicative constant. To account for the sparsity of the graph \mathcal{G} , we apply a moment estimation to determine this multiplicative factor. Note that the method of moments (MoM) is widely used in network analysis, for example, Bickel et al. [2011] employed MoM to estimate parameters based on subgraph counts, while Zhang and Xia [2022] analyzed the finite-sample distribution of MoM estimators for network motifs using Edgeworth expansions. The estimation procedure for p_{ij} is summarized in Algorithm 1.

Algorithm 1 Estimation for $\{p_{ij}\}_{i,j=1}^n$ in Rank-1 Model.

Require: The graph $\mathcal{G} = (V, E)$.

- 1: For $i = 1, \dots, n$, let $d_i = \sum_{j:j \neq i} E_{ij}$.
 - 2: Let $c_1 = \sum_{i,j:i \neq j} E_{ij} / \sum_{i,j:i \neq j} d_i d_j$.
 - 3: For any (i, j) pair, $i \neq j$, let the estimator of p_{ij} be $\hat{p}_{ij} = 1 \wedge (c_1 d_i d_j)$.
 - 4: Let $\hat{p}_{ii} = 0$ for $i = 1, \dots, n$.
 - 5: Output $\{\hat{p}_{ij}\}_{i,j=1}^n$.
-

Algorithm 1 is straightforward and leverages the low-rank assumption with $r = 1$. Its time complexity is $O(n^2)$, which is efficient given that there are $O(n^2)$ values of p_{ij} to learn. In contrast, SVD-based methods (e.g., Xu [2018]) typically require $O(n^3)$ time complexity, making them less efficient. We remark that when the connection probability matrix is known a priori to be rank-1, a truncated version of Xu [2018] can, in principle, be accelerated to $O(n^2)$ time by computing only the leading singular value and its corresponding singular vectors through efficient procedures such as the power iteration method (see also Section J). It should be noted, however, that although the power iteration method is often effective in practice, it generally lacks rigorous convergence guarantees and theoretical justification. The run times for these methods are shown in Table 1 for various ranks r .

We now present the theoretical results for the estimates \hat{p}_{ij} .

Theorem 3.1. *For $r = 1$, assume that $\int_0^1 G_1(u) du > 0$. Applying Algorithm 1 to obtain the estimates \hat{p}_{ij} , we have*

$$\sup_{i,j} |\hat{p}_{ij} - p_{ij}| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right).$$

The assumption in Theorem 3.1 is mild and does not require the continuity of the function G_1 . This flexibility allows our model to accommodate various block structures, including the SBM with a rank-1 connection probability matrix. Additionally, the estimated connection probability matrix $\hat{P} = (\hat{p}_{ij})_{i,j}$ retains the rank-1 structure, consistent with the rank of P . The result $\sup_{i,j} |\hat{p}_{ij} - p_{ij}| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right)$ also implies convergence in the Frobenius norm, specifically:

$$\frac{\|\hat{P} - P\|_F^2}{n^2} = O_p \left(\frac{\log(n)}{n} \right),$$

a standard metric used in the literature, such as in Zhang et al. [2017] and Gao et al. [2015].

Estimating the graphon function $f(u, v)$ is generally more challenging due to identification issues arising from measure-preserving transformations [Borgs et al., 2015, Diaconis and Janson, 2007, Olhede and Wolfe, 2014]. As a result, many prominent methods, including those in Gao et al. [2016] and Zhang et al. [2017], focus on estimating the connection probability matrix, as we do in Theorem 3.1. In the case with $r = 1$, we can mitigate the non-identifiability issue by defining a canonical, monotonically non-decreasing graphon through rearrangement. Specifically, let $G_1^\dagger(u) = \inf \{t : \mu(G_1 \leq t) \geq u\}$, where $\mu(\cdot)$ denotes the Lebesgue measure. As shown in Barbarino et al.

[2022], the function $G_1^\dagger(u)$ is the monotone rearrangement of $G_1(u)$, making it monotonically non-decreasing, left-continuous, and measure-preserving. Moreover, $G_1^\dagger(u)$ is continuous if $G_1(u)$ is continuous. Consequently, we can focus on the canonical graphon $f^\dagger(u, v) := \lambda_1 G_1^\dagger(u) G_1^\dagger(v)$.

To estimate $f^\dagger(u, v)$, we propose a degree sorting and interpolation method. Let $\sigma(k)$ denote the index i corresponding to the k -th smallest value in the sequence $\{d_i\}_{i=1}^n$, i.e., $d_{\sigma(1)} \leq d_{\sigma(2)} \leq \dots \leq d_{\sigma(n)}$. Then, for any $(u, v) \in [0, 1]^2$, we define

$$\hat{f}^\dagger(u, v) := 1 \wedge (c_1 h(u) h(v)),$$

where $h(v)$ is defined as follows. Let $s = v(n+1)$ and $k = \lfloor s \rfloor$. Then, $h(v) = d_{\sigma(k)}(k+1-s) + d_{\sigma(k+1)}(s-k)$, for $k \in [0, n]$, with the convention that $d_{\sigma(0)} = d_{\sigma(1)}$ and $d_{\sigma(n+1)} = d_{\sigma(n)}$. We remark that the degrees with ties can be ordered in any sequence, and the resulting $h(v)$ will remain unchanged. This further ensures the uniqueness of $\hat{f}^\dagger(u, v)$.

Theorem 3.2. *For $r = 1$, assume that $G_1(u)$ is Lipschitz continuous on the interval $[0, 1]$, i.e., there exists a constant $M > 0$ such that for any $u_1, u_2 \in [0, 1]$, $|G_1(u_1) - G_1(u_2)| \leq M|u_1 - u_2|$. Then,*

$$\sup_{u, v \in [0, 1]} |\hat{f}^\dagger(u, v) - f^\dagger(u, v)| \xrightarrow{a.s., L_2} 0, \text{ and } = O_p \left(\sqrt{\frac{\log(n)}{n}} \right).$$

The estimation rate of our method matches that of Chan and Airolidi [2014], with convergence in the **sup-norm**, which is stronger than the mean squared error (MSE)-based approaches of Xu [2018], Olhede and Wolfe [2014], and Chan and Airolidi [2014]. While MSE focuses on average error, the sup-norm ensures uniform convergence, controlling the error at every point. This distinction underscores the robustness and precision of our approach.

3.2 $r > 1$: Low-rank Modeling with Rank- r

For $r \geq 2$, the connection probability $p_{ij} = f(U_i, U_j)$ in (1) is additive. To estimate p_{ij} , it is necessary to recover each λ_k and G_k for $k = 1, \dots, r$. A central difficulty lies in the fact that estimating λ_k requires eliminating the dependence on the unknown components G_1, \dots, G_r . A key conceptual insight is that this disentanglement can be achieved by leveraging subgraph count statistics. Subgraphs, or ‘motifs’, are crucial both theoretically [Maugis et al., 2020, Bravo-Hermsdorff et al., 2023, Ribeiro et al., 2021] and practically [Milo et al., 2002, Dey et al., 2019, Yu et al., 2019]. Their expectations are expressed via the graphon function. Consider a cycle of length a passing through node i , whose count in the sample can be written as

$$C_i^{(a)} = \sum_{\{i_1, \dots, i_{a-1}\} \in I_{a-1}} E_{ii_1} E_{i_{a-1}i} \prod_{j=2}^{a-1} E_{i_{j-1}i_j} \text{ for } a \geq 3, \quad (4)$$

where $I_a = \{i_1, \dots, i_a \text{ distinct, } i_k \neq i, 1 \leq k \leq a\}$. Its expectation is given by

$$\mathbb{E}(C_i^{(a)}) = \left[\prod_{j=1}^{a-1} (n-j) \right] \sum_{k=1}^r \lambda_k^a, \quad (5)$$

which is independent of all G_k . Moreover, under an appropriate normalization, $C_i^{(a)}$ concentrates around $\mathbb{E}(C_i^{(a)})$, as established in Lemma L.4. Consequently, by counting cycles of different lengths, we can recover all λ_k .

Similarly, consider a simple path of length a that has node i as an endpoint, whose count in the sample is

$$L_i^{(1)} = \sum_{i_1} E_{ii_1}, \quad L_i^{(a)} = \sum_{\{i_1, \dots, i_a\} \in I_a} E_{ii_1} \prod_{j=2}^a E_{i_{j-1}i_j} \text{ for } a \geq 2. \quad (6)$$

Its expectations are given by

$$\begin{aligned}\mathbb{E}(L_i^{(a)}|U_i) &= \left[\prod_{j=1}^a (n-j) \right] \sum_{k=1}^r \lambda_k^a G_k(U_i) \int_0^1 G_k(u) du, \\ \mathbb{E}(L_i^{(a)}) &= \left[\prod_{j=1}^a (n-j) \right] \sum_{k=1}^r \lambda_k^a \left(\int_0^1 G_k(u) du \right)^2.\end{aligned}\quad (7)$$

Moreover, by Lemma L.4 and Lemma L.7, $L_i^{(a)}$, $\mathbb{E}(L_i^{(a)}|U_i)$, $\mathbb{E}(L_i^{(a)})$ are close under suitable normalizations. Therefore, after estimating λ_k , we can first use $L_i^{(a)}$ to obtain an estimate of $\int_0^1 G_k(u) du$, and then proceed to estimate $G_k(U_i)$. Substituting these estimates into equation (1) yields an estimator for p_{ij} . To illustrate the above calculations, we provide a toy example in Section C, while the rigorous proofs are given in our theoretical derivations in the appendix.

We summarize the procedure in Algorithm 2. Note that in Algorithm 2, we add a standardization step in Line 4. It typically enhances performance in finite samples, benefiting both dense and sparse graphon settings.

Algorithm 2 Estimation for $\{p_{ij}\}_{i,j=1}^n$ in Rank- r Model.

Require: The graph $\mathcal{G} = (V, E)$.

- 1: For $i = 1, \dots, n$, compute $L_i^{(a)}$, $1 \leq a \leq r$ and $C_i^{(a)}$, $3 \leq a \leq r+2$ defined in (6) and (4).
- 2: Solve the system of equations

$$\begin{cases} y_k \geq 0, \text{ for } 1 \leq k \leq r, |\hat{\lambda}_1| > \dots > |\hat{\lambda}_r|, \\ \sum_{k=1}^r \hat{\lambda}_k^a = \frac{1}{\prod_{j=0}^{a-1} (n-j)} \sum_{i=1}^n C_i^{(a)} \text{ for } 3 \leq a \leq r+2, \\ \sum_{k=1}^r \hat{\lambda}_k^a y_k^2 = \frac{1}{\prod_{j=0}^{a-1} (n-j)} \sum_{i=1}^n L_i^{(a)} \text{ for } 1 \leq a \leq r. \end{cases} \quad (8)$$

to obtain $(\hat{\lambda}_1, \dots, \hat{\lambda}_r, y_1, \dots, y_r)$.

- 3: For $i = 1, 2, \dots, n$, compute the estimators $\hat{G}_1(U_i), \dots, \hat{G}_r(U_i)$ from

$$\frac{1}{\prod_{j=1}^a (n-j)} L_i^{(a)} = \sum_{k=1}^r \hat{\lambda}_k^a y_k G_k(U_i) \text{ for } 1 \leq a \leq r. \quad (9)$$

- 4: Compute the standardized estimators $\tilde{G}_1(U_i), \dots, \tilde{G}_r(U_i)$ from

$$\tilde{G}_k(U_i) = \hat{G}_k(U_i) / \sqrt{\sum_{i=1}^n \hat{G}_k^2(U_i) / n}. \quad (10)$$

- 5: For each pair (i, j) , where $i \neq j$, estimate p_{ij} as $\hat{p}_{ij} = [1 \wedge (0 \vee (\sum_{k=1}^r \hat{\lambda}_k \tilde{G}_k(U_i) \tilde{G}_k(U_j)))]$. Set $\hat{p}_{ii} = 0$ for $i = 1, \dots, n$.
 - 6: Output $\{\hat{p}_{ij}\}_{i,j=1}^n$.
-

Remark 3.3. The primary computational complexity of Algorithm 2 arises from counting lines and cycles within the graph. Notably, counting paths that allow repeated nodes is considerably simpler than counting simple paths, as the former can be achieved via matrix multiplication with a complexity of $O(n^\omega)$, where $\omega = 2.373$ [Williams, 2012]. Motivated by this observation, we propose an algorithm (Algorithm 3) in Section D with matrix multiplication time complexity, while preserving all theoretical guarantees from Theorems 3.6 and 3.9.

Remark 3.4 (Comparison with the spectral method for estimating the connection probability matrix). Spectral methods, such as USVT [Chatterjee, 2015], estimate the connection probability matrix through eigenvalues and eigenvectors. However, our approach differs in several ways. First, our goal is to estimate the graphon function, not just the connection probability matrix, which leads to a distinct methodology based on subgraph counts and moment-based techniques. Additionally, our method achieves the minimax rate for mean squared error up to a logarithmic factor, without requiring smoothness assumptions, unlike spectral methods that assume piecewise constant or Hölder-class smoothness [Xu, 2018]. Finally, for sparse graphons, our method outperforms USVT, as shown in Table 2.

We impose the following mild conditions for the consistency of \hat{p}_{ij} .

Assumption 3.5. Assume that: (i) $|\lambda_1| > \dots > |\lambda_r| > 0$, $\int_0^1 G_k^2(u)du = 1$, for $1 \leq k \leq r$, and $\int_0^1 G_i(u)G_j(u)du = 0$ for $1 \leq i \neq j \leq n$, (ii) $\int_0^1 G_k(u)du \neq 0$, for $1 \leq k \leq r$, (iii) there exists a constant $K > 0$ such that $\max_{1 \leq k \leq r} \sup_{u \in [0,1]} |G_k(u)| \leq K$.

Assumption 3.5 (i) ensures the identifiability of the functions G_k , similar to the eigengap condition in the RDPG model [Lyzinski et al., 2014]. Condition (ii) guarantees a unique solution for the system of equations (8), akin to the requirement in Bickel et al. [2011]. Condition (iii) is mild and typically holds for most graphon functions. Notably, we do not require G_k 's to be piecewise smooth, which broadens the applicability of our model for estimating the connection probability matrix. The theoretical result for \hat{p}_{ij} is presented next.

Theorem 3.6. For $r \geq 2$, under Assumption 3.5, when n is sufficiently large, there exists an open set $U \subset \mathbb{R}^{2r}$ containing the point $(\lambda_1, \dots, \lambda_r, \int_0^1 G_1(u)du, \dots, \int_0^1 G_r(u)du)$ such that, with probability 1, the system of equations in (8) has a unique solution within this region. Moreover, for $\hat{\lambda}_k, 1 \leq k \leq r$, \hat{p}_{ij} , we have $\max_{1 \leq k \leq r} |\hat{\lambda}_k - \lambda_k| = O_p(n^{-1/2})$, and $\sup_{i,j} |\hat{p}_{ij} - p_{ij}| = O_p(\sqrt{\log(n)/n})$.

Theorem 3.6 shows that $\|\hat{P} - P\|_F^2/n^2 = O_p(\log(n)/n)$, achieving a rate matching the minimax rate (up to a logarithmic factor) in Gao et al. [2015]. The rate does not involve r since we treat it as fixed. We leave the case where r grows with n for future work.

Estimating graphon functions is more challenging for $r \geq 2$ due to the model's additive structure. To address this, we introduce the following assumptions for learning the graphon function in the $r \geq 2$ case:

Assumption 3.7. Assume that: (i) At least one G_k is strictly monotonically increasing; and (ii) All G_k 's are Lipschitz continuous with constant M .

Assumption 3.7 aligns with the “canonical form” for graphon functions, where the monotone function serves as the reference marginal function. This is similar to the identification criterion in Chan and Airoldi [2014], which requires the graphon to be monotone after integrating out one argument. Note that Assumption 3.7 is not needed if the goal is to estimate only the connection probability matrix. We remark that Assumptions 3.5 and 3.7 together imply that the graphon function belongs to the 1-Hölder class. In contrast, Olhede and Wolfe [2014] assumed only α -Hölder smoothness with $0 < \alpha \leq 1$ when estimating the graphon via histogram methods. However, their approach requires the selection of a bandwidth parameter.

Under Assumption 3.7, we proceed without loss of generality by assuming G_1 is the reference marginal graphon. The recovery of G_1 relies on the following insight: for i.i.d. samples U_1, \dots, U_n , the j -th order statistic $U_{(j)}$ is close to $j/(n+1)$ with high probability. Consequently, $G_1(U_{(j)})$ serves as an approximation to $G_1(j/(n+1))$. Moreover, $G_1(U_{(j)})$ is itself the j -th smallest element among $\{G_1(U_i)\}_{i=1}^n$, and each $\hat{G}_1(U_i)$ provides a good approximation to $G_1(U_i)$. Hence, $G_1(j/(n+1))$ can be effectively estimated. Since n is large and G_1 is Lipschitz continuous, piecewise linear interpolation yields a consistent approximation of G_1 . The estimation strategy for the other functions $G_k, k = 2, \dots, r$ follows an analogous approach.

Formally, we first sort the estimated pairs $(\hat{G}_1(U_i), \hat{G}_2(U_i), \dots, \hat{G}_r(U_i))$ according to the first coordinate. Let γ be a one-to-one permutation such that

$$\hat{G}_1(U_{\gamma(1)}) \leq \hat{G}_1(U_{\gamma(2)}) \leq \dots \leq \hat{G}_1(U_{\gamma(n)}).$$

After sorting, we denote the reordered pairs as $(\hat{G}_1(U_{\gamma(i)}), \hat{G}_2(U_{\gamma(i)}), \dots, \hat{G}_r(U_{\gamma(i)}))$. We then define the function

$$\begin{aligned} h_1(u) &= \hat{G}_1(U_{\gamma(1)})I(u(n+1) < 1) + \hat{G}_1(U_{\gamma(n)})I(u(n+1) \geq n) \\ &+ \sum_{k=1}^{n-1} (k+1-u(n+1))\hat{G}_1(U_{\gamma(k)}) + (u(n+1)-k)\hat{G}_1(U_{\gamma(k+1)}))I(\lfloor u(n+1) \rfloor = k) \end{aligned}$$

as an estimate of the function G_1 . For $G_k, k \geq 2$, recognizing that G_k is a function of G_1 , we define:

$$\begin{aligned} h_k(u) &= \hat{G}_k(U_{\gamma(1)})I(h_1(u) < \hat{G}_1(U_{\gamma(1)})) + \hat{G}_k(U_{\gamma(n)})I(h_1(u) \geq \hat{G}_1(U_{\gamma(n)})) \\ &+ \sum_{k=1}^{n-1} \left(\frac{\hat{G}_1(U_{\gamma(k+1)}) - h_1(u)}{\hat{G}_1(U_{\gamma(k+1)}) - \hat{G}_1(U_{\gamma(k)})} \hat{G}_k(U_{\gamma(k)}) + \frac{h_1(u) - \hat{G}_1(U_{\gamma(k)})}{\hat{G}_1(U_{\gamma(k+1)}) - \hat{G}_1(U_{\gamma(k)})} \hat{G}_k(U_{\gamma(k+1)}) \right) \\ &I(\hat{G}_1(U_{\gamma(k)}) \leq h_1(u) < \hat{G}_1(U_{\gamma(k+1)})). \end{aligned}$$

Finally, we define

$$\hat{f}(u, v) := 1 \wedge \left[0 \vee \left(\sum_{k=1}^r \hat{\lambda}_k h_k(u) h_k(v) \right) \right] \quad (11)$$

as an estimate of the graphon $f(u, v)$.

Remark 3.8. In practice, we can relax the previous approach by considering each G_i ($i = 1, \dots, n$) as a potential reference function. For each G_i , we estimate the graphon f as described above referencing G_i , then compare the expected motif (e.g., triangles, stars) densities from the estimated \hat{f} with the observed motif densities in the sample. By evaluating this criterion for all i , we select the \hat{f} that best matches the empirical motif distributions.

Theorem 3.9 presents the theoretical result for this estimation. Since its proof follows directly from the proof of Theorem 3.2, we omit the details.

Theorem 3.9. *For $r \geq 2$, under Assumptions 3.5 and 3.7, the estimated graphon given by (11) satisfies*

$$\sup_{u, v \in [0, 1]} |\hat{f}(u, v) - f(u, v)| \xrightarrow{a.s., L_2} 0, \text{ and } = O_p(\sqrt{\log(n)/n}).$$

Our result is based on the *sup-norm*, providing a stronger uniform convergence guarantee compared to pointwise or average error metrics. The achieved rate matches Chan and Airoldi [2014], demonstrating the optimality and robustness of our method.

Remark 3.10. When r is unknown, we can estimate it using a ratio-based method. Details are provided in Appendix H.

4 Numerics

In this section, we evaluate our method's effectiveness through extensive simulations. We assess the accuracy of the learned connection probability matrix P using three metrics: Mean Squared Error (MSE) as $\|\hat{P} - P\|_F^2/n^2$, maximum error $\max_{i \neq j} |\hat{p}_{ij} - p_{ij}|$, and time cost. The code is available at <https://github.com/Chiyuru/Low-Rank-Graphon-Learning-for-Networks>.

Networks are generated using seven graphons listed in Table 5 (Appendix) with $n = 2000$. We also consider sparse counterparts, where edge probabilities follow $E_{ij} \sim \text{Bernoulli}(\rho_n f(U_i, U_j))$, with $\rho_n = n^{-1/2}$ controlling sparsity. We conduct 100 independent trials per configuration and report the average metrics.

For comparison, we include the following methods: **Universal Singular Value Thresholding (USVT):** [Chatterjee, 2015], **Sort-and-Smooth (SAS):** [Chan and Airoldi, 2014], **Network Histogram (Nethist):** [Olhede and Wolfe, 2014], **Neighborhood Smoothing (N.S.):** [Zhang et al., 2017], and **Power Iteration (P.I.):** [Stoer et al., 1980].

All methods are implemented using the R functions provided by the respective authors with default parameters. Experiments were conducted on an Apple M1 machine with 16GB RAM, macOS Sonoma, and R 4.2.1. For efficiency, we modified Algorithm 2 slightly, as described in Section F in the appendix.

We summarize the results in Table 1 (dense graphons) and Table 2 (sparse graphons). In the dense graphon cases, our method consistently matches or outperforms others in both MSE and maximum error, achieving the best results in the first and fourth settings. It also matches the computational

Table 1: Results for dense graphons across 100 independent trials.

ID	Method	MSE ($\times 10^{-4}$)	Std. MSE ($\times 10^{-6}$)	Max. error ($\times 10^{-2}$)	Std. Max ($\times 10^{-3}$)	Run time (s)	ID	MSE ($\times 10^{-4}$)	Std. MSE ($\times 10^{-6}$)	Max. error ($\times 10^{-2}$)	Std. Max ($\times 10^{-3}$)	Run time (s)
1	Ours	1.275	3.871	5.817	4.955	0.121	2	2.452	7.806	8.114	5.819	0.539
	N.S.	7.853	5.175	16.749	9.849	115.076		12.033	9.750	17.617	8.275	115.757
	Nethist	4.237	8.330	5.980	11.474	16.705		9.867	24.220	16.962	44.037	16.744
	USVT	1.282	3.863	5.837	4.994	13.587		2.403	7.593	7.977	5.740	14.629
	SAS	19.120	16.865	85.000	0.000	1.273		39.888	29.339	78.134	37.486	1.250
3	P.I.	1.280	3.860	5.837	4.994	0.304	4	2.400	7.590	7.977	5.740	0.274
	Ours	1.973	6.794	10.163	8.537	0.259		1.826	6.172	12.898	12.559	0.627
	N.S.	8.337	14.186	17.329	8.566	114.694		4.388	8.413	17.902	11.686	108.569
	Nethist	7.942	27.962	17.094	10.368	20.288		3.928	16.982	18.649	15.296	22.829
	USVT	1.919	6.530	9.395	7.146	13.758		7.617	17.079	13.637	13.036	10.064
5	SAS	26.987	77.248	94.849	20.701	1.241	6	18.641	90.264	97.064	24.053	1.422
	P.I.	1.920	6.530	9.395	7.146	0.328		1.890	6.420	13.400	13.927	0.654
	Ours	1.774	6.204	9.676	7.804	1.507		2.582	7.017	9.319	7.808	0.682
	N.S.	7.101	14.996	17.473	9.156	122.995		7.527	6.960	18.312	11.119	115.813
	Nethist	7.729	31.838	18.559	15.486	23.804		9.548	244.015	22.573	107.570	19.441
7	USVT	1.769	6.078	9.661	7.871	13.684	6	2.383	6.082	10.052	8.343	11.169
	SAS	28.703	115.215	89.861	49.103	1.104		18.456	16.344	95.000	0.000	1.500
	P.I.	4.680	7.730	29.196	56.981	0.736		2.380	6.080	10.052	8.344	0.682
	Ours	3.768	9.091	12.721	12.233	1.316						
	N.S.	6.596	6.372	17.611	9.760	126.270						
7	Nethist	41.224	1574.245	59.567	96.247	20.238						
	USVT	3.644	7.580	12.613	11.696	11.640						
	SAS	20.552	22.529	90.000	0.000	1.701						
	P.I.	3.640	7.580	12.613	11.696	1.005						

Table 2: Results for sparse graphons characterized by $\rho_n = 1/\sqrt{n}$.

ID	Method	MSE ($\times 10^{-4}$)	Std. MSE ($\times 10^{-6}$)	Max. error ($\times 10^{-2}$)	Std. Max ($\times 10^{-3}$)	ID	MSE ($\times 10^{-4}$)	Std. MSE ($\times 10^{-6}$)	Max. error ($\times 10^{-2}$)	Std. Max ($\times 10^{-3}$)
1	Ours	0.036	0.127	1.784	2.548	2	0.115	0.401	2.560	3.367
	N.S.	19.224	45.848	99.665	0.000		61.897	249.576	99.161	0.002
	Nethist	0.116	0.460	1.115	1.594		0.391	1.536	2.112	2.926
	USVT	0.051	0.077	0.335	0.000		0.352	2.524	1.790	0.017
	SAS	0.153	1.990	99.665	0.000		0.946	5.704	99.160	0.013
3	P.I.	0.249	0.735	1.500	0.000	4	0.132	0.490	2.951	4.110
	Ours	0.075	0.284	3.079	4.494		0.043	0.398	3.840	8.423
	N.S.	40.084	119.792	99.968	0.093		14.573	43.039	99.973	0.047
	Nethist	0.249	1.056	2.840	14.842		0.111	0.642	2.485	12.126
	USVT	0.314	0.952	2.093	0.039		0.102	0.648	2.202	0.075
5	SAS	0.200	2.163	99.956	0.426	6	0.078	0.945	89.227	253.955
	P.I.	0.099	0.445	4.255	6.704		0.115	2.704	33.130	158.566
	Ours	0.071	0.330	2.910	4.576		0.105	0.536	2.571	0.909
	N.S.	34.490	115.091	99.993	0.039		42.530	69.027	99.984	0.099
	Nethist	0.229	0.948	3.001	20.765		0.408	1.372	4.326	3.571
7	USVT	0.294	0.971	1.906	0.023	6	0.224	1.160	4.734	3.877
	SAS	0.118	0.907	75.367	325.895		0.390	1.396	89.351	3.252
	P.I.	0.170	4.392	21.174	101.657		0.415	2.055	2.821	4.047
	Ours	0.091	0.585	2.139	1.440					
	N.S.	29.434	103.240	99.858	1.310					
7	Nethist	0.359	1.688	3.123	1.715					
	USVT	0.410	1.306	4.808	1.855					
	SAS	0.915	3.112	99.604	0.113					
	P.I.	0.259	0.924	2.813	3.071					

speed of SAS and P.I., while significantly outperforming other methods in efficiency. Notably, our method achieves accuracy similar to USVT, which is nearly minimax optimal for MSE under certain conditions [Xu, 2018], but with much lower computational complexity. Our method requires no tuning parameters, enhancing robustness across settings. In contrast, the power iteration method, though effective in some cases, lacks convergence guarantees and theoretical support.

In sparse graphon cases, our method excels, consistently outperforming all other approaches in MSE. This is expected, as it directly incorporates the sparsity parameter ρ_n (see equation (9)). Additionally, we conducted additional simulations to investigate the performance of all methods as sparsity varies from $n^{-1/2}$ to 1, taking graphon 4 and 5 as illustrative examples. The results are shown in Table 7

(Appendix). As sparsity increases, the estimation error for all methods increases. However, our method consistently outperforms others in the sparse regime.

For estimation of functions G_k , Figure 1 shows the fitted G_1 and G_2 using our method, with estimates closely matching the true values. Notably, G_2 is continuous but not monotonic. The comparison between the estimated graphon and the true graphon, measured by the maximum entrywise error (i.e., the sup-norm), is reported in Table 3. The results demonstrate that the sup-norm errors of the graphon estimates remain well controlled, which is in line with the theoretical guarantees established in Theorems 3.2 and 3.9.

Table 3: Sup-norms for graphon estimation across 100 independent trials.

ID	Sup-norm ($\times 10^{-2}$)	Std. Dev. ($\times 10^{-3}$)
3	12.053	10.738
4	15.539	12.037

We provide additional simulation studies in Appendix G and Appendix H, examining rank selection when the true rank is unknown, the impact of rank mis-specification, and the scalability of our method. Moreover, Appendix I demonstrates the practical utility of our approach through two real-world applications: the Primary School dataset and the U.S. Political Blogs dataset.

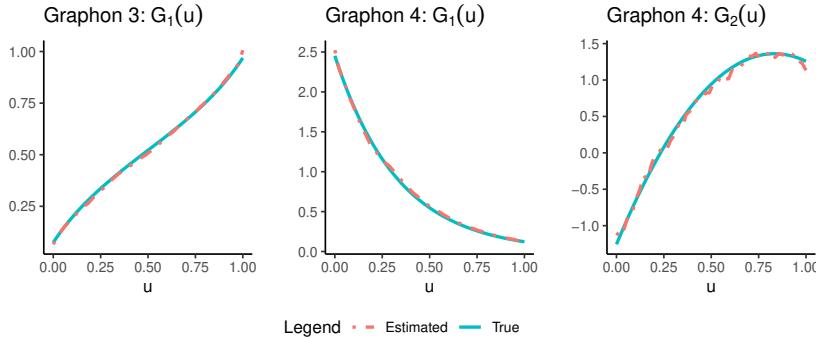


Figure 1: Estimation of G_k 's for the third and fourth settings.

5 Discussion

This work presents the first unified framework for simultaneously estimating both a low-rank connection probability matrix and its corresponding graphon. Traditional approaches treat these components separately, leading to inconsistencies and inefficiencies. By aligning their estimation, our method offers a more robust, consistent, and efficient solution for modeling network structures, particularly in low-rank graphon models. We propose a computationally efficient method based on subgraph counts, supported by rigorous theoretical guarantees for low-rank graphon models of fixed rank r . The method's effectiveness is validated through extensive simulations and real-data examples.

Future research directions include exploring convergence rates and optimality in sparse graphon models, optimizing subgraph selection for better efficiency and accuracy, and extending the method to cases where the rank r increases with n , which could have significant implications for large-scale network analysis in high-dimensional or rapidly evolving networks.

6 Funding Disclosure

This work was supported by the High Performance Computing Center, Tsinghua University. Weichi Wu is supported by the NSFC No.12271287.

References

- Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 u.s. election: divided they blog. In *Proceedings of the 3rd International Workshop on Link Discovery*, LinkKDD '05, page 3643. Association for Computing Machinery, 2005.
- Seung C Ahn and Alex R Horenstein. Eigenvalue ratio test for the number of factors. *Econometrica*, 81(3):1203–1227, 2013.
- Ernesto Araya Valdivia and De Castro Yohann. Latent distance estimation for random geometric graphs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
- Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E Priebe, Youngser Park, Joshua T Vogelstein, Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random dot product graphs: a survey. *Journal of Machine Learning Research*, 18(226):1–92, 2018.
- Giovanni Barbarino, Davide Bianchi, and Carlo Garoni. Constructive approach to the monotone rearrangement of functions. *Expositiones Mathematicae*, 40(1):155–175, 2022.
- Peter J Bickel, Aiyou Chen, and Elizaveta Levina. The method of moments and degree distributions for network models. *The Annals of Statistics*, 39(5):2280, 2011.
- Christian Borgs, Jennifer Chayes, and Adam Smith. Private graphon estimation for sparse graphs. *Advances in Neural Information Processing Systems*, 28, 2015.
- Gecia Bravo-Hermsdorff, Lee M Gunderson, Pierre-André Maugis, and Carey E Priebe. Quantifying network similarity using graph cumulants. *Journal of Machine Learning Research*, 24(187):1–27, 2023.
- T Tony Cai, Dong Xia, and Mengyue Zha. Optimal differentially private pca and estimation for spiked covariance matrices. *arXiv preprint arXiv:2401.03820*, 2024.
- Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. *Commun. ACM*, 55(6):111119, June 2012. ISSN 0001-0782. doi: 10.1145/2184319.2184343.
- Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph models. In *International Conference on Machine Learning*, pages 208–216. PMLR, 2014.
- Sourav Chatterjee. Matrix estimation by universal singular value thresholding. *The Annals of Statistics*, 43(1):177–214, 2015.
- Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, and Rachel Ward. Completing any low-rank matrix, provably, 2014.
- Asim K Dey, Yulia R Gel, and H Vincent Poor. What network motifs tell us about resilience and reliability of complex networks. *Proceedings of the National Academy of Sciences*, 116(39):19368–19373, 2019.
- Persi Diaconis and Svante Janson. Graph limits and exchangeable random graphs. *arXiv preprint arXiv:0712.2749*, 2007.
- Etienne Donier-Meroz, Arnak S. Dalalyan, Francis Kramarz, Philippe Choné, and Xavier D’Haultfoeuille. Graphon estimation in bipartite graphs with observable edge labels and unobservable node labels, 2023.
- Santo Fortunato. Community detection in graphs. *Physics Reports*, 486(3-5):75–174, 2010.
- Chao Gao and Zongming Ma. Minimax Rates in Network Analysis: Graphon Estimation, Community Detection and Hypothesis Testing. *Statistical Science*, 36(1):16 – 33, 2021.
- Chao Gao, Yu Lu, and Harrison H. Zhou. Rate-optimal graphon estimation. *The Annals of Statistics*, 43(6):2624–2652, 2015.

- Chao Gao, Yu Lu, Zongming Ma, and Harrison H Zhou. Optimal estimation and completion of matrices with biclustering structures. *Journal of Machine Learning Research*, 17(161):1–29, 2016.
- Solenne Gaucher and Olga Klopp. Optimality of variational inference for stochastic block model with missing links. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, volume 34, pages 19947–19959. Curran Associates, Inc., 2021.
- Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network analysis. *Journal of the American Statistical Association*, 97(460):1090–1098, 2002.
- Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps. *Social Networks*, 5(2):109–137, 1983.
- Alireza Isfandyari-Moghaddam, Mohammad Karim Saberi, Safieh Tahmasebi-Limoni, Sajjad Mhammadian, and Farahnaz Naderbeigi. Global scientific collaboration: A social network analysis and data mining of the co-authorship networks. *Journal of Information Science*, 49(4):1126–1141, 2023.
- Akhil Jalan, Arya Mazumdar, Soumendu Sundar Mukherjee, and Purnamrita Sarkar. Transfer learning for latent variable network models, 2024.
- Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, S Yu Philip, and Weixiong Zhang. A survey of community detection approaches: From statistical modeling to deep learning. *IEEE Transactions on Knowledge and Data Engineering*, 35(2):1149–1170, 2021.
- Jiashun Jin, Tracy Ke, Bingcheng Sui, and Zhenggang Wang. Counting cycles with deepseek. *arXiv preprint arXiv:2505.17964*, 2025.
- Olav Kallenberg et al. *Probabilistic symmetries and invariance principles*, volume 9. Springer, 2005.
- Kenji Kamimoto, Blerta Stringa, Christy Hoffmann, Kunal Jindal, Lilianna Solnica-Krezel, and Samantha Morris. Dissecting cell identity via network inference and in silico gene perturbation. *Nature*, 614:1–10, 02 2023.
- Bernhard Kawohl. *Rearrangements and convexity of level sets in PDE*, volume 1150. Springer, 2006.
- Olga Klopp and Nicolas Verzelen. Optimal graphon estimation in cut distance. *Probability Theory and Related Fields*, 174, 08 2019. doi: 10.1007/s00440-018-0878-1.
- Olga Klopp, A. Tsybakov, Nicolas Verzelen MODAL’X, Crest, and Mistea. Oracle inequalities for network models and sparse graphon estimation. *arXiv: Statistics Theory*, 2015.
- Vladimir S Korolyuk. *Theory of U-statistics*, volume 273. Springer Science & Business Media, 2013.
- Clifford Lam and Qiwei Yao. Factor modeling for high-dimensional time series: inference for the number of factors. *The Annals of Statistics*, pages 694–726, 2012.
- Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. *The Annals of Statistics*, 43(1), 2015. ISSN 0090-5364. doi: 10.1214/14-aos1274.
- Mengchu Li, Tom Berrett, and Yi Yu. Network change point localisation under local differential privacy. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, *Advances in Neural Information Processing Systems*, volume 35, pages 15013–15026. Curran Associates, Inc., 2022a.
- Yanying Li, Xiuling Wang, Yue Ning, and Hui Wang. Fairlp: Towards fair link prediction on social network graphs. In *International Conference on Web and Social Media*, 2022b.
- László Lovász and Balázs Szegedy. Limits of dense graph sequences. *Journal of Combinatorial Theory, Series B*, 96(6):933957, 2006.

- Vince Lyzinski, Daniel L. Sussman, Minh Tang, Avanti Athreya, and Carey E. Priebe. Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding. *Electronic Journal of Statistics*, 8(2):2905 – 2922, 2014.
- P-AG Maugis, Sofia C Olhede, Carey E Priebe, and Patrick J Wolfe. Testing for equivalence of network distribution using subgraph counts. *Journal of Computational and Graphical Statistics*, 29(3):455–465, 2020.
- Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Network motifs: simple building blocks of complex networks. *Science*, 298(5594):824–827, 2002.
- Maximilian Nickel, Kevin P. Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational machine learning for knowledge graphs. *Proceedings of the IEEE*, 104:11–33, 2015.
- Sofia C Olhede and Patrick J Wolfe. Network histograms and universality of blockmodel approximation. *Proceedings of the National Academy of Sciences*, 111(41):14722–14727, 2014.
- Marianna Pensky. Dynamic network models and graphon estimation. *The Annals of Statistics*, 47(4):2378 – 2403, 2019.
- Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva. A survey on subgraph counting: concepts, algorithms, and applications to network motifs and graphlets. *ACM Computing Surveys (CSUR)*, 54(2):1–36, 2021.
- Josef Stoer, Roland Bulirsch, R Bartels, Walter Gautschi, and Christoph Witzgall. *Introduction to numerical analysis*, volume 1993. Springer, 1980.
- Balázs Szegedy. Limits of kernel operators and the spectral regularity lemma. *European Journal of Combinatorics*, 32(7):1156–1167, 2011.
- Vincent Thibeault, Antoine Allard, and Patrick Desrosiers. The low-rank hypothesis of complex systems. *Nature Physics*, 20(2):294–302, 2024.
- Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018.
- Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In *Proceedings of the forty-fourth annual ACM symposium on Theory of computing*, pages 887–898, 2012.
- Weichi Wu, Sofia Olhede, and Patrick Wolfe. Tractably modelling dependence in networks beyond exchangeability. *Bernoulli*, 31(1):584–608, 2025.
- Jiaming Xu. Rates of convergence of spectral methods for graphon estimation. In *International Conference on Machine Learning*, pages 5433–5442. PMLR, 2018.
- Stephen J Young and Edward R Scheinerman. Random dot product graph models for social networks. In *International Workshop on Algorithms and Models for the Web-Graph*, pages 138–149. Springer, 2007.
- Shuo Yu, Jin Xu, Chen Zhang, Feng Xia, Zafer Almakhadmeh, and Amr Tolba. Motifs in big networks: Methods and applications. *IEEE Access*, 7:183322–183338, 2019.
- Yuan Zhang and Dong Xia. Edgeworth expansions for network moments. *The Annals of Statistics*, 50(2):726–753, 2022.
- Yuan Zhang, Elizaveta Levina, and Ji Zhu. Estimating network edge probabilities by neighbourhood smoothing. *Biometrika*, 104(4):771–783, 2017.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: **[Yes]**

Justification: The abstract and introduction clearly state the development of a novel low-rank approach to graphon estimation, highlighting its advantages in terms of parsimony, identifiability, and computational efficiency. These claims are substantiated by theoretical analyses and empirical evaluations presented in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: The paper discusses several limitations, including the reliance on low-rank assumptions for the underlying graphon structure. Further discussion is given regarding the trade-off between model complexity and interpretability.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly states the assumptions required for its theoretical results, such as those in Assumption 14. All theorems and lemmas are formally stated and proofs are provided in full in the supplementary material. The main text also contains intuitive explanations and sketches of the results to guide the readers.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup, including data generation processes, parameter settings, algorithms used, and evaluation metrics, is described in detail in Section 4. The paper also provides the source of the analyzed real-world datasets to enable reproducibility.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).

- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[Yes]**

Justification: Code is available at <https://github.com/Chiyuru/Low-Rank-Graphon-Learning-for-Networks>. The datasets used are publicly available and cited appropriately.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so No is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: Section 4 provides complete details of the experimental setup, including data generation schemes, model parameters (such as rank r , thresholds, and projection steps), and justifications for their selection.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[Yes]**

Justification: In Section 4, the paper reports mean squared errors and maximum errors over 100 repetitions, and provides standard deviations to show the variability due to random initialization and sampling.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: The paper specifies in Section 4 that experiments were conducted on a standard personal computer. The computational requirements are minimal, and all experiments can be run efficiently on CPUs without specialized hardware. This makes the setup easily reproducible without access to high-performance computing resources.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The research adheres to the NeurIPS Code of Ethics. The datasets used are publicly available and non-sensitive, and the algorithms proposed do not pose known ethical or societal risks.

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any high-risk models or datasets and poses no identifiable risk of misuse. It uses only publicly available, well-documented data (e.g., the US Political Blog dataset).

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The paper cites the original creators of the datasets used (e.g., the US Political Blog dataset by Adamic and Glance). The data used is publicly available for academic use, and appropriate attribution is given.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new datasets or models. It proposes a new methodology but applies it to existing, publicly available datasets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any human subjects or crowdsourced data collection.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This study does not involve human subjects and does not require IRB approval.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large language models (LLMs) were used as part of the method development, experimentation, or analysis.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Graphon Estimation Beyond the Connection Matrix

Graphon estimation provides a richer and more general description of network structure than the connection probability matrix. While the connection probability matrix captures marginal probabilities for edges in a specific network instance, it lacks information about how edges jointly interact. In contrast, the graphon f defines a generative model over a family of networks and encodes global structural properties, including the distribution of motifs and other higher-order patterns.

For example, the expected density of a fixed motif F (e.g., a triangle or star) in a large random graph generated from f is given by its homomorphism density

$$\int_{[0,1]^{|V(F)|}} \prod_{(i,j) \in E(F)} f(x_i, x_j) dx_1 \cdots dx_{|V(F)|}.$$

For triangles, this quantity captures the limiting probability that three nodes form a triangle, a fundamentally joint property that the connection probability matrix alone cannot characterize. Similarly, the expected transitivity can be expressed as

$$\int_{[0,1]^3} f(x,y)f(y,z)f(z,x) dx dy dz / \int_{[0,1]^3} f(x,y)f(y,z) dx dy dz.$$

Graphon estimation thus enables direct prediction of such higher-order features. It also facilitates comparison between networks of different sizes by analyzing their underlying generative mechanisms, independently of the specific realizations captured in the connection probability matrix.

To substantiate the discussion, we conducted an experiment using graphons with IDs 4-6. We generated networks with 2000 nodes, randomly removed 10% of the nodes, estimated the graphon from the subgraph, and regenerated networks from the estimate. The mean absolute errors in triangle counts and transitivity (normalized appropriately) over 100 trials are shown below in Table 4.

Table 4: Triangle and transitivity errors across 100 repetitions.

Graphon ID	Triangle Error ($\times 10^{-4}$)		Transitivity Error ($\times 10^{-3}$)	
	Mean	Std. Dev.	Mean	Std. Dev.
4	2.942	5.309	0.696	6.240
5	1.863	2.107	1.506	1.749
6	0.914	1.192	1.346	0.453

These consistently low errors demonstrate that key higher-order features are well preserved, even with subsampling, highlighting the structural fidelity and generalizability of graphon estimation.

B A Broader Literature Review

More recently, advances have been made in understanding the minimax rates and adaptivity of graphon estimation methods. Notably, [Klopp and Verzelen, 2019] rigorously analyzed optimal rates under the challenging cut distance, providing sharp risk bounds for several estimator classes. Oracle inequalities for network models, which allow for adaptivity in the presence of sparsity, were established by [Klopp et al., 2015], while [Donier-Meroz et al., 2023] extended the graphon framework to bipartite graphs with partial observability, further broadening the applicable scope of statistical models in network analysis. These works, along with related efforts by [Gao et al., 2015] and [Lei and Rinaldo, 2015], situate the current work within a rich landscape of research focused on both theoretical properties and practical algorithms for graphon estimation, highlighting the ongoing evolution of this field.

Matrix completion and matrix sensing are intimately related to graphon estimation, especially when considering networks with latent structure expressible through low-rank matrix representations. [Chen et al., 2014] addressed the general case of completing low-rank matrices, offering provable guarantees under mild assumptions, while the survey by [Candès and Recht, 2012] provides a foundational understanding of matrix completion via convex optimization techniques. These techniques inform approaches to graphon estimation, where the adjacency matrix of a network can often be approximated by a low-rank structure.

The study of smoothness assumptions further refines graphon estimation, particularly through the establishment of rates under Hölder or Sobolev smoothness conditions. For example, [Gao et al., 2015] analyzed community detection and graphon estimation under smoothness constraints, providing minimax rates and adaptive procedures. [Wu et al., 2025] introduced a flexible framework for network modeling beyond exchangeability, leveraging composite and Hölder-smooth graphon structures.

Finally, emerging works have sought to bridge graphon estimation with transfer learning and latent variable modeling. [Jalan et al., 2024] explored leveraging knowledge across related network models for improved inference, illustrating the potential for cross-network generalization. Collectively, these contributions provide a comprehensive landscape for graphon estimation, matrix completion, and smoothness-adaptive procedures, informing both the theoretical boundaries and practical approaches to latent structure recovery in large-scale networks.

The significance of statistical network analysis and graphon estimation continues to grow within the AI and machine learning communities, as evidenced by prominent work presented at leading conferences [Li et al., 2022a, Gaucher and Klopp, 2021, Araya Valdivia and Yohann, 2019]. Our methodology advances efficient and accurate network model estimation, with broad impact in domains such as social network analysis [Li et al., 2022b] and knowledge graphs [Nickel et al., 2015].

C A Toy Example for Equations 5 and 7

Consider a rank-2 graphon $f(u, v) = \lambda_1 G_1(u)G_1(v) + \lambda_2 G_2(u)G_2(v)$. We illustrate the above result for $C_i^{(a)}$ using $a = 3$. Note that $nC_i^{(3)}/6$ corresponds to the number of triangles in the graph. Hence,

$$\mathbb{E} \left(\frac{nC_i^{(3)}/6}{n(n-1)(n-2)/6} \right) = \int_{[0,1]^3} f(u, v)f(v, w)f(w, u) dudvdw = \lambda_1^3 + \lambda_2^3,$$

where the last equality follows from the orthonormality of $\{G_j\}_{j=1,2}$. Moreover, we verify the conditional expectation of $L_i^{(3)}$. Since $L_i^{(3)} = \sum_{i_1, i_2: i_1 \neq i_2, i_1 \neq i, i_2 \neq i} E_{ii_1}E_{i_1i_2}$, we have

$$\begin{aligned} \mathbb{E}(L_i^{(3)} \mid U_i) &= \mathbb{E} \left[\sum_{i_1, i_2: i_1 \neq i_2, i_1 \neq i, i_2 \neq i} \mathbb{E}(E_{ii_1}E_{i_1i_2} \mid U_i, U_{i_1}, U_{i_2}) \right] \\ &= (n-1)(n-2) \mathbb{E}[f(U_i, U_{i_1}) f(U_{i_1}, U_{i_2}) \mid U_i] \\ &= (n-1)(n-2) \left(\lambda_1^2 G_1(U_i) \int_0^1 G_1(u) du + \lambda_2^2 G_2(U_i) \int_0^1 G_2(u) du \right). \end{aligned}$$

The derivation for more general cases proceeds analogously.

D A Variant Algorithm and Time Complexity

In this section, we present a modified version of Algorithm 2 that preserves all theoretical guarantees from Theorems 3.6 and 3.9, while achieving the time complexity of matrix multiplication, $O(n^\omega)$, $\omega = 2.373$. This variant algorithm is motivated by defining paths that permit node repetition. For $i = 1, \dots, n$, define the lines and cycles *allowing repeated nodes* as:

$$\begin{aligned} \tilde{L}_i^{(1)} &= \sum_{i_1} E_{ii_1}, \quad \tilde{L}_i^{(a)} = \sum_{i_1, \dots, i_a} E_{ii_1} \prod_{j=2}^a E_{i_{j-1}i_j} \text{ for } a \geq 2, \\ \tilde{C}_i^{(a)} &= \sum_{i_1, \dots, i_{a-1}} E_{ii_1} E_{i_{a-1}i} \prod_{j=2}^{a-1} E_{i_{j-1}i_j} \text{ for } a \geq 3. \end{aligned}$$

These quantities can be computed efficiently. Specifically, let E^a denote the a -th power of the adjacency matrix E . Then, we have:

$$\tilde{L}_i^{(a)} = \sum_{j \neq i} (E^a)_{ij}, \quad \tilde{C}_i^{(a)} = (E^a)_{ii}.$$

The variant algorithm (Algorithm 3) uses $\tilde{L}_i^{(a)}$ and $\tilde{C}_i^{(a)}$ instead of $L_i^{(a)}$ and $C_i^{(a)}$.

Algorithm 3 Fast Estimation Procedure for $\{p_{ij}\}_{i,j=1}^n$ in Rank- r Model.

Require: The graph $\mathcal{G} = (V, E)$.

- 1: For $i = 1, \dots, n$, compute $\tilde{L}_i^{(a)} = \sum_{j \neq i} (E^a)_{ij}$ for $1 \leq a \leq r$, and $\tilde{C}_i^{(a)} = (E^a)_{ii}$ for $3 \leq a \leq r+2$.
 - 2: Set $L_i^{(a)} = \tilde{L}_i^{(a)}$ and $C_i^{(a)} = \tilde{C}_i^{(a)}$.
 - 3: Follow from Line 2 of Algorithm 2 to learn $\{\hat{p}_{ij}\}_{i,j=1}^n$.
 - 4: Output $\{\hat{p}_{ij}\}_{i,j=1}^n$.
-

Remark D.1 (Time Complexity of Algorithm 3). Since all $\tilde{L}_i^{(a)}$ and $\tilde{C}_i^{(a)}$ for $1 \leq i \leq n$ and $1 \leq a \leq r$ can be computed using matrix multiplication, which has a time complexity of $O(n^{2.373})$, the overall time complexity of Algorithm 3 is also $O(n^{2.373})$.

To analyze the theoretical properties, we present a key lemma showing that $\tilde{L}_i^{(a)}$ and $L_i^{(a)}$ (as well as $\tilde{C}_i^{(a)}$ and $C_i^{(a)}$) are sufficiently close, such that their differences do not impact the results of Theorem 3.6 and Theorem 3.9.

Lemma D.2. *For a rank- r model, under the assumptions of Theorem 3.6, we have:*

$$\max_{1 \leq i \leq n} \max_{1 \leq a \leq r} \left| \frac{\tilde{L}_i^{(a)} - L_i^{(a)}}{\prod_{j=1}^a (n-j)} \right| = o_p \left(\frac{1}{\sqrt{n}} \right), \quad \max_{1 \leq i \leq n} \max_{3 \leq a \leq r+2} \left| \frac{\tilde{C}_i^{(a)} - C_i^{(a)}}{\prod_{j=1}^{a-1} (n-j)} \right| = o_p \left(\frac{1}{\sqrt{n}} \right).$$

With Lemma D.2 established, it follows straightforwardly that the following theorem holds.

Theorem D.3. *Theorem 3.6 and Theorem 3.9 remain valid when the fast estimation procedure described in Algorithm 3 is applied.*

E Graphons in Simulation Studies

We list the graphons in Table 5.

Table 5: List of graphons. We learn three rank-1 graphons using Algorithm 1 and four rank- $r \geq 2$ graphons using Algorithm 3.

ID	Graphon $f(u, v)$	Rank of $f(u, v)$
1	0.15	1
2	$\frac{1.5}{(1+\exp(-u^2))(1+\exp(-v^2))}$	1
3	$\frac{1}{5} \left(\tan \left(\frac{\pi}{2} u \right) + \frac{7}{6} \right) \left(\tan \left(\frac{\pi}{2} v \right) + \frac{7}{6} \right)$	1
4	$0.95 \exp(-3u) \exp(-3v) + 0.04(3u^2 - 5u + 1)(3v^2 - 5v + 1)$	2
5	$\frac{1}{2}(\sin u \sin v + uv)$	2
6	$0.05 + 0.15I(u < 0.4, v < 0.4) + 0.25I(u > 0.4, v > 0.4)$	2
7	$0.1 + 0.75I(u, v < \frac{1}{3}) + 0.15I(\frac{1}{3} < u, v \leq \frac{2}{3}) + 0.5I(u, v > \frac{2}{3})$	3

F A Remark on Computaiton

In Algorithm 3, we employ $\tilde{L}_i^{(a)}$ and $\tilde{C}_i^{(a)}$ as approximations for $L_i^{(a)}$ and $C_i^{(a)}$, enabling efficient computation. Though their equivalence has been proven in Theorem D.3, applying certain corrections in practice can improve finite-sample performance. Specifically, we define:

$$\begin{aligned} \check{L}_i^{(3)} &= \tilde{L}_i^{(3)} - \tilde{L}_i^{(2)} - (\tilde{L}_i^{(1)})^2, \\ \check{C}_i^{(4)} &= \tilde{C}_i^{(4)} - \tilde{L}_i^{(2)} - (\tilde{L}_i^{(1)})^2, \\ \check{C}_i^{(5)} &= \tilde{C}_i^{(5)} - 2(\tilde{L}_i^{(1)} - 2)\tilde{C}_i^{(3)} \\ &\quad - \frac{1}{n} \left(\sum_{k=1}^n \tilde{L}_k^{(1)} \right) \tilde{C}_i^{(3)} - 2 \sum_{k=1}^n E_{ik} \tilde{C}_k^{(3)}, \end{aligned}$$

and use $\check{L}_i^{(3)}$, $\check{C}_i^{(4)}$, and $\check{C}_i^{(5)}$ to replace $\tilde{L}_i^{(3)}$, $\tilde{C}_i^{(4)}$, and $\tilde{C}_i^{(5)}$, respectively, in Algorithm 3. These corrections ensure $\check{L}_i^{(3)} = L_i^{(3)}$, $\check{C}_i^{(4)} = C_i^{(4)}$, and $\check{C}_i^{(5)}$ is closer to $C_i^{(5)}$ compared to $\tilde{C}_i^{(5)}$.

G More Simulations

G.1 Additional Simulation Results on Scalability

To show the scalability of our method, we vary n from 1000 to 2000 for the rank-2 settings and report the results and time costs in Table 6. Our method consistently shows a decrease in both metrics as n increases, which is consistent with our theoretical results.

Table 6: Results for rank-2 settings with varying node sizes between 1000 and 2000.

ID	MSE ($\times 10^{-4}$)	MSE S.D. ($\times 10^{-4}$)	Max. Error ($\times 10^{-2}$)	Max. Error S.D. ($\times 10^{-2}$)	Node Size n
4	3.677	0.143	16.618	1.745	1000
	3.067	0.126	15.772	1.419	1200
	2.457	0.091	14.507	1.490	1500
	2.043	0.064	13.564	1.269	1800
	1.826	0.062	12.898	1.256	2000
5	3.552	0.159	13.003	1.083	1000
	2.995	0.396	12.252	1.819	1200
	2.365	0.086	10.732	0.878	1500
	2.001	0.311	10.444	2.244	1800
	1.774	0.062	9.676	0.780	2000
6	5.576	0.185	12.119	1.160	1000
	4.533	0.155	11.665	1.177	1200
	3.535	0.108	10.378	0.938	1500
	2.890	0.073	9.772	0.964	1800
	2.582	0.070	9.319	0.781	2000

For time costs, we plot the logarithm of runtime against the logarithm of n in Figure 2, with n varying from 200 to 11000. The observed asymptotic trend exhibits linear growth, aligning with the theoretical computational complexity.

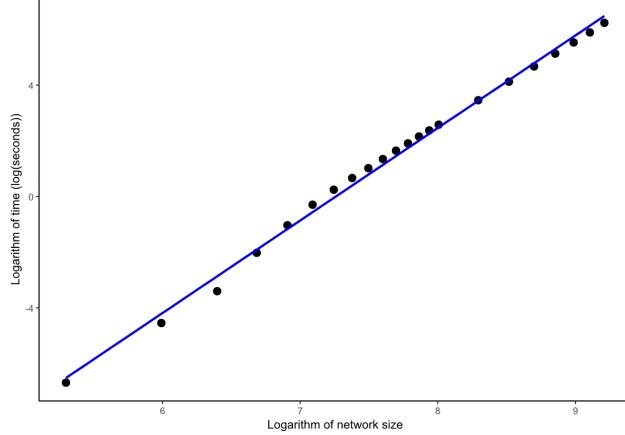


Figure 2: Average runtime of our algorithm as a function of node size, computed over 100 repetitions. The blue line indicates the best least-squares fit.

G.2 Additional Simulation Results when Assumption 3.7 is Violated

Theoretically, Assumption 3.7 serves as a regularization condition for graphon estimation, and similar conditions are necessary and can be commonly found in the literature (e.g., Chan and Airola [2014]). If this assumption is violated, no theoretical guarantees for graphon estimation (Theorem 3.9) can be made; however, the estimation of the probability matrix (Theorem 3.6) still works

as expected. Practically, even if Assumption 3.7 is slightly violated, the estimated graphon function can still be reasonably close. We illustrate this with an example. Let $G_1(u) = \sqrt{\frac{6}{17}}(\sqrt{u} + 1)$, $G_2(u) = \sqrt{\frac{300}{17}}(\sqrt{u} - \frac{7}{10})$, which are non-Lipschitz orthogonal functions. We apply our method to estimate the graphon function, and the estimated G_1 and G_2 are plotted below. It is evident that the estimates exhibit the correct trend, and will be more accurate as the sample size increases.

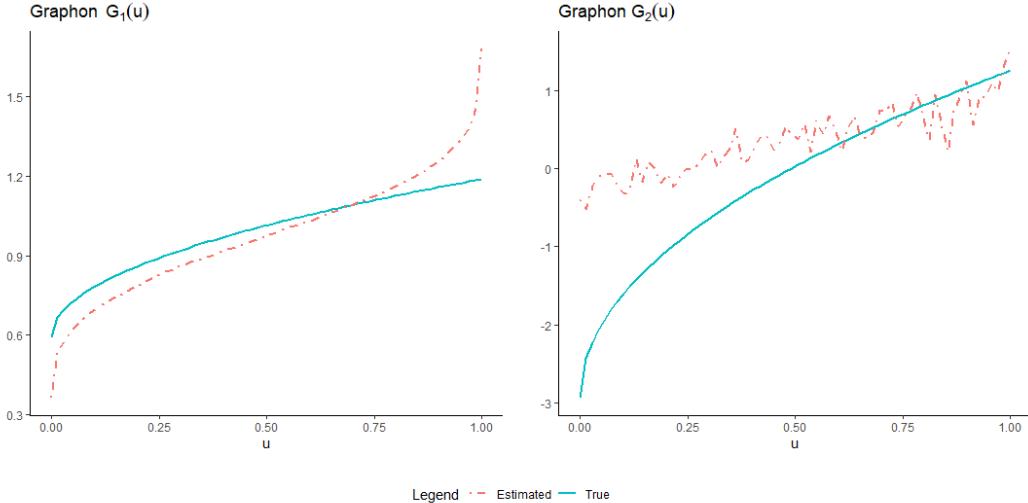


Figure 3: Estimation of the components of the graphon function for the proposed setting.

G.3 Additional Simulation Results when the Sparsity Varies

Taking graphon 4 and 5 as illustrative examples, we conducted additional simulations to investigate the performance of all methods as sparsity varies from $n^{-1/2}$ to 1,. The results are shown in Table 7.

H Selecting r when it is unknown

In this section, we propose a method for selecting r when its value is unknown. Since $\hat{\lambda}_k$ approximates λ_k by Theorem 3.6, we can estimate r incrementally, starting from $r = 1$. When $|\hat{\lambda}_k|$ is significantly larger than 0, but $|\hat{\lambda}_i|$ for $i \geq k + 1$ are close to 0, we select $r = k$. The detailed procedure for selecting r is summarized in Algorithm 4.

Algorithm 4 Procedure for selecting r .

Require: Graph $\mathcal{G} = (V, E)$, threshold τ .

- 1: For $i = 1, \dots, n$, compute $\tilde{C}_i^{(3)}$. Set $k = 1$.
 - 2: For $i = 1, \dots, n$, compute $\tilde{C}_i^{(k+3)}$.
 - 3: Solve the system of equations in (8) with $3 \leq a \leq k + 3$ and $r = k + 1$ to obtain $(\hat{\lambda}_1, \dots, \hat{\lambda}_{k+1})$.
 - 4: **if** $\left| \frac{\hat{\lambda}_{k+1}}{\hat{\lambda}_k} \right| \leq \tau$, **then**
 - 5: Choose $r = k$ and **return** r .
 - 6: **end if**
 - 7: Set $k = k + 1$ and go back to Line 2.
 - 8: **Output** r .
-

We remark that Line 4 in Algorithm 4 applies the eigenratio method, which is a well-established approach in the statistics literature (e.g., Lam and Yao [2012], Ahn and Horenstein [2013]). It offers

Table 7: Results for sparse graphons across 100 independent trials.

Graphon ID	Sparsity Parameter ρ_n	Method	MSE ($\times 10^{-4}$)	Std. dev of MSE ($\times 10^{-6}$)	Max. Error ($\times 10^{-2}$)	Std. dev of Max. Error ($\times 10^{-3}$)
4	$n^{-1/3}$	Ours	0.178	0.663	5.722	9.922
		N.S.	31.285	140.98	99.907	0.15
		USVT	0.389	1.964	6.163	24.638
		Nethist	1.193	7.809	7.815	0.278
		SAS	0.597	3.787	99.72	0.985
	$n^{-1/6}$	Ours	0.752	3.501	10.022	12.695
		N.S.	8.833	86.337	98.761	0.416
		USVT	1.348	6.356	12.44	11.336
		Nethist	13.66	89.165	27.699	1.149
		SAS	5.356	32.228	99.597	2.321
5	$n^{-1/10}$	Ours	1.116	4.874	12.412	14.103
		N.S.	3.264	10.317	38.125	129.087
		USVT	2.161	10.221	15.706	14.102
		Nethist	34.658	221.149	45.841	2.907
		SAS	14.681	59.42	93.407	72.598
	$n^{-1/3}$	Ours	0.258	1.205	4.93	7.207
		N.S.	29.992	170.322	99.969	0.167
		USVT	0.9	3.584	6.231	5.969
		Nethist	3.316	10.137	6.766	0.074
		SAS	0.821	4.783	97.805	101.723
6	$n^{-1/6}$	Ours	1.145	34.613	11.757	40.912
		N.S.	3.624	6.686	20.814	98.466
		USVT	3.039	11.992	12.511	9.675
		Nethist	30.673	72.197	23.993	0.395
		SAS	9.165	18.182	74.31	132.569
	$n^{-1/10}$	Ours	1.338	33.349	10.409	30.081
		N.S.	4.852	10.989	16.784	9.73
		USVT	4.626	18.243	15.865	13.431
		Nethist	58.583	185.89	39.152	5.418
		SAS	9.281	21.39	93.009	68.993

robustness to scaling and noise, especially in settings where the eigenvalues decay gradually or have non-uniform magnitudes (see also Cai et al. [2024]). In our context, the use of the ratio helps highlight significant drops in the eigenvalue sequence while mitigating the influence of slow decay or scale variability. Algorithm 4 selects the correct rank r with high probability as the threshold τ asymptotically approaches zero at a certain rate.

We apply Algorithm 4 to select r for the 3rd, 6th and 7th settings in Table 5, with $\tau = 0.2$. Theoretically, the threshold τ should asymptotically tend to 0. For finite sample simulations, we choose 0.2 as a heuristic value. The results are presented in Table 8. These results demonstrate that Algorithm 4 is effective in most cases.

In our simulations in the main paper, we assume the rank r is known. Estimating r first and then applying our method leads to minimal differences because r can be chosen correctly with high probability by our method (see Table 8) in our scenarios. For example, we apply our rank selection algorithm to the 6th setting, and there is only an 8% probability of making an incorrect selection. The MSE when selecting r first and then running our method is 2.4×10^{-4} (with a standard error of 0.9×10^{-6}), which is close to the values reported in the main article.

Table 8: Selection of r for the 3rd, 6th and 7th settings across 100 independent trials.

ID	True r	Estimated r			
		1	2	3	≥ 4
3	1	100	0	0	0
6	2	0	92	0	8
7	3	0	0	89	11

Moreover, we assess the impact of an incorrect rank selection by testing cases where $r = 1$ is mis-specified as $r = 2$. The results, presented in Table 9, show that the differences in performance are minimal compared to the original settings in Table 1, highlighting that our method is robust to over-estimation of the rank r .

Table 9: Results for rank-1 settings when their rank is mis-selected as 2.

ID	MSE (10^{-4})	Std. MSE (10^{-4})	Max error (10^{-2})	Std. Max (10^{-2})
1	1.45	0.475	6.274	1.226
2	6.11	6.650	18.186	18.17
3	1.92	0.067	9.399	0.693

For the case where $r = 2$ is mis-specified as $r = 1$, the corresponding results are summarized in Table 10. As shown in the table, the estimation error increases significantly when rank-2 graphons are incorrectly selected as rank 1, since an essential component is omitted during estimation. However, our rank selection experiments (see also Table 8) indicate that while the selected rank may sometimes be higher than the true rank, we seldom select a rank lower than the actual one, which would otherwise lead to large errors.

Table 10: Results summary with runtime statistics.

ID	MSE ($\times 10^{-4}$)	Std. MSE ($\times 10^{-6}$)	Max. error ($\times 10^{-2}$)	Std. Max ($\times 10^{-3}$)
4	15.559	5.939	30.818	17.708
5	1.810	0.620	10.320	8.962
6	71.987	29.280	15.086	2.447

I Real-world Data Analysis

We applied our method to two real-world datasets to evaluate its performance and robustness in practical scenarios.

I.1 Primary School Student Contact Data

Firstly, we applied our method to real contact data from a primary school, collected by the SocioPatterns project³ using active RFID devices that recorded data every 20 seconds. On October 1st, 2009, from 8:40 to 17:18, contact data were gathered for 236 individuals, resulting in 60,623 records. We constructed an undirected graph where nodes are connected if individuals had at least one contact. Using Algorithm 4 with a threshold $\tau = 0.25$, we selected $r = 4$ based on Table 11. We subsequently learned the connection probability matrix with Algorithm 3. The resulting heatmap, shown on the left of Figure 4, aligns with expectations for real-world interactions.

Table 11: Learned eigenvalues for the contact data.

Rank r	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_4$	$\hat{\lambda}_5$
2	0.264	0.159			
3	0.266	0.146	0.0593		
4	0.271	0.118	0.118	-0.0992	
5	0.272	0.117	0.0813	-0.0423	-0.00721

Assuming Assumption 3.7, we learn the graphon function, using G_1 as the reference marginal graphon. The learned functions h_1, \dots, h_4 are shown on the right of Figure 4. The learned graphon function $\hat{f}(u, v)$ for any $(u, v) \in [0, 1]^2$ is computed using equation (11).

I.2 U.S. Political Blogs Data

We evaluate our method on a larger real-world dataset. We consider the U.S. Political Blog Dataset [Adamic and Glance, 2005], which consists of 1490 nodes. This dataset captures the hyperlink net-

³<http://www.sociopatterns.org>

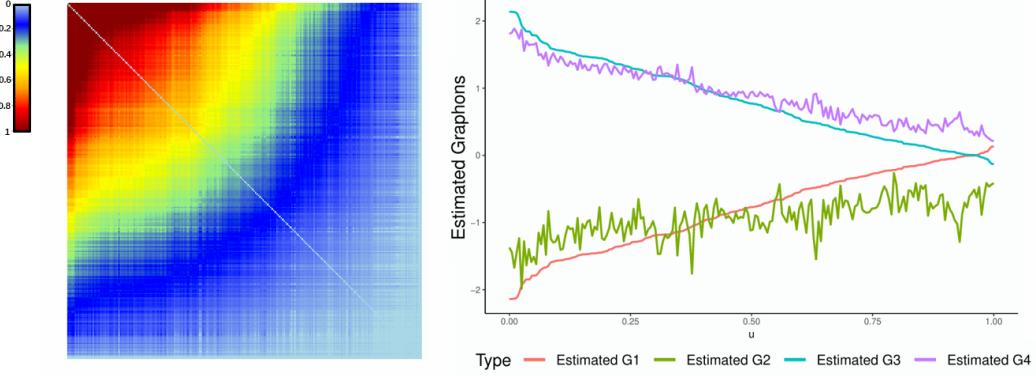


Figure 4: Learned P (Left) and learned graphon (Right).

work among political blogs during the 2004 U.S. presidential election, where each node represents a blog labeled as either liberal or conservative, and approximately 19000 edges between these blogs.

Using Algorithm 4 with a threshold $\tau = 0.25$, we selected rank $r = 2$ based on Table 12. We mention that our choice of rank is consistent with the known structure of the network, in which blogs affiliated with the same political orientation tend to form two distinct communities, characterized by dense intra-community and sparse inter-community connections.

Table 12: Learned eigenvalues for the political blog data.

Rank r	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$
2	0.0668	0.0326	
3	0.0692	0.0304	0.00649

We subsequently estimated the connection probability matrix using Algorithm 3. The resulting heatmap, shown in Figure 5, reveals a relatively sparse structure, reflecting the nature of the observed political blog network.

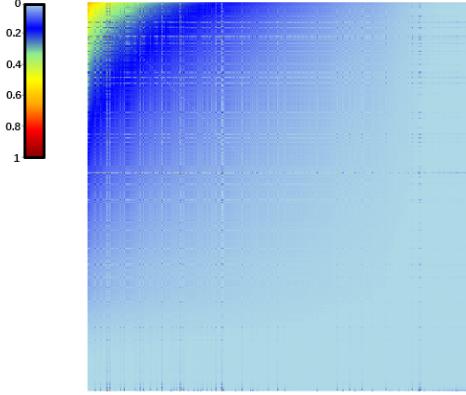


Figure 5: Learned connection probability matrix P for U.S. political blog data.

Assuming Assumption 3.7 holds, we learn the graphon function using G_1 as the reference marginal graphon. The learned functions h_1 and h_2 are presented in Figure 6. The estimated graphon function $\hat{f}(u, v)$ for any $(u, v) \in [0, 1]^2$ can be computed according to equation (11). The learning procedure demonstrates promising performance when applied to large-scale real-world networks, and effectively detects the latent structure of low-rank networks.

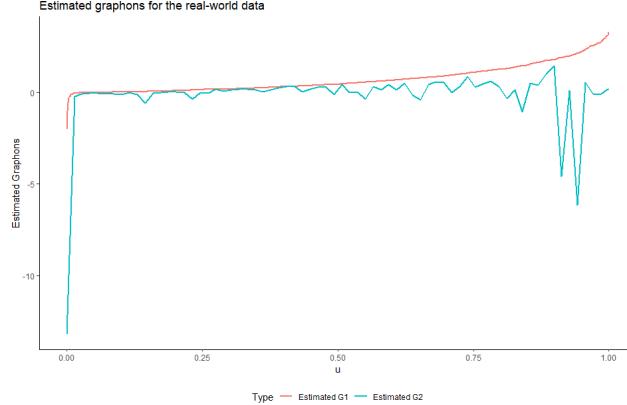


Figure 6: Estimated components of the graphon for U.S. political blog data.

I.3 Validating the Quality of the Real-data Estimates

Using the U.S. political blog dataset as an illustrative example, we demonstrate the advantages of our method through extensive comparisons with existing approaches.

Specifically, we estimated the underlying graphon from the observed network and computed the expected densities of various motifs, such as triangles, squares, and 5-cycles. For competing methods, we generated synthetic networks from their estimated connection probability matrices and performed motif counting on these networks. We then compared the absolute differences in motif counts—normalized by the total possible in a complete graph of the same size—between the original and generated networks. The results, summarized in Table 13, show that our method consistently achieves smaller errors in motif prediction than competing approaches.

Table 13: Motif counting errors and runtime for each method.

Method	Triangle counting error ($\times 10^{-4}$)	Runtime (s)	Square counting error ($\times 10^{-5}$)	Runtime (s)	5-cycle counting error ($\times 10^{-6}$)	Runtime (s)
Ours	0.252	0.167	0.761	0.198	3.848	0.175
N.S.	1.709	119.812	3.758	120.837	9.039	123.863
Nethist	8.087	19.082	1.809	20.523	4.383	22.427
USVT	4.449	15.971	1.712	17.098	5.149	19.439
SAS	1.327	3.018	2.256	4.730	4.960	5.237

Moreover, as shown in Table 13, our approach significantly improves computational efficiency. After estimating the graphon, the expected density of any motif in networks of any size can be quickly approximated using the plug-in method, with only a constant number of matrix operations per sample. In contrast, existing methods require explicit motif counting in generated networks, which is computationally expensive (see Jin et al. [2025] for details). This blend of efficiency and accuracy is particularly beneficial for downstream tasks where motif statistics are crucial (e.g., Milo et al. [2002]).

J Details of the power iteration method

To estimate the leading r ($r \geq 1$) eigenpairs of a matrix A , we use the power iteration method iteratively, combined with matrix deflation. Beginning with $A_0 = A$, each step k (from 1 to r) estimates the dominant eigenpair $(\hat{\lambda}_k, \hat{v}_k)$ of A_{k-1} using the power iteration method. After normalization of \hat{v}_k , the matrix is deflated as $A_k = A_{k-1} - \hat{\lambda}_k \hat{v}_k \hat{v}_k^\top$. Once all r eigenpairs are computed, an approximation \tilde{P} is reconstructed as $\tilde{P} = \sum_{k=1}^r \hat{\lambda}_k \hat{v}_k \hat{v}_k^\top$. Finally, the probability connection matrix \hat{P} is

obtained via element-wise thresholding:

$$p_{ij} = \min(1, \max(0, \tilde{p}_{ij})),$$

ensuring all entries lie within the probability range $[0, 1]$. The complete algorithm is summarized in Algorithm 5.

Algorithm 5 Iterative Power Iteration.

Require: Adjacency matrix A , rank r , maximum iterations N , tolerance ϵ .

Ensure: Estimated probability connection matrix \hat{P} .

```

1: Initialize  $A_0 \leftarrow A$ .
2: for  $k = 1$  to  $r$  do
3:   Initialize vector  $\mathbf{x}_0$  of length  $n$  with all ones and normalize:  $\mathbf{x}_0 \leftarrow \mathbf{x}_0 / \|\mathbf{x}_0\|_2$ .
4:   for  $i = 1$  to  $N$  do
5:     Update  $\mathbf{x}_i \leftarrow A_{k-1} \mathbf{x}_{i-1}$  and normalize:  $\mathbf{x}_i \leftarrow \mathbf{x}_i / \|\mathbf{x}_i\|_2$ .
6:     if  $\|\mathbf{x}_i - \mathbf{x}_{i-1}\|_2 < \epsilon$  then
7:       break
8:     end if
9:   end for
10:  Compute eigenvalue  $\hat{\lambda}_k \leftarrow \mathbf{x}_i^\top A_{k-1} \mathbf{x}_i$  and eigenvector  $\hat{v}_k \leftarrow \mathbf{x}_i$ .
11:  Deflate the matrix:  $A_k \leftarrow A_{k-1} - \hat{\lambda}_k \hat{v}_k \hat{v}_k^\top$ .
12: end for
13: Compute  $\tilde{P} = \sum_{k=1}^r \hat{\lambda}_k \hat{v}_k \hat{v}_k^\top$  and threshold element-wise:  $\hat{p}_{ij} = \min(1, \max(0, \tilde{p}_{ij}))$ .
14: Return  $\hat{P}$ .

```

For the experiments, we set the maximum number of iterations to 500 and the convergence threshold to 10^{-6} . Tables 14 and 15 summarize the actual number of iterations for all scenarios discussed in this paper. In some cases, the power iteration does not converge within 500 iterations.

Table 14: Number of iterations for dense settings across 100 independent trials.

ID	$\hat{\lambda}_1$	Iterations	Std. Dev.	$\hat{\lambda}_2$	Iterations	Std. Dev.	$\hat{\lambda}_3$	Iterations	Std. Dev.
1	6	0							
2	5	0							
3	5.01	0.0995							
4	9	0		17.99	0.5744				
5	6	0		500	0				
6	15.34	0.6200		8	0				
7	27.83	1.8871		15.1	0.7416		8	0	

Table 15: Number of iterations for sparse settings across 100 independent trials.

ID	$\hat{\lambda}_1$	Iterations	Std. Dev.	$\hat{\lambda}_2$	Iterations	Std. Dev.
2	13	0				
3	17.15	0.3571				
4	31.91	1.8713		500	0	
5	17.98	0.3995		500	0	

K Proofs

Proof of Theorem 3.1. By (2) and (3), we have

$$\sup_i \left| G_1(U_i) - \frac{1}{c(n-1)} d_i \right| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right), \quad (12)$$

where $c = \lambda_1 \int_0^1 G_1(u) du$.

Using the property of U-statistics (see, for example, Theorem 4.2.1 in Korolyuk [2013]), we have

$$\frac{1}{n(n-1)} \sum_{i,j:i \neq j} f(U_i, U_j) = \mathbb{E}f(U_i, U_j) + O_p(n^{-1/2}). \quad (13)$$

Moreover, note that

$$\mathbb{E} \left(\left(\frac{1}{n(n-1)} \sum_{i,j:i \neq j} E_{ij} - \frac{1}{n(n-1)} \sum_{i,j:i \neq j} f(U_i, U_j) \right)^2 \middle| U_1, \dots, U_n \right) \quad (14)$$

$$\lesssim \frac{1}{n^4} \sum_{i_1, i_2, j_1, j_2} \mathbb{E} \left((E_{i_1 j_1} - f(U_{i_1}, U_{j_1}))(E_{i_2 j_2} - f(U_{i_2}, U_{j_2})) \middle| U_1, \dots, U_n \right) \quad (15)$$

$$\lesssim \frac{1}{n^4} \sum_{i_1, i_2} \mathbb{E} \left((E_{i_1 j_1} - f(U_{i_1}, U_{j_1}))^2 \middle| U_1, \dots, U_n \right) = O \left(\frac{1}{n^2} \right), \quad (16)$$

where the second inequality follows from the fact that the terms are nonzero only when $i_1 = i_2, j_1 = j_2$, and the last equality is due to the boundedness of each term.

Combining (13) and (14), we obtain

$$\frac{1}{n(n-1)} \sum_{i,j:i \neq j} E_{ij} = \lambda_1 \left(\int_0^1 G_1(u) du \right)^2 + O_p(n^{-1/2}). \quad (17)$$

Similarly,

$$\frac{1}{n(n-1)^3} \sum_{i,j:i \neq j} d_i d_j = \lambda_1^2 \left(\int_0^1 G_1(u) du \right)^4 + O_p(n^{-1/2}). \quad (18)$$

Combining (17) and (18), we have

$$(n-1)^2 \frac{\sum_{i,j:i \neq j} E_{ij}}{\sum_{i,j:i \neq j} d_i d_j} = \frac{1}{\lambda_1 \left(\int_0^1 G_1(u) du \right)^2} + O_p(n^{-1/2}).$$

Thus,

$$\sup_i \left| G_1(U_i) - \sqrt{\frac{\sum_{i,j:i \neq j} E_{ij}}{\sum_{i,j:i \neq j} d_i d_j}} \frac{d_i}{\sqrt{\lambda_1}} \right| \quad (19)$$

$$\leq \sup_i \left| G_1(U_i) - \frac{1}{c(n-1)} d_i \right| + \sup_i \left| \sqrt{\frac{\sum_{i,j:i \neq j} E_{ij}}{\sum_{i,j:i \neq j} d_i d_j}} \frac{d_i}{\sqrt{\lambda_1}} - \frac{1}{c(n-1)} d_i \right| \quad (20)$$

$$\leq \sup_i \left| G_1(U_i) - \frac{1}{c(n-1)} d_i \right| + \left| \sqrt{(n-1)^2 \frac{\sum_{i,j:i \neq j} E_{ij}}{\sum_{i,j:i \neq j} d_i d_j}} \frac{1}{\sqrt{\lambda_1}} - \frac{1}{\lambda_1 \int_0^1 G_1(u) du} \right| \quad (21)$$

$$= O_p \left(\sqrt{\frac{\log(n)}{n}} \right). \quad (22)$$

By the definition of the graphon function, $\sup_{u_1, u_2 \in [0,1]} \lambda_1 G_1(u_1) G_1(u_2) \leq 1$, and thus $\sup_{u \in [0,1]} \sqrt{\lambda_1} G_1(u) \leq 1$.

For $c_1 = \frac{\sum_{i,j:i \neq j} E_{ij}}{\sum_{i,j:i \neq j} d_i d_j}$, we have

$$\begin{aligned}
\sup_{i,j} |\hat{p}_{ij} - p_{ij}| &\leq \sup_{i,j} |c_1 d_i d_j - \lambda_1 G_1(U_i) G_1(U_j)| \\
&\leq \sup_{i,j} \left| \sqrt{c_1} d_i - \sqrt{\lambda_1} G_1(U_i) \right| \sqrt{c_1} d_j \\
&\quad + \sup_{i,j} \left| \sqrt{c_1} d_j - \sqrt{\lambda_1} G_1(U_j) \right| \sqrt{\lambda_1} G_1(U_i) \\
&= O_p \left(\sqrt{\frac{\log(n)}{n}} \right).
\end{aligned}$$

□

Proof of Theorem 3.2. It suffices to show that

$$\sup_{u \in [0,1]} \left| G_1^\dagger(u) - \frac{1}{(n-1)\lambda_1 \int_0^1 G_1(v) dv} h(u) \right| \xrightarrow{a.s.} 0, \quad (23)$$

$$\sup_{u \in [0,1]} \left| G_1^\dagger(u) - \frac{1}{(n-1)\lambda_1 \int_0^1 G_1(v) dv} h(u) \right| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right), \quad (24)$$

and the subsequent steps can then be obtained by following the similar proof of Theorem 3.1, transitioning from (12) to (19) by replacing $(n-1)\lambda_1 \int_0^1 G_1(v) dv$ with $\sqrt{\frac{\sum_{i,j:i \neq j} E_{ij}}{\lambda_1 \sum_{i,j:i \neq j} d_i d_j}}$, and modifying the argument from taking the maximum over all U_i to taking the supremum over all $u \in [0,1]$. To show (23) and (24), we consider the following two steps.

(Step 1.) In this step, we prove that

$$\sup_{u \in \{1,2,\dots,n\}} \left| \frac{h\left(\frac{u}{n+1}\right)}{(n-1)\lambda_1 \int_0^1 G_1(v) dv} - G_1^\dagger\left(\frac{u}{n+1}\right) \right| \xrightarrow{a.s.} 0,$$

and

$$\sup_{u \in \{1,2,\dots,n\}} \left| \frac{h\left(\frac{u}{n+1}\right)}{(n-1)\lambda_1 \int_0^1 G_1(v) dv} - G_1^\dagger\left(\frac{u}{n+1}\right) \right| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right).$$

Let $U_{(1)}, \dots, U_{(n)}$ denote the rearrangement of $U_1, \dots, U_n \stackrel{i.i.d.}{\sim} \text{Uniform}(0,1)$ such that $U_{(1)} \leq \dots \leq U_{(n)}$. By Lemma L.2, we have

$$\sup_{i=1,\dots,n} |U_{(i)} - i/(n+1)| \xrightarrow{a.s.} 0.$$

By Kawohl [2006] (Chapter II.2), the rearrangement function G_1^\dagger is Lipschitz continuous with constant M as long as G_1 is Lipschitz continuous with constant M . As a consequence,

$$\sup_{i=1,\dots,n} |G_1^\dagger(U_{(i)}) - G_1^\dagger(i/(n+1))| \leq M \sup_{i=1,\dots,n} |U_{(i)} - i/(n+1)| \xrightarrow{a.s.} 0. \quad (25)$$

Moreover, using the proof of Lemma 1 in Chan and Airoldi [2014], we have

$$\sup_{i=1,\dots,n} |U_{(i)} - i/(n+1)| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right),$$

which also shows that

$$\sup_{i=1,\dots,n} |G_1^\dagger(U_{(i)}) - G_1^\dagger(i/(n+1))| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right). \quad (26)$$

By definition, for $i = 1, \dots, n$, $h(i/(n+1)) = d_{\sigma(i)}$. By (12) (more precisely, the similar argument of (12) applied to G^\dagger), (25), and Lemma L.3, we have

$$\sup_{i \in \{1, 2, \dots, n\}} \left| \frac{h\left(\frac{i}{n+1}\right)}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} - G_1^\dagger\left(\frac{i}{n+1}\right) \right| \xrightarrow{a.s.} 0.$$

Similarly, via (12), (26), and Lemma L.3, we have

$$\sup_{i \in \{1, 2, \dots, n\}} \left| \frac{h\left(\frac{i}{n+1}\right)}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} - G_1^\dagger\left(\frac{i}{n+1}\right) \right| = O_p\left(\sqrt{\frac{\log(n)}{n}}\right).$$

(Step 2.) In this step, we prove (23). We note that

$$\begin{aligned} & \sup_{u \in [0, 1/(n+1)]} \left| G_1^\dagger(u) - \frac{1}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} h(u) \right| \\ & \leq \left| G_1^\dagger\left(\frac{1}{n+1}\right) - \frac{h(1/(n+1))}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} \right| \\ & \quad + \sup_{u \in [0, 1/(n+1)]} \left| G_1^\dagger\left(\frac{1}{n+1}\right) - G_1^\dagger(u) \right| \\ & \leq \left| G_1^\dagger\left(\frac{1}{n+1}\right) - \frac{h(1/(n+1))}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} \right| + \frac{M}{n+1} \\ & \xrightarrow{a.s.} 0, \quad \text{and} \quad O_p\left(\sqrt{\frac{\log(n)}{n}}\right). \end{aligned}$$

Similarly, we have

$$\sup_{u \in [n/(n+1), 1]} \left| G_1^\dagger(u) - \frac{1}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} h(u) \right| \xrightarrow{a.s.} 0, \quad \text{and} \quad O_p\left(\sqrt{\frac{\log(n)}{n}}\right).$$

For $u \in (1/(n+1), n/(n+1))$, let $k = \lfloor u(n+1) \rfloor$, then

$$\begin{aligned} & \left| G_1^\dagger(u) - \frac{h(u)}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} \right| \\ & \leq (k+1 - u(n+1)) \left| G_1^\dagger(u) - G_1^\dagger\left(\frac{k}{n+1}\right) \right| \\ & \quad + (k+1 - u(n+1)) \left| G_1^\dagger\left(\frac{k}{n+1}\right) - \frac{h\left(\frac{k}{n+1}\right)}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} \right| \\ & \quad + (u(n+1) - k) \left| G_1^\dagger\left(\frac{k+1}{n+1}\right) - \frac{h\left(\frac{k+1}{n+1}\right)}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} \right| \\ & \quad + (u(n+1) - k) \left| G_1^\dagger(u) - G_1^\dagger\left(\frac{k+1}{n+1}\right) \right| \\ & \leq \frac{M}{n+1} + \sup_{i \in \{1, 2, \dots, n\}} \left| \frac{h\left(\frac{i}{n+1}\right)}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} - G_1^\dagger\left(\frac{i}{n+1}\right) \right|. \end{aligned}$$

Therefore, by the result from **(Step 1)**,

$$\sup_{u \in [1/(n+1), n/(n+1)]} \left| G_1^\dagger(u) - \frac{1}{(n-1)\lambda_1 \int_0^1 G_1(v)dv} h(u) \right| = O_p\left(\sqrt{\frac{\log(n)}{n}}\right).$$

Finally, combining the results of the steps yields the proof of Theorem 3.2. \square

Proof of Theorem 3.6. Without loss of generality, we assume that $\int_0^1 G_k(u) du \geq 0$ for $1 \leq k \leq r$. If $\int_0^1 G_k(u) du \leq 0$, we can replace G_k with $-G_k$.

For $i = 1, \dots, n$, recall that

$$\begin{aligned} L_i^{(1)} &= \sum_{i_1} A_{ii_1}, \\ L_i^{(a)} &= \sum_{\substack{i_1, \dots, i_a \text{ distinct,} \\ i_k \neq i, 1 \leq k \leq a}} E_{ii_1} \prod_{j=2}^a E_{i_{j-1}i_j} \quad \text{for } a \geq 2, \\ C_i^{(a)} &= \sum_{\substack{i_1, \dots, i_{a-1} \text{ distinct,} \\ i_k \neq i, 1 \leq k \leq a-1}} E_{ii_1} E_{i_{a-1}i} \prod_{j=2}^{a-1} E_{i_{j-1}i_j} \quad \text{for } a \geq 3. \end{aligned}$$

Note that $\mathbb{P}(E_{ij} = 1 \mid U_i, U_j) = \sum_{k=1}^r \lambda_k G_k(U_i) G_k(U_j)$ and $\int_0^1 G_i^2(u) du = 1$ for $1 \leq i \leq r$. We then have

$$\begin{aligned} \frac{1}{\prod_{j=1}^a (n-j)} \mathbb{E}(L_i^{(a)} \mid U_i) &= \sum_{k=1}^r \lambda_k^a G_k(U_i) \int_0^1 G_k(u) du \quad \text{for } 1 \leq a \leq r, \\ \frac{1}{\prod_{j=1}^{a-1} (n-j)} \mathbb{E}(C_i^{(a)} \mid U_i) &= \sum_{k=1}^r \lambda_k^a G_k^2(U_i) \quad \text{for } 3 \leq a \leq r+2. \end{aligned} \quad (27)$$

We prove the theorem in two steps.

(Step 1.) We first show that

$$\max_{1 \leq k \leq r} |\hat{\lambda}_k - \lambda_k| = O_p(n^{-1/2}), \quad \max_{1 \leq k \leq r} \left| y_k - \int_0^1 G_k(u) du \right| = O_p(n^{-1/2}).$$

By (27), we have

$$\begin{aligned} \frac{1}{\prod_{j=1}^a (n-j)} \mathbb{E}(L_i^{(a)}) &= \sum_{k=1}^r \lambda_k^a \left(\int_0^1 G_k(u) du \right)^2 \quad \text{for } 1 \leq a \leq r, \\ \frac{1}{\prod_{j=1}^{a-1} (n-j)} \mathbb{E}(C_i^{(a)}) &= \sum_{k=1}^r \lambda_k^a \quad \text{for } 3 \leq a \leq r+2. \end{aligned} \quad (28)$$

Moreover, by the implicit function theorem, the system of equations (28) in terms of λ_k and $\left(\int_0^1 G_k(u) du \right)^2$ for $1 \leq k \leq r$ has a unique solution if

$$\begin{vmatrix} \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_r^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{r+1} & \lambda_2^{r+1} & \cdots & \lambda_r^{r+1} \end{vmatrix} \neq 0, \quad \begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_r \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^r & \lambda_2^r & \cdots & \lambda_r^r \end{vmatrix} \neq 0. \quad (29)$$

This condition is satisfied under Assumption 3.5, which assumes $\lambda_k > 0$ for $1 \leq k \leq r$ and $\lambda_i \neq \lambda_j$ for $i \neq j$.

By Lemma L.4, we have

$$\begin{aligned} \frac{1}{\prod_{j=0}^a (n-j)} \sum_{i=1}^n \left(L_i^{(a)} - \mathbb{E}(L_i^{(a)}) \right) &= O_p(n^{-1/2}) \quad \text{for } 1 \leq a \leq r, \\ \frac{1}{\prod_{j=0}^{a-1} (n-j)} \sum_{i=1}^n \left(C_i^{(a)} - \mathbb{E}(C_i^{(a)}) \right) &= O_p(n^{-1/2}) \quad \text{for } 3 \leq a \leq r+2. \end{aligned}$$

By Lemma L.5, we have

$$\max_{1 \leq k \leq r} |\hat{\lambda}_k - \lambda_k| = O_p(n^{-1/2}).$$

By Lemma L.6, we have

$$\max_{1 \leq k \leq r} \left| y_k - \int_0^1 G_k(u) du \right| = O_p(n^{-1/2}).$$

Note that there is no ambiguity in the square root since we assume $\int_0^1 G_i(u) du \geq 0$ for $i = 1, 2$.

(Step 2.) In this step, we prove that

$$\sup_{i,j} |\hat{p}_{ij} - p_{ij}| = O_p \left(\sqrt{\frac{\log n}{n}} \right).$$

Recall that $(G_1(U_i), \dots, G_r(U_i))$ is estimated by solving the system of equations with respect to $(\hat{G}_1(U_i), \dots, \hat{G}_r(U_i))$:

$$\frac{1}{\prod_{j=1}^a (n-j)} L_i^{(a)} = \sum_{k=1}^r \hat{\lambda}_k^a y_k \hat{G}_k(U_i) \quad \text{for } 1 \leq a \leq r,$$

where $\hat{\lambda}_k^a$ and y_k are defined in (8). For this linear system, we have

$$\max_i \max_k |\hat{G}_k(U_i) - G_k(U_i)| = O_p \left(\sqrt{\frac{\log n}{n}} \right), \quad (30)$$

provided that

$$\max_i \max_a \frac{|L_i^{(a)} - \mathbb{E}(L_i^{(a)} | U_i)|}{\prod_{j=1}^a (n-j)} = O_p \left(\sqrt{\frac{\log n}{n}} \right),$$

which is guaranteed by Lemma L.7.

By (10), for every $1 \leq k \leq r$, we have

$$\tilde{G}_k(U_i) - \hat{G}_k(U_i) = \frac{\hat{G}_k(U_i)}{\sqrt{\frac{1}{n} \sum_{i=1}^n \hat{G}_k^2(U_i)}} - \hat{G}_k(U_i) = \hat{G}_k(U_i) \left(\frac{1}{\sqrt{\frac{1}{n} \sum_{i=1}^n \hat{G}_k^2(U_i)}} - 1 \right). \quad (31)$$

Since U_i 's are i.i.d., we have

$$\frac{1}{n} \sum_{i=1}^n \hat{G}_k^2(U_i) - 1 = O_p(n^{-1/2}).$$

Thus,

$$\frac{1}{n} \sum_{i=1}^n \hat{G}_k^2(U_i) - 1 = \frac{1}{n} \sum_{i=1}^n \hat{G}_k^2(U_i) - \frac{1}{n} \sum_{i=1}^n G_k^2(U_i) + \frac{1}{n} \sum_{i=1}^n G_k^2(U_i) - 1 = O_p \left(\sqrt{\frac{\log n}{n}} \right),$$

which implies

$$\frac{1}{\sqrt{\frac{1}{n} \sum_{i=1}^n \hat{G}_k^2(U_i)}} - 1 = O_p \left(\sqrt{\frac{\log n}{n}} \right). \quad (32)$$

By Assumption 3.5, G_k is bounded by K . Combining (32), (31), (30), and noting that $r = O(1)$, we have

$$\max_k \max_i |\tilde{G}_k(U_i) - \hat{G}_k(U_i)| = O_p \left(\sqrt{\frac{\log n}{n}} \right).$$

Therefore,

$$\max_k \max_i |\tilde{G}_k(U_i) - G_k(U_i)| = O_p \left(\sqrt{\frac{\log n}{n}} \right).$$

As a result, for the estimation of connection probabilities, we have

$$\begin{aligned} \sup_{i,j} |\hat{p}_{ij} - p_{ij}| &= \sup_{i,j} \left| \left[1 \wedge \left(0 \vee \left(\sum_{k=1}^r \hat{\lambda}_k \tilde{G}_k(U_i) \tilde{G}_k(U_j) \right) \right) \right] - \left(\sum_{k=1}^r \lambda_k G_k(U_i) G_k(U_j) \right) \right| \\ &= O_p \left(\sqrt{\frac{\log n}{n}} \right). \end{aligned}$$

□

Proof of Lemma D.2. We show that

$$\max_{1 \leq i \leq n} \max_{1 \leq a \leq r} \left| \frac{1}{\prod_{j=1}^a (n-j)} \left(\tilde{L}_i^{(a)} - L_i^{(a)} \right) \right| = o_p \left(\frac{1}{\sqrt{n}} \right),$$

as the result for $\tilde{C}_i^{(a)}$ follows similarly.

By definition, we have

$$\tilde{L}_i^{(a)} - L_i^{(a)} = \sum_{i_1, \dots, i_a \in \mathcal{M}} E_{i,i_1} \prod_{j=2}^a E_{i_{j-1}, i_j},$$

where

$$\mathcal{M} = \{\text{At least two of the values } i, i_1, \dots, i_a \text{ are identical}\}.$$

Therefore,

$$\frac{1}{\prod_{j=1}^a (n-j)} \left| \tilde{L}_i^{(a)} - L_i^{(a)} \right| \leq \frac{1}{\prod_{j=1}^a (n-j)} \sum_{i_1, \dots, i_a \in \mathcal{M}} 1 = \frac{O(n^{a-1})}{\prod_{j=1}^a (n-j)}.$$

As a result, we have

$$\max_{1 \leq i \leq n} \max_{1 \leq a \leq r} \frac{1}{\prod_{j=1}^a (n-j)} \left| \tilde{L}_i^{(a)} - L_i^{(a)} \right| \leq \frac{O(n^{a-1})}{\prod_{j=1}^a (n-j)} = O_p \left(\frac{1}{n} \right).$$

□

L Technical Lemmas

Lemma L.1. *For the rank-2 model with $f(u, v) = \lambda_1 G_1(u) G_1(v) + \lambda_2 G_2(u) G_2(v)$, where G_1, G_2 are bounded by a constant $M > 0$, we have*

$$\sup_{i=1, \dots, n} \frac{|d_i - \mathbb{E}(d_i | U_i)|}{n-1} = O_p \left(\sqrt{\frac{\log(n)}{n}} \right),$$

where d_i is the degree of the i -th node. Note that the model reduces to a rank-1 model when $\lambda_2 = 0$.

Proof. We first note that

$$\begin{aligned} &\sup_{i=1, \dots, n} \left| \frac{1}{n-1} \sum_{j:j \neq i} (\lambda_1 G_1(U_i) G_1(U_j) + \lambda_2 G_2(U_i) G_2(U_j)) \right. \\ &\quad \left. - \lambda_1 G_1(U_i) \int_0^1 G_1(u) du - \lambda_2 G_2(U_i) \int_0^1 G_2(u) du \right| \\ &\leq \lambda_1 M \left(\left| \frac{1}{n-1} \sum_{j=1}^n G_1(U_j) - \int_0^1 G_1(u) du \right| + \frac{1}{n-1} M \right) \\ &\quad + \lambda_2 M \left(\left| \frac{1}{n-1} \sum_{j=1}^n G_2(U_j) - \int_0^1 G_2(u) du \right| + \frac{1}{n-1} M \right) = O_p(n^{-1/2}), \end{aligned}$$

where the last result follows from Slutsky's theorem.

It now suffices to show that

$$\sup_{i=1,\dots,n} \left| \frac{1}{n-1} \sum_{j:j \neq i} (I(U_{ij} \leq \lambda_1 G_1(U_i)G_1(U_j) + \lambda_2 G_2(U_i)G_2(U_j))) \right. \quad (33)$$

$$\left. - \lambda_1 G_1(U_i)G_1(U_j) - \lambda_2 G_2(U_i)G_2(U_j)) \right| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right), \quad (34)$$

where $U_{ij}, i \leq j$ are i.i.d. uniformly distributed random variables on $[0, 1]$, and $U_{ji} = U_{ij}$ for $i > j$.

Let

$$Z_i = \frac{1}{n-1} \sum_{j=1}^n (I(U_{ij} \leq \lambda_1 G_1(U_i)G_1(U_j) + \lambda_2 G_2(U_i)G_2(U_j))) - \lambda_1 G_1(U_i)G_1(U_j) - \lambda_2 G_2(U_i)G_2(U_j).$$

By Hoeffding's inequality (Theorem 2.6.2 of Vershynin [2018]), for any $t > 0$, we have

$$\mathbb{P}(\sqrt{n}|Z_i| > t \mid U_1, \dots, U_n) \leq 2 \exp(-ct^2),$$

where $c > 0$ is an absolute constant.

Taking expectations, we get

$$\mathbb{P}(\sqrt{n}|Z_i| > t) = \mathbb{E}(\mathbb{P}(\sqrt{n}|Z_i| > t \mid U_1, \dots, U_n)) \leq 2 \exp(-ct^2).$$

As a result, $\sqrt{n}Z_i$ are sub-Gaussian random variables. Then, using standard bounds for maxima of sub-Gaussian variables, we have

$$\mathbb{E} \max_{i=1,\dots,n} |Z_i| = O \left(\sqrt{\frac{\log(n)}{n}} \right),$$

which implies that

$$\max_{i=1,\dots,n} |Z_i| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right).$$

□

Lemma L.2. Suppose that $U_i \stackrel{i.i.d.}{\sim} \text{Uniform}(0, 1)$, for $i = 1, \dots, n$. Let $U_{(i)}$ denote the i -th smallest value among U_1, \dots, U_n , i.e., $U_{(1)} \leq U_{(2)} \leq \dots \leq U_{(n)}$. Then

$$\sup_i \left| U_{(i)} - \frac{i}{n+1} \right| \xrightarrow{a.s.} 0.$$

Proof. It is well-known that $U_{(i)} \sim \text{Beta}(i, n-i+1)$, with probability density function

$$p(x) = \frac{x^{i-1}(1-x)^{n-i}}{\int_0^1 x^{i-1}(1-x)^{n-i} dx}.$$

We now proceed to bound the tail probability for any $\varepsilon > 0$ using Markov's inequality. First, we have

$$\begin{aligned} \mathbb{P} \left(\left| U_{(i)} - \frac{i}{n+1} \right| \geq \varepsilon \right) &\leq \frac{1}{\varepsilon^6} \mathbb{E} \left| U_{(i)} - \frac{i}{n+1} \right|^6 \\ &= \frac{1}{\varepsilon^6} \frac{5i(n-i+1)A}{(n+1)^6(n+2)(n+3)(n+4)(n+5)(n+6)} \\ &\leq \frac{1}{\varepsilon^6} \frac{5n^2A}{(n+1)^{11}}, \end{aligned}$$

where

$$A = 24(n-i+1)^4 + 2i(n-i+1)^3(13n-13i+1) + i^2(n-i+1)^2(24-8(n-i+1)+3(n-i+1)^2)$$

$+2i^3(n-i+1)^2(3(n-i+1)^2-4(n-i+1)-12)+i^4(24+26(n-i+1)+3(n-i+1)^2)$. We note that $A \leq 12n^6 + 36n^5 + 24n^4 \leq 72n^6$. Hence, we have

$$\begin{aligned} \sum_{n=1}^{\infty} \mathbb{P} \left(\sup_i \left| U_{(i)} - \frac{i}{n+1} \right| \geq \varepsilon \right) &\leq \sum_{n=1}^{\infty} \sum_{i=1}^n \mathbb{P} \left(\left| U_{(i)} - \frac{i}{n+1} \right| \geq \varepsilon \right) \\ &\leq \frac{1}{\varepsilon^6} \sum_{n=1}^{\infty} \sum_{i=1}^n \frac{360n^8}{(n+1)^{11}} \\ &\leq \frac{360}{\varepsilon^6} \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty. \end{aligned}$$

Therefore, by the Borel-Cantelli lemma, the result follows. \square

Lemma L.3. *Let $G(u)$, for $u \in [0, 1]$, be a monotonically non-decreasing, Lipschitz continuous function with Lipschitz constant $L > 0$. Let $a_i := G(i/(n+1))$, $i = 1, \dots, n$. Suppose that there exists a sequence of random variables b_1, \dots, b_n such that $\sup_{i=1, \dots, n} |b_i - a_i| \xrightarrow{a.s.} 0$. Let α be a one-to-one permutation such that $b_{\alpha(1)} \leq b_{\alpha(2)} \leq \dots \leq b_{\alpha(n)}$. Let $\hat{a}_i := b_{\alpha(i)}$. Then we have*

$$\sup_i |\hat{a}_i - a_i| \xrightarrow{a.s.} 0.$$

Moreover, if $\sup_{i=1, \dots, n} |b_i - a_i| = O_p(g_n)$, then $\sup_i |\hat{a}_i - a_i| = O_p(g_n)$ for some $g_n = o(1)$, with $ng_n \rightarrow \infty$.

Proof. Let $M_n = \sup_{i=1, \dots, n} |b_i - a_i|$, then $M_n \xrightarrow{a.s.} 0$. Assume without loss of generality that $1/n = o_{a.s.}(M_n)$. Let K_n be a non-negative random variable such that $K_n \xrightarrow{a.s.} 0$, $3M_n \leq K_n \leq 4M_n$, and $1/n = o_{a.s.}(K_n)$. For any $i = 1, \dots, n$, we have

$$|\hat{a}_i - a_i| = |b_{\alpha(i)} - a_i| \leq |a_{\alpha(i)} - a_i| + M_n.$$

First, consider the case where $\alpha(i) \geq i$. Assume, for the sake of contradiction, that $a_{\alpha(i)} - a_i > K_n$. Then for $j = 1, 2, \dots, i+1$, we derive that

$$b_{\alpha(i)} \geq a_{\alpha(i)} - M_n > a_j - \frac{L}{n+1} + K_n - M_n \geq b_j - \frac{L}{n+1} + K_n - 2M_n,$$

where for the second inequality, we use the monotonicity of $G(u)$. By the construction of K_n , with probability 1, when n is sufficiently large, we have $b_{\alpha(i)} > b_j$ for $j = 1, 2, \dots, i+1$. This implies that there are at least $i+1$ values smaller than $b_{\alpha(i)}$, which contradicts the definition of α . Therefore, $a_{\alpha(i)} - a_i \leq K_n$.

Similarly, for the case where $\alpha(i) \leq i$, we have $a_{\alpha(i)} - a_i \geq -K_n$.

We thus conclude that

$$\sup_i |\hat{a}_i - a_i| = O_{a.s.}(K_n) + M_n \xrightarrow{a.s.} 0.$$

The statement for O_p follows from the same argument. \square

Lemma L.4. *Under the assumptions of Theorem 3.6, we have*

$$\begin{aligned} \frac{1}{\prod_{j=0}^a (n-j)} \sum_{i=1}^n \left(L_i^{(a)} - \mathbb{E}(L_i^{(a)}) \right) &= O_p(n^{-1/2}) \quad \text{for } 1 \leq a \leq r, \\ \frac{1}{\prod_{j=0}^{a-1} (n-j)} \sum_{i=1}^n \left(C_i^{(a)} - \mathbb{E}(C_i^{(a)}) \right) &= O_p(n^{-1/2}) \quad \text{for } 3 \leq a \leq r+2, \end{aligned}$$

where $L_i^{(a)}, C_i^{(a)}$ are defined in Section 3.2.

Proof. We only show that

$$\frac{1}{\prod_{j=0}^a (n-j)} \sum_{i=1}^n \left(L_i^{(a)} - \mathbb{E}(L_i^{(a)}) \right) = O_p(n^{-1/2}) \quad \text{for } 1 \leq a \leq r,$$

as the results for $C_i^{(a)}$ follow similarly.

Note that $\mathbb{E}(E_{ij}|U_i, U_j) = f(U_i, U_j)$, and that E_{ij} is conditionally independent of E_{i_1, j_1} when $(i, j) \neq (i_1, j_1)$. Then we derive that

$$\begin{aligned} & \frac{1}{\left(\prod_{j=1}^a (n-j)\right)^2} \mathbb{E} \left[\left(\sum_{i=1}^n L_i^{(a)} - \sum_{i=1}^n \mathbb{E}(L_i^{(a)} | U_1, \dots, U_n) \right)^2 \middle| U_1, \dots, U_n \right] \\ & \lesssim \frac{1}{n^{2a+2}} \sum_{i, i_1, \dots, i_a, k, k_1, \dots, k_a} \mathbb{E} \left[\left(E_{ii_1} \prod_{j=2}^a E_{i_{j-1} i_j} - f(U_i, U_{i_1}) \prod_{j=2}^a f(U_{i_{j-1}}, U_{i_j}) \right) \right. \\ & \quad \left. \left(E_{kk_1} \prod_{j=2}^a E_{k_{j-1} k_j} - f(U_k, U_{k_1}) \prod_{j=2}^a f(U_{k_{j-1}}, U_{k_j}) \right) \middle| U_1, \dots, U_n \right] \\ & \lesssim \frac{n^{2a}}{n^{2a+2}} = \frac{1}{n^2}. \end{aligned}$$

Since $\sum_{i=1}^n L_i^{(a)} \leq \prod_{j=0}^a (n-j)$, we have

$$\frac{1}{\prod_{j=0}^a (n-j)} \sum_{i=1}^n \left(L_i^{(a)} - \mathbb{E}(L_i^{(a)} | U_1, \dots, U_n) \right) = O_p \left(\frac{1}{n} \right). \quad (35)$$

Moreover, by the property of U-statistics (see, for example, Theorem 4.2.1 in Korolyuk [2013]), we have

$$\frac{\sum_{i, i_1, \dots, i_a} f(U_i, U_{i_1}) \prod_{j=2}^a f(U_{i_{j-1}}, U_{i_j})}{\prod_{j=0}^a (n-j)} = \frac{\mathbb{E} \sum_{i, i_1, \dots, i_a} f(U_i, U_{i_1}) \prod_{j=2}^a f(U_{i_{j-1}}, U_{i_j})}{\prod_{j=0}^a (n-j)} + O_p(n^{-1/2}). \quad (36)$$

Note that

$$\sum_{i=1}^n \mathbb{E}(L_i^{(a)} | U_1, \dots, U_n) = \sum_{i, i_1, \dots, i_a} f(U_i, U_{i_1}) \prod_{j=2}^a f(U_{i_{j-1}}, U_{i_j}).$$

Then the result follows by combining (36) with (35). \square

Lemma L.5. Suppose that x_1, \dots, x_r are r real numbers satisfying $|x_1| > |x_2| > \dots > |x_r| > 0$. Let $\epsilon_{3,n}, \dots, \epsilon_{r+2,n}$ be r random variables such that $\max_i |\epsilon_{i,n}| = O_p(n^{-1/2})$. Then the solution $(\tilde{x}_1, \dots, \tilde{x}_r)$ to the following system of equations

$$\sum_{k=1}^r \tilde{x}_k^a = \sum_{k=1}^r x_k^a + \epsilon_{a,n} \quad \text{for } 3 \leq a \leq r+2 \quad (37)$$

satisfies

$$\max_i |\tilde{x}_i - x_i| = O_p(n^{-1/2}).$$

Proof. Let $\Delta_i = \tilde{x}_i - x_i$ for $1 \leq i \leq r$. By the implicit function theorem, the system of equations (37) has a unique solution with probability tending to 1. Moreover, by the continuous mapping theorem, we have $\Delta_i = o_p(1)$. By the definition of $\epsilon_{i,n}$, for any $\varepsilon > 0$, there exist finite constants M and N such that

$$\mathbb{P} \left(\max_i |\sqrt{n} \epsilon_i| > M \right) < \varepsilon \quad \text{for all } n > N.$$

Therefore, it suffices to show that

$$\mathbb{P} \left(\max_i |\Delta_i| \leq C \max_i |\epsilon_{i,n}| \right) \rightarrow 1 \quad (38)$$

for some constant $C > 0$.

Note that

$$\begin{aligned} \sum_{k=1}^r \tilde{x}_k^a - \sum_{k=1}^r x_k^a &= \sum_{k=1}^r (x_k + \Delta_k)^a - \sum_{k=1}^r x_k^a \\ &= \sum_{k=1}^r a x_k^{a-1} \Delta_k + O_p(\max_k \Delta_k^2). \end{aligned}$$

We then calculate that

$$\sum_{k=1}^r a x_k^{a-1} \Delta_k = \tilde{\epsilon}_{a,n} \quad \text{for } 3 \leq a \leq r+2,$$

where $\tilde{\epsilon}_{a,n} = \delta_a + \epsilon_{a,n}$ and $\delta_a = O_p(\max_i \Delta_i^2)$.

For the above linear system of equations, by our assumption on x_i (similar to the arguments in (29)), it has a unique solution of the form

$$\Delta_i = \sum_{j=3}^{r+2} a_{i,j} \tilde{\epsilon}_{j,n}, \quad (39)$$

where $a_{i,j}$ are constants depending only on x_1, \dots, x_r . By combining (39) and the fact that $\max_a |\delta_a| = O_p(\max_i \Delta_i^2)$ and $\Delta_i = o_p(1)$, we conclude that (38) follows. \square

Lemma L.6. Suppose that x_1, \dots, x_r are r real numbers satisfying $|x_1| > |x_2| > \dots > |x_r| > 0$, and that $\tilde{x}_1, \dots, \tilde{x}_r$ are r random variables satisfying $\max_i |\tilde{x}_i - x_i| = O_p(n^{-1/2})$. Let y_1, \dots, y_r be r non-zero real numbers, and let $\epsilon_{1,n}, \dots, \epsilon_{r,n}$ be r random variables satisfying $\max_i |\epsilon_{i,n}| = O_p(n^{-1/2})$. Then the solution $(\tilde{y}_1, \dots, \tilde{y}_r)$ to the following system of equations with respect to (y_1, \dots, y_r) :

$$y_a \geq 0, \quad \sum_{k=1}^r \tilde{x}_k^a \tilde{y}_k^2 = \sum_{k=1}^r x_k^a y_k^2 + \epsilon_{a,n} \quad \text{for } 1 \leq a \leq r, \quad (40)$$

satisfies

$$\max_i |\tilde{y}_i - y_i| = O_p(n^{-1/2}).$$

Proof. Note that

$$\tilde{x}_k^a \tilde{y}_k^2 - x_k^a y_k^2 = (\tilde{x}_k^a - x_k^a) y_k^2 + \tilde{x}_k^a (\tilde{y}_k^2 - y_k^2).$$

Since $\max_i |\tilde{x}_i - x_i| = O_p(n^{-1/2})$, we have $\max_i |\tilde{x}_i^a - x_i^a| = O_p(n^{-1/2})$. Therefore, equation (40) reduces to

$$y_a \geq 0, \quad \sum_{k=1}^r \tilde{x}_k^a (\tilde{y}_k^2 - y_k^2) = \tilde{\epsilon}_{a,n} \quad \text{for } 1 \leq a \leq r,$$

where $\max_a |\tilde{\epsilon}_{a,n}| = O_p(n^{-1/2})$. Moreover, since $\max_k |\tilde{x}_k^a| = O_p(1)$, and noting that the above system of equations is linear in $\tilde{y}_k^2 - y_k^2$ for $1 \leq k \leq r$, and that $r = O(1)$, we have

$$\max_k |\tilde{y}_k^2 - y_k^2| = O_p(n^{-1/2}).$$

Finally, recalling that y_1, \dots, y_r are non-zero, we conclude that

$$\max_k |\tilde{y}_k - y_k| = O_p(n^{-1/2}).$$

\square

Lemma L.7. Under the assumptions of Theorem 3.6, we have

$$\max_{1 \leq i \leq n} \max_{1 \leq a \leq r} \left| \frac{L_i^{(a)} - \mathbb{E}(L_i^{(a)} | U_i)}{\prod_{j=1}^a (n-j)} \right| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right)$$

where

$$L_i^{(1)} = \sum_{i_1} E_{ii_1},$$

$$L_i^{(a)} = \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} E_{ii_1} \prod_{j=2}^a E_{i_{j-1}i_j} \text{ for } a \geq 2.$$

Proof. We divide the proof into two steps. In **Step 1**, we show that

$$\frac{1}{\prod_{j=1}^a (n-j)} \max_i |L_i^{(a)} - S_{i,0}| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right)$$

where

$$S_{i,0} = \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} f(U_i, U_{i_1}) \prod_{j=2}^a f(U_{i_{j-1}}, U_{i_j}).$$

In **Step 2**, we show that

$$\frac{1}{\prod_{j=1}^a (n-j)} \max_i |S_{i,0} - T_{i,1}| = O_p(n^{-1/2})$$

where

$$T_{i,1} = \mathbb{E} \left[\sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} f(U_i, U_{i_1}) \prod_{j=2}^a f(U_{i_{j-1}}, U_{i_j}) \middle| U_i \right] = \mathbb{E}(L_i^{(a)} | U_i).$$

Then the proof is complete by combining the above two equations and noticing that r is bounded.

Step 1. Let

$$S_{i,a-1} = \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} E_{ii_1} \prod_{j=2}^{a-1} E_{i_{j-1}i_j} f(U_{i_{a-1}}, U_i).$$

Then

$$\frac{1}{\prod_{j=1}^a (n-j)} (L_i^{(a)} - S_{i,a-1}) = \frac{1}{\prod_{j=1}^a (n-j)} \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} E_{ii_1} \prod_{j=2}^{a-1} E_{i_{j-1}i_j} (E_{i_{a-1}i_a} - f(U_{i_{a-1}}, U_{i_a})). \quad (41)$$

Notice that $E_{i_{a-1}i_a} = I(U_{i_{a-1}}, U_{i_a} \leq f(U_{i_{a-1}}, U_{i_a}))$ is binary, with $U_{i_{a-1}, i_a} \sim \text{Uniform}(0, 1)$ independently, and that U_{ij} is independent of U_k for any i, j, k . By Hoeffding's inequality in Theorem 2.6.2 of Vershynin [2018], we have for any $t > 0$,

$$\mathbb{P} \left(\frac{1}{\sqrt{n-a}} \left| \sum_{i_a \neq i, i_1, \dots, i_{a-1}} (E_{i_{a-1}i_a} - f(U_{i_{a-1}}, U_{i_a})) \right| \geq t \middle| U_1, \dots, U_n \right) \leq 2 \exp(-ct^2)$$

where $c > 0$ is an absolute constant. Then

$$\begin{aligned} & \mathbb{P} \left(\frac{1}{\sqrt{n-a}} \left| \sum_{i_a \neq i, i_1, \dots, i_{a-1}} (E_{i_{a-1}i_a} - f(U_{i_{a-1}}, U_{i_a})) \right| \geq t \right) \\ &= \mathbb{E} \left(\mathbb{P} \left(\frac{1}{\sqrt{n-a}} \left| \sum_{i_a \neq i, i_1, \dots, i_{a-1}} (E_{i_{a-1}i_a} - f(U_{i_{a-1}}, U_{i_a})) \right| \geq t \middle| U_1, \dots, U_n \right) \right) \leq 2 \exp(-ct^2). \end{aligned}$$

As a result, $\frac{1}{\sqrt{n-a}} \left| \sum_{i_a \neq i, i_1, \dots, i_{a-1}} (E_{i_{a-1}i_a} - f(U_{i_{a-1}}, U_{i_a})) \right|$ are sub-Gaussian random variables, and we have

$$\mathbb{E} \max_{i_{a-1}} \left| \sum_{i_a \neq i, i_1, \dots, i_{a-1}} E_{i_{a-1}i_a} - f(U_{i_{a-1}}, U_{i_a}) \right| / (n-a) = O \left(\sqrt{\frac{\log(n)}{n}} \right).$$

By recalling (41) and the fact that E_{ij} 's are binary, we have

$$\frac{1}{\prod_{j=1}^a (n-j)} \mathbb{E} \max_i |L_i^{(a)} - S_{i,a-1}| = O \left(\sqrt{\frac{\log(n)}{n}} \right).$$

Similarly, let

$$S_{i,a-2} = \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} E_{ii_1} \prod_{j=2}^{a-2} E_{i_{j-1}i_j} f(U_{i_{a-2}}, U_{i_{a-1}}) f(U_{i_{a-1}}, U_{i_a}).$$

Then

$$\begin{aligned} \frac{1}{\prod_{j=1}^a (n-j)} (S_{i,a-1} - S_{i,a-2}) &= \frac{1}{\prod_{j=1}^a (n-j)} \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} E_{ii_1} \\ &\quad \times \prod_{j=2}^{a-2} E_{i_{j-1}i_j} (E_{i_{a-2}i_{a-1}} - f(U_{i_{a-2}}, U_{i_{a-1}})) f(U_{i_{a-1}}, U_{i_a}) \\ &= \frac{1}{\prod_{j=1}^{a-1} (n-j)} \sum_{i_1, \dots, i_{a-1} \text{ distinct}, i_k \neq i, 1 \leq k \leq a-1} E_{ii_1} \prod_{j=2}^{a-2} E_{i_{j-1}i_j} (E_{i_{a-2}i_{a-1}} - f(U_{i_{a-2}}, U_{i_{a-1}})). \end{aligned} \tag{42}$$

The same reasoning holds by Hoeffding's inequality to show that

$$\frac{1}{\prod_{j=1}^a (n-j)} \max_i |L_i^{(a)} - S_{i,a-2}| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right).$$

Continuing this process iteratively and combining with the fact that r is bounded, we obtain

$$\frac{1}{\prod_{j=1}^a (n-j)} \max_i |L_i^{(a)} - S_{i,0}| = O_p \left(\sqrt{\frac{\log(n)}{n}} \right). \tag{43}$$

Step 2. Let

$$T_{i,a-1} = \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} f(U_i, U_{i_1}) \prod_{j=2}^{a-1} f(U_{i_{j-1}}, U_{i_j}) \mathbb{E} (f(U_{i_{a-1}}, U_{i_a}) \mid U_{i_{a-1}}).$$

Then, we have

$$\begin{aligned} \max_i \frac{1}{\prod_{j=1}^a (n-j)} |S_{i,0} - T_{i,a-1}| &= \max_i \frac{1}{\prod_{j=1}^a (n-j)} \left| \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} f(U_i, U_{i_1}) \prod_{j=2}^{a-1} f(U_{i_{j-1}}, U_{i_j}) \right. \\ &\quad \times \left. (f(U_{i_{a-1}}, U_{i_a}) - \mathbb{E}(f(U_{i_{a-1}}, U_{i_a}) \mid U_{i_{a-1}})) \right| \\ &= \max_i \frac{1}{\prod_{j=1}^{a-1} (n-j)} \left| \sum_{i_1, \dots, i_{a-1} \text{ distinct}, i_k \neq i, 1 \leq k \leq a-1} f(U_i, U_{i_1}) \prod_{j=2}^{a-1} f(U_{i_{j-1}}, U_{i_j}) \right. \\ &\quad \times \left. \frac{1}{n-a} \sum_{i_a} \sum_{k=1}^r \lambda_k G_k(U_{i_{a-1}}) \left[G_k(U_{i_a}) - \int_0^1 G_k(u) du \right] \right| \\ &\leq \frac{1}{n-a} \sum_{k=1}^r \left| \lambda_k M \sum_{i_a} \left[G_k(U_{i_a}) - \int_0^1 G_k(u) du \right] \right| = O_p(n^{-1/2}), \end{aligned}$$

where we use the facts that $f(x, y)$ are bounded by 1, G_k are bounded by M , and U_i are i.i.d. random variables.

Similarly, let

$$T_{i,a-2} = \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} f(U_i, U_{i_1}) \prod_{j=2}^{a-2} f(U_{i_{j-1}}, U_{i_j}) \mathbb{E} (f(U_{i_{a-2}}, U_{i_{a-1}}) f(U_{i_{a-1}}, U_{i_a}) \mid U_{i_{a-2}}).$$

Then, we have

$$\begin{aligned} & \max_i \frac{1}{\prod_{j=1}^a (n-j)} |T_{i,a-1} - T_{i,a-2}| \\ &= \max_i \frac{1}{\prod_{j=1}^a (n-j)} \left| \sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} f(U_i, U_{i_1}) \prod_{j=2}^{a-2} f(U_{i_{j-1}}, U_{i_j}) \right. \\ & \quad \times (f(U_{i_{a-2}}, U_{i_{a-1}}) \mathbb{E}(f(U_{i_{a-1}}, U_{i_a}) \mid U_{i_{a-1}}) - \mathbb{E}(f(U_{i_{a-2}}, U_{i_{a-1}}) f(U_{i_{a-1}}, U_{i_a}) \mid U_{i_{a-2}})) \Big| \\ & \lesssim \frac{1}{n} \left| \sum_{i_{a-1}}^r \sum_{k_1=1}^r \sum_{k_2=1}^r \lambda_{k_1} \lambda_{k_2} G_{k_1}(U_{i_{a-1}}) G_{k_2}(U_{i_{a-1}}) \int_0^1 G_{k_2}(u) du \right. \\ & \quad \left. - \sum_{i_{a-1}}^r \sum_{k=1}^r \lambda_k^2 \int_0^1 G_k(u) du \right| \\ & \lesssim \frac{1}{n} \sum_{k=1}^r \left| \sum_{i_{a-1}} (G_k^2(U_{i_{a-1}}) - 1) \right| + \frac{1}{n} \sum_{k_1 \neq k_2} \left| \sum_{i_{a-1}} G_{k_1}(U_{i_{a-1}}) G_{k_2}(U_{i_{a-1}}) \right| + O\left(\frac{1}{n}\right) \\ & = O_p(n^{-1/2}), \end{aligned}$$

where we use the facts that $f(x, y)$ are bounded by 1, G_k are bounded by M , r is bounded, $\int_0^1 G_k^2(u) du = 1$, $\int_0^1 G_i(u) G_j(u) du = 0$ for $i \neq j$, and that U_i are i.i.d. random variables.

Similar arguments can be performed for $T_{i,a-3}, \dots, T_{i,1}$. Since $a \leq r$ is bounded, by combining all the results, we obtain

$$\frac{1}{\prod_{j=1}^a (n-j)} \max_i |S_{i,0} - T_{i,1}| = O_p(n^{-1/2}), \quad (44)$$

where

$$T_{i,1} = \mathbb{E} \left[\sum_{i_1, \dots, i_a \text{ distinct}, i_k \neq i, 1 \leq k \leq a} f(U_i, U_{i_1}) \prod_{j=2}^a f(U_{i_{j-1}}, U_{i_j}) \mid U_i \right].$$

Finally, the proof is complete by combining the results from equations (43), (44), and noting that r is bounded. \square