
CARE: Certifiably Robust Learning with Reasoning
via Variational Inference

Abstract—Despite great recent advances achieved by deep
neural networks (DNNs), they are often vulnerable to adversarial
attacks. Intensive research efforts have been made to improve
the robustness of DNNs; however, most empirical defenses can
be adaptively attacked again, and the theoretically certified
robustness is limited, especially on large-scale datasets. One
potential root cause of such vulnerabilities for DNNs is that
although they have demonstrated powerful expressiveness, they
lack the reasoning ability to make robust and reliable predictions.
In this paper, we aim to integrate domain knowledge to enable
robust learning with the reasoning paradigm. In particular, we
propose a certifiably robust learning with reasoning pipeline
(CARE), which consists of a learning component and a reasoning
component. Concretely, we use a set of standard DNNs to serve
as the learning component to make semantic predictions (e.g.,
whether the input is furry), and we leverage the probabilistic
graphical models, such as Markov logic networks (MLN), to serve
as the reasoning component to enable knowledge/logic reasoning
(e.g., IsPanda =⇒ IsFurry). However, it is known that
the exact inference of MLN (reasoning) is #P-complete, which
limits the scalability of the pipeline. To this end, we propose to
approximate the MLN inference via variational inference based
on an efficient expectation maximization algorithm. In particular,
we leverage graph convolutional networks (GCNs) to encode the
posterior distribution during variational inference and update the
parameters of GCNs (E-step) and the weights of knowledge rules
in MLN (M-step) iteratively. We conduct extensive experiments
on different datasets such as AwA2, Word50, GTSRB, and PDF
malware, and we show that CARE achieves significantly higher
certified robustness (e.g., the certified accuracy is improved
from 36.0% to 61.8% under ℓ2 radius 2.0 on AwA2) compared
with the state-of-the-art baselines. We additionally conducted
different ablation studies to demonstrate the empirical robustness
of CARE and the effectiveness of different knowledge integration.

Index Terms—Robust learning with reasoning, Markov logic
network, graph convolutional network, certified robustness, vari-
ational inference.

I. INTRODUCTION

Despite that machine learning (ML), especially deep neural
networks (DNNs), have achieved great successes in different
applications, they are also found to be vulnerable to small
and adversarial perturbations that could lead to incorrect
predictions [1]–[4]. Given the massive deployment of machine
learning systems, especially in safety-critical scenarios such
as automatic driving [5], [6] and medical diagnosis [7], [8],
improving the robustness of ML models is of great importance,
and a reliable defense mechanism is in dire need.

To overcome such adversarial attacks, significant efforts
have been made to develop different defense approaches,
both empirically and theoretically [9]–[13]. However, most
of these existing empirical defenses have been attacked suc-
cessfully again by strong adaptive attacks [14], [15]; and the

theoretically certifiably robust models are usually limited on
large-scale data [16]–[19]. On the other hand, existing ML
models lack logical reasoning abilities, which may be one
main root cause of their vulnerabilities. For instance, a human
would be able to recognize a stop sign by just seeing the
octagon shape, while DNNs cannot reason based on such
knowledge. Thus, in this paper, we aim to explore the question:
Can we integrate domain knowledge into statistical learning
with DNNs to improve their robustness? Will the certified
robustness of ML models be improved when composed with
a reasoning component? Can we do such integration in an
efficient and scalable way?

To effectively integrate knowledge rules to enable reasoning
ability for existing DNN-based statistical learning, in this
work, we propose a learning with reasoning pipeline CARE,
which contains both a learning and a reasoning component. In
particular, the learning component contains one main sensor
that is in charge of the main classification task (e.g., d-
way animal prediction) and several knowledge sensors that
identify different semantic entities or attributes (e.g., whether
the input is furry). The output of different sensors will be
taken as the input of the reasoning component, which can be
realized using probabilistic graphical models such as Markov
logic networks (MLN) [20]. Concretely, different knowledge
rules (e.g., “Panda is furry”) can be represented as the first-
order logic rules and then embedded in the MLN to help
perform logic reasoning. The overall pipeline of CARE is
shown in Figure 1. The advantage of such a pipeline is that
the predictions of different sensors are dependent, following
the logical relationships among them. Thus, given an attack
against, say, the main sensor, the adversary not only needs to
attack a set of sensors additionally but also needs to ensure
that the attacked predictions of these sensors satisfy the logical
relationships, making the attack much more challenging in
practice.

Although such reasoning integration is very promising, as
illustrated in a few recent seminal explorations [21], [22],
scalability and efficiency hinder their real-world applications
— the inference of MLN is #P-complete [20], which is
exponential in the number of the possible predictions of
sensors within the logical relationships, and thus impedes the
scalability of such pipelines. As a result, recent attempts in us-
ing reasoning to improve robustness can only handle relatively
small-scale problems [22]. The key technical contribution of
this paper is to approximate the MLN inference with varia-
tional inference based on parametrized graphical convolutional
networks (GCN) [23]. Currently, in addition to the classical
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inference approximation such as Markov chain Monte Carlo
(MCMC) [24], [25], and loopy belief propagation [26], vari-
ational method [27] which approximates probability densities
through optimization has become more and more efficient and
convenient in practice owing to advanced learning strategies.
On a high level, the variational method approximates the
posterior distribution with a given approximating function
family Q, and thus the design of such function family largely
affects the final approximation. More specifically, this function
family should satisfy the following two requirements: (1) it
should capture the topology of the knowledge/logic relation-
ship structure; (2) it should be scalable and can be optimized
effectively on large-scale datasets. To this end, we follow the
observations of existing works [28], [29] and adopt GCN to
serve as the approximating function, which can efficiently
represent the large knowledge graph structure.

Concretely, we will map each sensor prediction (e.g., Panda)
as a node within GCN and the logical relationships between
sensors as edges (e.g., an edge between sensors predicting
“Panda” and “furry” to represent the rule IsPanda(x) =⇒
IsFurry(x)). Since the inference of GCN scales linearly in
the number of graph edges, the corresponding approximated
inference of MLNs can thus scale linearly in the number
of knowledge rules, which makes the CARE scalable to
large-scale problems. In particular, we propose an efficient
expectation maximization algorithm to iteratively update the
weights of GCN (E-step) and the weights of logic rules within
MLN (M-step).

This allows us to apply CARE to an unprecedented scale
on problems that involve logical reasoning to improve robust-
ness. To demonstrate the robustness of CARE, we conduct
extensive experiments on four large-scale datasets: Animals
with Attributes (AwA2) [30], Word50 [31], GTSRB [32],
and PDF malware dataset from Contagio [33]. For AwA2,
we leverage the annotated attributes of each animal class
and the hierarchy relationship among different animal cate-
gories extracted from WordNet [34] as our knowledge rules.
For Word50, we leverage the positions of each character
in the known words as knowledge rules. For GTSRB, we
use the road sign properties such as shape and the content
of each sign as knowledge rules; while for the PDF mal-
ware dataset, the common benign/malicious traces (features)
(e.g., /Root/Pages/Contents/Filter for benign trace
and /Root/OpenAction for malicious trace) and their
relationships are used to construct the knowledge rules. We
show that CARE significantly outperforms the SOTA certi-
fied defenses [35]–[38] under different perturbation radii. We
also conduct different ablation studies to further understand
the impacts of the number of integrated knowledge rules,
the empirical robustness of CARE, and the robustness and
explanation properties of CARE based on case studies.

Technical Contributions. In this paper, we provide a scal-
able certifiably robust learning with reasoning pipeline CARE,
which has demonstrated significantly higher certified robust-
ness than baselines on large-scale image datasets as well as
PDF malware dataset.

• We propose a scalable and certifiably robust learning with
reasoning pipeline CARE, which is able to integrate knowl-
edge rules to enable reasoning ability for reliable prediction.

• We propose an efficient expectation maximization algorithm
to approximate the reasoning (MLN) inference via varia-
tional inference using GCN.

• We conduct extensive experiments on a wide range of
datasets and demonstrate that CARE achieves significantly
higher certified robustness than SOTA baselines. For in-
stance, CARE improves the certified accuracy from 36.0%
(SOTA) to 61.8% under ℓ2 radius 2.0 on AwA2; and for
the word-level classification on Word50, CARE improves
the certified accuracy from 24.8% (SOTA) to 73.6% under
ℓ2 radius 0.5; on the GTSRB dataset, CARE improves the
certified accuracy from 83.3% (SOTA) to 84.4% under ℓ2
radius 0.4; for PDF malware, CARE improves the certified
accuracy from 22.6% (SOTA) to 54.5% under ℓ0 radius 7.

• We conduct a set of ablation studies to explore the impact
of the number of integrated knowledge rules; demonstrate
the high empirical robustness of CARE compared with
baselines; and showcase the robustness and explanation
properties of CARE based on case studies.

II. BACKGROUND
Markov Logic Networks (MLN) provides an effective ap-

proach to combining first-order logic and probabilistic graphi-
cal models in a unified representation. Concretely, MLN can be
viewed as a first-order knowledge base with a weight attached
to each logic formula, where the first-order logic formula can
be used to model different types of domain knowledge such
as “IsPanda(x) =⇒ IsFurry(x)”. Formally, in MLN,
the mapping (prediction) among entities can be represented as
predicates t(·), which is a logic function defined over the entity
variable set V = {v1, ..., vN} where vi denotes a constant
in the logic world. For instance, a constant can be a “stop
sign” or a “octagon shape”. The predicate is thus defined as
t(·) : V× ...×V → {0, 1}. In the meantime, a logic formula in
MLN is defined over the composition of a set of predicates as
f(·) : V × ... × V → {0, 1}. For instance, given an input
instance x, a model that is trained to predict whether the
input is of the octagon shape goctagon(x) can be viewed as
a predicate. The related knowledge rules, such as “stop sign
=⇒ octagon shape” can be represented as a formula as

gstop(x) =⇒ goctagon(x).

A formula consists of different predicates. We denote the
assignments of variables to the arguments of a formula f as
af , and all the possible consistent assignments are represented
as set Af = {a1f , a2f , ...}. With a particular set of constants
assigned to the arguments of a predicate, it is called a ground
predicate. For instance, with an assignment for a predicate
at = (c1, c2), we can simply write a ground predicate
t(c1, c2) = t(at). Similarly, a formula with an assignment
to its arguments is called a ground formula (e.g., f(af )).
Based on the probabilistic logic representations, MLN can thus
be defined formally as a joint distribution over all possible
assignments in set Af for the formula set F :

2



“Main” Sensor

“Flippers” Sensor

“IsFurry” Sensor

“IsAnimal” Sensor

“IsAquatic” Sensor

IsPanda

Input 𝑥

(b) Reasoning Component (§3.3)(a) Learning Component (§3.2)

Knowledge
Sensors

IsDophin
Predicates
IsDolphin(x),IsPanda(x), Flippers(x), IsFurry(x), 
IsAquatic(x),IsAnimal(x)

Weight Formula (Knowledge Rules)

6.1 IsPanda(x) => IsFurry(x)
4.0 IsDolphin(x) => Flippers(x)
1.7 IsPanda(x) => IsAnimal(x)
2.6 IsDolphin(x) => IsAquatic(x)
1.4 IsDolphin(x) => IsAnimal(x)

(c) Variational EM via GCN (§4)

: embedding

GCN Variational Posterior

𝑄!(IsDolphin(x)=1)↑
𝑄!(IsPanda(x)=1)↓
𝑄!(Flippers(x)=1) ↑
𝑄!(IsFurry(x)=1) ↓
𝑄!(IsFurry(x)=1) ↑
𝑄!(IsAnimal(x)=1) ↑

Weight Updates

Weight Formula (Knowledge Rules)

6.2 ↑ IsPanda(x) => IsFurry(x)
4.5 ↑ IsDolphin(x) => Flippers(x)
1.5 ↓ IsPanda(x) => IsAnimal(x)
2.9 ↑ IsDolphin(x) => IsAquatic(x)
1.1 ↓ IsDolphin(x) => IsAnimal(x)

E-Step: Inference (§4.2) M-Step: Weight Learning (§4.3)

Fig. 1. The overview of our learning with reasoning framework CARE.

Pw(t1, ..., tL) =
1

Z(w)
exp

∑
f∈F

wf

∑
af∈Af

ϕf (af )

 , (1)

where t1, ..., tL denote the L ground predicates (with assign-
ment Af ) that are used to form the formulas, wf represents
the corresponding weight for each formula, Note that ti(x) is
a predicate function given input x, and for notation simplicity
we will use ti throughout this work to represent ti(x) when
there is no ambiguity. ϕf (·) represents the potential function
for the given assignment, which takes 1 when the formula
is true and 0 when it is false, and Z(w) is the partition
function summing over all possible assignments. Based on
the grounding predicates, we can define a possible world by
assigning a truth value to each possible ground predicate.

Robustness certification. The robustness certification tech-
nique aims to provide a certified robustness guarantee: given
a robust radius r ∈ R+, any perturbation within r will not
change the classifier’s prediction [39], [40]. Formally, such
technique takes a classifier h : Rd → Y and a clean (i.e.,
unperturbed) input x. It outputs r such that h(x) = h(x′)
holds for any perturbed input x′ with d(x, x′) < r under
a specific metric d (e.g., ℓp norm). We provide more de-
tails about existing robustness certification techniques in our
related work Section VI. In this paper, we mainly utilize
the randomized smoothing technique [13], one of the state-
of-the-art certification methods that can scale to large-scale
datasets [36], [39], [41], to evaluate the certified robustness
for different learning pipelines as follows. First, we will wrap
a given learning model h to a new smoothed model g(x) =
argmaxc∈Y P(h(x + δ) = c) where the δ ∼ N

(
0, σ2I

)
and the σ here control the variance of the added noise.
Then, the resulting Gaussian smoothed classifier g(x) can be
certified by leveraging Neyman-Pearson lemma with no further

assumption. Assume pA is the probability of the returning class
cA, i.e., pA = P (h(x+ δ) = cA), and pB is the “runner-up”
probability, i.e., pB = maxc ̸=cA P(h(x+ε) = c), the smoothed
classifier g is robust around x with the radius [13]:

R =
σ

2

(
Φ−1 (pA)− Φ−1 (pB)

)
, (2)

where Φ−1 is the inverse of the standard Gaussian CDF. That
is to say, it is guaranteed that there is no further adversarial
perturbation within R, and thus the robustness can be certified.

III. CARE: SCALABLE ROBUST LEARNING WITH
REASONING

In this section, we first provide an overview of the proposed
learning with reasoning pipeline CARE, followed by the de-
tailed construction of the learning and reasoning components
within the pipeline.
A. Overview of CARE

To effectively integrate domain knowledge into statistical
machine learning models (e.g., DNNs), we propose CARE,
which consists of a learning and a reasoning components. In
particular, the learning component consists of a main sensor
which serves for the main classification task and makes a
multi-class prediction given an input; and several knowledge
sensors which make predictions for the individual semantic
objects requested by different knowledge rule given the same
input. For instance, if we want to integrate the knowledge
“Panda is furry” into the learning process, we will train a
main sensor to predict the class of the input (e.g., differ-
ent animal categories), and a knowledge sensor to predict
whether the input “is furry”, respectively. We then represent
the knowledge as the first-order logic rule “IsPanda(x)
=⇒ IsFurry(x)” via a reasoning component.

Concretely, the reasoning component can be realized by
different probabilistic graphical models, such as Markov logic
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networks (MLN) and Bayesian networks. In this work, we
focus on MLN as the reasoning component for different
applications. However, it is known that the inference of MLN
is computationally expensive due to the exponential cost of
constructing the ground Markov network. Thus, we propose
a scalable variational inference approach based on GCN to
approximate the inference of MLN (Section IV). In particular,
we propose an EM algorithm to jointly improve the accuracy
of GCN in terms of learning the MLN (E step) and optimize
the weights of formulas in the latent MLN towards better
inference-time robustness (M step). Moreover, we consider
different types of domain knowledge, such as attributes-based
knowledge and category hierarchy knowledge, to improve the
robustness of CARE (details in Section V).

Since the proposed CARE can be viewed as a general
machine learning pipeline, we are able to certify its robustness
using standard certification approaches [13], [35], [36], [38].
As the pure data-driven based machine learning approaches
have reached a bottleneck for certified robustness so far due
to the lack of additional information or prior knowledge, here
we show that the proposed CARE is able to significantly
improve the certified robustness on datasets including the high-
resolution dataset AwA2 [30], the standard Word50 [31], the
GTSRB [32] for road sign classification, and the security
application of PDF Malware classification [33]. In addition,
we will also show that simply adding more prediction models
as an ensemble without explicit knowledge integration or
reasoning, which is shown to obtain only marginal robustness
improvement by existing work [11], [37], will not help achieve
such high performance on certified robustness. We believe
such knowledge integration and enabling reasoning ability is
a promising way to break the existing robustness barriers.

B. Learning in CARE

Within the learning component of CARE, we construct a set
of statistical learning models (e.g., DNNs, logistic regression,
SVMs, etc.) to predict the main classification task and other
knowledge sensors’ classification tasks. For instance, as shown
in Fig 1, the goal is to perform the animal category classifi-
cation. In particular, we will train one main sensor to predict
the main animal classes, say, IsPanda, Dolphin, and others.
In order to integrate domain knowledge and logical reasoning
ability into this learning process, we need to embed domain
knowledge, such as “IsPanda(x) =⇒ IsFurry(x)”,
into the pipeline. Thus, we will train a knowledge sensor to
predict “whether the input is furry”. Similarly, we will train
other knowledge sensors for different knowledge rules. Here
the main/knowledge sensors can be viewed as predicates, and
the output of each knowledge sensor is a binary truth value;
while for multiclass classification, we will map the d-way
prediction of the main sensor to several binary truth values
(detailed mapping process and constraints in Section IV).

Formally, we define the prediction output of i-th sensor
ti(·) as ti, and the corresponding prediction confidence as zi.
Given an input x, the corresponding sensor predictions ti(x)
are shown in Figure 1 (i.e., ti(x) = IsFurry(x)).

C. Reasoning in CARE

Given an input x and predictions from different sensors
ti(x), we will connect these predictions based on their logical
relationships to enable the reasoning ability of our learning
pipeline CARE. Such a logical relationship can be realized by
different types of probabilistic graphical models, and in this
paper, we will focus on MLN.

Concretely, as mentioned above, we will construct one main
sensor and several knowledge sensors ti(x) as the predicates
in MLN. We then build logical relationships among the pred-
icates to form different formulas. Assume we have L sensors,
an MLN will define a joint distribution based on the predefined
logical formulas. For simplicity, we denote the collection of
formulas as F , and thus the joint distribution defined by MLN
can be represented as below simplified from Equation (1):

Pw(t1, ..., tL) :=
1

Z(w)
exp

∑
f∈F

wff(t1, ..., tL)

 , (3)

where Z(w) denotes the partition function summing over
all the possible assignments of the predicates. Since in our
learning pipeline, each formula will only have one unique
correct assignment by construction to ensure robustness, we
can simplify this joint distribution based on Equation (1).

The reasoning component of CARE can handle logic for-
mulas expressed as first-order logic rules. In this paper, we
further optimize for four types of logic rules that popularly
used in practice as follows.
• Attribute rule (ti =⇒ tj ∨ tk ∨ ...): Some prediction

classes have specific attributes, which can be leveraged to
construct knowledge rules. For instance, one attribute rule
could be IsPanda(x) =⇒ IsFurry(x).
• Hierarchy rule (ti =⇒ tj): In general, there exist

hierarchical relationships between different classes, based on
which we can build formula f(ti, tj) = ¬ti∨ tj . For instance,
IsDog(x) =⇒ IsAnimal(x), or a slightly more com-
plicated example as IsChihuahua(x)∨ IsCollie(x)∨
IsDalmatian(x) =⇒ IsDog(x). For instance, we can
build such hierarchical knowledge rules based on relationships
extracted from WordNet.
• Exclusion rule (ti ⊕ tj): Some class predictions are

naturally exclusive from others. For instance, an animal cannot
be a panda and dolphin at the same time, so we will exclude
the possible world where IsPanda(x) and IsDolphin(x)
are both true. In particular, we will introduce constraint
IsPanda(x) ∧ IsDolphin(x) = False.

Next, we will discuss the weight training of sensors and
formulas. For the weight of sensors, we aim to take the
influence of the prediction confidence zi of sensor ti(·) into
account, and thus we assign log[zi/(1− zi)] to be the weight
of sensor ti. As a result, if there is no other formula, the
marginal probability of the predicate ti to be true will be its
corresponding prediction confidence zi. For other formulas,
we will train the weights given observed variables based on
variational EM steps (M-step) based on a trained GCN, and
the details are illustrated in Section IV-C.
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IV. SCALABLE REASONING VIA VARIATIONAL INFERENCE
USING GCN

In this section, we will illustrate in detail how to approx-
imate the inference of our reasoning component MLN via
variational inference based on GCN.
A. Variational EM Based on GCN

In order to conduct efficient inference and learning for
MLN, existing work has introduced different approaches, in-
cluding variational inference and Monte Carlo sampling [42],
[43]. In particular, as MLN models the joint probability distri-
bution of all predicates as defined in Eq. 3, it is possible to train
the weights of knowledge rules (formulas) w within MLN by
maximizing the log-likelihood of all the observed predicates
(facts) logPw(O). However, it is intractable to maximize the
overall objective directly since it requires computing the whole
partition function Z(w) and integrating over all observed
predicates O and unobserved ones U . Thus, some works
propose to instead optimize the variational evidence lower
bound (ELBO) [29] of the data log-likelihood as below:

logPw(O) ≥ LELBO(Qθ, Pw) := EQθ(U|O) [logPw(O,U)]
− EQθ(U|O) [logQθ(U|O)] ,

(4)
where Qθ(U|O) represents the variational posterior distribu-
tion, and the equality in Eq 4 holds if Qθ(U|O) equals to
the true posterior Pw(U|O). Here since the sensor output
variables together with the knowledge rules among them can
be represented as a knowledge graph, we will use graphical
convolutional networks (GCN) to encode the posterior distri-
bution Qθ(·).

Now we need to learn the weights of MLN w, based
on which we will make the inference for MLN to enforce
the reasoning process given the knowledge rules. Thus, we
leverage a variational EM algorithm [44] to optimize the
ELBO in Eq. 4. In particular, since the input x is unknown,
all the variables such as IsPanda(x) are unobserved. Thus,
we consider all variables to be unobserved by setting O to
be empty set ∅, and optimize over the outputs of sensors
T = {t1, t2, ..., tL} with the following optimization objective:

LELBO (Qθ, Pw) := EQθ(T ) [logPw(T )]− EQθ(T ) [logQθ(T )] ,
(5)

which is the negative KL divergence between Qθ(T ) and
Pw(T ). On the other hand, it can also be viewed as to directly
approximate Pw(T ) via a variational distribution Qθ(T ).

Next, we will discuss in detail the EM steps. On the high
level, in the E-step, we will fix the MLN weights w for
the knowledge rules and optimize GCN parameters Qθ to
minimize the KL distance between Qθ(T ) and Pw(T ); in the
M-step, we will fix Qθ and update the weights w to maximize
the the log-likelihood function EQθ(T ) [logPw(T )]. The E-
step and the M-step will be executed alternately multiple times
until convergence.
B. E-step: Optimizing Qθ

In E-step, we aim to minimize the KL distance between
the variational distribution Qθ(T ) and the true distribution
Pw(T ). Since the inference of the MLN is #P-complete [20],
we approximate Pw(T ) with a mean-field distribution, which

has been shown to scale up to large graphical models [28],
[29], [45]. In the mean-field variational distribution where the
variables are independent, the joint distribution of outputs of
sensors (unobserved variables) can be formed as the following,

Qθ(T ) :=
∏

ti∈T
Qθ(ti), (6)

We constrain the sum of the Qθ(ti), whose associated class
confidence zi comes from the same main sensor (i.e., multi-
class classifier), to be 1, in order to model key-constraints,
namely the exclusion rules, induced by a d-way classifier.

To further improve the efficiency of inference and take into
account the knowledge graph structure, we parameterize the
Qθ here with graph convolutional networks (GCNs), where
θ represents the parameters of GCN. In particular, we will
construct nodes for each class prediction based on both main
and knowledge sensor outputs as shown in Figure 1 (c). In
other words, each node will be associated with a scalar which
represents the confidence of the corresponding class. However,
the message passing between different nodes on the GCN
will not be effective if the input feature is only a scalar,
and thus it will be hard for the GCN to learn the variational
posterior distribution well. So following [29], we also train a
class embedding vector µ⃗i for each node and use the scalar
multiplication of the class prediction confidence zi and the
corresponding class embedding vector µ⃗i as the input of each
node for further encouraging the expressivity of the model.

Based on the mean-field approximation, and joint distribu-
tion logPw(T ) = log( 1

Z(w) exp(
∑

f∈F wff(t1, ..., tL))), the
ELBO from Eq. 5 can thus be rewritten as:

LELBO (Qθ, Pw) = EQθ(P)

∑
f∈F

wff(t1, ..., tL)− logZ(w)


− EQθ(T ) logQθ(T ).

(7)
Since the MLN weights w is fixed during the E-step, the

logZ(w) here is a constant and can be ignored during the
optimization. However, with this new optimization objective,
we cannot obtain the gradient of it w.r.t. the parameters θ in
GCN through backpropagation directly. Thus, we first derive
the explicit form of the gradient as bellows, and the full proof
is deferred to Appendix A1.
Lemma IV.1. The gradient of LELBO (Qθ, Pw) w.r.t. the GCN
parameters θ can be derived as:

EQθ(T )

∑
f∈F

wff(t1, ..., tL)− logQθ(T )

∇θ logQθ(T ). (8)

This shows that the gradient can be estimated through multi-
ple sampling from Qθ(T ). In specific, the term ∇θ logQθ(T )
can be directly derived through backpropagation, and then the
question remains as how to calculate

∑
f∈F f(t1, ..., tL). For

the single sensor (formula), it can be calculated by the dot
multiplication of t and log[z/(1 − z)] where t = [t1, ..., tL];
for the exclusion rule based formula, as mentioned before, we
can imply it by constraining the sum of Qθ(ti) to be 1 for
the corresponding classes. For the attribute rule and hierarchy
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rule based formulas, they can be reduced to the combination
of four basic kinds of formulas:

ti =⇒ tj ∨ tk ∨ ... ∨ tl,

ti =⇒ tj ∧ tk ∧ ... ∧ tl,

tj ∨ tk ∨ ... ∨ tl =⇒ ti,

tj ∧ tk ∧ ... ∧ tl =⇒ ti.

(9)

We thus provide an efficient score calculation for them as
follows, and the detailed proof is deferred to Appendix A2.
Theorem 1. The function

∑
f∈F f(t1, ..., tL) based on the

four types of formulas defined in Equation (9) can be efficiently
calculated as follows:∑

f∈F

wff(t1, ..., tL) = wNeg(AtT +B), (10)

where w is the row vector of the concatenation of all wf for
f ∈ F , Neg(·) is an indicator function which maps the values
larger than 0 to 0 and maps the other values to 1, A and B
are the matrices determined by the pre-defined formulas with
the shape |F| × L and |F| × 1, respectively.

In practice, we will shift the term(∑
f∈F wff(t1, ..., tL)− logQθ(T )

)
by subtracting the

sample mean for reducing the variance in the estimation
for the gradient with Monte Carlo based on the fact that
EQθ(T )∇θ logQθ(T ) = 0.

Since the tasks here are supervised, and there is label infor-
mation for each input during training, we can add a supervised
negative likelihood to encourage the overall learning and help
guide the direction of the optimization:

Llabel (Qθ) = −
L∑

i=1

logQθ (GT(ti)) , (11)

where GT(ti) is the corresponding ground truth for predicate
ti during training. Thus, the final E-step training optimization
objective is:

Lnew(Qθ) = LELBO (Qθ, Pw)− ηLlabel (Qθ), (12)
where η is a hyperparameter to balance the trade-off of these
two likelihood terms. The embedding µ⃗ will also be updated
during the optimization of GCN through the chain rule for
better expressiveness.

During the test stage, the prediction for each class will be
based on the marginal probability Qθ(ti), and it can be seen as
a knowledge-enhanced correction for the original prediction.
C. M-step: Optimizing w

In M-step, the GCN model is fixed, and we update the
weight of the formula w by maximizing the log-likelihood
function, i.e., EQθ(T ) [logPw (T )], which is to maximize the
term

EQθ(T ) log
exp{

∑
f∈F wff(t1, ..., tL)}∑

t′1,...t
′
L
exp{

∑
f∈F wff(t′1, ..., t

′
L)}

. (13)

However, the partition function, namely, the denominator that
involves an integration of all the variables, is intractable
to compute. We optimize the pseudo-likelihood [46] as an
alternative, which is defined as:

P ∗
w(t1, ..., tL) :=

L∏
i=1

Pw (ti|MB (ti)) , (14)

Algorithm 1 The whole training procedure for the variational
EM based on GCN.
Input: Input x, a set of trained sensors (predicates) T , model

GCN, sensor output confidence z = [z1, ..., zL], number
of training epochs K

Output: Trained GCN; the weight of MLN formulas w
1: Initialize the node embedding of GCN µ = [µ⃗1, ..., µ⃗L].
2: m = [m⃗1, ..., m⃗L] ← [z1µ⃗1, ..., z1µ⃗L] # Initialize node

features in GCN.
3: Qθ(T )← GCN(m; θ) # Get variational distribution.
4: for j = 1 to K do
5: θ ← argmaxθ Lnew (Qθ, Pw) # E-step.
6: Update node embedding µ from Qθ(T )
7: m = [m⃗1, ..., m⃗L] ← [z1µ⃗1, ..., z1µ⃗L] # Update the

input feature to GCN.
8: Qθ(T ) ← GCN(m; θ) # Update variational distribu-

tion.
9: w ← argmaxw EQθ

[logPw (T )] # M-step.
10: end for
11: return GCN parameter θ; weight of MLN formulas w.

where MB(ti) is the Markov blanket of the predicate ti.
In other words, MB(ti) is the set of formulas where the
predicate ti appears. Then, following [20], given a formula f ,
the gradient of the pseudo-log-likelihood w.r.t. its associated
weight w, namely ∂

∂w logP ∗
w(t1, ..., tL), is

L∑
i=1

[f( t1, ..., tL)− Pw (ti = 0|MB (ti)) f ([ti = 0])

−Pw (ti = 1|MB (ti)) f ([ti = 1])] ,

(15)

where f ([ti = 0]) represents the truth value of the for-
mula f when we force ti = 0 while leaving the remain-
ing tj,j ̸=i unchanged; similar for f ([ti = 1]). Finally, we
will maximize the original intractable log-likelihood func-
tion through optimizing the expectation of the pseudo-log-
likelihood EQθ(T ) [logP

∗
w (T )], and the gradient w.r.t. the

weight w of the formula will be estimated through multiple
sampling from the variational distribution Qθ. The algorithm
for the whole training pipeline is provided in Algorithm 1.

V. EXPERIMENTAL EVALUATION

In this section, we present experimental evaluation of CARE
on four large datasets: Animals with Attributes (AwA2) [30],
Word50 [31], GTSRB [32], and PDF malware dataset from
Contagio [33]. The illustration of these datasets and the
corresponding construction of CARE are shown in Figures 1
to 4. With the knowledge integration and reasoning, CARE
achieves significantly higher certified robustness than the state-
of-the-art methods under different radii. We also conduct a set
of ablation studies to explore the influence of the number of
integrated knowledge rules, the empirical robustness of CARE,
and the explanation properties of CARE via case studies. All
experiments are run on four GeForce RTX 2080 Ti GPUs.
A. Experimental Setup

Datasets and the implementation of learning component.
For AwA2, all sensors, including the main sensor and knowl-
edge sensors, are trained with the architecture of ResNet-
50 [47]; while for Word50 and PDF malware datasets, we
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Fig. 2. Learning and reasoning components of CARE on GTSRB, Word50, and PDF malware classification. (AwA2 is illustrated in Figure 1).

TABLE I
CERTIFIED ACCURACY UNDER DIFFERENT ℓ2 PERTURBATION RADII ON AWA2 DATASET.

σ Method ACR Certified Accuracy under Radius r
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

0.25

Gaussian 0.544 84.0 77.6 71.4 58.6 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWEEN 0.552 84.2 78.8 71.2 60.8 43.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv 0.574 78.6 74.8 71.6 69.4 62.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 0.587 81.6 78.2 74.0 69.8 58.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MultiTask 0.593 79.8 78.2 76.2 71.0 58.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE 0.709 96.6 94.2 91.4 85.4 75.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian 0.827 75.6 71.2 64.6 58.2 53.0 46.2 38.8 32.0 21.2 0.0 0.0 0.0 0.0
SWEEN 0.854 76.4 73.8 67.8 60.4 53.6 47.4 39.6 34.6 22.4 0.0 0.0 0.0 0.0

SmoothAdv 0.949 72.0 69.8 66.6 62.8 60.2 56.8 52.2 47.6 40.2 0.0 0.0 0.0 0.0
Consistency 0.953 74.0 71.2 68.8 64.6 61.2 56.0 51.2 46.8 40.4 0.0 0.0 0.0 0.0
MultiTask 0.842 69.6 67.6 63.2 58.2 53.4 49.4 42.4 36.8 27.2 0.0 0.0 0.0 0.0

CARE 1.141 91.2 88.2 84.2 78.8 73.4 68.4 63.2 56.2 44.0 0.0 0.0 0.0 0.0

1.00

Gaussian 0.994 59.6 54.6 51.6 49.0 44.8 40.8 36.6 32.6 29.6 26.4 22.8 20.0 17.2
SWEEN 1.059 62.2 57.6 54.8 50.2 45.8 41.8 39.2 34.4 32.0 29.0 26.8 22.0 18.8

SmoothAdv 1.231 57.2 54.0 53.0 49.8 47.2 45.4 42.2 40.8 38.2 36.8 34.0 32.6 30.2
Consistency 1.247 54.0 52.0 50.0 48.0 45.6 44.0 42.0 40.6 39.4 37.8 36.0 33.8 31.6
MultiTask 1.192 51.6 49.8 48.4 46.8 46.0 45.0 42.0 40.0 38.2 36.0 34.0 31.2 29.2

CARE 2.127 87.0 85.2 84.0 82.0 80.4 78.2 75.6 71.4 68.6 65.8 61.8 59.4 56.0

build the feed-forward neural network with two hidden layers
activated by ReLU for all sensors. Specifically, for Word50,
following the similar setting in [31], the number of hidden
neurons is set to 512 for character classification and 1024 for
word classification; for the PDF malware dataset, following
the same setting in [48], the number of hidden neurons is set
to 200 for both main sensor and the knowledge sensors. For
GTSRB, we use the GTSRB-CNN [6] for all sensors.

The implementation of reasoning component. The dimen-
sion of the embedding µ⃗ for each predicate is fixed to 512,
and it is initialized with the He uniform initialization [49]. For
all datasets, we use the GCN with two hidden layers, and the
hidden dimension is also set to 512. For the construction of
the graph, we introduce a node for each predicate, and each
predicate corresponds to one class that appeared in the main
sensor or knowledge sensor exactly. The edge will connect
associated predicates that appeared in the same knowledge
rule (formula). We train the GCN with 60 epochs, and the
learning rate is set to 0.01 in the first 40 epochs and set to
0.001 for the last 20 epochs.

Baselines. For the dataset AwA2, Word50, and GTSRB,
whose features are continuous, we consider four state-of-the-
art ℓ2 certification baselines: (1) Gaussian smoothing [13]
trains smoothed classifiers by directly augmenting the in-

put images with the Gaussian noise during training; (2)
SWEEN [37] employs weighted ensemble to improve the
certified robustness; (3) SmoothAdv [35] further applies ad-
versarial training to improve the certified robustness based
on the Gaussian smoothing; (4) Consistency [36] adds a
consistency regularization term in the training loss based on
standard Gaussian smooth training; (5) MultiTask incorporates
the additional sensor information by adding more classification
heads in the main sensor and training it together with the
knowledge classification tasks under Gaussian augmentation.
For the PDF malware dataset, whose features are binary, we
consider the state-of-the-art ℓ0 certification baseline: Lee et
al. [38]. To train a ℓ0 smoothed robust model, we smooth
each feature by replacing it with a range of discrete random
values with probability (1− α) following existing work [38].
SWEEN serves as another baseline to represent the SOTA
robust ensembles.

Evaluation metrics. We mainly focus on the certified
robustness of different methods. For AwA2, Word50, and
GTSRB, we report the certified accuracy of CARE and other
pipelines under different ℓ2 radius r, following the standard
certification setting [13]. For the PDF malware dataset, we will
report the certified accuracy under different ℓ0 radius r, which
follows the certification setting in [38]. In addition, we also
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Fig. 3. Hierarchy knowledge rule of AwA2. The blue nodes represent
the main task of animal categories, and the grey nodes represent part
of the knowledge sensors.
report the average certified radius (ACR) following [50]. The
whole certification procedure is provided in Appendix B2.
B. Evaluation on AwA2

Dataset description. AwA2 [30] contains 37322 images
of 50 animal categories and provides 85 class attributes for
each class. For example, animal “Fox” is assigned with the
attribute labels such as “brown”, “has a tail” and “has
no spots”. In addition to the attribute knowledge, we also
construct hierarchical relations between the classes based on
WordNet [34] as another type of domain knowledge.

Task and the implementation of learning component.
The main task here is to classify the 50 animal classes for
the input image. First, we will train one main sensor for
classifying these 50 animals and train 85 knowledge sensors
for classifying each binary attribute, respectively. We utilize
WordNet [34] to build a hierarchy tree by iteratively searching
the inherited hypernyms of the 50 leaf animal classes, part of
the nodes are shown in Figure 3. Then, we perform additional
hierarchy classification tasks on the 28 internal nodes (gray
nodes in Figure 3). We conduct additional ablation studies to
evaluate the effect of training different numbers of knowledge
sensors in Section V-F. The final sensing vector z is of
50 + 85 + 28 = 163 dimensions by concatenating the output
confidence of all the sensors (predicates).

The implementation of reasoning component. For each
possible sensor task, we introduce a corresponding predicate.
Thus, the number of the predicates is 163 here.

For the attribute-based knowledge/formulas, we let each
class imply its owned attributes. For example, if the animal
class “raccoon” has the attributes gray and furry, we will
construct two formulas: IsRaccoon(x) =⇒ IsGray(x)
and IsRaccoon(x) =⇒ IsFurry(x). The total number
of attribute-based formulas is the number of possible attributes
of all animals, which is 1562.

For the hierarchy-based knowledge/formulas, the classes in
the internal nodes (the gray node as shown in Figure 3) will
imply at least one of its children to be true. For example,
IsProcyonid(x) =⇒ IsPanda(x) ∨ IsRaccoon(x);
IsBigCat(x) =⇒ IsLion(x) ∨ IsTiger(x). The
number of hierarchy-based formulas is the number of the
internal nodes, which is 28, and thus the total number of the
overall formulas is 1562 + 28 = 1590.

Certification details. All the images are resized to 224×224
for training the sensors. We randomly sample 80% images
from each animal class as the training data while picking
10 images from each class within the remaining unsampled
set for certification. Following the standard setting [13], we
certify these 500 images with confidence 99.9% (the results

are certified with N = 10, 000 samples of smoothing noise).
We test all methods based on three levels of smoothing
noise σ = 0.25, 0.50, 1.00. For small σ = 0.25, the η
in Equation (12) is set to 0.2, and for σ = 0.50 and 1.00,
the η is set to 0.6. Generally, with larger training noise, the η
needs to be larger to help maintain the benign accuracy and
guide the training of GCN. The details for other baselines are
deferred to Appendix B1.

Certification results. The certification results of CARE
and baselines are shown in Table I, and as we can see, our
method CARE improves the certified accuracy under different
radii with different smoothing levels. In addition, we can also
replace the main sensor of CARE with different training meth-
ods, and detailed results are in Appendix C. Out of interest,
we also explore the importance of the reasoning module by
comparing it with the method that replaces the GCN in CARE
with a simple linear classifier while maintaining others as the
same, the corresponding results are provided in Appendix D.
C. Evaluation on Word50

Dataset description. Word50 [31] is created by randomly
choosing 50 words, and each consists of 5 lower case char-
acters, which are extracted from the Chars74K dataset [51].
The background of each character is inserted with random
patches, and the whole character image is further perturbed
with scaling, rotation, and translation to increase the difficulty
of recognition, making it more challenging than traditional
digit recognition tasks. The size of each character image
is 28 × 28, and examples of the word images are shown
in Figure 2 (b). The intriguing property of this dataset is that
the relationship between nearby characters can be treated as
prior knowledge to help build reliable predictions.

Task and the implementation of learning component.
We conduct two tasks here, one is for the word classification,
and one is for the character classification. We train one main
sensor for classifying the 50 words and 5 knowledge sensors
for classifying the character on each position of the word. The
sensing vector z can be represented as [u; e1; ...; e5], where
u ∈ {0, 1}50 is the output confidence of the main sensor with
50 dimensions, ei ∈ {0, 1}26 is the output confidence of the
knowledge sensor which classifies the character on the i-th
position with 26 dimensions. Therefore, the total dimension
of the sensing vector z here is 50 + 26× 5 = 180.

The implementation of reasoning component. For each
word prediction, we will use a predicate to represent it. For
instance, we will use DREAM(x) to denote if the input word
is DREAM. While for the character appeared in the word, we
will use Pos_i_$(x) to represent if the character appeared
in the i-th position of the input image x is character ‘$’. For
example, the predicate Pos_2_a(x) predicts if the second
character appeared in the input word image is ‘a’. Thus, the
number of the predicates is 180.

Given the 50 known words, we will construct knowledge
rules based on the word and the corresponding characters in
each position. For the attribute-based knowledge/formulas, we
will build them like IsDREAM(x) =⇒ Pos_1_d(x), ...,
DREAM(x) =⇒ Pos_5_m(x), and the total number of such
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TABLE II
CERTIFIED ACCURACY UNDER DIFFERENT ℓ2 PERTURBATION RADII ON WORD CLASSIFICATION IN WORD50.

σ Method ACR Certified Accuracy under Radius r
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

0.12

Gaussian 0.115 48.6 38.0 26.4 16.6 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWEEN 0.152 51.4 44.6 36.6 27.4 18.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv 0.197 59.0 53.8 45.2 38.0 29.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 0.157 53.4 45.2 36.0 28.4 20.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MultiTask 0.142 55.6 43.0 32.6 23.6 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE 0.391 97.0 96.0 91.4 81.4 70.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25

Gaussian 0.125 42.0 32.6 24.0 17.6 13.0 8.0 4.6 2.8 2.2 0.6 0.0 0.0 0.0
SWEEN 0.194 48.2 41.8 35.6 28.4 22.0 16.6 10.8 7.6 4.8 2.4 0.0 0.0 0.0

SmoothAdv 0.246 55.6 47.0 40.0 35.8 29.0 24.8 17.6 11.8 8.4 4.8 0.0 0.0 0.0
Consistency 0.201 47.6 40.2 36.0 29.0 24.0 17.4 13.2 9.0 6.6 2.4 0.0 0.0 0.0
MultiTask 0.166 49.2 40.8 34.2 25.6 17.4 11.8 7.2 4.2 2.0 1.2 0.0 0.0 0.0

CARE 0.674 97.2 94.8 92.6 89.4 81.8 73.6 64.4 55.2 43.6 30.8 0.0 0.0 0.0

0.50

Gaussian 0.082 27.8 20.4 14.6 11.2 7.8 4.4 3.4 2.2 1.6 1.0 0.4 0.4 0.4
SWEEN 0.143 35.0 29.0 23.8 17.8 14.2 11.0 8.6 6.4 4.4 3.8 2.0 1.4 0.8

SmoothAdv 0.168 38.0 32.6 27.0 21.0 16.0 12.6 9.4 7.4 6.0 5.4 3.8 2.8 1.6
Consistency 0.146 34.8 28.4 22.8 17.8 13.0 9.8 8.8 7.8 5.8 4.6 3.2 2.4 1.6
MultiTask 0.108 32.0 24.8 18.6 13.4 9.8 8.2 5.2 4.2 2.8 1.8 1.2 0.4 0.4

CARE 0.697 87.6 84.4 78.4 73.6 69.0 63.0 56.6 50.0 44.0 36.6 30.0 24.0 18.0
TABLE III

CERTIFIED ACCURACY UNDER DIFFERENT ℓ2 PERTURBATION RADII ON CHARACTER CLASSIFICATION IN WORD50.

σ Method ACR Certified Accuracy under Radius r
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

0.12

Gaussian 0.234 72.0 64.0 53.8 45.8 34.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWEEN 0.250 72.8 64.2 58.6 50.2 39.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv 0.228 63.8 59.0 52.0 45.4 37.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 0.226 66.2 59.0 51.6 44.4 37.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MultiTask 0.191 62.8 53.6 45.2 35.4 25.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE 0.341 90.2 85.2 78.0 70.8 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25

Gaussian 0.290 63.4 57.2 51.0 42.2 35.0 26.8 20.2 13.4 9.0 4.2 0.0 0.0 0.0
SWEEN 0.315 65.8 58.6 52.4 46.0 37.8 30.0 23.6 16.6 10.8 7.2 0.0 0.0 0.0

SmoothAdv 0.289 55.8 50.0 44.6 37.6 33.4 27.4 23.6 19.8 15.0 10.0 0.0 0.0 0.0
Consistency 0.285 57.0 52.2 46.2 39.6 35.2 27.8 23.8 16.6 11.0 5.6 0.0 0.0 0.0
MultiTask 0.246 60.2 53.2 44.6 35.8 28.8 21.8 15.2 8.8 5.4 2.4 0.0 0.0 0.0

CARE 0.539 87.6 83.2 77.4 73.0 63.2 55.6 50.2 41.8 32.4 21.2 0.0 0.0 0.0

0.50

Gaussian 0.165 40.0 33.6 29.8 23.6 18.2 13.2 9.2 7.2 4.8 2.8 1.8 0.6 0.6
SWEEN 0.184 42.0 36.8 31.4 25.2 20.4 14.8 11.4 8.4 5.2 3.6 2.8 1.2 0.8

SmoothAdv 0.165 31.2 27.0 23.6 20.8 16.8 14.6 11.6 9.8 7.4 5.0 4.6 2.8 1.2
Consistency 0.162 37.0 32.4 27.0 21.2 17.0 14.2 10.0 6.8 4.8 3.0 2.2 1.0 0.8
MultiTask 0.209 47.6 42.2 35.0 27.4 23.0 17.0 13.2 9.6 6.4 4.4 3.0 1.6 1.6

CARE 0.539 80.6 76.8 70.4 65.4 59.2 53.0 44.8 37.0 29.6 21.6 17.2 11.6 6.6

formulas is 50 × 5 = 250. In addition, for this dataset, we
find that the identification of the characters on at least three
positions is enough to determine the whole word, thus we
also construct the knowledge/formulas like Pos_1_d(x) ∧
Pos_4_a(x) ∧ Pos_5_m(x) =⇒ IsDREAM(x) for further
enriching the prediction robustness. The number of such
formulas is 50×(

(
5
3

)
+
(
5
4

)
+
(
5
5

)
) = 800, and thus the number

of the overall formulas is 250 + 800 = 1050.
Certification results. The certified accuracy on word-

level and character-level classifications are shown in Table II
and Table III, respectively. As we can see, CARE significantly
outperforms all other baselines under different perturbation
radii and smoothing noise levels. Using different models for
the main sensor in CARE can be found in Appendix C.
The training and the certification details are deferred to Ap-
pendix B1 and Appendix B3, respectively.
D. Evaluation on GTSRB

Dataset description. Here we use the GTSRB dataset [32]
following [21], which contains 12 types of the road signs:
“Stop”, “Priority Road”, “Yield”, “Construction Area”,

“Keep Right”, “Turn Left”, “Do not Enter”, “No Vehicles”,
“Speed Limit 20”, “Speed Limit 50”, “Speed Limit 120”,
“End of Previous Limitation”. Each image is resized to 32×32
for training, and an example is shown in Figure 2 (a).

Task and the implementation of learning component. The
main task is to classify the 12 types of German road signs. For
the learning component, first, we will train a main sensor to
classify those 12 road signs. Next, we manually construct 20
knowledge sensors such as IsOctagon(), IsSqaure(),
and IsCircle() based on the border patterns and the
contents of the road signs. The full knowledge construction
is provided in Appendix B4. The final sensing vector z is
of 12 + 20 = 32 dimensions by concatenating the output
confidence of all the sensors.

The implementation of reasoning component. For
each road sign and attribute (e.g., IsStop() and
IsOctagon()), we will build one associated predicate and
thus the number of predicates is 32.

For the attribute-based knowledge/formulas, following [21],
we treat the attribute that only one of the road signs
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/Root/OpenAction/JS(X) => /Root/OpenAction(X)
/Root/OpenAction/JS/Filter(X) => /Root/OpenAction/JS(X)
/Root/Pages(X) => /Root/Pages/Annot(X), …

/Length

(c) Reasoning Component(a) The parse tree  of a PDF malware

(b) Learning Component
Features: /Root/OpenAction/S: 1, /Root/OpenAction/JS: 1, 

/Root/OpenAction/Type: 1, /Root/OpenAction/JS/Filter: 1,…

Predict /Root/OpenAction: 0(attacked) => 1 

8565

/Length

…

/Fliter

Fig. 4. (a) The parsed tree structure of a PDF malware and an attack example; (b) the learning component of CARE under attack; (c) the reasoning component
of CARE and some examples of corresponding knowledge rules.

TABLE IV
CERTIFIED ACCURACY ON GTSRB UNDER ℓ2 RADII.

Method Certified Accuracy under ℓ2 Radius r
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

Gaussian 97.9 96.5 92.6 86.8 82.5 78.6 74.3 68.7 63.2 57 53.3 50.4 47.7
SWEEN 99.2 97.1 94.7 87.9 82.9 78.8 74.1 69.1 65.8 58.6 55.8 52.5 49.6

SmoothAdv 97.1 95.9 91.8 86.6 82.9 78.6 75.3 71.0 66.9 63.0 56.8 53.9 51.6
Consistency 99.4 98.8 95.3 90.7 83.3 78.0 74.3 71.0 65.6 60.5 57.4 54.5 51.2
MultiTask 96.5 94.4 90.3 85.8 81.3 76.3 71.8 67.3 62.8 57.8 55.3 51.4 48.6

CARE 99.6 99.2 96.7 91.2 84.4 79.4 75.3 72.0 67.9 63.0 57.8 55.1 51.9

owns as the permissive attribute and allow each of them
to imply its associated road sign. For example, only stop
sign is of octagon shape, and thus the corresponding for-
mulas would be IsOctagon(x) =⇒ IsStop(x).
Next, we treat the remaining attributes as preventative at-
tributes and let each road sign imply them. For exam-
ple, both “do not enter” sign and “no vehicles” sign
are circle, so the corresponding formulas are constructed
like IsDoNotEnter(x) =⇒ IsCircle(x) and
IsNoVehicles(x) =⇒ IsCircle(x). The detailed
knowledge construction is in Appendix B4, and the final
number of the constructed formulas here is 44.

The hierarchy knowledge/formulas are constructed be-
tween the attributes that have inclusion relations. For ex-
amples, both the attributes octagon and square are one
kind of polygon instead of circle, so we will construct
two formulas IsOctagon(x) =⇒ IsPolygon(x) and
IsSquare(x) =⇒ IsPolygon(x). The full inclusion
relations between the attributes are provided in Appendix B4,
and the final number of the hierarchy formulas is 14, so the
total number of formulas is 44 + 14 = 58.

Certification results. We report the best certified accuracy
of each method under σ ∈ {0.12, 0.25, 0.50} for each radius,
and the results are shown in Table IV. As we can see, CARE
is consistently better than if not equal to the best of the
baseline approaches under different perturbation radii. The
full certification results for each method under different σ are
in Appendix C. The training and the certification details are
deferred to Appendix B1 and Appendix B3, respectively.

E. Evaluation on PDF Malware Dataset

Dataset description. The PDF malware dataset from Con-
tagio [33] contains 16800 clean and 11960 malicious PDFs.
Following the standard setting in [48], we use Hidost [52]
to extract the binary structural path features from the parsed

TABLE V
CERTIFIED ACCURACY ON PDF MALWARE UNDER ℓ0 RADII.

Method Certified Accuracy under Radius r
0 1 2 3 4 5 6 7 8 9

Lee et al. [38] 99.8 99.0 96.1 80.0 80.0 68.0 46.5 15.1 5.7 5.7
SWEEN 99.8 99.0 97.7 85.2 80.3 72.5 57.2 22.6 8.9 8.9

MultiTask 99.7 99.0 97.2 82.8 80.5 72.7 59.0 53.8 9.9 9.9
CARE 99.5 99.3 96.9 85.5 84.2 77.4 63.4 54.5 13.5 13.5

tree structure of each PDF with the default compact path
option [53]. An example of the parsed tree structure and
the corresponding extracted binary Hidost features are shown
in Figure 4 (a) and Figure 4 (b) respectively. The final
extracted features have 3514 dimensions, and the feature in
each position is a binary value indicating the existence of a
specific path.

Task and the implementation of learning component. The
main task is to detect PDF malware. First, we train one main
sensor based on the whole 3514 binary features extracted from
PDF with Hidost. Then, we manually pick 6 malicious features
shared with most malicious PDFs but not in most benign PDFs
and 8 benign features shared with most benign PDFs but not
in most malicious PDFs. Detailed information on these 14
selected features is provided in Appendix B5. We assume the
adversary can arbitrarily manipulate some of the whole 3514
features. The final sensing vector z is the concatenation of
the output confidence of all the sensor output confidence with
2 + 14 = 16 dimensions.

The implementation of reasoning component. As
shown in Figure 4 (c), first, we construct the predicates
IsMalicious(x) and IsBenign(x) to indicate if the input
PDF x is malicious or benign. Then, for each of the 14
picked features we will construct one predicate to indicate if
the structural path exists, such as /Root/OpenAction(x),
/Root/OpenAction/JS(x), /Root/Metadata(x). And
thus, the number of predicates is 16 here.

For the 6 malicious features, we let the malicious PDF
imply each of them, while the benign PDF will imply the
non-existence of them. For instance, IsMalicious(x) =⇒
/Root/OpenAction/JS(x) and IsBenign(x) =⇒
¬/Root/OpenAction/JS(x). Similarly for the 8 benign
features: IsBenign(x) =⇒ /Root/Metadata/JS(x)
and Malicious(x) =⇒ ¬/Root/Metadata/JS(x).
The total number of the attribute-based formulas here is
14× 2 = 28, and more details in Appendix B5
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TABLE VI
CERTIFIED ACCURACY OF CARE USING DIFFERENT NUMBER OF

KNOWLEDGE SENSORS ON AWA2.

σ Method ACR Certified Accuracy under Radius r
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

0.25

Gaussian 0.544 84.0 77.6 71.4 58.6 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE-10 0.594 89.4 84.6 76.2 65.8 46.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE-30 0.639 93.8 89.2 82.4 71.6 52.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE-50 0.671 94.8 91.6 87.8 77.6 55.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE-70 0.703 96.0 94.2 90.2 83.4 65.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE-All 0.709 96.6 94.2 91.4 84.8 67.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian 0.827 75.6 71.2 64.6 58.2 53.0 46.2 38.8 32.0 21.2 0.0 0.0 0.0 0.0
CARE-10 0.892 79.2 75.0 69.2 62.4 56.2 50.0 43.6 36.0 25.6 0.0 0.0 0.0 0.0
CARE-30 0.956 85.0 80.0 75.0 65.8 60.6 53.6 47.8 37.6 28.2 0.0 0.0 0.0 0.0
CARE-50 1.015 88.0 82.8 78.0 72.2 65.6 58.2 51.0 41.4 29.0 0.0 0.0 0.0 0.0
CARE-70 1.047 89.0 86.4 80.4 73.2 67.4 60.4 50.6 43.0 31.6 0.0 0.0 0.0 0.0
CARE-All 1.114 91.2 88.2 84.2 78.8 71.2 66.4 56.8 46.8 34.6 0.0 0.0 0.0 0.0

1.00

Gaussian 0.994 59.6 54.6 51.6 49.0 44.8 40.8 36.6 32.6 29.6 26.4 22.8 20.0 17.2
CARE-10 1.196 67.6 62.0 59.2 55.2 50.4 46.6 44.6 41.6 37.8 33.8 29.2 26.0 21.8
CARE-30 1.542 76.8 73.8 71.6 67.8 64.8 61.0 57.0 51.6 48.4 45.2 40.8 38.0 32.4
CARE-50 1.796 81.8 80.2 76.8 74.6 72.8 69.0 67.4 62.6 57.6 54.0 49.0 45.4 41.6
CARE-70 2.033 86.0 85.2 82.6 80.8 78.6 76.4 72.4 70.4 67.4 64.2 57.8 53.8 50.2
CARE-All 2.092 87.0 85.2 84.0 82.0 80.4 78.2 75.6 71.2 68.0 64.4 61.0 57.0 52.8

TABLE VII
EMPIRICAL ROBUST ACCURACY OF DIFFERENT METHODS ON

AWA2, WORD50, AND GTSRB UNDER ℓ2 ATTACKS.

Method
AwA2 Word50 GTSRB

σ
ϵ

σ
ϵ

σ
ϵ

1.8 2.4 3.0 0.4 0.8 1.2 0.6 1.2 1.8
Gaussian

0.25

29.8 16.6 8.6

0.12

10.4 1.0 0.0

0.12

67.9 41.8 31.3
SWEEN 33.0 17.4 10.4 27.8 11.2 3.8 78.0 58.2 46.1

SmoothAdv 48.4 36.4 25.4 30.0 8.4 2.2 72.2 51.9 39.9
Consistency 40.4 29.0 17.8 21.0 4.6 0.6 73.3 52.9 52.3

CARE 66.4 42.4 26.2 86.4 82.4 80.4 79.8 58.8 52.5
Gaussian

0.50

40.4 31.4 21.4

0.25

13.6 2.2 0.0

0.25

72.0 47.7 28.2
SWEEN 43.0 33.4 23.0 27.6 14.4 3.2 72.6 49.4 32.1

SmoothAdv 46.0 38.6 31.6 29.8 10.2 2.4 73.9 54.1 35.4
Consistency 47.0 37.0 29.4 24.2 8.2 0.4 73.7 51.0 34.8

CARE 67.2 55.6 44.6 90.0 84.2 80.2 75.1 56.2 37.4
Gaussian

1.00

39.2 32.8 25.8

0.50

12.6 3.6 1.0

0.50

67.3 45.9 26.5
SWEEN 40.0 34.2 28.6 20.0 10.6 4.4 67.7 47.5 29.4

SmoothAdv 39.4 34.0 30.8 20.0 9.8 3.6 65.6 49.4 34.6
Consistency 39.8 35.0 31.6 15.8 7.6 3.2 70.2 50.8 32.5

CARE 76.8 73.4 68.6 80.0 72.6 63.2 72.0 56.6 35.0

In addition, we also construct the hierarchy-based formulas
based on the parsed PDF tree structure, which constructs
12 more formulas. In specific, for each internal node
in the parsed tree, every descendant of it will imply its
existence. For instance, /Root/OpenAction/JS(x) =⇒
/Root/OpenAction(x), /Root/Metadata/Length(x)
=⇒ /Root/Metadata(x). The number of the overall
formulas is 28 + 12 = 40.

Certification results. We report the best certified accuracy
of each method under α ∈ {0.80, 0.85, 0.90} for each radius
where α is defined in Section V-A, and the results are shown
in Table V. As we can see, with knowledge integration, CARE
enhances the certified robustness significantly, especially under
large ℓ0 perturbation. The full certification results for each
method under different α are in Appendix C. The training
and the certification details are deferred to Appendix B1
and Appendix B3, respectively.

F. Ablation Studies

In addition to the improved certified robustness of CARE,
we conduct a set of ablation studies to further explore the
impact of the integrated number of knowledge rules, the
empirical robustness of different methods, and the interesting
explanation properties of CARE.

Number of knowledge rules. Generally, the certified ro-
bustness will improve with the increase of the number of
integrated knowledge rules. Here we quantitatively analyze
this phenomenon on the AwA2 dataset. In particular, we
randomly pick k knowledge sensors and build the formulas
based on their corresponding provided knowledge rules. Then,

we will retrain the GCN with these limited confidence vectors
and knowledge rules. For simplicity, we denote CARE-k as
the model with k knowledge sensors. As shown in Table VI,
the certified robustness of CARE improves with the increase of
the number of knowledge rules (sensors). Interestingly, CARE
still beats the baselines with only 10 knowledge sensors.
However, simply increasing the number of the base model for
the ensemble method will only provide marginal performance
as shown in Appendix E, and this phenomenon has also been
theoretically proven in [11].

Empirical robustness. Except for the certified robustness,
we also evaluate the empirical robustness of CARE on AwA2,
Word50, and GTSRB to demonstrate the effectiveness of our
method further. Concretely, we will first attack the main sensor
to generate adversarial instances and then test them on the
CARE pipeline. Since the main sensor here is a smoothed
model, we follow [54] to sample 100 Monte Carlo samples
to estimate the gradient, and the detailed procedure of the
empirical attack is provided in Appendix F.

We provide the experimental results for both ℓ2 and ℓ∞
attacks on our model and report the empirical robust accuracy
on the main task (i.e., Animal class prediction on AwA; word
prediction on Word50; road sign prediction on GTSRB) for
baselines and our method. Under ℓ2 attack, the number of
update steps in PGD is fixed to 100, and the attack step size
is set to 0.2. The ℓ2 attack results under different perturbation
magnitude ϵ for dataset AwA2, Word50 and GTSRB are shown
in Table VII. The results for ℓ∞ attack and the exploration for
attacking with the attributes are deferred to Appendix F.

Transferability between sensors. The large improvement
of the empirical robustness with knowledge integration can be
attributed to: (a) low attack transferability between different
sensors; (b) high difficulty of attacking all sensors at the same
time such that their predictions still satisfy the knowledge rules
among them. Here we evaluate the attack transferability be-
tween 12 sensors (one main sensor and eleven random picked
attribute sensors, all are trained under σ = 0.50) on AwA2
under ℓ2 perturbation size ϵ = 3.0, and the corresponding
results are shown in Figure 6 (in Appendix F). All the sensors
here are trained under Gaussian noise with σ = 0.5, and
the result in the i-th row and the j-th column represents the
empirical robust accuracy when we conduct a PGD attack on
the i-th sensor while testing the obtained adversarial images
on j-th sensor. As we can see, when we attack one of the
sensors, only a few other sensors will be influenced, and the
reason can be attributed to the fact that different knowledge
sensors will rely on different features. As the adversary usually
can only flip a small set of the sensors, which could be again
corrected by the knowledge rules, the overall pipeline CARE
is still robust against perturbations.

Case studies on AwA2. To better demonstrate the knowl-
edge correction process in CARE, we provide some case
studies against adversarial attacks. As shown in Figure 5, the
ground label for the input is “Dolphin” and it is predicted
correctly by the main sensor originally (Figure 5 (b)); then
we perform a strong targeted attack with 100 update steps
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Dolphin
Spots ✗
Paws ✗
Claws ✗
ToughSkin √
Procyonid ✗

Furry ✗
Flippers √
Water √
Swims √

Id:2

Panda
Spots √
Paws √
Claws √
ToughSkin ✗

Procyonid √
Furry √
Flippers✗
Water ✗
Swims ✗

(a) (b)

(c)

(c) (d)

Fig. 5. A case study on AwA2. (a) Attributes for dolphin and panda classes; (b) prediction confidence of a DNN before attack; (c) prediction confidence of
the DNN after adversarial attack; (d) prediction confidence of CARE given the same adversarial input. (The ground truth is “dolphin”).

to make it be misclassified as “Panda” (Figure 5 (c)). All
the sensors here are trained under σ = 0.25, the perturbation
size ϵ and the attack step size here are set to 6.0 and 0.4,
respectively. Some attributes for these two classes are shown
in Figure 5 (a). As we can see, although some attributes
like “Spots” and “Paws” are attacked, most of the attributes
remain unattacked (e.g. “Toughskin”, “Flippers”, “Water”,
“Swims”), and thus after passing through the CARE pipeline,
the knowledge rules among these attributes would correct the
sensor predictions (Figure 5 (d)). More examples are shown
in Appendix G.

VI. RELATED WORK

Knowledge integration and logical reasoning. There is
abundant domain knowledge in real-world data. For instance,
the labels in ImageNet [55] contains a semantic hierarchy
structure based on the lexical database WordNet [34]. Thus,
how to quantitatively represent and effectively integrate such
knowledge is an important research direction. In particu-
lar, Bayesian logic programs [56], relational Markov net-
works [57] and Markov logic networks [20] have been used
for knowledge reasoning. In addition, with the development of
deep learning, some works have started to introduce structured
logic rules into a neural network to improve performance. For
example, Deng et al. [58] construct hierarchy and exclusion
graphs, which are based on the hierarchical relations between
classes, to improve the classification on ImageNet. Hu et
al. [59] develop a distillation method to encode the knowledge
into the weight of neural networks. However, leveraging such
domain knowledge and relationships to improve the certified
robustness of DNNs has not been well explored yet, and this
work provides the first learning with a reasoning pipeline to
improve the certified robustness of DNNs.

Markov Logic Networks. MLNs, which extend the prob-
abilistic graphical model with first-order logic, has been
largely used for solving the problems like collective classi-
fication [60], link prediction [61] and entity resolution [62].
However, the inference of MLN is #P-complete, and it can
be either solved with variable elimination-based methods like
belief propagation [63], [64] and junction tree algorithm [65]
or approximated by random sampling like Markov chain
Monte Carlo (MCMC) [24] and importance sampling [66].
Nevertheless, MLN is still hard to be scaled for large knowl-
edge graphs in practice, and the combination of deep neural
networks and MLN is still constrained on small dataset [22].
Therefore, our method CARE aims to provide a more robust

and scalable framework for such MLN-based logical reason-
ing via variational inference [27] and equip it with a more
powerful posterior parameterization by graph neural network.

Graph Neural Networks. GNN [67] is well recognized for
its superior performance in handling large-scale knowledge
graphs and the effective encoding ability. Different from
classic knowledge graph embedding such as TransE [68],
DistMult [69], and RotatE [70], which cannot leverage prior
domain knowledge, GNN models such as Graph Convolutional
Network (GCN) [23] can be used to learn semantically-
constrained embeddings [71]. In addition, Qu et al. [28]
propose a Graph Markov Neural Network (GMNN), which
combines GNN with a conditional random field to improve the
performance of semi-supervised object classification and link
classification in relational data. These works have provided
valuable experience in projecting traditional graphical models
to deep neural networks for efficient training and inference.

Certified robustness. The robustness certification aims to
ensure that the prediction of a classifier is consistent within a
certain perturbation radius [39]. Currently, there are mainly
two types of certification methods. The complete certifica-
tion, which guarantees to find the perturbation if it exists,
is usually based on satisfiability modulo theories [72], [73],
or mixed integer-linear programming [74], [75]. However,
the exact certification is NP-complete for feed-forward
networks. The incomplete certification, guarantees to find non-
certifiable instances, while may miss some certifiable ones
based on different relaxed optimization. With such relaxation,
incomplete certification is usually more practical and efficient,
which is mainly based on linear programming relaxation [18],
[76] or semi-definite programming [77], [78]. However, these
incomplete certification approaches are only applicable for
specific architecture and can not scale to a large dataset like
ImageNet. Later, Cohen et al. [13] provide a probabilistic
certification method based on randomized smoothing, which
can be scaled to ImageNet and is further improved with
adversarial training [35] and consistency regularization [36].

VII. CONCLUSION

In this work, we propose the first scalable certifiably robust
machine learning pipeline CARE by integrating knowledge to
enable reasoning ability for reliable prediction. We show that
when combining learning with reasoning, CARE can effec-
tively scale to large datasets and achieve both high certified
robustness and empirical robustness. We believe our observa-
tions and findings will inspire interesting future directions on
leveraging domain knowledge to improve ML robustness.
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APPENDIX

A. Proof Details

1) Proof of Lemma IV.1:

Proof.

∇θEQθ(T )

∑
f∈F

wff(t1, ..., tL)− logZ(w)− logQθ(T )


= ∇θ

∫ Qθ(T )

∑
f∈F

wff(t1, ..., tL)

−Qθ(T ) logQθ(T )

 dt

=

∫
Qθ(T )∇θ logQθ(T )

∑
f∈F

wff(t1, ..., tL)


−Qθ(T ) logQθ(T )∇θ logQθ(T )−Qθ(T )∇θ logQθ(T ) dt

= EQθ(T )

∑
f∈F

wff(t1, ..., tL)− logQθ(T )− 1

∇θ logQθ(T )

Further, with the truth EQθ(T )∇θ logQθ(T ) = 0, we
can see the term

(∑
f∈F wff(t1, ..., tL)− logQθ(T )− 1

)
shown above can be shifted by any constant without changing
the whole expectation, which just means we can ignore the
−1 inside this term.

2) Proof of Theorem 1:

Proof. We only need to prove that for each type of the formula
defined in Equation (9), the truth value of it can be written in
the form of Neg(atT + b) where a is a row vector with shape
1× n and b is a constant.

Then, for Type 1 formula, the truth value of it can
be directly calculated by Neg (ti − (tj + tk + ...+ tl));
and for Type 2 formula, the truth value can be
calculated by Neg (ti − (tj + tk + ...+ tl)/m) where
m is the number of the appeared tj , tk, ..., tl here;
for Type 3 formula, the truth value can be calculated
by Neg (−ti + (tj + tk + ...+ tl)/m); for Type
4 formula, the truth value can be calculated by
Neg (−ti + (tj + tk + ...+ tl)−m+ 1).

the proof still holds for the cases with negation on some
predicates like ¬ti, which is equivalent to replacing the ti
above with 1− ti.

B. Experiment Details

1) Training details: For AwA2, the sensor is initialized
with the weight pretrained on ImageNet and finetuned with
a learning rate 0.001 for 30 epochs; the batch size is also set
to 256. For Word50, the sensor is trained with 90 epochs, and
the initial learning rate is set to 0.01 and will be decayed by
0.1 at 30-th and 60-th epoch, and the batch size is set to 128.
For GTSRB, the model is trained with 150 epochs, and the
initial learning rate is set to 0.01 and will be decayed by 0.1
at 50-th and 100-th epoch, the batch size is set to 200. For the
PDF malware dataset, the sensor is trained with 90 epochs,
and the initial learning rate is set to 0.05 and will be decayed
by 0.1 at 30-th and 60-th epoch, and the batch size is set to
128. for all image datasets, we balance the number of training

Algorithm 2 SAMPLEUNDERNOISE(f, x, n, σ).
Input: Base classifier f , clean input image x, the number of

smoothing noise n, smoothing noise magnitude σ.
Output: A vector of class counts.

1: counts← [0, 0, ..., 0]
2: for i = 1 to n do
3: xrs ← x+N

(
0, σ2I

)
4: y ← f(xrs)
5: counts[y]+ = 1
6: end for
7: return counts

Algorithm 3 Certification Procedure for Randomized Smooth-
ing.
Input: The magnitude of the smoothing noise σ, the magni-

tude of the local smoothing noise σ′, the base classifier
f , the number of the smoothing noise for selection n0,
the number of the smoothing noise for estimation n, the
certification confidence (1− α).

Output: Certified prediction and its robust radius.
1: counts0← SAMPLEUNDERNOISE(f, x, n0, σ)
2: ĉA ← top index in counts0
3: counts← SAMPLEUNDERNOISE(f, x, n, σ)
4: pA ← LOWERCONFBOUND(counts[ĉA], n, 1− α)
5: if pA > 1

2 then
6: return ĉA and radius σΦ−1(pA)
7: else
8: return ABSTAIN
9: end if

images from each class during the training. For MultiTask, we
add more classification heads in the main sensor and train it
together with other knowledge tasks under Gaussian noise; the
loss is defined as the mean of the classification loss for each
task, the training epoch is set to 150, the initial learning rate
is still set the same for each dataset and will be decayed by
0.1 at 50-th and 100-th epoch.

The number of the base models in SWEEN is fixed to 6 for
all experiments. And for the training with SmoothAdv, the ϵ
is set to 255 and the m is set to 2 under all sigmas on the
datasets AwA2 and Word50; while on GTSRB, the ϵ is set to
127 under σ = 0.12, 0.25 and is set to 255 under σ = 0.50.
For the training with Consistency, the λ is set to 10 and the
m is set to 2 on AwA2 under all sigmas; while on Word50,
the m is set to 2 under all sigmas, and the λ is set to 10 for
σ = 0.12, 0.25 and is set to 5 for σ = 0.50; for GTSRB, the
m and the λ are set to 2 and 5, respectively under all sigmas.

2) Certification Procedure: The whole certification process
is provided in Algorithm 3 following [13], the auxiliary
function SAMPLEUNDERNOISE is shown in Algorithm 2 and
the LOWERCONFBOUND(k, n, 1 − α) is a function which
returns a one-sided (1− α) lower confidence bound p for the
Binomial parameter p given k ∼ Binomial(n, p).

3) Certification details: Word50 certification details: The
training, validation, and test sets contain 10, 000, 2, 000 and
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TABLE VIII
CERTIFIED ACCURACY FOR CARE UNDER DIFFERENT ℓ2 PERTURBATION RADII ON THE AWA2 DATASET.

σ Method ACR
Certified Accuracy under Radius r

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

0.25
CARE (Gaussian) 0.709 96.6 94.2 91.4 84.8 67.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE (SmoothAdv) 0.707 95.4 92.4 89.8 85.4 75.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE (Consistency) 0.693 95.0 92.0 87.2 83.0 70.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50
CARE (Gaussian) 1.114 91.2 88.2 84.2 78.8 71.2 66.4 56.8 46.8 34.6 0.0 0.0 0.0 0.0

CARE (SmoothAdv) 1.141 88.2 85.2 80.8 78.8 73.4 67.6 62.2 54.8 43.2 0.0 0.0 0.0 0.0
CARE (Consistency) 1.138 87.8 84.6 80.0 76.8 73.4 68.4 63.2 56.2 44.0 0.0 0.0 0.0 0.0

1.00
CARE (Gaussian) 2.092 87.0 85.2 84.0 82.0 80.4 78.2 75.6 71.2 68.0 64.4 61.0 57.0 52.8

CARE (SmoothAdv) 2.087 85.0 83.0 81.6 79.6 76.6 75.0 73.2 71.4 68.0 64.8 59.2 56.0 53.8
CARE (Consistency) 2.127 85.4 84.0 83.0 80.2 78.4 76.2 73.4 70.6 68.6 65.8 61.8 59.4 56.0

TABLE IX
CERTIFIED WORD ACCURACY FOR CARE UNDER DIFFERENT ℓ2 PERTURBATION RADII ON WORD50.

σ Method ACR
Certified Accuracy under Radius r

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

0.12
CARE (Gaussian) 0.360 94.8 89.6 82.6 75.8 62.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE (SmoothAdv) 0.371 93.2 89.4 85.0 79.4 67.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE (Consistency) 0.391 97.0 96.0 91.4 81.4 70.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25
CARE (Gaussian) 0.624 96.0 92.4 88.0 82.2 75.6 68.8 58.0 48.0 37.8 25.6 0.0 0.0 0.0

CARE (SmoothAdv) 0.577 91.6 86.4 81.0 74.6 69.2 63.0 53.6 45.4 35.6 24.0 0.0 0.0 0.0
CARE (Consistency) 0.674 97.2 94.8 92.6 89.4 81.8 73.6 64.4 55.2 43.6 30.8 0.0 0.0 0.0

0.50
CARE (Gaussian) 0.671 87.0 83.0 77.2 73.4 68.2 60.6 54.2 48.2 40.6 34.0 28.0 20.6 15.0

CARE (SmoothAdv) 0.690 85.2 82.0 77.4 71.6 66.6 60.8 54.2 48.0 42.6 36.6 29.4 24.0 18.0
CARE (Consistency) 0.697 87.6 84.4 78.4 73.6 69.0 63.0 56.6 50.0 44.0 36.4 30.0 21.8 16.2

TABLE X
CERTIFIED CHARACTER ACCURACY FOR CARE UNDER DIFFERENT ℓ2 PERTURBATION RADII ON WORD50.

σ Method ACR
Certified Accuracy under Radius r

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

0.12
CARE (Gaussian) 0.306 86.6 80.6 71.8 60.4 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE (SmoothAdv) 0.341 90.2 85.2 78.0 70.8 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE (Consistency) 0.318 86.6 80.8 72.8 65.6 53.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25
CARE (Gaussian) 0.467 84.0 77.8 70.8 63.4 56.0 49.0 41.4 30.2 24.6 12.8 0.0 0.0 0.0

CARE (SmoothAdv) 0.539 86.4 82.8 77.2 70.6 63.2 55.6 50.2 41.8 32.4 21.2 0.0 0.0 0.0
CARE (Consistency) 0.522 87.6 83.2 77.4 73.0 62.8 54.4 46.2 37.0 29.0 17.8 0.0 0.0 0.0

0.50
CARE (Gaussian) 0.536 80.2 76.8 70.4 64.6 59.2 51.6 44.8 37.0 29.4 21.6 15.6 10.4 6.0

CARE (SmoothAdv) 0.501 76.8 71.6 65.6 60.6 53.6 45.8 41.0 35.6 27.6 20.4 15.4 10.8 6.6
CARE (Consistency) 0.539 80.6 75.6 70.2 65.4 59.2 53.0 44.6 36.2 29.6 21.6 17.2 11.6 6.4

2, 000 different word images, respectively. We randomly select
10 images for each word from the test dataset for certification,
and the total number of certified images is 500 following the
standard evaluation setting. All the results are certified with
N = 100, 000 samples of smoothing noise, and the confidence
of the certification is set to 99.9%. We test our method on three
levels of smoothing noise σ = 0.12, 0.25, 0.50, and the η is
set to 0.6, 0.9, 1.0, respectively.

GTSRB certification details: The whole dataset contains
14880 training samples, 972 validation samples, and 3888
testing samples. We randomly pick one out of every eight from

the test dataset for certification, and following the standard
setting [13], we certify these 486 images with confidence
99.9%, and all the results are certified with N = 100, 000
samples of smoothing noise. We test our method on three
levels of smoothing noise with σ = 0.12, 0.25, 0.50, and the
η is set to 0.10, 0.15, 0.25, respectively.

PDF Malware certification details: We split the whole
Contagio dataset into 70% train set and 30% test set fol-
lowing [48]. In specific, the number of malicious PDFs for
training and testing is 6, 896 and 3, 448, respectively, while
the number of benign PDFs for training and testing is 6, 296
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TABLE XI
CERTIFIED ACCURACY UNDER DIFFERENT ℓ2 PERTURBATION RADII AND SIGMA ON GTSRB.

σ Method ACR
Certified Accuracy under Radius r

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

0.12

Gaussian 0.410 97.9 96.5 92.6 86.8 79.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWEEN 0.417 99.2 97.1 94.7 87.9 82.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv 0.410 97.1 95.9 91.8 86.6 81.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 0.422 99.4 98.8 95.3 90.7 83.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MultiTask 0.402 96.5 94.4 90.3 85.8 78.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE (Gaussian) 0.414 99.0 98.1 92.8 87.2 82.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE (SmoothAdv) 0.421 99.0 98.6 94.4 90.5 81.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CARE (Consistency) 0.425 99.6 99.2 96.7 91.2 84.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25

Gaussian 0.742 96.5 94.7 90.3 85.6 82.5 78.6 74.3 68.7 63.2 55.3 0.0 0.0 0.0
SWEEN 0.750 97.7 94.2 90.7 86.6 82.9 78.8 74.1 69.1 65.8 58.4 0.0 0.0 0.0

SmoothAdv 0.754 93.8 91.6 90.1 86.6 82.9 78.6 75.3 71.0 66.9 63.0 0.0 0.0 0.0
Consistency 0.755 95.5 93.8 91.8 87.7 83.3 78.0 74.3 71.0 65.6 59.9 0.0 0.0 0.0
MultiTask 0.732 95.7 93.4 90.3 85.8 81.3 76.3 71.8 66.9 62.8 54.3 0.0 0.0 0.0

CARE (Gaussian) 0.754 97.9 95.1 91.2 86.2 82.9 79.0 75.1 70.4 65.2 58.6 0.0 0.0 0.0
CARE (SmoothAdv) 0.762 95.5 93.8 91.4 87.0 83.7 79.4 75.1 72.0 67.9 63.0 0.0 0.0 0.0
CARE (Consistency) 0.761 96.9 94.7 92.2 87.7 82.9 78.4 75.3 71.8 66.9 60.5 0.0 0.0 0.0

0.50

Gaussian 1.058 88.1 86.2 82.9 78.6 75.3 71.6 70.0 64.6 60.5 57.0 53.3 50.4 47.7
SWEEN 1.092 87.9 86.0 83.3 79.6 75.5 72.8 69.5 66.3 63.2 58.6 55.8 52.5 49.6

SmoothAdv 1.079 79.8 78.8 76.1 73.7 71.2 68.7 66.3 63.2 61.1 59.3 56.8 53.9 51.6
Consistency 1.098 82.7 81.1 79.0 76.5 74.9 73.3 70.8 67.5 64.6 60.5 57.4 54.5 51.2
MultiTask 1.082 89.5 87.2 82.5 78.4 75.5 72.8 69.8 67.3 62.8 57.8 55.3 51.4 48.6

CARE (Gaussian) 1.092 89.5 86.8 82.9 80.2 76.3 73.3 69.3 66.3 62.6 58.6 55.3 52.7 49.4
CARE (SmoothAdv) 1.111 87.9 84.6 81.7 78.2 74.7 72.0 70.0 65.8 63.0 60.9 57.2 54.3 51.6
CARE (Consistency) 1.117 88.5 86.0 81.9 78.6 76.5 73.5 70.6 67.7 64.0 60.7 57.8 55.1 51.9

and 2, 698, respectively. We select 10% images, namely, 615
PDFs, from the test dataset for certification. Since the input
extracted features from the PDF are binary, the certification is
conducted based on ℓ0-norm. All the results are certified with
N = 100, 000 samples of smoothing noise, and the confidence
of the certification is set to 99.9%. We test our method on
three levels of retaining probability α = 0.80, 0.85, 0.90, and
the η is set to 0.09, 0.10, 0.05, respectively. All the sensors for
both our method and the baselines are trained with Bernoulli
augmentation following [38], where each feature value will be
replaced with a random value {0,1} with probability 1− α.

4) Detailed knowledge used in GTSRB: We demonstrate
the 20 manually constructed attributes here. Some of them are
adapted from [21]. The 12 permissive attributes are as fol-
lows: “Octagon”, “Square”, “Blank Triangle”, “Inverse Tri-
angle”, “Red Circle”, “Gray Circle”, “Blank Circle”, “Digit
20”, “Digit 50”, “Digit 120”, “Left Arrow”, “Right Arrow”.
The 8 preventative attributes are as follows: “Red Hollow
Circle”, “Blue Filled Circle”, “Circle”, “Blank Content”,
“Digit Content”, “Filled Content”, “Symmetric”, “Polygon”.

The inclusion relations are shown as follows: 1. each
of the attributes “Octagon”, “Square”, “Blank Triangle”,
“Inverse Triangle” would imply “Polygon”; 2. each of the
attributes “Red Circle”, “Gray Circle”, “Blank Circle”, “Red
Hollow Circle”, “‘Blue Filled Circle” would imply “Circle”;
3. each of the attributes “Blank Triangle”, “Blank Circle”

would imply “Blank Content”; 4. each of the attributes “Digit
20”, “Digit 50”, “Digit 120” would imply “Digit Content”.
For better message passing, the edge for the inclusion relation
on the graph is directed from the attribute to its corresponding
implied attribute.

5) The knowledge and the reasoning details in
PDF malware: The chosen 6 malicious traces
are “/Root/OpenAction”, “/Root/OpenAction/S”,
“/Root/OpenAction/JS”, “/Root/OpenAction/JS/Filter”,
“/Root/OpenAction/JS/Length”, “/Root/OpenAction/Type”.
The chosen 8 benign traces are
“/Root/Metadata”, “/Root/Metadata/Length”,
“/Root/Metadata/Subtype”, “/Root/Metadata/Type”,
“/Root/Pages/Contents”, “/Root/Pages/Contents/Filter”,
“/Root/Pages/Contents/Length”, “/Root/Pages/CropBox”.

For the reasoning part, notice we construct the formula like
ti =⇒ ¬tj . Then, instead of directly connecting the edge
between the node representing ti and the node representing
tj , we construct an auxiliary node representing the predicate
¬tj and choose to connect it with the node representing ti for
better message passing. And the exclusion formula is naturally
built for tj and ¬tj .

C. Detailed Experiment Results for CARE

We demonstrate the detailed experiment results for our
method CARE with different main sensors. For simplicity,
we use CARE (Gaussian) to indicate the main sensor is
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Fig. 6. The heatmap for the attack transferability between 13 sensors. The
number in the cell (i, j) represents the empirical robust accuracy (%) of jth
sensor when tested with the adversarial attacks against the ith sensor.

trained with vanilla Gaussian augmentation [13]; use CARE
(SmoothAdv) to indicate the main sensor is trained with adver-
sarial training [35]; and use CARE (Consistency) to indicate
the main sensor is trained with consistency regularization [36].
Notice that all the knowledge sensors are trained with vanilla
Gaussian augmentation [13]. The detailed results on AwA are
shown in Table VIII; the results for word classification and
character classification are shown in Table IX and Table X,
respectively.

The full results for GTSRB are shown in Table XI; while for
the PDF malware dataset, we also report the Median Certified
Radius (MCR) as a reference, and the full results are shown
in Table XII.

D. Exploration for the importance of the reasoning module

In this section, we explore the importance of the reasoning
module by simply replacing the GCN in CARE with a linear
classifier, which learns to discriminate along both the main
sensor and knowledge sensors directly without a reasoning
component. For simplicity, we denote this method as Sens-
ingLinear and similarly, we also train it with different main
sensors, including Gaussian, SmoothAdv, and Consistency; the
final certified results are shown in Table XIII. As we can see,
although both main and knowledge sensors are aggregated
in this linear classifier, the performance will still drop sig-
nificantly without the reasoning part, which demonstrates the
necessity of the construction of logical reasoning based on the
output of both the main sensor and the knowledge sensors.

E. Increasing the number of the base models for SWEEN

We provide the experiment results for increasing the number
of base models for SWEEN on AwA2. The magnitude of
the smoothing noise is set to 0.50 here, and we certify the

ensemble method SWEEN with the number of base model
m ∈ {3, 6, 10, 15, 20, 30}, the corresponding result is shown
in Table XIV. As we can see, the performance improvement
from the increase of the base model is marginal, and the
certified accuracy only improves a bit (1 ∼ 2%) when we
increase the base models from 3 to 30. On the contrary, with
the domain knowledge and logic, such a phenomenon is alle-
viated as shown in Table VI with a 10 ∼ 30% improvement.

F. Additional Experiment Results and Details for Empirical
Attack

1) Experiment details: We implement the empirical untar-
geted attack as follows: (1.) Take the mean of the output con-
fidence from the soft base main sensor for the corrupted input
image with 100 Gaussian noise; (2.) Use projected gradient
descent (PGD) [79] to minimize the mean confidence for the
truth label and get the corresponding adversarial image; (3.)
Next, this adversarial image will be sent to all the knowledge
sensors to get the new adversarial sensing vector z′; (4.) Do
the same hypothesis-test-based prediction procedure in [13]
with our method CARE to check if the attack is successful
with z′. The test images here are the same as those in the
certification part. For ℓ∞ attack, the number of update steps
is also fixed to 40, the attack step size is set to 1/255, and the
full results are shown in Table XV.

2) Attack transferability: Based on these test images, we
also explore the attack transferability between 12 sensors (one
main sensor and eleven random picked attribute sensors, all
are trained under σ = 0.50) on AwA2 under ℓ2 perturbation
size ϵ = 3.0. Besides, the attack step size is set to 0.2, the
number of update steps is set to 100, and the final results are
shown in Figure 6.

3) Attacking with the attributes: We also conduct the
experiments which construct the adversarial image by at-
tacking the main sensor and all the attribute sensors at the
same time on Word50. In other words, the PGD attack is
implemented to increase the mean of the loss from both the
word and letter classifications. In this case, we also report
the empirical robust accuracy of the main sensor (Gaus-
sian/SmoothAdv/Consistency) used in CARE on these new
adversarial images, and the results are shown in Table XVI.
As we can see, even though the attack seems stronger here,
with the incorporation of the domain knowledge, our method
is still much more robust than the baselines.

G. Case Study on AwA2

In this section, we provide more case studies on AwA2,
which are shown in Figures 7 to 11. In specific, we adopt
untargeted attacks here; the ℓ2 perturbation size is set to 3.0,
the attack step size is set to 0.2, the number of update steps
is set to 100, and all the sensors used here are trained under
σ = 0.50.
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TABLE XII
CERTIFIED ACCURACY UNDER DIFFERENT RETAINING PROBABILITY α AND ℓ0 PERTURBATION RADII ON THE PDF MALWARE DATASET.

α Method ACR/MCR
Certified Accuracy under Radius r

0 1 2 3 4 5 6 7 8 9

0.90

Lee et al. [38] 3.008/3 99.8 99.0 96.1 77.9 27.8 0.0 0.0 0.0 0.0 0.0
SWEEN 3.159/3 99.8 99.0 97.7 81.1 38.0 0.0 0.0 0.0 0.0 0.0

MultiTask 3.341/4 99.7 99.0 97.2 81.5 56.4 0.0 0.0 0.0 0.0 0.0
CARE 3.506/4 99.5 99.3 96.9 85.5 68.8 0.0 0.0 0.0 0.0 0.0

0.85

Lee et al. [38] 3.842/4 99.7 98.5 96.1 80.0 53.5 43.7 12.4 0.0 0.0 0.0
SWEEN 4.367/5 99.7 98.9 96.4 82.2 68.6 65.4 22.3 0.0 0.0 0.0

MultiTask 4.626/6 99.7 99.0 96.7 82.8 66.3 65.0 52.7 0.0 0.0 0.0
CARE 4.954/6 99.5 98.9 91.1 85.4 79.3 77.4 63.4 0.0 0.0 0.0

0.80

Lee et al. [38] 4.945/5 99.5 98.7 94.8 80.0 80.0 68.0 46.5 15.1 5.7 5.7
SWEEN 5.259/6 99.5 98.9 95.8 80.7 80.3 72.5 57.2 22.6 8.9 8.9

MultiTask 5.624/7 99.3 98.7 96.1 81.8 80.5 72.7 59.0 53.8 9.9 9.9
CARE 5.789/7 99.2 98.4 96.6 84.2 84.2 74.5 59.5 54.5 13.5 13.5

Id:356

Rabbit
Big ✗
Hooves ✗
Domestic √
Non-bovid ✗

Weak √
Horns ✗
Hops √
Furry √

Deer
Big √
Hooves √
Domestic ✗
Non-bovid √
Weak ✗

Horns √
Hops ✗
Furry √

(a) (b) (c) (d)

Fig. 7. The illustration of the change of confidence. (a) the attributes for the rabbit and mole; (b) the original confidence before the attack; (c) the confidence
for the adversarial image, which is obtained by attacking the main sensor; (d) the recovered confidence from our method CARE for the adversarial image.
The ground truth is “rabbit”.

Id:213

Hippo
Group ✗
Hooves ✗
Quadrupedal √
Buckteeth ✗

Flippers ✗
Muscle √
Oldworld √
Coastal ✗

Walrus
Group √
Hooves ✗
Quadrupedal ✗
Buckteeth √
Flippers √
Muscle ✗

Oldworld ✗

Coastal √

(a) (b) (c) (d)

Fig. 8. The illustration of the change of confidence. (a) the attributes for the hippopotamus and walrus; (b) the original confidence before the attack; (c) the
confidence for the adversarial image, which is obtained by attacking the main sensor; (d) the recovered confidence from our method CARE for the adversarial
image. The ground truth is “hippopotamus”.

Bobcat
Chewteeth ✗
Nocturnal ✗
Scavenger √
Furry √
Spots √
Group ✗

Hibernate √
Tree √

Wolf
Chewteeth √
Nocturnal √
Scavenger √
Furry √
Spots ✗
Group √
Hibernate ✗

Tree ✗

(a) (b) (c) (d)

Fig. 9. The illustration of the change of confidence. (a) the attributes for the bobcat and wolf; (b) the original confidence before the attack; (c) the confidence
for the adversarial image which is obtained by attacking the main sensor; (d) the recovered confidence from our method CARE for the adversarial image.
The ground truth is “bobcat”.
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TABLE XIII
CERTIFIED ACCURACY FOR THE METHOD SensingLinear ON THE AWA2 DATASET UNDER DIFFERENT ℓ2 PERTURBATION RADII, AND THE

USED MAIN SENSOR IS INDICATED IN THE BRACKET.

σ Method ACR
Certified Accuracy under Radius r

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

0.25

SensingLinear(Gaussian) 0.593 79.8 78.2 76.2 71.0 58.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SensingLinear(SmoothAdv) 0.596 80.2 78.4 76.6 71.0 60.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SensingLinear(Consistency) 0.596 79.4 78.2 76.4 72.2 60.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CARE 0.709 96.6 94.2 91.4 85.4 75.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

SensingLinear(Gaussian) 0.842 69.6 67.6 63.2 58.2 53.4 49.4 42.4 36.8 27.2 0.0 0.0 0.0 0.0
SensingLinear(SmoothAdv) 0.865 70.0 67.6 64.2 59.6 55.2 50.4 45.2 40.0 31.6 0.0 0.0 0.0 0.0
SensingLinear(Consistency) 0.877 69.8 68.0 65.4 60.0 56.0 51.0 45.6 40.4 31.6 0.0 0.0 0.0 0.0

CARE 1.141 91.2 88.2 84.2 78.8 73.4 68.4 63.2 56.2 44.0 0.0 0.0 0.0 0.0

1.00

SensingLinear(Gaussian) 1.192 51.6 49.8 48.4 46.8 46.0 45.0 42.0 40.0 38.2 36.0 34.0 31.2 29.2
SensingLinear(SmoothAdv) 1.265 52.8 51.6 50.2 48.4 47.4 46.4 45.0 42.2 40.0 37.8 36.0 34.2 32.0
SensingLinear(Consistency) 1.270 52.2 51.4 50.2 48.8 47.4 46.4 44.0 43.2 40.6 38.6 36.4 34.2 32.4

CARE 2.127 87.0 85.2 84.0 82.0 80.4 78.2 75.6 71.4 68.6 65.8 61.8 59.4 56.0

TABLE XIV
CERTIFIED ACCURACY FOR SWEEN WITH DIFFERENT NUMBER OF BASE MODELS UNDER SMOOTHING NOISE LEVEL σ = 0.50.

# base models ACR Certified Accuracy under ℓ2 Radius r
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

m = 3 0.846 76.8 72.8 66.6 60.2 53.8 46.4 39.0 34.4 22.4
m = 6 0.854 76.4 73.8 67.8 60.4 53.6 47.4 39.6 34.6 22.4
m = 10 0.856 76.4 73.4 68.2 59.8 53.6 47.8 40.6 34.6 23.6
m = 15 0.859 76.4 73.0 68.2 59.4 53.4 47.8 40.4 35.0 23.6
m = 20 0.860 76.6 72.8 68.2 59.4 53.6 48.0 40.6 35.0 23.4
m = 30 0.863 76.8 73.2 67.4 60.8 54.4 48.2 41.2 35.2 23.4

Rhinoceros
Longleg ✗
Pachyderm ✗
Toughskin √
Gray √
Hooves √
Horns √
Smart ✗
Solitary √

Elephant
Longleg √
Pachyderm √
Toughskin √
Gray √
Hooves ✗
Horns ✗
Smart √
Solitary ✗

(a) (b) (c) (d)

Fig. 10. The illustration of the change of confidence. (a) the attributes for the rhinoceros and elephant; (b) the original confidence before the attack; (c) the
confidence for the adversarial image, which is obtained by attacking the main sensor; (d) the recovered confidence from our method CARE for the adversarial
image. The ground truth is “rhinoceros”.

Raccoon
Timid ✗
Longleg ✗
Furry √
Paws √
Nocturnal √
Hibernate √
Forest √
Nestspot √

Persian cat
Timid √
Longleg ✗
Furry √
Paws √
Nocturnal ✗
Hibernate ✗

Forest ✗
Nestspot ✗

(a) (b) (c) (d)

Fig. 11. The illustration of the change of confidence. (a) the attributes for the raccoon and Persian cat; (b) the original confidence before the attack; (c) the
confidence for the adversarial image, which is obtained by attacking the main sensor; (d) the recovered confidence from our method CARE for the adversarial
image. The ground truth is “raccoon”.
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TABLE XV
THE EMPIRICAL ROBUST ACCURACY OF DIFFERENT METHODS FOR AWA2, WORD50 AND GTSRB UNDER ℓ∞ METRIC.

Method
AwA2 Word50 GTSRB

σ
ϵ

σ
ϵ

σ
ϵ

2/255 4/255 8/255 2/255 4/255 8/255 2/255 4/255 8/255
Gaussian

0.25

42.4 8.6 0.0

0.12

11.4 1.4 0.0

0.12

89.9 73.7 47.3
SWEEN 45.8 10.6 0.4 30.4 13.4 2.6 94.2 84.2 65.6

SmoothAdv 53.6 23.0 1.6 32.4 10.4 1.2 87.2 74.7 56.6
Consistency 45.6 13.6 0.4 22.6 5.6 0.0 92.4 79.0 57.2

CARE 80.6 32.6 3.4 87.0 83.0 81.2 94.7 84.0 68.7

Gaussian

0.50

47.0 18.2 1.6

0.25

14.4 2.6 0.0

0.25

86.2 75.1 51.9
SWEEN 47.6 21.6 2.4 30.0 18.2 2.8 87.4 76.7 58.4

SmoothAdv 48.6 25.8 3.4 30.8 13.6 1.0 85.6 74.5 57.4
Consistency 48.4 25.0 3.0 25.6 10.8 0.4 86.4 75.7 56.6

CARE 72.6 44.8 8.6 90.0 85.4 79.4 88.7 78.2 61.3

Gaussian

1.00

40.4 22.0 4.4

0.50

12.8 4.2 0.2

0.50

78.0 67.9 48.1
SWEEN 41.6 25.0 6.8 21.4 12.8 3.6 78.4 69.1 51.4

SmoothAdv 39.8 25.6 6.6 22.6 10.8 2.2 72.6 65.2 49.8
Consistency 40.0 27.2 9.2 18.0 9.4 1.4 75.5 70.8 52.1

CARE 78.8 66.8 37.2 81.0 74.2 63.0 78.4 72.4 57.4

TABLE XVI
THE EMPIRICAL ROBUST ACCURACY OF DIFFERENT METHODS FOR WORD50 WHEN ATTACKING ON BOTH WORD CLASSIFICATION AND

LETTER CLASSIFICATION UNDER DIFFERENT METRICS INCLUDING ℓ2 AND ℓ∞ .

Method σ
ϵ(ℓ2) ϵ(ℓ∞)

0.4 0.8 1.2 2/255 4/255 8/255
Gaussian

0.12

22.8 16.0 12.0 18.0 7.0 3.2
SmoothAdv 46.8 40.2 34.0 42.2 29.8 15.8
Consistency 34.8 26.6 22.6 29.2 17.8 9.2

CARE (Gaussian) 81.0 65.6 47.4 83.4 69.8 40.6
CARE (SmoothAdv) 81.8 65.2 49.6 83.0 65.8 30.6
CARE (Consistency) 85.4 69.2 52.6 90.2 78.6 44.2

Gaussian

0.25

21.4 11.4 7.0 18.0 7.2 2.0
SmoothAdv 39.0 31.2 25.0 37.6 27.2 12.8
Consistency 33.2 26.0 19.8 31.6 20.8 8.6

CARE (Gaussian) 84.0 69.6 54.4 86.2 76.2 55.4
CARE (SmoothAdv) 77.0 62.6 48.2 79.2 66.8 34.8
CARE (Consistency) 88.6 74.2 58.6 92.0 81.4 53.8

Gaussian

0.50

17.0 8.2 4.2 16.2 7.2 1.8
SmoothAdv 25.6 16.6 11.4 27.4 18.4 8.0
Consistency 14.0 7.8 4.8 23.4 14.0 6.8

CARE (Gaussian) 73.6 61.4 45.2 76.8 66.6 42.4
CARE (SmoothAdv) 69.6 56.8 43.0 73.6 62.4 39.8
CARE (Consistency) 74.0 60.4 46.2 77.6 65.8 45.0
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