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Abstract

Data augmentation has become a crucial component to train state-of-the-art visual rep-
resentation models. However, handcrafting combinations of transformations that lead to
improved performances is a laborious task, which can result in visually unrealistic samples.
To overcome these limitations, recent works have explored the use of generative models
as learnable data augmentation tools, showing promising results in narrow application do-
mains, e.g., few-shot learning and low-data medical imaging. In this paper, we introduce
a data augmentation module, called DAIC-GAN, which leverages instance-conditioned GAN
generations and can be used off-the-shelf in conjunction with most state-of-the-art train-
ing recipes. We showcase the benefits of DAIC-GAN by plugging it out-of-the-box into the
supervised training of ResNets and DeiT models on the ImageNet dataset, and achieving
accuracy boosts up to between 1%p and 2%p with the highest capacity models. Moreover,
the learnt representations are shown to be more robust than the baselines when transferred
to a handful of out-of-distribution datasets, and exhibit increased invariance to variations of
instance and viewpoints. We additionally couple DAIC-GAN with a self-supervised training
recipe and show that we can also achieve an improvement of 1%p in accuracy in some set-
tings. We open-source the code at anonymous.url to encourage reproducibility and further
future explorations. With this work, we strengthen the evidence on the potential of learn-
able data augmentations to improve visual representation learning, paving the road towards
non-handcrafted augmentations in model training.

1 Introduction

Recently, deep learning models have been shown to achieve astonishing results across a plethora of computer
vision tasks when trained on very large datasets of hundreds of millions datapoints (Alayrac et al., 2022; Gafni
et al., 2022; Goyal et al., 2022; Radford et al., 2021; Ramesh et al., 2022; Saharia et al., 2022; Zhang et al.,
2022). Oftentimes, however, large datasets are not available, limiting the performance of deep learning mod-
els. To overcome this limitation, researchers explored ways of artificially increasing the size of the training
data by transforming the input images via handcrafted data augmentations. These augmentation techniques
consist of heuristics involving different types of image distortion (Shorten & Khoshgoftaar, 2019), including
random erasing (DeVries & Taylor, 2017b; Zhong et al., 2020), and image mixing (Yun et al., 2019; Zhang
et al., 2017). It is important to note that all current state-of-the-art representation learning models seem to
benefit from such complex data augmentation recipes as they help regularizing models – e.g., vision trans-
formers trained with supervision (Dosovitskiy et al., 2021; Touvron et al., 2021; Steiner et al., 2021; Touvron
et al., 2022) and models trained with self-supervision (Chen et al., 2020a; He et al., 2020; Caron et al., 2020;
2021; Grill et al., 2020). However, coming up with data augmentation recipes is laborious and the augmented
images, despite being helpful, often look unrealistic, see first five images in Figure 1. Such a lack of realism is
a sub-optimal effect of these heuristic data augmentation strategies, which turns out to be even detrimental
when larger training datasets are available (Steiner et al., 2021) and no strong regularization is needed.

To this end, researchers have tried to move away from training exclusively on real dataset samples and
their corresponding hand-crafted augmentations, and have instead explored increasing the dataset sizes with
generative model samples (Frid-Adar et al., 2018; Bowles et al., 2018; Ravuri & Vinyals, 2019; Zhang et al.,

1

anonymous.url


Under review as submission to TMLR

Original sample RandomCrop RandAugment MixUp CutMix IC-GAN

Figure 1: Visual comparison of various hand-crafted data augmentations and one IC-GAN generation, using
a sample from ImageNet as input.

2021; Li et al., 2021). A generative model can potentially provide infinitely many synthetic image samples;
however, the quality and diversity of the generated samples is usually a limiting factor, resulting in moderate
gains for specific tasks like image segmentation (Zhang et al., 2021; Li et al., 2021) and in poor performance
in standard image classification benchmarks (Ravuri & Vinyals, 2019). With the advent of photorealistic
image samples obtained with generative adversarial networks (GAN) (Goodfellow et al., 2014), researchers
have explored the use of GAN-based data augmentation (Antoniou et al., 2018; Tritrong et al., 2021; Mao
et al., 2021; Wang et al., 2021). However, none of these approaches has shown improvement when applied to
large-scale datasets, such as ImageNet (Deng et al., 2009), in most cases due to a lossy and computationally
intensive GAN-inversion step.

In this paper, we study the use of Instance-Conditioned GAN (IC-GAN) (Casanova et al., 2021), a generative
model that, conditioned on an image, generates samples that are semantically similar to the conditioning
image. Thus, we propose to leverage IC-GAN to generate plausible augmentations of each available data-
point and design a module, called DAIC-GAN, that can be coupled off-the-shelf with most supervised and
self-supervised data augmentation strategies and training procedures. We validate the proposed approach by
training supervised image classification models of increasing capacity on the ImageNet dataset and evaluat-
ing them in distribution and out-of-distribution. Our results highlight the benefits of leveraging DAIC-GAN,
by outperforming strong baselines when considering high-capacity models, and by achieving robust repre-
sentations exhibiting increased invariance to viewpoint and instance. We further couple DAIC-GAN with a
self-supervised learning model and show that we can also boost its performance in some settings.

Overall, the contributions of this work can be summarized as follows:

• We introduce DAIC-GAN, a data augmentation module that combines IC-GAN with handcrafted
data augmentation techniques and that can be plugged off-the-shelf into most supervised and
self-supervised training procedures.

• We find that using DAIC-GAN in the supervised training scenario is beneficial for high-capacity
networks, e.g., ResNet-152, ResNet-50W2, and DeIT-B, boosting in-distribution performance and
robustness to out-of-distribution when combined with traditional data augmentations like random
crops and RandAugment.

• We extensively explore DAIC-GAN ’s impact on the learned representations, we discover an inter-
esting correlation between per-class FID and classification accuracy, and report promising results
in the self-supervised training of SwAV when not used in combination with multi-crop.

• We release the code-base and trained models at anonymous.url to foster further research on the
usage of IC-GAN as a data augmentation technique.

2 Related Work

Image distortion. Over the past decades, the research community has explored a plethora of simple
hand-designed image distortions such as zoom, reflection, rotation, shear, color jittering, solarization, and
blurring — see Shorten & Khoshgoftaar (2019) and Perez & Wang (2017) for an extensive survey. Although
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all these distortions induce the model to be robust to small perturbations of the input, they might lead to
unrealistic images and provide only limited image augmentations. To design more powerful image distortions,
the research community has started to combine multiple simple image distortions into a more powerful
data augmentation schemes such as Neural Augmentation (Perez & Wang, 2017), SmartAugment (Lemley
et al., 2017), AutoAugment (Cubuk et al., 2019), and RandAugment (Cubuk et al., 2020). Although these
augmentation schemes oftentimes significantly improve model performance, the resulting distortions are
limited by the initial set of simple distortions. Moreover, finding a good combination of simple image
distortions is computationally intense since it requires numerous network trainings.

Image mixing. An alternative way to increase the diversity of augmented images is to consider multiple
images and their labels. For example, CutMix (Yun et al., 2019) creates collages of pairs of images while
MixUp (Zhang et al., 2017) interpolates them pixel-wise. In both cases, the mixing factor is regulated
by a hyper-parameter, which is also used for label interpolation. However, these augmentation techniques
directly target the improvement of class boundaries, at the cost of producing unrealistic images. We argue
that unrealistic augmentations are a sub-optimal heuristic currently adopted as a strong regularizer, which
is no longer needed when larger datasets are available, as shown in Steiner et al. (2021).

Data augmentation with autoencoders. To improve the realism of augmented images, some re-
searchers have explored applying the image augmentations in the latent space of an autoencoder (AE).
DeVries & Taylor (2017a) and Liu et al. (2018) proposed to interpolate/extrapolate neighborhoods in latent
space to generate new images. Alternatively, Schwartz et al. (2018) introduced a novel way of training AE
to synthesize images from a handful of samples and use them as augmentations to enhance few-shot learning.
Finally, Pesteie et al. (2019) used a variational AE trained to synthesize clinical images for data augmenta-
tion purposes. However, most of above-mentioned approaches are limited by the quality of the reconstructed
images which are oftentimes blurry.

Data augmentation with generative models. To improve the visual quality of augmented images, the
community has studied the use of generative models in the context of both data augmentation and dataset
augmentation. Tritrong et al. (2021); Mao et al. (2021) explored the use of instance-specific augmentations
obtained via GAN inversion (Xia et al., 2022; Huh et al., 2020; Zhu et al., 2016), which map original images
into latent vectors that can be subsequently transformed to generate augmented images (Jahanian et al.,
2020; Härkönen et al., 2020). However, GAN inversion is a computationally intense operation and latent
space transformations are difficult to control (Wang et al., 2019; 2021). Antoniou et al. (2018) proposed a
specific GAN model to generate a realistic image starting from an original image combined with a noise
vector. However, this work was only validated on low-shot benchmarks. Researchers have also explored
learning representations using samples from a trained generative model exclusively (Shrivastava et al., 2017;
Zhang et al., 2021; Li et al., 2022; Besnier et al., 2020; Li et al., 2021; Zhao & Bilen, 2022; Jahanian et al.,
2022) as well as combining real dataset images with samples from a pre-trained generative model (Frid-Adar
et al., 2018; Bowles et al., 2018; Ravuri & Vinyals, 2019), with the drawback of drastically shifting the training
distribution. Finally, the use of unpaired image-to-image translation methods to augment small datasets was
explored in Sandfort et al. (2019); Huang et al. (2018); Gao et al. (2018); Choi et al. (2019). However, such
approaches are designed to translate source images into target images and thus are limited by the source
and target image distributions.

Data augmentation with latent neighbor images. Another promising data augmentation technique
uses neighbor images to create semantically-similar image pairs that can be exploited for multi-view rep-
resentation learning typical of SSL. This technique was promoted in NNCLR (Dwibedi et al., 2021), an
extension of the SSL model SimCLR (Chen et al., 2020a) to use neighbors, with some limitations due to the
restricted and dynamic subset used for neighbor retrieval. Alternatively, Jahanian et al. (2022) explored the
generation of neighbor pairs by using latent space transformations in conjunction with a pre-trained genera-
tive model. However, this model only uses generated samples to learn the representations and reports poor
performance on a simplified ImageNet setup (training on 128 × 128 resolution images for only 20 epochs).
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Figure 2: DAIC-GAN integration scheme to train a model Fθ. For each image x ∈ D we apply DAIC-GAN,
with probability pG. When an image is IC-GAN-augmented, the representation h of the image is used as
input to the generator, together with the Gaussian noise z. The generated image x̃ undergoes an additional
sequence of handcrafted data augmentations, T̃ . When DAIC-GAN is not applied, the standard handcrafted
data augmentation, T , is applied to x to produce x′. In the case of multi-view SSL training (orange branch),
an additional view, x′′, is obtained by independently applying T to the original image.

3 Methodology

3.1 Review of Instance-Conditioned GAN (IC-GAN)

Instance-conditioned GAN (IC-GAN) (Casanova et al., 2021) is a conditional generative model that syn-
thesizes high quality and diverse images that resemble an input image used to condition the model. The
key idea of IC-GAN is to model the data distribution as a mixture of overlapping and fine-grained data
clusters, defined by each datapoint – or “instance” – and the set of its nearest neighbors. Training IC-GAN
requires access to a dataset D = {xi}Ni=1 with N datapoints and a pre-trained feature extractor Eϕ param-
eterized by ϕ. The pre-trained feature extractor is used to extract embedded representations hi = Eϕ(xi).
Next, a set of nearest neighbors Ai, with cardinality k, is computed using the cosine similarity in the em-
bedded representation space. The IC-GAN generator network, Gψ, parameterized by ψ, takes as input an
embedded representation h together with a Gaussian noise vector z ∼ N (0, I), and generates a synthetic
image x̃ = Gψ(z,h). IC-GAN is trained using a standard adversarial game between a generator Gψ and a
discriminator Dω, parameterized by ω, as follows:

min
ψ

max
ω

Exi∼p(x),xj∼Ai
[lnDω(xj ,hi)] + Exi∼p(x),z∼N (0,I) [ln(1 −Dω(Gψ(z,hi),hi))] . (1)

The discriminator Dω attempts to distinguish between real samples in Ai and the generated samples, while
the generator Gψ tries to fool the discriminator by generating realistic images following the distribution of
the nearest neighbor samples in Ai. In the class-conditional version of IC-GAN, referred to as CC-IC-GAN,
a class label y is used as an extra input conditioning for the generator, such that x̃ = Gψ(z,h, y); this enables
control over the generations given both a class label and an input image.

3.2 Data augmentation with IC-GAN

Data augmentation notation. We define a data augmentation recipe as a transformation, T , of a
datapoint, xi ∈ D, to produce a perturbed version x′

i = T (xi) of it. The data augmentation mapping
T : R3×H×W → R3×H×W is usually composed of multiple single transformation functions defined in the
same domain, τ : R3×H×W → R3×H×W , T = τ1 ◦ τ2 ◦ ... ◦ τt. Each function τ corresponds to a specific
augmentation of the input such as zooming or color jittering, and is applied with a probability pτ . More-
over, τ can be modified with other hyper-parameters λτ that are augmentation-specific – e.g. magnitude of
zooming, or intensity of color distortion.

4



Under review as submission to TMLR

DAIC-GAN. We introduce a new data augmentation, DAIC-GAN, that leverages a pre-trained IC-GAN
generator model and can be used in conjunction with other data augmentation techniques to train a neural
network. DAIC-GAN is applied before any other data augmentation technique and is regulated by a hyper-
parameter pG controlling a percentage of datapoints to be augmented. When a datapoint xi is IC-GAN-
augmented, it is substituted by the model sample x̃i = Gψ(z, Eϕ(xi)), with z a Gaussian noise vector. x̃i may
then be further transformed with a sequence of subsequent transformations T̃ = τ1 ◦ τ2 ◦ ... ◦ τt̃. Note that T̃
might differ from the sequence of transformations T applied when xi is not IC-GAN-augmented. We depict
this scenario in Figure 2. Moreover, we use the truncation trick (Marchesi, 2017) and introduce a second
hyper-parameter, σ, to control the variance of the latent variable z. During IC-GAN training truncation is
not applied, and z is sampled from the unit Gaussian distribution. DAIC-GAN augmentations can be applied
to both supervised and self-supervised representation learning off-the-shelf, see section 4 for details.

4 Experimental Setup

In our empirical analysis, we investigate the effectiveness of DAIC-GAN in supervised and self-supervised
representation learning. In the following subsections, we describe the experimental details of both scenarios.

4.1 Models, metrics, and datasets

Models. For supervised learning, we train ResNets (He et al., 2016) with different depths: 50, 101 and
152 layers, and widths: ResNet-50 twice wider (ResNet-50W2) (Zagoruyko & Komodakis, 2016), and DeiT-
B (Touvron et al., 2021). For self-supervised learning, we train the SwAV (Caron et al., 2020) model with a
ResNet-50 backbone. For DAIC-GAN, we employ two pre-trained generative models on ImageNet: IC-GAN
and CC-IC-GAN, both using the BigGAN (Brock et al., 2019) backbone architecture. IC-GAN conditions
the generation process on instance feature representations, obtained with a pre-trained SwAV model1, while
CC-IC-GAN conditions the generation process on both the instance representation obtained with a ResNet-
50 trained for classification2 and a class label. Unless specified otherwise, our models use the default IC-GAN
and CC-IC-GAN configuration from Casanova et al. (2021): neighborhood size of k=50 and 256×256 image
resolution, trained using only horizontal flips as data augmentation3. To guarantee a better quality of
generations we set truncation σ = 0.8 and 1.0 for IC-GAN and CC-IC-GAN respectively. For simplicity, we
will use the term (CC-)IC-GAN to refer to both pre-trained models hereinafter.

Datasets. We train all the considered models from scratch on ImageNet (IN) (Deng et al., 2009) and
test them on the IN validation set. Additionally, in the supervised learning case, models are tested for
robustness on a plethora of datasets, including Fake-IN: containing 50K generated images obtained by con-
ditioning the IC-GAN model on the IN validation set; Fake-INCC: containing 50K images generated with
the CC-IC-GAN conditioned on the IN validation set4; IN-Adversarial (IN-A) (Hendrycks et al., 2021b):
composed of ResNet’s adversarial examples present in IN5; IN-Rendition (IN-R) (Hendrycks et al., 2021a):
containing stylized images such as cartoons and paintings belonging to IN classes; IN-ReaL (Beyer et al.,
2020): a relabeled version of the IN validation with multiple labels per image; and ObjectNet (Barbu et al.,
2019): containing object-centric images specifically selected to increase variance in viewpoint, background
and rotation w.r.t. IN6. We also consider the following datasets to study invariances in the learned repre-
sentations: IN validation set to analyze instance+viewpoint invariances; Pascal-3D+ (P3D) (Xiang et al.,
2014), composed of ∼36K images from 12 categories to measure instance, and instance+viewpoint invari-
ances; GOT (Huang et al., 2019), 10K video clips with a single moving object to measure invariance to
object occlusion; and ALOI (Geusebroek et al., 2005), single-object images from 1K object categories with

1https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar
2https://download.pytorch.org/models/resnet50-19c8e357.pth
3https://github.com/facebookresearch/ic_gan
4To avoid as much as possible unrealistic generations in creating Fake-IN and Fake-INCC, for each IN image we generate a

set of 20 samples, from which we chose the one most similar (cosine similarity) to the conditioning image in the feature space.
5Although IN-A contains samples from only 200 out of the 1000 classes of IN, we compute the results without restricting

the predictions to those 200 classes.
6The class mapping from ObjectNet to IN is one-to-multi – i.e., one class is mapped to one or more classes of IN. We

consider predictions pointing to any of the mapped classes as correct.
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plain dark background to measure invariance w.r.t. viewpoint (72 viewpoints per object), illumination color
(12 color variations per object), and illumination direction (24 directions per object).

Metrics. We quantify performance for classification tasks as the top-1 accuracy on a given dataset. More-
over, we analyze invariances of the learned representations by using the top-25 Representation Invariance
Score (RIS) proposed by Purushwalkam & Gupta (2020). In particular, given a class y, we sample a set of
object images T by applying a transformation τ with different parameters λτ such that T = {τ(x, λτ )|∀λτ}.
We then compute the mean invariance on the transformation τ of all the objects belonging to y as the average
firing rate of the (top-25) most frequently activating neurons/features in the learned representations. We
follow the recipe suggested in Purushwalkam & Gupta (2020) and compute the top-25 RIS only for ResNets
models, extracting the learned representations from the last ResNet block (2048-d vectors).

Per-class metrics. We further stratify the results by providing class-wise accuracies and correlating them
with the quality of the generated images obtained with (CC-)IC-GAN. We quantify the quality and diversity
of generations using the Fréchet Inception Distance (FID) (Heusel et al., 2017). We compute per-class FID
by using the training samples of each class both as the reference and as the conditioning to generate the
same number of synthetic images. We also measure a particular characteristic of the IC-GAN model: the NN
corruption, which measures the percentage of images in each datapoint’s neighborhood that has a different
class than the datapoint itself; this metric is averaged for all datapoints in a given class to obtain per-class
NN corruption.

4.2 Training recipes

In this subsection, we define the training recipe for each model in both supervised and self-supervised
learning; we describe which data augmentation techniques are used, how DAIC-GAN is integrated and the
hyper-parameters used to train the models.

Model selection. In all settings, hyper-parameter search was performed with a restricted grid-search for
the learning rate, weight decay, number of epochs, and DAIC-GAN probability pG, selecting the model with
the best accuracy on IN validation.

4.2.1 Supervised learning

For the ResNet models, we follow the standard procedure in Torchvision7 and apply random horizontal flips
(Hflip) with 50% probability as well as random resized crops (RRCrop) (Krizhevsky et al., 2012). We train
ResNet models for 105 epochs, following the setup in VISSL (Goyal et al., 2021). For DeiT-B we follow
the experimental setup from Touvron et al. (2021), whose data augmentation recipe is composed of Hflip,
RRCrop, RandAugment (Cubuk et al., 2020), as well as color jittering (CJ) and random erasing (RE) (Zhong
et al., 2020) —we refer to RandAugment + CJ + RE as RAug—, and typical combinations of CutMix (Yun
et al., 2019) and MixUp (Zhang et al., 2017), namely CutMixUp. DeiT models are trained for the standard
300 epochs (Touvron et al., 2021) except when using only Hflip or RRCrop as data augmentation, where we
reduce the training time to 100 epochs to mitigate overfitting. Both ResNets and DeiT-B are trained with
default hyper-parameters; despite performing a small grid search, better hyper-parameters were not found.
Additional details can be found in Appendix A.

Soft labels. We note that the classes in the neighborhoods used to train the (CC-)IC-GAN models are not
homogeneous: a neighborhood, computed via cosine similarity between embedded images in a feature space,
might contain images depicting different classes. Therefore, (CC-)IC-GAN samples are likely to follow the
class distribution in the conditioning instance neighborhood, generating images that may mismatch with the
class label from the conditioning image. To account for this mismatch when using (CC-)IC-GAN samples
for training, we employ soft labels, which are soft class membership distributions corresponding to each
instance-specific neighborhood class distribution. More formally, considering the i-th datapoint, its k-size

7See the IMAGENET1K_V1 recipe at https://github.com/pytorch/vision/tree/main/references/classification.
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neighborhood in the feature space, Ai, and its class label yi ∈ C one-hot encoded with the vector yi, we
compute its soft label as:

ysoft
i = 1

k

∑
j∈Ai

yj , with yj ∈ {0, 1}C and
∑
c

yj,c = 1. (2)

4.2.2 Self-supervised learning

We devise a straightforward use of DAIC-GAN for multi-view SSL approaches. Although we chose
SwAV (Caron et al., 2020) to perform our experiments, DAIC-GAN could also be applied to other state-
of-the-art methods for multi-view SSL like MoCov3 (Chen et al., 2021), SimCLRv2 (Chen et al., 2020b),
DINO (Caron et al., 2021) or BYOL (Grill et al., 2020). In this family of approaches, two or more views of the
same instance are needed in order to learn meaningful representations. These methods construct multi-view
positive pairs (x′

i,x′′
i )+ from an image xi by applying two independently sampled transformations to obtain

x′
i = T (xi) and similarly for x′′

i (see orange branch in Figure 2). To integrate DAIC-GAN in such pipelines
as an alternative form of data augmentation, we replace x′

i with a generated image x̃′
i with probability pG.

To this end, we sample an image x̃i from IC-GAN conditioned on xi, and apply further hand-crafted data
augmentations T̃ to obtain x̃′

i = T̃ (x̃i).

SwAV pre-training and evaluation. We follow the SwAV pre-training recipe proposed in
Caron et al. (2020). This recipe comprises the use of random horizontal flipping, random crops, color
distortion, and Gaussian blurring for the creation of each image view. In particular, we investigate two
augmentation recipes, differing in the use of the multi-crop augmentation (Caron et al., 2020) or the absence
thereof. The multi-crop technique augments positive pairs (x′

i,x′′
i )+ with multiple other views obtained

from smaller crops of the original image: (x′
i,x′′

i ,xsmall′′′

i ,xsmall′′′′

i , ...)+. In all experiments, we pre-train
SwAV for 200 epochs using the hyper-parameter settings of Caron et al. (2020). To evaluate the learned
representation we freeze the ResNet-50 SwAV-backbone and substitute the SSL SwAV head with a linear
classification head, which we train supervised on IN validation set for 28 epochs with Momentum SGD and
step learning rate scheduler –following the VISSL setup (Goyal et al., 2021).

Neighborhood augmented SwAV. To further evaluate the impact of DAIC-GAN in SSL, we devise an
additional baseline, denoted as SwAV-NN, that uses real image neighbors as augmented samples instead of
IC-GAN generations: (x′

j ,x′′
i )+, xj ∈ Ai. SwAV-NN is inspired by NNCLR (Dwibedi et al., 2021), with the

main difference that neighbor images are computed off-line on the whole dataset rather than online using
a subset (queue) of the dataset. The nearest neighbors are computed using cosine similarity in the same
representation space used for IC-GAN training. With a probability pG, each image in a batch is paired with
a uniformly sampled neighbor in each corresponding neighborhood.

5 Experimental Evaluation

In this section, we first present the results obtained in the supervised setting using ResNets and DeiT: in-
distribution evaluation on IN (Section 5.1.1); classification results on robustness benchmarks (Section 5.1.2);
invariance of learned representations (Section 5.1.3); stratified per-class analysis (Section 5.1.4); and sensi-
tivity and ablation studies (Section 5.1.5). Secondly, we show the SSL results of SwAV on IN (Section 5.2).

5.1 Supervised ImageNet training

5.1.1 In-distribution evaluation

We start by analyzing the impact of DAIC-GAN when used in addition to several hand-crafted data augmen-
tation recipes for ResNet-50, ResNet-101, ResNet-152, ResNet-50W2, and DeiT-B. In Figure 3, we report
the top-1 accuracy on the IN validation set for the models under study.

When training ResNets (see Figures 3a-3d), coupling DAIC-GAN with random horizontal flips (Hflip) results
in an overall accuracy boost of 0.5-1.7%p when using IC-GAN and 0.3-1.6%p when using CC-IC-GAN. How-
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Figure 3: Impact of DAIC-GAN when coupled with different data augmentation (DA) recipes for training
on IN. Hand-crafted DA techniques are: Hflip –random horizontal flips–, RRCrop –random resized crops–,
RAug –RandAugment(Cubuk et al., 2020)–, and CutMixUp (Yun et al., 2019; Zhang et al., 2017). DA
techniques are added from left to right, with the right-most column combining all possible DA strategies;
i.e, +RRCrop applies RRCrop on top of Hflip.

ever, when pairing DAIC-GAN with random horizontal flips and crops (+RRCrop), we observe an accuracy
decrease of 0.1-0.4%p for ResNet-50 and 0.4-0.8%p for ResNet-101, while for the bigger capacity ResNets
the accuracy is boosted by 0.4-0.7%p for ResNet-152 and 0.2%p for ResNet-50W2 with either IC-GAN or
CC-IC-GAN. These results show that DAIC-GAN is beneficial for higher capacity networks, which might be
able to capture the higher image diversity induced by more aggressive DA recipes. These observations align
with those of Kolesnikov et al. (2020), who showed that extremely large dataset sizes may be detrimental
to low-capacity networks such as ResNet-50 and ResNet-101, and those of Steiner et al. (2021), who showed
that hand-crafted DA strategies applied on large-scale datasets can also result in performance drops.

When training DeiT-B (see Figure 3e), the largest model considered –with ∼ 4× as many parameters as the
ResNet-50– and which usually needs aggressive regularization strategies (Steiner et al., 2021; Touvron et al.,
2022), we observe that DAIC-GAN paired with random horizontal flips (Hflip), random crops (+RRCrop) and
RandAugment (+RAug) provides a remarkable accuracy boost of 8.0/7.2%p, 2.9/2.3%p, 2.0/2.3%p for IC-
GAN and CC-IC-GAN, respectively, when compared to only using the hand-crafted DA recipes. However,
when extending the recipe by adding more aggressive DA such as CutMixUp, the combination with DAIC-GAN
results in a slight decrease of -0.5%p and -1.0%p in accuracy for CC-IC-GAN and IC-GAN respectively.

Overall, DAIC-GAN boosts the top-1 accuracy when paired with most of the hand-crafted DA recipes studied
and with larger ResNet models, showcasing the promising application of DAIC-GAN as a DA tool. We
hypothesize that DAIC-GAN acts as an implicit regularizer and as such, when paired with the most aggressive
DA recipes for smaller ResNet models and DeiT-B, does not lead to an accuracy improvement, possibly due
to an over-regularization of the models. Moreover, we argue that state-of-the-art training recipes with hand-
crafted DA strategies have been carefully tuned and, therefore, simply adding DAIC-GAN into the mix without
careful tuning of training and hand-crafted DA hyper-parameters or the optimization strategy might explain
the decrease in accuracy for these recipes.

5.1.2 Robustness evaluation

We present results on six additional datasets: Fake-IN, Fake-INCC, IN-A, IN-R, IN-Real and ObjectNet, to
test the robustness of our models. We consider the ResNet-50 model for its ubiquitous use in the literature,
as well as the high capacity models ResNet-152 and DeiT-B for their high performance. Results are reported
in Table 1.

On Fake-IN and Fake-INCC, datasets composed of generated images obtained with IC-GAN and CC-IC-GAN
respectively, we make two observations. First, the decrease in accuracy of the vanilla ResNets and DeiT-B
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Table 1: Robustness evaluation. Top-1 accuracy for ResNet-50, ResNet-152 and DeiT-B, trained on IN and
evaluated on: IN-Real (IN-ReaL), Fake-IN, FAKE-INCC, IN-A(IN-A), IN-R (In-R) and ObjectNet. IN (in
distribution) results are reported for reference.

robustness benchmarks
Model DA base DAIC-GAN IN IN-ReaL Fake-IN Fake-INCC IN-A IN-R ObjectNet

ResNet-50

Hflip
/ 70.75 74.18 33.11 55.00 2.07 23.07 33.33
w/ IC-GAN 71.43 74.38 39.53 58.06 0.97 21.46 31.93
w/ CC-IC-GAN 71.25 74.63 33.38 57.70 2.23 22.47 33.32

+ RRCrop
/ 76.29 77.52 37.55 61.87 0.61 23.28 34.67
w/ IC-GAN 76.21 77.23 40.65 63.14 0.45 22.99 34.45
w/ CC-IC-GAN 75.91 77.21 38.55 65.06 0.60 22.70 33.52

ResNet-152

Hflip
/ 71.42 73.90 34.85 58.61 1.68 23.02 33.44
w/ IC-GAN 73.06 75.29 38.28 60.52 2.31 24.24 35.44
w/ CC-IC-GAN 73.02 75.09 34.39 65.02 2.08 24.93 35.28

+ RRCrop
/ 77.27 78.17 37.88 63.64 1.56 24.68 35.51
w/ IC-GAN 77.71 78.90 40.56 64.11 2.32 26.03 38.16
w/ CC-IC-GAN 77.97 78.87 37.90 66.50 2.57 25.96 38.27

DeiT-B

Hflip + RRCrop
/ 69.47 70.46 35.78 59.38 1.85 15.82 20.36
w/ IC-GAN 72.35 73.59 43.79 62.63 1.92 18.36 24.49
w/ CC-IC-GAN 71.79 72.74 36.41 75.35 2.12 18.74 23.78

+ RAug
/ 75.28 75.56 34.53 59.75 4.36 24.18 27.31
w/ IC-GAN 76.74 77.37 42.80 64.49 4.34 25.11 31.85
w/ CC-IC-GAN 77.02 77.53 37.07 75.71 4.86 26.37 31.49

+ CutMixUp
/ 81.19 81.23 37.87 66.90 11.95 31.63 40.56
w/ IC-GAN 80.16 80.84 41.78 67.33 11.14 30.85 38.59
w/ CC-IC-GAN 80.65 80.97 38.23 76.41 11.70 32.23 38.58

on these datasets with respect to their IN accuracy highlights a considerable data distribution shift between
IN and both Fake-IN and Fake-INCC. Moreover, the accuracy on Fake-IN is significantly lower than on
Fake-INCC, as one may expect given the higher generation quality and label preservation of CC-IC-GAN.
Secondly, the use of IC-GAN and CC-IC-GAN provides significant boosts on the respective Fake-IN and
Fake-INCC datasets, highlighting the increased robustness of the models trained with DAIC-GAN while
remaining competitive on IN.

On IN-A and IN-R, DAIC-GAN outperforms the vanilla baselines in most of the settings explored, while
especially increasing robustness for larger models – i.e., ResNet-152 and DeiT-B. However, we notice a better
impact of CC-IC-GAN compared to IC-GAN in 6/7 cases for IN-A and in 5/7 for IN-R, which overturns
the results on IN validation where IC-GAN is better in most cases. This might be explained by the fact
that despite being less diverse, CC-IC-GAN generations are more likely to depict the correct class; during
training the lower sample diversity reduces the regularization effect providing lower in-distribution gains.

Finally, on ObjectNet and IN-ReaL, we observe similar trends to those in IN: ResNet-152 and DeiT-B with
horizontal flips, random crops and random augment benefit from DAIC-GAN, leading to an increase in accu-
racy. This evidences that the improvements that DAIC-GAN provides in-distribution to high capacity models
transfer well when considering a more correct IN labeling, such as the one of IN-ReaL, and more importantly
when classifying different objects with several viewpoints and backgrounds, such as those in ObjectNet.

Overall, this robustness evaluation confirms a positive impact of DAIC-GAN for high-capacity models –
already benefiting on in-distribution data–, suggesting that they learn more robust representations which may
transfer to unseen datasets. In particular, the generations of (CC-)IC-GAN appear to increase the robustness
of the trained models by presenting them with slightly different characteristics from in-distribution images.

5.1.3 Feature invariances

We study the invariance of the learned representations of the ResNet-152 model–our best-performing ResNet
model–, to assess whether the DAIC-GAN’s performance boosts could be attributed to more robust learned
representations. In particular, we evaluate representation invariances to instance, viewpoint, occlusion, and
illumination, in terms of the top-25 RIS scores. Results are reported in Table 2.
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Table 2: Top-25 Representation Invariance Score (RIS) of the learned representations, evaluated on
ImageNet (IN), Pascal3D (P3D), GOT-10K (GOT), and ALOI datasets. ↑ top-25 RIS means ↑ invariance.

Model DA base DAIC-GAN
P3D P3D GOT ALOI ALOI ALOI

Instance Inst. + View. Occlusion Viewpoint IllumColor IllumDir

ResNet-152

Hflip
/ 57.05 61.15 73.12 81.23 98.91 90.11
w/ IC-GAN 58.64 61.63 70.63 78.19 98.90 87.27
w/ CC-IC-GAN 58.58 62.02 71.09 78.68 98.65 87.53

+ RRCrop
/ 59.74 62.86 74.06 83.53 99.67 90.00
w/ IC-GAN 62.22 65.87 74.37 83.89 99.63 91.31
w/ CC-IC-GAN 62.01 64.93 74.36 84.06 99.65 91.23

We measure the invariance to instance on P3D. We observe that DAIC-GAN always induces a higher RIS.
We argue that this result might be expected by considering the ability of (CC-)IC-GAN of populating the
neighborhood of each datapoint, i.e., instance.

Next, we quantify the invariance to viewpoint using both P3D – instance + viewpoint – and ALOI. In this
case, we also notice that DAIC-GAN generally induces more consistent representations, except when combined
with horizontal flips and evaluated on ALOI. Our explanation for the generally higher viewpoint invariance
is that (CC-)IC-GAN samples depict slightly different viewpoints of the object present in the conditioning
image – see visual examples in Appendix C.

Finally, by looking at the occlusion invariance on GOT, and the illumination color and direction invariance
on ALOI, we observe mixed results: in some cases DAIC-GAN slightly increases the RIS while in some other
cases DAIC-GAN slightly decreases it. This result is perhaps unsurprising as none of these invariances is
directly targeted by DAIC-GAN; and the slight increases observed in some cases could be a side-effect of the
larger diversity given by DAIC-GAN– e.g., higher occlusion invariance might be due to erroneous generations
not containing the object class.

Overall, the invariance analysis highlights that DAIC-GAN, by leveraging the diversity of the neighborhood,
can be useful not only to regularize the model and achieve better classification accuracy, but also to pro-
vide more consistent feature representations across variations of instance and viewpoint. Guaranteeing such
invariances is likely to lead to a better transferability/robustness of the representations – as shown in Sec-
tion 5.1.2.

5.1.4 Per-class analysis

To further characterize the impact of DAIC-GAN, we perform a more in-depth analysis by stratifying the
ResNet-152 results per class. We compare the per-class FID of IC-GAN and CC-IC-GAN, as well as their
NN corruption, with the top-1 accuracy per class of a vanilla model – trained without DAIC-GAN– and a
model trained only with generated samples – i.e., using DAIC-GAN with pG = 1.0 – with the goal of better
understanding the impact of (CC-)IC-GAN’s generations on the model’s performance. Results are reported
in Figure 4. Note that the exclusive use of generated samples leads to rather low top-1 accuracy: ∼43%
and ∼46% for ResNet-152 when using IC-GAN and CC-IC-GAN respectively.

Figures 4a and 4b present the per-class FID of (CC-)IC-GAN as a function of per-class top-1 accuracy of the
vanilla baseline and the DAIC-GAN models. We observe that DAIC-GAN tends to exhibit higher accuracy for
classes with lower FID values, and lower accuracy for classes with higher FID values overall. In particular,
classes for which generated images have good quality and diversity (e.g., ∼ 50 FID or lower) tend to achieve
high top-1 accuracy for both the vanilla model and the one trained with only generated data. Conversely,
when the FID of a class is high, its per-class accuracy oftentimes drops for the (CC-)IC-GAN-trained models,
whereas the vanilla model remains performant. Perhaps unsurprisingly, this evidences that leveraging image
generations of poorly modeled classes to train the ResNet-152 model hurts the performance. Moreover,
we note that there are more classes with very high FID (∼ 200 or higher) for IC-GAN than CC-IC-GAN.
Intuitively, this could be explained by the fact that CC-IC-GAN uses labels to condition the model and
appears to be less prone to mode collapse (see Figure 5).
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(a) FID – ResNet-152, IC-GAN
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(b) FID – ResNet-152, CC-IC-GAN
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(c) NN corruption – ResNet-152, IC-GAN

20 40 60 80 100
Per-class Top-1 Acc. -- vanilla

0

20

40

60

80

100

Pe
r-c

la
ss

 T
op

-1
 A

cc
. -

- C
C-

IC
-G

AN
 (p

G
=

1)

0.0

0.2

0.4

0.6

0.8

1.0

NN
 c

or
ru

pt
io

n

(d) NN corruption – ResNet-152, CC-IC-GAN

Figure 4: Impact of (CC-)IC-GAN’s generation quality on per-class performance. (a-b) Per-class FID as a
function of per-class top-1 accuracy of the vanilla and DAIC-GAN models. We observe that higher quality
(CC-)IC-GAN generations tend to result in improved performances. (c-d) Per-class NN corruption as a
function of per-class top-1 accuarcy of the vanilla and DAIC-GAN models. We observe that less corrupted
classes tend to result in improved performances. ImageNet validation results shown for the ResNet-152
model trained with horizontal flips and random crops. We limited FID colormap interval to 250 to aid
interpretability, while we observed FID values up to 500 for certain classes.

11



Under review as submission to TMLR

Class "ringlet butterfly", IC-GAN model, FIDclass = 310
C

on
di

tio
ni

ng
G

en
.

sa
m

pl
es

Class "typewriter", CC-IC-GAN model, FIDclass = 385

C
on

di
tio

ni
ng

G
en

.
sa

m
pl

es

Figure 5: Conditioning sample and one of its generated samples with IC-GAN or CC-IC-GAN, illustrating
the mode collapse for some classes in ImageNet. Note that the mode collapse is evidenced in different classes
for IC-GAN and CC-IC-GAN.

We additionally observe in Figures 4c and 4d that the low accuracies of the model trained with generated data
can be partially explained by the NN corruption: classes with less corrupted neighborhoods tend to exhibit
higher top-1 accuracies than the more corrupted ones. However, we observe some specific cases of classes with
low corruption which result in very low accuracy when considering the model trained with all generated sam-
ples (see the bottom-right corner of the plots). This could be explained by the mode collapse that (CC-)IC-
GAN experience, as we see that those same classes generally have very high FID (> 200) in Figures 4a and 4b.

In this analysis, we shed some light on the problematic (CC-)IC-GAN modeling of certain classes. We
believe that computing stratified results for generative models might be a good practice to be adopted by the
community, as also supported by Ravuri & Vinyals (2019). Nevertheless, the observed positive correlation
between high classification accuracy and (CC-)IC-GAN’s generation quality –studied through the lens of
per-class FID and NN corruption– constitutes a promising result to improve the effectiveness of DAIC-GAN.
To this end, we ran an additional experiment where we avoid applying DAIC-GAN on classes having very
high FID (>= 150), i.e., where (CC-)IC-GAN has very low generation quality. We report the results in
Appendix B. Notably, the impact of leveraging DAIC-GAN could be potentially improved by increasing the
generation quality of the (CC-)IC-GAN’s poorly modeled classes. These findings improve upon those of
Ravuri & Vinyals (2019), where a pre-trained BigGAN showed little to no correlation between FID and
classification accuracy in a similar setting, strengthening the position of instance-conditioned models such
as (CC-)IC-GAN. We observe similar trends for DeiT-B (see Appendix B).

5.1.5 Sensitivity and ablation studies

Probability pG. We study the impact of the probability of applying DAIC-GAN, pG, in Figure 6. We
consider our best ResNet model as well as DeiT-B. We further include the study on ResNet-50 as a sanity
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Figure 6: Sensitivity study for the probability pG of applying DAIC-GAN. The missing datapoint in red
curves of panel (c) are due to trainings not converging.

check to validate our previous over-regularization hypothesis. When coupling DAIC-GAN with horizontal flip
to train the ResNet-50 model (Figure 6a), we observe that a probability of pG = 0.1 and pG = 0.5 achieve
the best results for CC-IC-GAN and IC-GAN, respectively. However, when adding random crops to the
recipe, ResNet-50 no longer benefits from DAIC-GAN and obtains the best results for pG = 0, highlighting
the potential over-regularization suffered by low-capacity models as discussed in section 5.1.1. When it comes
to ResNet-152 (Figure 6b), we observe that the overall accuracy increases until achieving its peak value for
some pG and then starts decreasing. More precisely, CC-IC-GAN shows optimal pG for lower values, 0.1
and 0.3, whereas IC-GAN benefits from the higher probability values 0.3 and 0.5. Note that in both cases,
DAIC-GAN coupled with random horizontal flips and crops requires lower pG values than DAIC-GAN coupled
with horizontal flips only, emphasizing the benefit of DAIC-GAN especially when leveraging soft augmentation
strategies. For DeiT-B architecture (Figure 6c), we note that increasing pG values mostly result in better
accuracy when using all DA recipes except the strongest one containing CutMixUp. This trend might be
due to the higher capacity of the DeiT-B model that combined with the lower architectural inductive bias –
i.e., no convolution – requires stronger regularization on IN. This shows the benefits of using DAIC-GAN to
regularize training, especially for architectures prone to overfitting, which require higher pG values.

Table 3: CutMixUp ablation when training DeiT-B with
Hflip+RRCrop+RAug and DAIC-GAN. All models trained with
a label smoothing of 0.1. *: Failed to converge.

IC-GAN CC-IC-GAN CutMix MixUp Top-1
✗ ✗ ✓ ✓ 81.2
✗ ✗ ✓ ✗ 81.7
✗ ✗ ✗ ✓ 80.3
✗ ✗ ✗ ✗ 77.4
✓ ✗ ✓ ✓ 80.2
✓ ✗ ✓ ✗ 78.5
✓ ✗ ✗ ✓ *
✓ ✗ ✗ ✗ 78.2
✗ ✓ ✓ ✓ 80.7
✗ ✓ ✓ ✗ 78.2
✗ ✓ ✗ ✓ *
✗ ✓ ✗ ✗ 78.1

CutMixUp components. In Table 3
we present an ablation of the two compo-
nents in CutMixUp – CutMix and MixUp
– when training DeiT-B models with and
without DAIC-GAN. To facilitate conver-
gence when using CutMix and/or MixUp,
we follow Touvron et al. (2022) and perform
label smoothing. Moreover, we leverage the
soft labels introduced in section 5.1 for all
experiments using DAIC-GAN. We observe
that removing CutMix results in a decrease in
accuracy of 0.9%p, whereas removing MixUP
increases the performance by +0.5%p. Remov-
ing both CutMix and MixUp results in the
lowest accuracy. When considering DAIC-GAN,
we observe that results are consistently better than those of the baseline model when not using CutMix nor
MixUp. Leveraging CutMixUp appears to be beneficial but the induced accuracy gains remain lower than
those experienced by the baseline model, suggesting that additional tuning of CutMixUp might be required
when coupled with DAIC-GAN.
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Figure 7: Example of three IC-GAN generations, one (a) qualitatively and semantically correct, one (b)
semantically incorrect, and one (c) with poor quality. Left image in each pair is the conditioning, where the
red square shows the central crop actually used by IC-GAN.

5.2 Self-supervised ImageNet training

Given that IC-GAN can be trained without labels, and can synthesize images without the need of class
categories, we employ it to extend multi-view SSL pre-training on IN (He et al., 2020; Chen et al., 2020a;
Caron et al., 2020) by integrating DAIC-GAN into the standard hand-crafted DA recipes. In Table 4 we
report the accuracy scores obtained on the IN validation set when testing the pre-trained SSL methods via
linear classifier evaluation.

Table 4: SwAV accuracy on ImageNet validation using different
image sources and DA methods. For each view (view1 and view2)
in the multi-view SSL setup, the image source can be: Original -
real image from the dataset, or NN - a randomly sampled neigh-
bor (k-NN with k=50). DAIC-GAN is applied on top of the image
source. RRC : RandomResizedCrop + ColorDistortion + Gaus-
sian Blurring. RRC can produce a single-crop or multi-crop.

View1 View2 Top-1Image source DAIC-GAN RRC Image source RRC
Original ✗ single Original single 67.96
Original ✓ - Original single 68.90

NN ✗ single Original single 70.06
Original ✗ single Original multi 73.64
Original ✓ single Original multi 71.72

NN ✗ single Original multi 73.73

We observe a clear difference between
the two SwAV settings: (i) with single-
crop, and (ii) with multi-crop. In the
former case, the use of DAIC-GAN boosts
the top-1 classification accuracy of the
linear evaluation probe by ∼1%p. On
the contrary, when DAIC-GAN is com-
bined with multi-crop RRC (crops with
different sizes and zooms of the origi-
nal image), we observe a detrimental ef-
fect, with roughly a 2%p accuracy drop.
It is worth noting that the multi-crop
transformation already results in signif-
icant variations from the original image,
in some cases even changing its seman-
tics. Hence, combining DAIC-GAN and
multi-crop might result in extreme aug-
mentation diversity (see example reported in Appendix C). Moreover, we recall that the SwAV model has a
ResNet-50 backbone, whose capacity might be too low to capture such a large image diversity, as discussed in
the supervised IN training in Section 5.1. A further confirmation of this hypothesis may come from the results
of SwAV-NN, which are positive for single-crop, with a ∼ 2%p increase, while remaining on-par for multi-
crop (+0.1%); using real image neighbors instead of IC-GAN-generated ones (last row of Table 4) does not
increase the diversity in the training distribution, requiring less model capacity. Moreover, a non-negligible
role might be played by the quality of (CC-)IC-GAN generations that for some instances (or classes) might
be poor or semantically far from the conditioning, as observed in Section 5.1.4 and visually shown in Figure 7.

Overall, this empirical analysis reveals that DAIC-GAN improves SSL training only when single-crop aug-
mentation is adopted, while the use of stronger hand-crafted DA (multi-crop) on top of IC-GAN-generated
images is detrimental. We point out that in NNCLR (Dwibedi et al., 2021) no gains from the combina-
tion of the multi-crop augmentation with the neighbor-based augmentation were found, and our SwAV-NN
experiments confirm this finding.
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6 Conclusions

We have studied the potential of Instance-Conditioned GAN (IC-GAN) as a data augmentation technique in
state-of-the-art training recipes for visual representation learning. Specifically, we have presented DAIC-GAN,
a data augmentation module which leverages the generations of (CC-)IC-GAN and integrates them seamlessly
with standard handcrafted data augmentation recipes. We have validated DAIC-GAN in the context of image
classification, leveraging supervised learning with ResNets (He et al., 2016) and DeiT-B (Touvron et al.,
2021), as well as self-supervised learning with SwAV (Caron et al., 2020). The results of this validation
have unveiled a beneficial impact of DAIC-GAN, especially for higher capacity networks and when coupling
(CC-)IC-GAN augmentations with soft hand-crafted augmentation strategies, suggesting DAIC-GAN may act
as an implicit regularizer for the models. Additionally, we have found that the representations learned when
training models with DAIC-GAN are more robust when transferred to unseen datasets and more invariant
across variations in instance and viewpoint, as a byproduct of augmenting the dataset with generated images
obtained with (CC-)IC-GAN. Moreover, with a per-class stratification of the results, we have discovered a
correlation between per-class performance and generated per-class image quality. These findings hint at two
future directions to improve the effect of DAIC-GAN: increasing generation quality for the classes which are
poorly modeled by (CC-)IC-GAN and to tune the (CC-)IC-GAN augmentations per class. Finally, in the
case of more aggressive data augmentation techniques for which DAIC-GAN does not provide an improvement
over the baselines, such as CutMixUp or multi-crop, we hypothesize that those augmentation recipes already
result in strong image variations, and consequently, combining those with (CC-)IC-GAN generations out-of-
the-box through DAIC-GAN may cause an over-regularization of the training.

To conclude, we have shown that current state-of-the-art large capacity models can be improved using
instance conditioned generative models such as IC-GAN in conjunction with hand-crafted data augmentation
techniques. We further hypothesize that by boosting the quality and diversity of instance conditioned
samples, models may eventually stop relying on hand-crafted data augmentation techniques altogether,
and instead move towards completely data-driven augmentation schemes to obtain infinitely many realistic
augmented samples.
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A Implementation and Practical Tips

A.1 Data augmentation and optimization hyper-parameters

Handcrafted data augmentations. We used the VISSL library (Goyal et al., 2021) which relies on
Torchvision transformations8, and considered the following data augmentation strategies:

• Hflip: Random horizontal flipping applied with 50% probability.

• RRCrop: Random resized cropping. The location of the crop is sampled uniformly based on the
sampled crop size, which is in the range (0.08, 1). When adopted in our experiments, we apply it
to all images in a batch.

• RAug = RandAugment + Color Jittering (CJ) + Random erasing (RE): When enabled, RandAug-
ment (Cubuk et al., 2020) is applied to all images with magnitude 9.0±0.5 and increasing distortion
severity for higher magnitude values. At each iteration RandAugment randomly chooses two types
of distortions. CJ distorts brightness, contrast, saturation, and hue, each with probability 0.4. RE
is applied with probability 0.25, erasing a rectangle of size sampled from (0.02, 0.33).

• CutMixUp. CutMix (Yun et al., 2019) and MixUp (Zhang et al., 2017) are never applied simulta-
neously; there is a 0.5 probability of choosing one or the other at each iteration. Note that Mixup is
applied 80% of the time when selected. As previously mentioned, we adopt label smoothing of 0.1
to ease convergence when using CutMixUp.

8https://pytorch.org/vision/stable/transforms.html
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Optimization hyper-parameters. In Table 5, we list the optimization hyper-parameters explored for
supervised training on ImageNet. Note that for all supervised experiments, we optimized the multi-class
cross-entropy loss.

Table 5: Training hyper-parameters for supervised training on ImageNet.

Model Optimizer Epochs Learning rate (LR) LR scheduler LR scaling Weight decay
ResNet-50 Mom. SGD 105 {(5, 2, 1)e-1, (5, 1)e-2, 5e-3} Step(30,60,90,100) Lin-256 {(1, 5)e-5, (1, 5)e-4, 1e-3}
ResNet(-101, -152, 50W2) Mom. SGD 105 1e-1 Step(30,60,90,100) Lin-256 1e-4
DeiT-B AdamW 100/300 1/5e-4 Lin + Cosine Lin-512 1e-1/5e-2

A.2 Implementation details

Fixing the number of IC-GAN-augmented datapoints. Variable batch size can cause unexpected
breaks in GPU-accelerated computations, mostly due to GPU memory pre-allocation. To avoid this phe-
nomenon, we fix the number of IC-GAN-augmented images in a batch to be ceil(batch_size * p_G).

Computational overhead of DAIC-GAN. Adding DAIC-GAN to the training recipe requires some addi-
tional space and time for the IC-GAN generation. For instance, in terms of space, ∼11GB of a single GPU
memory are required to generate a batch of 64 images at 256 × 256 resolution. In terms of time, we noticed
that training ResNets with DAIC-GAN and pG = 1.0 doubles the training time, whereas for pG = 0.5 the time
requirement increases by roughly 50%. However, we did not take advantage of half-precision computations
nor of any other inference-only trick like jit scripting in PyTorch. We hypothesize that exploring such
optimizations might significantly reduce the computational overhead of DAIC-GAN.

Pre-computing dataset embeddings. The IC-GAN generation step requires feature representation of
the conditioning images. In order to reduce the computation needed during the training, we compute the
embeddings of the entire training dataset in advance, and store them in an array which is loaded into memory
at the beginning of the training.

Hardware used for experiments. For most of the experiments, we performed distributed training using
cluster nodes with 8 Nvidia V100 GPUs with 32GB memory. We changed the number of nodes based on the
training model and the desired batch size – e.g., 1 node for ResNets, 4 for DeiT-B, and 8 for SwAV.

B Additional Results

B.1 DeiT-B per-class analysis

Figure 8 assesses the impact of (CC-)IC-GAN’s generation quality on the per class performance of the
DeiT-B model. The exclusive use of generated samples to train DeiT-B leads to rather a low top-1 accuracy
of ∼48% and ∼51%, when using IC-GAN and CC-IC-GAN respectively.

Following section 5.1.4, Figures 8 (a–b) show the per-class FID of (CC-)IC-GAN as a function of per-class
top-1 accuracy of the vanilla baseline and the DAIC-GAN models. We observe similar trends as for the
ResNet-152 models, – i.e., DAIC-GAN tends to exhibit higher accuracy for classes with lower (better) FID
values, and lower accuracy for classes with higher FID values, suggesting that using image generations of
poorly modeled classes hurts the performance of DeiT-B. Figures 8 (c–d) highlight that the low accuracies
of the model trained with generated data can be partially explained by the NN corruption.

B.2 Avoiding DAIC-GAN on low quality classes

In this analysis, we try to exploit the observed correlation between per-class accuracy and per-class FID,
i.e., samples quality (see Section 5.1.4), by restricting the use of DAIC-GAN only to classes that have an
acceptable quality. We set an FID threshold of 150, under which we consider a class to have acceptable
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(b) FID – DeiT-B, CC-IC-GAN
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(d) NN corruption – DeiT-B, CC-IC-GAN

Figure 8: Impact of (CC-)IC-GAN’s generation quality on per-class performance. (a-b) Per-class FID as a
function of per-class top-1 accuracy of the vanilla and DAIC-GAN models. We observe that higher quality
(CC-)IC-GAN generations tend to result in improved performances. (c-d) Per-class NN corruption as a
function of per-class top-1 accuracy of the vanilla and DAIC-GAN models. We observe that less corrupted
classes tend to result in improved performances. ImageNet validation results are shown for the DeiT-B model
trained with horizontal flips, random crops, and RandAugment. We limited the FID colormap interval to
250 to aid interpretability, while we observed FID values up to 500 for certain classes.

quality as the visual inspection of classes with FID >= 150 reveals either very poor image quality or mode-
collapse (as shown in Figure 5); this threshold value is distant around 1.5σ and 3σ from the average per-class
FID computed on IC-GAN and CC-IC-GAN samples, respectively. For this experiment, we train ResNet-152
with an augmentation recipe composed by HFlip and RRCrop applied to all classes, and DAIC-GAN applied
to FID-filtered classes. We report the results in Table 6.

Table 6: ImageNet classification accuracy of ResNet-152 when using DAIC-GAN indistinctly on all classes vs.
augmenting only classes with FID < 150. For each column of results we report the mean top-1 accuracy
computed over the indicated set of classes.

Method DA base DAIC-GAN
Top-1 accuracy

all classes classes w/ FID < 150 classes w/ FID >= 150

ResNet-152 HFlip + RRCrop w/ IC-GAN 77.71 77.44 80.44
w/ FID-filtered IC-GAN 77.94 77.56 81.67

Overall, we obtain, on average, a slightly better top-1 accuracy, +0.2%p, which can be stratified into +1.2%p
considering the classes with FID >= 150 and +0.1%p on the remaining classes. From these results we can
observe that skipping the use of DAIC-GAN on poorly modeled classes increases the performances on such
classes, while not harming the performance on the others.
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C Additional Visualizations

Figure 9 displays images resulting from the combination of DAIC-GAN with the multi-crop augmentation used
in the SwAV model Caron et al. (2020). As shown in the figure, these augmentations result in significant
variations of the original image, with small crop images notably differing from the IC-GAN generations.

Figure 10 displays (CC-)IC-GAN generations. Note that IC-GAN and CC-IC-GAN generations (a–b) tend
to show slightly different viewpoints and instances of the object present in the conditioning image (left-most
column).

(a) Original

(b) IC-GAN (c) Main crops 2242 (d) Small crops 962

Figure 9: Example of DAIC-GAN combined with multi-crop (Caron et al., 2020) augmentation with 2 main
crops and 6 small crops: (a) depicts the original image, which is used to condition the IC-GAN generation
process; (b) displays an IC-GAN generation; (c) shows the main crops of both images; and (d) presents the
small crops obtained from the original image.
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Figure 10: Visual examples of (CC-)IC-GAN generations. Each row shows, from left to right, the conditioning
image – i.e., central crop of ImageNet image –, followed by IC-GAN (a) and CC-IC-GAN (b) generated
samples. Generetad samples were obtained using the depicted image conditioning and different noise vectors.

24


