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Abstract

We propose a distillation scaling law that esti-
mates distilled model performance based on a
compute budget and its allocation between the
student and teacher. Our findings mitigate the
risks associated with large-scale distillation by
enabling compute-optimal allocation for both the
teacher and student to maximize student perfor-
mance. We provide compute-optimal distillation
recipes for two key scenarios: when a teacher
already exists, and when a teacher needs train-
ing. In settings involving many students or an
existing teacher, distillation outperforms super-
vised learning up to a compute level that scales
predictably with student size. Conversely, if only
one student is to be distilled and a teacher also re-
quires training, supervised learning is generally
preferable. Additionally, our large-scale study
of distillation increases our understanding of the
process and helps inform experimental design.

1. Introduction
The study of scaling laws (Hestness et al., 2017; Rosen-
feld et al., 2020; Kaplan et al., 2020; Hoffmann et al.,
2022) revealed that previously trained Language Models
(LMs) could have been more capable if they had followed
a compute optimal training paradigm, which determines
the model size and the number of training tokens that give
the best performing model under a given compute budget.
Many subsequent works have followed compute optimal
training (Dey et al., 2023; Muennighoff et al., 2023b).

The size of compute optimal models grows with compute
(Hoffmann et al., 2022), which makes them challenging
to use due to the growth in inference costs. In practice,
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Figure 1. Extrapolations of the Distillation Scaling Law. The
distillation scaling law (Equation 8) is fitted to students with high
cross-entropy (LS > 2.3) for a range of teachers with cross-
entropies LT . Solid lines represent predicted model behavior for
unseen teachers for a given student configuration (interpolation),
and dashed lines represent predicted model behavior beyond seen
teachers and for low cross-entropy students (LS ≤ 2.3). The
diagonal block dashed line indicates where student and teacher
cross-entropies are equal. Teachers with lower cross-entropy gen-
erally produce students with lower cross-entropy, until the capac-
ity gap (see Figure 4 and Appendix B.3). As shown, a student can
also outperform its teacher (see Figures 2, 3, and 41).

this means compute optimal models are slow, expensive
to serve, consume more battery life, provide high barriers
to entry for academic study, and have a significant carbon
footprint. With an inference volume of billions of tokens
per day (OpenAI & Pilipiszyn, 2021), the inference cost
of an LM is typically significantly larger than its pretrain-
ing cost (Chien et al., 2023; Wu et al., 2024a) and is going
to further increase in an era of test-time compute scaling
(Snell et al., 2024; Brown et al., 2024; Wu et al., 2024b).

Unsustainable inference costs have led to an alternative
training paradigm, overtraining (Gadre et al., 2024), where

1



Distillation Scaling Laws

the amount of training data used is much greater than in
the compute optimal case, enabling small, capable mod-
els. Overtrained models better satisfy compute optimality
when compute is measured over a model’s lifetime, rather
than just the pretraining cost (Sardana et al., 2024). As
supervised scaling laws follow power laws in model size
and training data, diminishing returns in performance oc-
cur much sooner than in the compute-optimal case. To
achieve reasonable capabilities, these models need to be
trained on many trillions of tokens, (Snell et al., 2024;
Brown et al., 2024; Wu et al., 2024b), which is expensive
and time-consuming.

We seek models that match the performance of small over-
trained models but at lower training cost. A popular can-
didate is distillation (Hinton et al., 2015), where a capa-
ble teacher LM produces targets for a smaller student LM.
When distillation is used for LM pretraining, we will call
this distillation pretraining. There are many explanations
for why distillation works, from dark knowledge trans-
fer, where information is contained in the ratio of prob-
abilities of incorrect classes (Hinton et al., 2015), to be-
ing a form of regularization (Mobahi et al., 2020), or re-
ducing noise in the learning process (Menon et al., 2020),
among many other explanations. Despite a lack of consen-
sus for why distillation works, distillation pretraining has
produced more capable models than supervised pretrain-
ing in the Gemma and Gemini (Rivière et al., 2024), Mini-
tron (Muralidharan et al., 2024; Sreenivas et al., 2024), and
AFM (Gunter et al., 2024) families of LMs in of both pre-
training loss and downstream evaluations. Yet, at the same
time, Liu et al. (2024) reported that distillation produces
less capable models than supervised pretraining does.

With such significant compute resources being devoted to
distillation pretraining of LMs, it is essential to understand
how to correctly allocate these resources, to produce the
most capable models possible, and to understand if gains
are even possible compared to supervised pretraining when
both methods have access to the same resources (Dehghani
et al., 2021).

To close this knowledge gap, we conduct an comprehen-
sive, controlled study of distillation, with transformer stu-
dents and teachers ranging from 143M to 12.6B parame-
ters, trained on data of a few billion to 512B tokens. These
experiments yield our distillation scaling law, which esti-
mates student performance as a function of resources (the
teacher, the student size, and the amount of distillation
data). This resolves when distillation is and is not effective
for producing models of a desired capability under practi-
cal resource constraints of interest. We find the following:

1. The cross-entropy of a student of size NS distilled on
DS tokens from a teacher of size NT trained on DT

tokens can be predicted using our distillation scaling

law (Equation 8).

2. The teacher size NT and number of teacher train-
ing tokens DT determine the student cross-entropy
only through the resulting teacher cross-entropy LT =
LT (NT , DT ) (Figure 3b).

3. The influence of the teacher cross-entropy upon the
student loss follows a power law which transitions be-
tween two behaviors depending on the relative learn-
ing capacities of student and the teacher, reflecting a
phenomenon in distillation called the capacity gap,
where a stronger teacher produces a worse student.
Our parameterization resolves outstanding questions
about the capacity gap, showing that it is a gap in
learning capacity (both hypothesis space and ability
to optimize) between the teacher and student, and not
only about their relative sizes, which is a special case.

Our results show that distillation can not produce lower
model cross-entropies than supervised learning when both
learning processes are given enough data or compute.
However, distillation is more efficient than supervised
learning if both of the following are true:

1. The total compute or tokens used for the student is not
larger than student size-dependent threshold given by
our scaling law (Section 5.1).

2. A teacher already exists, or the teacher to be trained
has uses beyond a single distillation (Section 5.3).

We hope the laws and analyses we provide will guide the
community to produce even more capable models with
lower inference cost and lower lifetime compute costs.

2. Background
Predicting model performance is essential when scaling, as
it lets us understand i) the value of increasing the avail-
able compute (C), and ii) how that compute should be dis-
tributed, typically between model parameters (N ) and data
(D), in order to achieve a model with desired properties.
These properties may be predicting the data distribution
sufficiently well, measured in cross-entropy (L), or achiev-
ing a level of performance on downstream tasks of interest.

Fortunately, cross-entropy is predictable, with substantial
empirical and theoretical evidence that L follows a power-
law in parameters N and data D (measured in tokens)

L(N,D)︸ ︷︷ ︸
Model Cross-Entropy

= E︸︷︷︸
Irreducible Error

+

(
A

Nα
+

B

Dβ

)γ

︸ ︷︷ ︸
Model ability to mimic data

, (1)
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where {E,A,B, α, β, γ} are task-specific positive coeffi-
cients1 estimated from n training runs {(Ni, Di, Li)}ni=1.

The choice of runs is critical; not all experiments enable
identifying the coefficients of Equation 1. One could use
compute optimal models whose size parameters N∗ and
number of training tokens D∗ give the lowest cross-entropy
subject to a compute constraint C

N∗,D∗=argmin
N,D

L(N,D) s.t. FLOPs(N,D)=C. (2)

This is tempting, as compute-optimal models offer the
largest loss variation for a total experiment budget. Un-
fortunately, compute optimal models have a constant token
to parameter ratio M ≡ D/N = const. (Hoffmann et al.,
2022), removing a degree of freedom.

To achieve reliable identification of scaling coefficients,
Hoffmann et al. (2022) uses two training strategies:

1. (Fixed model, varied data) The number of training to-
kens is varied for a fixed family of models.

2. (IsoFLOP profiles) Model size and training tokens are
both varied subject to a total compute constraint.

Data from both strategies is then combined for the fit. See
Appendix B for an extended background.

The goal of this paper is to predict the cross-entropy LS of a
student produced by distillation. This will reveal the value
of increasing compute for distillation, crucially, which dis-
tillation produces the student of a given size that achieves
the lowest cross-entropy for a given compute budget.

3. Preliminaries
Notation For a sequence x, x(i:j) = (x(i), x(i+1), . . . ,
x(j)) is a slice of the sequence, and x(<i) = x(1:i−1) =
(x(1), . . . , x(i−1)) is the context of x(i). We use the short-
hand X ∗ = ∪n∈NXn to denote the set of sequences with
arbitrary length n ∈ N = {1, 2, . . .}.

Language modeling We focus on the LM setting where
the training objective is to model the probability of se-
quences x of tokens xi drawn from a vocabulary V =
{1, 2, . . . , V }. Let f : V∗ ×Θ→RV be a next-token clas-
sifier parameterized by θ ∈ Θ whose outputs define a pre-
dictive categorical distribution over V given a context x(<i)

p̂(x(i) = a|x(<i);θ) = σa(f(x
(<i);θ)) = σa(z

(i)), (3)

1Hoffmann et al. (2022) use γ = 1, whereas Kaplan et al.
(2020) use β = 1. We observe a significantly better fit and ex-
trapolation without coefficient tying, which may be due to our use
of Maximal Update Parameterization (µP) (see Section 4.1).

where σa(z) = exp(za)/
∑

b exp(zb) is the softmax func-
tion. The next-token classifier outputs z(i) = f(x(<i);θ)
are the logits.2 Autoregressive LMs produce sequence
likelihoods through p̂(x;θ) =

∏L
i=1 p̂(x

(i)|x(<i);θ) and
are trained to maximize this likelihood on observed data
through the Next Token Prediction (NTP) loss

LNTP(x
(i), z(i)) = −

V∑

a=1

e(x(i))a log σa(z
(i)), (4)

where e(i) is the i-th basis vector. It is common to also
use the following token-level Z-loss to improve training
stability (Chowdhery et al., 2023; Wortsman et al., 2023)

LZ(z
(i))= || logZ(z(i))||22 =

∣∣∣∣∣

∣∣∣∣∣log
V∑

a=1

exp(z(i)a )

∣∣∣∣∣

∣∣∣∣∣

2

2

. (5)

Distillation In distillation, a teacher with predicted next-
token distribution p̂T (x

(i)|x(<i);θT ) and corresponding
logits z

(i)
T replaces the one-hot basis vector in Equation 4

and is used as the target for a student predicted next-token
distribution q̂S(x

(i)|x(<i);θS) and corresponding logits
z
(i)
S . The resulting knowledge distillation loss is used to

optimize the student parameters

LKD(z
(i)
T ,z

(i)
S )=−τ2

V∑

a=1

σa

(
z
(i)
T

τ

)
logσa

(
z
(i)
S

τ

)
, (6)

and is equivalent to optimizing the Kullback-Leibler Diver-
gence (KLD) between the teacher and student predictions.
τ > 0 is the distillation temperature. Combining the losses
together results in a total token-level loss for the student:

LS(x
(i), z

(i)
T , z

(i)
S ) = (1− λ)LNTP(x

(i), z
(i)
S )

+ λLKD(z
(i)
T , z

(i)
S ) + λZ LZ(z

(i)
S ). (7)

4. Distillation Scaling Laws
Here we outline the steps taken to arrive at our distilla-
tion scaling law. First we describe the experimental setting
(Section 4.1) and the experiments needed to determine the
scaling coefficients (Section 4.2). Given the empirical ob-
servations, we discuss the form our distillation scaling law
takes (Section 4.3), find the coefficients, and verify the law
under extrapolation (Section 4.4).

4.1. Experimental Setup

All models are based on Gunter et al. (2024) and use de-
coupled weight decay Loshchilov & Hutter (2019) for reg-
ularization, as well as a simplified version of µP (Yang &

2We do not write this as z(<i) to avoid confusion with the
sequence z(<i) = (z(1), . . . , z(i−1)).
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Table 1. Expressions related to scaling laws used in this work. In
each case, S always refers to student and not supervised.

Expression Meaning

N /NS /NT The number of model/student/teacher non-embedding param-
eters. Whenever we mention parameters in text, we always
mean non-embedding parameters unless explicitly stated oth-
erwise. See Appendix H.2 for more details.

D /DT The number of tokens the model/teacher is pretrained on.
DS The number of tokens the student is distilled on.

M ≡ D/N The tokens per parameter ratio, or M -ratio. In Hoffmann et al.
(2022), M takes a compute optimal value M∗ ≈ 20 which is
the Chinchilla rule of thumb.

L ≈ L(N,D) The model cross-entropy, which is the model validation cross
entropy under data, estimated by the supervised scaling law for
a model with N parameters trained on D tokens. (Equation 1).

LT ≈ L(NT , DT ) The teacher cross-entropy, which is the teacher validation cross
entropy under data, estimated by the supervised scaling law for
a teacher with NT parameters trained on DT tokens.

LS ≈ LS(NS , DS , LT ) The student cross-entropy, which is the student validation cross
entropy under data, estimated by our distillation scaling law
for a student with NS parameters distilled on DS tokens using
a teacher with pretraining loss LT (Equation 8).

L̃S ≈ L(NS , DS) The student supervised cross-entropy, which is the student vali-
dation cross entropy under data if the student had been trained
in a supervised way, estimated by the supervised scaling law
for a student with NS parameters trained on DS tokens.

Hu, 2021; Yang & Littwin, 2023; Yang et al., 2022; Worts-
man et al., 2023; Yang et al., 2023), following µP (simple)
in (Wortsman et al., 2024). µP simplifies the scaling law
experimental setup as it enables hyperparameter transfer
of the learning rate across model sizes. We validate that
µP functions as expected for distillation in Appendix G.3.
Models have sizes which range from 143M to 12.6B pa-
rameters, and we allow the teacher to be smaller or larger
than the student. Multi-headed attention (MHA) is used,
with Pre-Normalization (Nguyen & Salazar, 2019) using
RMSNorm (Zhang & Sennrich, 2019). We train all mod-
els with a sequence length of 4096, with Rotary Position
Embedding (RoPE) (Su et al., 2024). We use the English-
only subset of the C4 dataset (Raffel et al., 2020) for all
experiments. For all distillation trainings, the teacher is
trained on a different split from the student. Except for the
largest models, all Chinchilla-optimal models do not repeat
data. Full hyperparameters and details can be found in Ap-
pendix I. As our goal is to understand the role of the teacher
in the distillation process we distill in the pure distillation
case (λ = 1, Equation 7) to avoid confounding coming
from the data, as was done in Stanton et al. (2021). We ver-
ify the choice λ = 1 produces results statistically similar to
the optimal λ∗ (see Appendix G.1). Similarly, all experi-
ments use distillation temperature (τ = 1), as we found this
produces the best performing students (see Appendix G.2).

4.2. Distillation Scaling Law Experiments

Here we discuss the experiments that produce the data for
fitting our distillation scaling law. The distillation scal-
ing law will estimate student cross-entropy LS

3, which

3By cross-entropy, we always mean with respect to data, not
the teacher. We summarize our scaling law notation in Table 1.

in general depends on the student parameters NS , num-
ber of distillation tokens DS , the teacher parameters NT

and the number of teacher training tokens DT : LS ≈
LS(NS , DS , NT , DT ). As discussed in Section 2, only
certain combinations of data support reliable identification
of scaling law coefficients. We combine three experimental
protocols to produce data for our distillation scaling law fit.
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Figure 2. Fixed M Teacher/Student IsoFLOP profiles. Two of
six teachers with a token-to-parameter ratio MT = DT /NT ≈
20 are distilled into students across four IsoFLOP profiles defined
by compute budgets CS ∈ {3 × 1019, 1020, 3 × 1020, 1021}
FLOPs. A small number of additional distillations were also
performed using CS = 3 × 1021 FLOPs. Here, CS only in-
cludes the standard training cost of a model of size NS trained
on DS tokens, i.e. the cost of teacher training and teacher in-
ference is not included. Horizontal and vertical dashed lines in-
dicate teacher cross entropy LT and size NT respectively. See
Appendix E.4, Figure 38a for all six teacher profiles correspond-
ing to NT ∈ {546M, 975M, 1.82B, 2.72B, 4.82B, 7.75B}.

Fixed M Teachers/Student IsoFLOPs To simplify the
experimental protocol we make the following assumption:
Training a student (NS , DS) on the signal provided by a
teacher (NT , DT ) is qualitatively similar to training that
student on a fixed dataset. As power law behavior has
been observed in a wide variety of datasets and domains
(Henighan et al., 2020), it is expected that there should be
a power law behavior in (NS , DS) given a fixed teacher.

To identify these coefficients correctly, a similar protocol
to the Chinchilla protocol described in Section 2 should
be performed. However, we cannot do this for only one
teacher, as the way student size and tokens affects down-
stream performance may be different for different teachers,
just as the scaling laws are different for different domains
and dataset. For distillation we anticipate this is the case so
that different teachers produce different students. To pro-
duce the widest range of teachers for a compute budget,
we train six Chinchilla-optimal (MT = DT /NT ≈ 20)
teachers ranging from 198M to 7.75B parameters. 4 For

4We generally refer to these as fixed-m models rather than
Chinchilla-optimal models as we do not yet know whether M ≈
20 is a good choice in this specific setting.
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each of those teachers, we distill into students with four
IsoFLOP profiles, taking only the standard training cost
into account. The resulting student cross-entropies are in
Figure 2. We note that in some cases, the student is able
to outperform the teacher, i.e. exhibits weak-to-strong-
generalization (Burns et al., 2024; Ildiz et al., 2024) and
investigate this further in Appendix E.7.

100M 300M 1B 3B 7B
Teacher Parameters NT

2.3

2.4

2.5

2.6

St
ud

en
t

C
ro

ss
-E

nt
ro

py
L S

Student: 1.82B

Teacher FLOPs
3×1019 1020 3×1020 1021

(a) One teacher IsoFLOP set.

2.2 2.4 2.6
Teacher Cross-Entropy LT

2.3

2.4

2.5

2.6

2.7

St
ud

en
tC

ro
ss

-E
nt

ro
py

L S
Student Parameters NS

198M 546M 975M 1.82B
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Figure 3. IsoFLOP Teacher/Fixed M Students. (a) One of four
students with a token-to-parameter ratio MS = DS/NS ≈ 20
is distilled from teachers with four IsoFLOP profiles defined by
compute budgets CT ∈ {3×1019, 1020, 3×1020, 1021} FLOPs.
For all four student sizes NS ∈ {546M, 975M, 1.82B, 7.75B},
see Appendix E.4, Figure 38b. (b) All profiles are plotted against
teacher cross-entropy LT . Horizontal (vertical) dashed lines show
student supervised cross-entropy L̃S (student size NS).

IsoFLOP Teachers/Fixed M Students The fixed-M
teacher IsoFLOP student protocol is insufficient to identify
how NT and DT independently influence student cross-
entropy. To ensure our experiment can detect this influence,
we perform experiments where the student (NS , DS) is
fixed, and vary NT and DT subject to a compute constraint,
i.e., a teacher IsoFLOP. We perform distillations into four
Chinchilla-optimal (MS = DS/NS ≈ 20) students rang-
ing from 198M to 1.82B parameters from teachers trained
according to four IsoFLOP profiles. The resulting student
cross-entropies are in Figure 3.

Fixed M Teachers/Fixed M Students Finally, al-
though not necessary for fitting our distillation scaling law,
it is instructive to see how student cross-entropies vary over
as large a range as possible. To achieve this, we train
fixed-M teacher fixed-M student combinations, with ten
teachers with MT ≈ 20, and students of five sizes, with at
least four choices of MS per student. The resulting student
cross-entropies for two of the students are in Figure 4.

Capacity gap In Figure 4, we observe the capacity gap,
where improving teacher performance does not always im-
prove student performance, and even reduces student per-
formance eventually. The capacity gap has been observed
often in distillation (see Appendix B.3). The KLD between
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Figure 4. Fixed M Teacher/Fixed M Student. Students of
two sizes trained with different token-to-parameter ratios MS =
DS/NS ∈ {20, 40, 80, 160, 320} are distilled from teachers of
various sizes with a token-to-parameter ratio MT = DT /NT ≈
20. The capacity gap is visible: student cross-entropy decreases to
an optimum and then increases with increasing teacher size NT .

teacher and student is an increasing function of teacher ca-
pability in all cases (see Appendix E.3), which means as the
teacher improves its own performance, the student finds the
teacher more challenging to model, eventually preventing
the student from taking advantage of teacher gains. We use
calibration metrics to investigate aspects that the student
finds challenging to model in Appendix E.8. In Appen-
dices C.1 and C.2 we offer a simple explanation in a ker-
nel regression and synthetic Multi-Layer Perceptron (MLP)
setting and, to the best of our knowledge, are the first con-
trolled demonstrations of the capacity gap.

4.3. Distillation Scaling Law Functional Form

We need to determine the functional form of the distil-
lation scaling law. First, we observe that contributions
from teacher size NT and pretraining tokens DT are sum-
marized by the teacher cross-entropy LT . This can be
seen from Figures 1 and 3b which contains the IsoFLOP
Teacher/Fixed M Students of Figure 3, yet smooth depen-
dence as a function of LT is observed. Next, the distillation
scaling law should reflect the following properties:

1. An infinitely capable student should be able to model
any teacher: limNS ,DS→∞ LS(NS , DS , LT ) → LT .

2. A random teacher produces random students in-
dependent of how capable those students are:
limLT→∞ LS(NS , DS , LT ) → LT .

3. There is a capacity gap: making a teacher too capable
eventually reduces the student performance.

A transition between two power law regions: i) where the
student is a stronger learner than the teacher, and ii) where
the student is a weaker learner than the teacher is described
by a broken power law (Caballero et al., 2023). Together,
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we propose that student cross-entropy follows a broken
power law in LT and a power law in NS and DS :

LS(NS ,DS ,LT )︸ ︷︷ ︸
Student cross-entropy

= LT︸︷︷︸
Teacher cross-entropy

+
1

Lc0
T

(
1+

(
LT

L̃Sd1

)1/f1
)−c1f1(

A

Nα′
S

+
B

Dβ′

S

)γ′

︸ ︷︷ ︸
Student ability to mimic teacher

(8)

where {c0, c1, d1, f1, α′, β′, γ′} are positive coefficients to
be fitted following the procedure outlined in Appendix F.2
on the data produced in Section 4.2. The first two proper-
ties of our distillation scaling law can be readily checked.
For the third, recall, L̃S = L(NS , DS) is the cross-entropy
a student would have achieved if it had been trained in a su-
pervised way (Table 1), and is determinable from the super-
vised scaling law (Equation 1). The capacity gap behavior
follows from a transition based on the ratio of the algorith-
mic learning capacities of the student and teacher, when
LT /L̃S ≡ L(NT , DT )/L(NS , DS) = d1, which can be
interpreted as a measure of the relative learning abilities of
the teacher and the student on a reference task.

4.4. Distillation Scaling Law Parametric Fit

We use the teachers (NT , DT ) for fitting our supervised
scaling law (Appendix E.2), and all the data for fitting our
distillation scaling law (Equation 8). Our fitting procedure
is described in detail in Appendix F and the resulting scal-
ing coefficients are presented in Appendix F.3. Our super-
vised and distillation scaling laws fit the observations at the
level of ≲ 1% relative prediction error, including when ex-
trapolated from weaker to stronger models (see Figure 5b).

As a further verification, we confirm that for a fixed model
size, distillation in the infinite data regime is consistent
with supervised learning on infinite data (Appendix E.6).

5. Distillation Scaling Law Applications
Here, we apply our distillation scaling law (Equation 8) and
investigate scenarios of interest. Typically, the resources
in distillation pretraining include a compute budget, or a
dataset containing a number of tokens. For a distillation
process, the compute cost can be approximated by

FLOPs≈3F (NS)DS︸ ︷︷ ︸
Student
Training

+F (NT )(δ
Lgt
T DS︸ ︷︷ ︸
Teacher
Logits

+δPre
T 3DT︸ ︷︷ ︸
Teacher
Training

) (9)

where δLgtT , δPre
T ∈ [0, 1] indicate whether we account for

the cost of teacher logit inference for the student targets5,

5Appendix G.4 evaluates distribution truncation via Top-p and
Top-k to mitigate the overhead of computing these logits online.
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Figure 5. Scaling law fits. (a) The supervised scaling law (Equa-
tion 1) applied to the data in Figure 36a. (b) Our distillation scal-
ing law (Equation 8) applied to the data in Figures 2 to 4. Orange
points show predictions from a scaling law fitted on high cross-
entropy models, for which the grey region is extrapolation. Blue
points show predictions from a scaling law fitted on all data.

Table 2. The four practical distillation settings we study, and how
their compute accounting is implemented through Equation 9.

Compute Scenario δLgtT δPre
T Description

Best case (fully
amortized teacher)

0 0 The teacher incurs no additional FLOPs and so we
are free to choose the teacher L∗

T that minimizes
the student cross-entropy.

Teacher inference 1 0 We don’t account for the teacher cost because the
teacher already exists, or we intend to use the
teacher as e.g., a server model. We still need to
pay to use it for distilling a student.

Teacher pretraining 0 1 The teacher needs training, but we store the logits
for reuse, either during training, or after training
for distilling into sufficiently many students.

Teacher pretraining
+ inference

1 1 The teacher needs training and we pay for distill-
ing into one student, the worst case scenario.

and teacher pretraining cost in the total compute budget
(see Table 2). F (N) is the number of Floating Opera-
tions (FLOPs) a model with N parameters performs per
token during a forward pass. F (N) ≈ 2N is often used,
giving supervised FLOPs ≈ 6ND. We cannot use the
2N approximation, as (i) using non-embedding parame-
ters N induces systematic errors (Porian et al., 2024), and
(ii) we are interested in small models with large context
sizes where the FLOP contribution from attention is signifi-
cant. To resolve these issues, we derive a simple expression
F (N) ≈ 2N(1 + c1N

−1/3 + c2N
−2/3) for fixed-aspect

ratio models in Appendix H.1, and recommend the scaling
community consider adopting this hyperparameter setting.
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5.1. Fixed Tokens or Compute (Best Case)

To build intuition for when distillation may (and may not)
be beneficial, we ask how well can distillation do in the best
case scenario, compared with supervised learning? We su-
perimpose the data of Figures 2 and 3 onto contours of dis-
tilled cross-entropy LS compared to a supervised model
with the same resources L̃S (Figure 6).
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Figure 6. Fixed-M Teacher/IsoFLOP students (data). The
cross-entropy difference between best case distillation and su-
pervised learning, as determined by our supervised and dis-
tillation scaling laws (Figure 5) for six student sizes NS ∈
{546M, . . . , 7.75B} and a range of token budgets DS ∈
[1B, 10T ]. The scatter points correspond to cross-entropies
achieved by the runs in Figures 2 and 38a. Blue indicates distil-
lation outperforms supervised learning (LS < L̃S), while red in-
dicates supervised learning outperforms distillation (LS > L̃S).
The white horizontal dashed line indicates the teacher size.

Supervised learning always outperforms distillation
given enough student compute or tokens. For a mod-
est token budget, distillation is favorable; however, when
a large number of tokens are available, supervised learn-
ing outperforms distillation. This is expected; in the large
data regime, supervised learning can find the best solution
limited by model size N (Equation 1), whereas distillation
only finds this solution for the optimal teacher L∗

T (see Ap-
pendix E.6), and is otherwise limited by the distillation pro-
cess. Although this finding appears to contradict the pa-
tient teacher finding of Beyer et al. (2022), it does not, pri-

marily due to the differences in supervised baselines (see
Appendix D.1). A compute-constrained student version of
Figure 6 and IsoFLOP Teacher/Fixed M student contours
are provided in Appendix D.2.

5.2. Fixed Tokens or Compute (Teacher Inference)

Next, we focus on the common scenario of planning to dis-
till and trying to decide among an existing set of teachers
{(L(i)

T , N
(i)
T )}ni=1. A larger teacher may provide a better

learning signal (lower cross-entropy) but will also be more
expensive to use because of the teacher logits cost (Equa-
tion 9, δLgtT = 1), inducing a trade-off. Given a target stu-
dent size NS and budget DS or CTotal, the only degree of
freedom is the choice of teacher.

For a fixed data budget, as the student size increases,
teacher cross-entropy should be decreased as a power
law. Here, the compute cost from NT is not relevant as
we are considering a token budget. Student cross-entropy
at different distillation token budgets is shown in Figure 7.
An equivalent plot for different student sizes while varying
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Figure 7. Students given a teacher and token budget. Con-
tours of student cross-entropy LS for a range of teachers
and students across four distillation token budgets DS ∈
{250B, 1T, 4T, 16T}. The red line indicates the optimal teacher
cross-entropy L∗

T (NS , DS) = argminLT
LS(NS , DS , LT ) for

each student size and distillation token budget.

tokens is shown in Appendix D.3. We see that the opti-
mal teacher loss L∗

T (red line) decreases as a power law
with student size NS until LS matches L∗

T , when there
is an inflection point in L∗

T , causing the teacher loss de-
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crease to sharpen with NS . This generalizes the observa-
tion of Zhang et al. (2023a), that “Optimal teacher scale
almost consistently follows a linear scaling with the stu-
dent scale across different model architectures and data
scales.” which is a special case of our finding when the
teachers are compute optimal (Figure 36a). Note that our
findings consistently show that teacher cross-entropy LT

determines student cross-entropy LS , not NT itself (which
leads to a given LT ). We investigate a fixed compute bud-
get setting for teacher inference only in Appendix D.3.

5.3. Compute Optimal Distillation

We extend the analysis of Hoffmann et al. (2022) to dis-
tillation, giving compute optimal distillation, determining
how to produce the student of a desired size NS with the
lowest cross-entropy given a compute budget C

D∗
S ,N

∗
T ,D

∗
T = argmin

DS ,NT ,DT

LS(NS ,DS ,NT ,DT )

s.t. FLOPs=C, (10)

To present the best and worst case for incorporating teacher
inference into the compute constraints, we consider all sce-
narios presented in Table 2. We also compare against
the optimal supervised performance. To find the minima
in Equation 10 we perform constrained numerical min-
imization using Sequential Least SQuares Programming
(SLSQP) (Kraft, 1988) in SciPy (Virtanen et al., 2019).

Supervised learning always matches optimal distillation
at sufficient compute budget, with the intersection fa-
voring supervised learning increasing as student size
grows. In Figure 8 we see that supervised learning al-
ways matches the best case distillation setting at some total
compute budget, as anticipated from the asymptotic anal-
ysis in Figure 40. The compute transition point at which
supervised learning becomes preferable to distillation in-
creases as a function of student size. See also Figure 6. We
also observe that smaller models are more likely to bene-
fit from supervised pretraining, whereas larger models are
more likely to benefit from distillation.

When teacher training is included in the compute, the
best student cross-entropy is always higher than in the
supervised setting. This means that if the only aim is to
produce the best model of a target size and you do not al-
ready have access to a teacher, then supervised learning
should be used, instead of training a teacher and then dis-
tilling. Conversely, if the intention is to distill into a family
of models, or use the teacher as a server model, distillation
may be computationally preferable to supervised learning.
On reflection, this finding should be expected, otherwise
it would imply that given for a total end-to-end compute,
distillation outperforms maximum likelihood optimization.
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Figure 8. Compute-optimal distilled student performance.
The best cross-entropy students of four sizes NS ∈
{300M, 1B, 3B, 10B} can achieve in the four distillation sce-
narios considered (Table 2) and in a supervised baseline, as total
compute is varied.

Table 3. Optimal compute allocation trends.
Student size Compute (FLOPs) Allocation

Small (≲ 3B) Small (≲ 1021) Mostly teacher pretraining.
Small (≲ 3B) Large (≳ 1025) Evenly divided between student

training and teacher inference,
much less on teacher pretraining.

Large (≳ 10B) Small (≲ 1021) Mostly standard student training.
Large (≳ 10B) Large (≳ 1025) Equally divided between student

training, teacher inference, and
teacher pretraining.

A detailed discussion of the compute optimal configura-
tions that produce (N∗

S , N
∗
T , D

∗
T ) for all scenarios is pro-

vided in Appendix D.4.

To build intuition for how quantities interact, we take the
most complex scenario, teacher pretraining + inference. A
view of the optimal distillation setup as compute varies is
presented in Figure 9.

Student and teacher tokens scale as a power law, with stu-
dent tokens scaling at a faster rate. Optimal teacher size
increases initially until it is slightly larger than the student,
after which it plateaus. This plateau occurs because infer-
ence with large teachers is expensive, and with an increase
in the number of student tokens, it becomes more efficient
to overtrain the teacher.
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Figure 9. Optimal configurations accounting for teacher pre-
training and teacher logit inference costs. For student sizes
NS ∈ {300M, 1B, 3B, 10B}, the student (N∗

S , D∗
S), and teacher

(NT , D∗
T ) configurations minimizing the student cross entropy

L∗
S subject to a total compute budget that accounts for both

teacher pretraining and teacher logit inference costs.

The values in Figure 9 can be recombined to produce the
compute terms in Equation 9 as shown in Appendix D.4,
Figure 29. We summarize the trend in Table 3.

6. Conclusion
We propose a distillation scaling law that estimates distilled
model performance based on a compute budget and its al-
location between the student and teacher. We then used
our law to study practical distillation scenarios, and showed
that distillation is only more efficient than supervised learn-
ing if (i) the total compute or tokens used for distillation is
not larger than a student size-dependent threshold, and (ii)
a teacher already exists, or the teacher to be trained has ap-
plications beyond its use in a single distillation. Moreover,
we used this law to determine optimal distillation scenarios
that can outperform supervised learning, enabling practi-
tioners to select the best teacher for their use case. This
work represents the largest controlled empirical study of
distillation we are aware of, with systematic ablations of
common distillation techniques. Just as supervised scal-
ing has mitigated risks in supervised pretraining, our find-

ings offer a roadmap for producing smaller, more powerful
models with lower inference costs, reducing carbon foot-
prints, and enhancing the feasibility of test-time scaling.
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Impact Statement
This work shows how to apply the framework of scaling
laws to the distillation setting, and investigates distillation
as a viable alternative to the overtraining paradigm for pro-
ducing capable language models. Our findings demonstrate
when distillation should and should not be performed, from
a compute efficiency perspective, compared to supervised
learning. There are a number of benefits to this:

1. As compute-optimal recipes for distillation are now
known, there is greater opportunity for producing
powerful models with lower inference costs. Lower-
ing inference costs reduces the largest component of
the total carbon footprint of language models (from
training to inference).

2. When combined with established scaling laws, there
is a larger space of models for which compute-optimal
configurations are known. To produce models with a
given capability, the compute, hardware and climate
costs have been reduced compared to before, thanks
to the identification of the optimal recipe.

3. Our distillation scaling law reduces compute usage by
eliminating unnecessary experimentation across vari-
ous hyperparameters and distillation settings. It is now
understood that the primary driver of student cross-
entropy is teacher cross-entropy, and so teacher size
and tokens can be removed as search dimensions.
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4. Small powerful models democratize the study of
highly capable models, enabling broader participation
in the study of their capabilities and safety aspects.

However, there are potential negative consequences:

1. Using distillation as part of a training pipeline intro-
duces new sources of bias. Teacher models may con-
tain bias from their pretraining data. Even if a student
is distilled on unbiased data, the bias of the teacher
will be inherited by the student.

2. Small powerful language models are more efficient
during inference, reducing the amount of resources
needed for malicious actors to achieve their goals,
such as generating targeted misinformation at scale.
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A. Limitations
This work has several limitations that we are aware of:

• Our work is performed in the language modeling setting only. Although there is good evidence that the functional
form of scaling laws applies across domains (Henighan et al., 2020), we cannot be absolutely certain that distillation
behaves in the way we describe in this work in all domains.

• We perform our analysis on the English subset of C4 dataset (see Appendix I). This means that for our larger token
runs, data has been repeated. Although it was shown in Muennighoff et al. (2023b) that on the C4 dataset, repeating
data up to 4 times has negligible impact to loss compared to having unique data, this was shown in the supervised
setting, and we cannot be absolutely certain that the same applies in the distillation setting.

• A second downside of using the C4 dataset is that we are limited in our ability to analyze downstream evaluations
of students resulting from distillation. Our performance over standard English language downstream tasks closely
follows cross-entropy, however, C4 is not as well suited for pretraining in order to probe aspects like reasoning
performance (see Appendix E.1).

• We focused on distillation as originally defined in Hinton et al. (2015), where the teacher produces a full probability
distribution for the student to target. We did this as it is a popular choice for training language models (Rivière et al.,
2024; Gunter et al., 2024; Sreenivas et al., 2024). More colloquially, distillation has become used to describe the
more general process of using a teacher in order to produce a student. One popular approach for training language
models is Sequence-Level Knowledge Distillation (Kim & Rush, 2016) where the teacher is sampled, e.g. with beam
search, in order to produce sequences for training the student on in a supervised way. This technique, also called
synthetic data or hard distillation has been employed to great effect in the LLaMA families (Touvron et al., 2023a)
and most recently, the smaller models distilled from DeepSeek-R1 (DeepSeek-AI et al., 2024). On top of these
distillation methods are many variations of objectives, such as intermediate layer matching (Romero et al., 2015),
modified objectives (Tian et al., 2020) and beyond. While we anticipate that our broader findings should apply in
these cases, we cannot be absolutely sure. In particular, we suggest that verifying the scaling properties of Sequence-
Level Knowledge Distillation in a controlled, resource constrained manner as we have done here is important for
future study.

• Our work exclusively studies transformer style architectures, for both the teacher and student. While supervised cross-
entropy is primarily influenced by model size and the amount of training data ((Kaplan et al., 2020)), it is plausible
that architectural differences might affect model confidence or knowledge transfer in ways not fully captured by
cross-entropy. Evidence for this effect was shown in Furlanello et al. (2018), although in a limited data setting
where the teacher behaves as a regularizer and as a learning signal, significantly more complicated than our setting.
Consequently, a study in non-repeated data on i) the influence of architectural disparities, and ii) of non-transformer
architectures, could offer valuable insights.

• Our work exclusively investigates training and distilling on the same data distribution. This was done to allow us
to isolate and study algorithmic effects, rather than effects from data. Unfortunately, this study design misses one
typical distillation workflow, where a user chooses an openly available model trained by another group on a (possibly
unknown) source distribution psource, and then distills it on their own target distribution ptarget. We suspect the following
may occur. Consider the case that the teacher is well-trained, that is, p̂T (y|x) ≈ psource(y|x). The student trained under
Equation 7 should then approximate the teacher distribution, i.e. q̂S(y|x) ≈ p̂T (y|x) ≈ psource(y|x), that is, on the
intersection of the support of psource(x) and ptarget(x), the student will learn to approximate the next-token distribution
of the source domain, and not the target domain. Outside of this intersection, the teacher may behave out-of-domain
and cease to provide meaningful signal for the student. Quantifying the scaling properties as a function of this teacher-
student domain difference would be a valuable extension of our study.

• Our Distillation Scaling Law Equation 8 is not universal, that is, the coefficients we observe (Appendix F) are specific
to our architecture and dataset choices and are not guaranteed to generalize to other architectures and datasets. Further,
although the form of our scaling law has many desired limiting behaviors, it is not derived from first principles, as in
e.g. Paquette et al. (2024). As such, we cannot fully guarantee the correctness of the law, and suggest that a formal
derivation of the scaling law as valuable future work.
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B. Extended background
B.1. Knowledge Distillation

Bucila et al. (2006) provided strong evidence that the knowledge gained by a large ensemble of models can be effectively
transferred to a single smaller model. Later, Hinton et al. (2015) introduced knowledge distillation, where a smaller
student network learns from a larger teacher network by mimicking its softened output probabilities, improving efficiency
and generalization. Building on this, Stanton et al. (2021) studied both fidelity and student generalization, showing that
while knowledge distillation often improves generalization, it frequently fails to achieve high fidelity, as student models do
not fully match the teacher’s predictive distribution. We study fidelity in terms of calibration in Appendix E.8, and show
that when the learning signal is consistent with the calibration measure, then the student in our setup is well-calibrated both
with respect to the teacher and the actual data. Addressing this, Beyer et al. (2022) demonstrated that knowledge distillation
is most effective when the teacher is patient and consistent, providing stable targets over prolonged training to improve
student generalization and fidelity. Our Language Model (LM) setup automatically satisfies consistency: both the teacher
and student see the same data during the student’s training. However, our conclusions differ from those of Beyer et al.
(2022) in that although distilling a student for longer does improve its performance, unless the teacher is chosen perfectly,
distillation becomes less effective than supervised learning in the patient setting, see Appendix D.2 for a discussion.
Beyond empirical insights, Menon et al. (2020) established a bias-variance tradeoff for the student, quantifying how access
to teacher logits can significantly enhance learning. Meanwhile, Pareek et al. (2024) investigated self-distillation, where the
student and teacher share the same architecture and size, to assess the potential gains from repeatedly applying knowledge
distillation. While most studies assume the teacher is a larger model, recent work explores weak-to-strong generalization,
where a weaker model distills knowledge into a stronger one. This concept, introduced by Burns et al. (2024) and studied
in LMs, was further analyzed by Ildiz et al. (2024), who extended the theoretical analysis to high-dimensional data and
over-parameterized regression. Their findings show that distillation can provably outperform training with strong labels
under the same data budget but does not improve the data scaling law. Our distillation scaling law (Equation 8) confirms
this finding, which for a fixed teacher cross-entropy does not improve the scaling law compared to the supervised one in
Equation 1. Moreover, in many previous works, distillation happens with repeated data, that is, the student sees the same
data as the teacher does during its training. In our setup, we do not repeat the data between teacher training and distillation,
which allows us to examine only the effect of distillation rather than the possible diminishing returns of repeated data; see
Muennighoff et al. (2023a) for more details on the effect of repeating data.

B.2. Neural Scaling Laws

Predictable scaling trends in neural networks were first empirically observed by Hestness et al. (2017) and later by Kaplan
et al. (2020) who established empirical scaling laws for language model performance based on cross-entropy, which led to
Hoffmann et al. (2022) and the pursuit of compute-optimal training. Beyond the empirical studies, there have been many
theoretical works which provide explanations for why scaling laws should exist (Bahri et al., 2021; Paquette et al., 2024;
Havrilla & Liao, 2024). More recent works explore scaling laws across different distributions, closely related to knowledge
distillation. Hernandez et al. (2021) derived a scaling law for transfer learning, analyzing effective data transfer in low-data
regimes and diminishing returns in high-data regimes. Similarly, Barnett (2024) empirically studied pretraining on one
distribution for optimizing downstream performance on another, showing that when the transfer gap is low, pretraining is a
cost-effective strategy. Finally, Jain et al. (2024) theoretically analyze how additional data from a surrogate model affects
generalization, demonstrating that surrogate data can reduce test error—even when unrelated—due to Stein’s paradox
(Stein, 1956), with test error following a scaling law. This setup is related to tuning the coefficient λ in our case, where we
also observe a U-shape behavior depending on the teacher and student sizes (see Figure 51a). However, we are interested
in studying the effect of distillation only (λ = 1.0), which differs from their setup. While these works are closely related
to knowledge distillation—since one can compare the distribution of the teacher logits to that of the student—they do
not establish a distillation scaling law. Moreover, their setup differs from practical knowledge distillation, as it does not
involve training a new student model using a teacher but instead studies the effect of transferring training knowledge to a
downstream task. Our work is the first to determine and verify a distillation scaling law and examine the regions where
one should distill as well as the regions where supervised pretraining outperforms distillation; see Figures 6, 7, and 14 in
Appendix D.2 and Section 5.2. Finally, for improving inference cost at a given model capability, the scaling behavior of
Mixture of Experts (MoE) (Shazeer et al., 2017; Jelassi et al., 2024) have been investigated in the context of scaling laws
(Clark et al., 2022; Ludziejewski et al., 2024; Abnar et al., 2025) as one alternative to knowledge distillation.
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B.3. The Knowledge Distillation Capacity Gap

Despite extensive research on knowledge distillation, a persistent challenge is the curse of capacity gap, where a larger
teacher does not necessarily produce a superior student compared to a smaller teacher. This occurs because a large gap
in model capacity makes it harder for the student to effectively learn from the teacher’s outputs. As a result, there exists
an optimal teacher size along the scaling trajectory that maximizes student performance. Our distillation scaling law in
Equation 8 confirms this, revealing a u-shaped trend in the scaling law and validating the existence of an optimal teacher.
However, our results further indicate that the capacity gap is influenced not only by the size of the teacher but also by its
training tokens and, more generally, its loss. A theoretical analysis in the kernel regression setup (Appendix C) supports
these findings. Lukasik et al. (2022) showed that distillation gains are not uniform and can even degrade performance when
small teacher errors are amplified by the student. Similarly, Nagarajan et al. (2023) found that deviations in predictive prob-
abilities cause students to exaggerate the teacher’s confidence levels. Several works (Peng et al., 2024; Zhang et al., 2023a;
Rawat et al., 2024) observed the capacity gap in pre-training distillation for Large Language Model (LLM)s, affecting both
large-to-small and small-to-large distillation. Notably, Zhang et al. (2023a) proposed an empirical law of the capacity gap,
showing that the optimal teacher scale follows an approximately linear relationship with the student’s scale. However, our
findings suggest that scaling alone is insufficient—one must account for the complexity of the effective hypothesis space
(Equation 8) and we show that Zhang et al. (2023a) is a special case of our work when the teachers are compute-optimal
from a supervised perspective (see Section 5.3). To address this issue, various strategies have been explored. Yuan et al.
(2024) studied temperature scaling, which simplifies the teacher’s output into more learnable representations, aiding stu-
dent generalization. We analyzed the effect of temperature and learning rate in distillation (Figures 52 and 53) and found
that, contrary to existing literature, the optimal temperature is one. We hypothesize that this discrepancy arises because
previous studies used repeated tokens, whereas our setup does not involve repeated data. Additionally, Cho & Hariharan
(2019) found that early stopping of the teacher’s training mitigates the capacity gap, while Mirzadeh et al. (2020) proposed
progressive distillation, where knowledge is transferred through intermediate models to improve student learning. Further,
Fan et al. (2024) looked at the effect of knowledge distillation from distributional differences using calibration, and found
that teacher miscalibration is a primary source of poor student performance and a capacity gap. We study calibration in
Appendix E.8 and show that our teachers are well-calibrated, and that poor calibration cannot be the only source of the
capacity gap. (Lee et al., 2022) focuses on the calibration of the student rather than teacher, and develop a modified train-
ing procedure that swaps between teacher and data supervision, improving student generalization. Amara et al. (2022)
investigated further modifications of the objective, using a sample-wise adaptive balance between forward and reverse KL
divergence, reducing Expected Calibration Error (ECE) and reducing the capacity gap.

From a theoretical perspective, Harutyunyan et al. (2023) analyzed the capacity gap in distillation using supervision com-
plexity in kernel classifiers. Their findings highlight a trade-off between teacher accuracy, student margin with respect
to teacher predictions, and teacher complexity, explaining why some teachers are easier for the student to learn. Earlier,
Lopez-Paz et al. (2016) studied generalization error in distillation, proving that learning from a teacher can be beneficial
under certain conditions, particularly when the teacher’s capacity is small. Using similar techniques in LMs, Zhang et al.
(2023b) demonstrated that among students of different capacities distilled from the same teacher, smaller students suffer
from higher generalization error and lower performance, while larger teachers provide lower generalization error, reinforc-
ing the trade-off in teacher-student capacity. Our distillation scaling law (Equation 8) also confirms this trend, and we
observe the effect of capacity gap in our scaling law terms, see Section 4.3 for more details.

Foundation models were initially undertrained (Brown et al., 2020), then followed the compute-optimal scaling law care-
fully (Hoffmann et al., 2022; Pearce & Song, 2024; Besiroglu et al., 2024), and soon after started overtraining heavily
(Sardana et al., 2024; Bi et al., 2024; Hu et al., 2024; Mesnard et al., 2024; Jiang et al., 2023). The LLaMA family (Tou-
vron et al., 2023a;b; Dubey et al., 2024) and Phi line (Li et al., 2023; Abdin et al., 2024b;a) is following the same trend,
where smaller models are overtrained according to the original Chinchilla scaling laws. In all these cases, the models are
designed to be best possible foundation model that is still cheap and fast to run on lower end hardware. Besides overtrain-
ing, more recently, smaller foundation models tend to be distilled from larger models (Gunter et al., 2024; Rivière et al.,
2024; Reid et al., 2024) to further increase performance. In these cases, the large model either specifically trained with the
sole purpose of being a distillation teacher, or an existing model is re-used. In both these cases, there are no reports of how
the exact teacher size is decided when taking total compute into account. Determining the optimal allocation of compute
in distillation is one of the primary contributions of our work (see Section 5.3).
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C. Teacher Student Capacity Gaps
In this section, we examine the capacity gap in two settings: kernel regression and a synthetic example using Multi-Layer
Perceptron (MLP) for a mapping problem. The kernel regression setup provides a theoretical and analytically tractable
perspective on the capacity gap. The MLP-based synthetic example allows us to study the capacity gap in a more practical,
learnable function approximation scenario. By analyzing these two setups, we aim to better understand the fundamental
limitations of distillation when there is a significant mismatch between teacher and student capacities.

C.1. Kernel Regression

One of our main contributions is that the student loss follows a broken power law, where the transition between the two
power law regions occur when the student becomes a stronger learner than the teacher (Equation 8). This implies that
making the teacher too capable (relative to the student) reduces student performance. In this section we show how a
capacity gap provably degrades student performance in the setting of kernel regression. While simple, we believe the
underlying principle causing the student performance degradation in this case carry over to much more general settings
involving neural networks.

C.1.1. SETUP

Let H denote a Hilbert space spanned by orthonormal bases functions {ϕi}∞i=1 such that ⟨ϕi, ϕj⟩H = δij . Let f∗ ∈ H
denote the target function, identified by a set of coefficients α = {αi}∞i=1 ∈ R, ∥α∥ = M < ∞ such that:

f⋆(x) =

∞∑

i=1

αiϕi(x). (11)

Let Hm
t ,Hn

s denote the teacher and student Hilbert spaces respectively:

Hm
t = Span{ϕ1, ϕ2, ..., ϕm}, (12)

Hn
s = Span{ϕ1, ϕ2, ..., ϕn}, (13)

which are the hypothesis spaces of the teacher and student. Note that while the Hilbert space H is spanned by an infinite
orthonormal basis, the teacher and student spaces are finite and spanned by m and n basis functions respectively, where
|m− n| represents the teacher and student capacity gap.

The process of training the teacher and student models involves solving the following constrained optimization problems:

g⋆ = min
g∈Hm

t

∥g − f⋆∥H s.t ∥g∥H ≤ T, (14)

h⋆ = min
h∈Hn

s

∥h− g⋆∥H s.t ∥h∥H ≤ D, (15)

where g⋆, h⋆ are the optimal teacher and student respectively, and D ≤ T < M . Note that we assume the teacher and
student are exposed to an infinite amount of training data, hence our analysis is carried over entirely in function space.
Lemma C.1. The optimal teacher g⋆ is given by:

g⋆(x) = C(m,T )

m∑

i=1

αiϕi(x), C(m,T ) =

{
1

√∑m
i=1 α

2
i ≤ T

T√∑m
i=1 α2

i

otherwise. (16)

The teacher error e⋆teacher(m,T ) is given by:

e⋆teacher(m,T ) = ∥g⋆ − f⋆∥H =

√√√√(C(m,T )− 1)2
m∑

i=1

α2
i +

∞∑

i=m+1

α2
i . (17)

Proof. By construction we may assume the teacher model takes the form g⋆ =
∑m

i=1 βiϕi. where
√∑m

i=1 β
2
i ≤ T . We

can write the error of g⋆ using:

eteacher(m,T,β) =
∥∥∥
( m∑

i=1

(βi − αi)ϕi +

∞∑

i=m+1

αiϕi

∥∥∥
H

=

√√√√
m∑

i=1

(βi − αi)2 +

∞∑

i=m+1

α2
i . (18)
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Note that the minimizing coefficients β⋆ of Equation 18 must take the form β = Cα for some coefficient C. Considering
the norm constraint on g, the constant C takes the form in Equation 16. Plugging the resulting g⋆ into the expression for
eteacher(m,T,β⋆) completes the proof.

Notably and intuitively, teacher error decreases monotonically as m, representing the teacher model capacity, increases.

C.1.2. DISTILLING THE TEACHER

We now pick our student function h⋆ by mimicking the teacher subject to a norm constraint:

h⋆(x) = min
h∈Hn

t

∥h− g⋆∥H s.t. ∥h∥H ≤ D. (19)

Lemma C.2. Let k = min(m,n) be the smaller of the teacher and student capacities. The optimal student h⋆ is given by:

h⋆ = Q(m, k, T,D)C(m,T )

k∑

i=1

αiϕi (20)

Q(m, k, T,D) =




1 C(m,T )

√∑k
i=1 α

2
i < D

D

C(m,T )
√∑k

i=1 α2
i

otherwise.
(21)

The student error with respect to the target function is then:

estudent(m,n, T,D) = ∥h⋆ − f⋆∥H =

√√√√(C(m,T )Q(m, k, T,D)− 1)2
k∑

i=1

α2
i +

∞∑

i=k+1

α2
i (22)

Proof. The proof follows the exact same logic as in Lemma C.1. i.e, we can assume the optimal student is given by
h⋆ =

∑n
i=1 γiϕi. From the distillation loss, the optimal coefficients must match the teacher coefficients for the basis

functions {ϕi}ni=1, perhaps rescaled due to the norm constraint
√∑n

i=1 γ
2
i ≤ D. This rescaling then gives rise to the

additional Q(m, k, T,D) multiplier in Equation 21.

C.1.3. U-SHAPE IN THE STUDENT ERROR

We will prove that the map
m 7−→ estudent(m,n, T,D)

is comprised of two distinct segments: i) where the student error monotonically decreases for m < n, and ii) where it
monotonically increases for m ≥ n, establishing a U-shape in the student error echoing the trend seen in Figures 3 and 4.

Case 1: m < n. (Student error is non-increasing in m)

Claim. For 1 ≤ m < n, we have

estudent(m+ 1, n, T,D) ≤ estudent(m,n, T,D).

In words, when m < n, the error does not increase (and typically decreases) as the teacher capacity m increases.

Proof.

Let Hm,T
t ⊆ Hm

t denote the space of functions in Hm
t that are norm constrained by D. i.e:

Hm,T
t = {f ∈ Hm

t : ∥f∥H ≤ T}. (23)

Since Hm,T
t ⊆ Hm+1,T

t , it follows that g⋆m ∈ Hm+1,T
t , which implies that the teacher error cannot increase as m increases,

hence it monotonically decreases. Now, let h⋆
m denote the optimal student given the teacher g⋆m. Since D ≤ T , then for

any m < n, we can equivalently write the optimal student h⋆
m as the solution to the following optimization problem:

∀m≤n h⋆
m = min

h∈Hn
s

∥h− g⋆m∥H s.t ∥h∥H ≤ D (24)

= min
h∈Hm

t

∥h− f⋆∥H s.t ∥h∥H ≤ D, (25)
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which corresponds exactly to the objective of finding the optimal teacher with with a norm constraint set to D. Therefore,
from the fact that the teacher error monotonically decreases we can conclude that the student error monotonically decreases
as well in the regime m < n.

Case 2: m ≥ n. (Student error eventually increases in m)

Claim. For m ≥ n:
estudent(m+ 1, n, T,D) ≥ estudent(m,n, T,D).

Hence once m exceeds n the student error cannot decrease any further, the error eventually starts to rise.

Proof.

Let β⋆
m = {β1, ..., βm} denote the coefficients of the optimal teacher g⋆m. Note that in the regime m ≥ n, as long as√∑n
i=1 β

2
i ≥ D (i.e the norm of the coefficients corresponding to the basis {ϕ1, ..., ϕn} is smaller than D), we have from

Equation 21 that Q(m, k, T,D) = 1, which means that the optimal student doesnt change, hence its error remains constant.
If however

√∑n
i=1 β

2
i < D, then we have from Equation 21:

1 > Q(m, k, T,D) ≥ Q(m+ 1, k, T,D), (26)

where the second inequality becomes strict if α2
m+1 > 0. A strict inequality (i.e Q(m, k, T,D) > Q(m + 1, k, T,D))

implies the optimal student is further scaled down due to the teacher having to "spread its capacity" to additional basis
functions that are not learnable by the student, thereby strictly increasing its error. Hence for m ≥ n, we get

estudent(m+ 1, n, T,D) ≥ estudent(m,n, T,D),

demonstrating that the error increases monotonically with m once m ≥ n.

Conclusion (U-shaped trend). Combining these two cases:

{
For 1 ≤ m < n : estudent(m,n, T,D) monotonically decreasing in m,

For m ≥ n : estudent(m,n, T,D) monotonically increasing in m.

Therefore, as a function of m, the student error estudent(m,n, T,D) first decreases and then increases (for m ≥ n) (for
m ≤ n), giving a u-shape in student error due to a capacity gap between the teacher and the student.
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Figure 10. Distillation in kernel regression. We randomly sample the α = {α1, ..., α1000} coefficients of the target function uniformly
in the range [−1, 1]. We fix T = 5, D = 4.5 and compute the optimal student and teacher errors according to Lemmas C.1 and C.2 for
various values of n (dashed curves), and for m ∈ [1...1000]. The student error exhibits a U shaped error curve as predicted, where the
error starts to increase when m ≥ n. The black solid line indicates the teacher error, which always decreases with increasing m.
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We present an empirical verification of these conclusions in Figure 10.

The above theoretical analysis points to an intuitive interpretation of the potentially adverse effect of a large teacher-student
capacity gap; the degradation in student performance is due to the teacher learning basis functions that are unreachable
by the student, at the expense of basis functions that are reachable by the student. In the following we provide empirical
evidence in support of this picture in a controlled yet more realistic setting.

C.2. MLPs on the Mapping Problem

C.2.1. PROBLEM DEFINITION

Here we show a synthetic setting which exhibits the U-shape phenomenon. Matching the kernel regression analysis (Ap-
pendix C.1), we find that the synthetic problem must include a class of problems that are easy for the student to learn, and
ones that are harder, in order for the U-shape to appear.

The problem setting is the Mapping Problem, and is similar in spirit to Pointer Value Retrieval (Zhang et al., 2021), Here,
the input is composed of small integers in {0,1,2}. The label for each sample is given by the code below, which shows the
two cases: i) one where the label is simply given by a one-hot position, and ii) one where the label is given by the location
of a matching element in the context portion of the input.

def find(vector, value):
"""Find locations of value in vector."""
return np.where(vector == value)[0]

def remove(vector, value):
"""Find value from vector."""
return np.delete(vector, find(vector, value))

def label(vector: np.ndarray, num_classes: int) -> np.ndarray:
"""Return the label in [0, num_classes) for vector."""
assert len(vector) == 2 * num_classes
one_hot = vector[num_classes:]
context = vector[:num_classes]
i = find(one_hot, 1)
if context[i] == 0:

return i
else: # remapping

c = context[i]
return remove(find(context, c), i)

Examples:
-----------------------------
2020210001000000, label = 1

context [2 0 2 0 2 1 0 0]
one-hot [0 1 0 0 0 0 0 0]

-----------------------------
1210120000000100, label = 2

context [1 1 2 0 1 2 0 0]
one-hot [0 0 0 0 0 1 0 0]

-----------------------------
0122221201000000, label = 6

context [0 1 2 2 2 2 1 2]
one-hot [0 1 0 0 0 0 0 0]

-----------------------------

C.2.2. EXPERIMENTAL FINDINGS

We train MLPs with two hidden layers of equal width, all non-linearities are Rectified Linear Units (ReLUs). Teachers and
students of different sizes are produced by varying the hidden layer width only.

All model are trained with Adam (Kingma & Ba, 2015) using a peak learning rate of 3 × 10−4, a single cycle cosine
learning rate schedule with a linear warmup of 5% of the total training steps. A batch size of 512 is used for all models.
Training samples are never repeated. Unless explicitly stated, model are trained on 500× 512, or 20N samples, where N
is the number of model parameters, whichever is larger.

In Figure 11, we look at varying the size of the teacher. For the width 256 model, student performance improves as the
teacher size increases to a point, and then student performance worsens. This is observable in both the student cross-entropy
(Figure 11a) and accuracy (Figure 11b). Aligning with theory and large-scale experiments, the student cannot learn if it
is too small, and learns to match the teacher model when the student is large enough. In the intermediate regime, where
distillation is often used, we see an optimal teacher size and a capacity gap phenomenon.
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Figure 11. Student performance when varying teacher width. (a) Student cross-entropy as teacher width dffn is varied. (b) Student
accuracy as teacher width dffn is varied. Bands show the (25%,75%) values across four trials.

In Figure 12, a similar effect can be seen, when a large teacher (dffn = 512) is trained with on different amounts of data.
This observation aligns with the idea that it is the teacher’s completeness in modeling the problem that eventually harms
the performance of a student with lesser capacity, and not only the teacher size.
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Figure 12. Student performance when varying teacher training data. (a) Student cross-entropy as teacher training data is varied. (b)
Student accuracy as teacher training data is is varied. Bands show the (25%,75%) values across four trials.

D. Distillation scaling law applications (additional results)
In this section, we present results referenced in Section 5. We explore the best-case scenario for distillation under fixed
student tokens or compute, as well as under fixed teacher size or compute, while accounting for teacher inference. These
results provide further insights into the optimal distillation strategies in different resource-constrained settings.

D.1. Experimental differences resolving the apparent contradiction with patient teachers

Beyer et al. (2022) showed in computer vision that a good teacher is:

1. Patient: Distillation works best when training for a large number of epochs, and

2. Consistent: The teacher and the student see the same views of the data under an augmentation policy.

Our setting automatically satisfies consistency as there is no augmentation policy. There is a remaining question about
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patience, which in our scenario corresponds to the large DS limit. We observe that for a given student size:

1. If the teacher is optimally chosen for the student, distilling on a large number of tokens produces the same result as
training the model in a supervised way on the same number of tokens (Appendix E.6).

2. Otherwise supervised learning outperforms distillation (Section 5.3).

The second statement implies that the student should not be trained for too long, appearing to contradict patient teachers.

To resolve the contradiction, first we note that the modes in Beyer et al. (2022) are trained on a large, diverse dataset, e.g.
ImageNet21k (Kolesnikov et al., 2020) and then fine-tuned on target datasets (e.g. Flowers102 (Nilsback & Zisserman,
2008), or ImageNet1k (Deng et al., 2009)). Students are distilled on the target datasets and only access the teacher’s
training distribution indirectly, i.e.

1. The students in Beyer et al. (2022) do not see the teacher training distribution directly, whereas ours do.

2. There is no supervised baseline where a supervised model has access to both ImageNet21k and the target dataset.

The absence of a supervised baseline means that Beyer et al. (2022) were unable to observe the point at which supervised
learning becomes preferred to distillation as a function of compute or training data. This was not the focus of their work.

In our setting, we do have a supervised baseline, and see that at some amount of compute, supervised learning becomes
more efficient than (or equally efficient as) distillation, leading us to upper-bound the length one should distill for. We
also do see that distilling for longer improves the distilled model performance, i.e. patient teaching does work. However,
we additionally note that patient teaching can be compute-suboptimal compared to supervised learning, depending on the
specific setting (see Appendix D.4).

Additional differences in our experimental setups beyond the ones mentioned above, are summarized in Table 4.

Table 4. Experimental setting differences between Beyer et al. (2022) and ours.

Component Beyer et al. (2022) Ours

Data repetitions Many repetitions Minimal repetitions
Data diversity Low number of unique tokens Large number of unique tokens
Domain Vision Language
Objective Fewer categories, more unimodal Many categories, highly multimodal
Architecture Different computer vision architectures Maximal Update Parameterization (µP) optimized

homogeneous transformers

D.2. Fixed tokens or compute (best case)

Distillation can outperform supervised learning given enough teacher training tokens or compute. As shown in
Figures 13a and 13b, when the teacher size, student size, and number of student tokens are held constant, increasing
the number of teacher training tokens makes distillation more favorable than supervised learning. This advantage arises
because the teacher, with access to more training tokens, can better learn the approximation of the language distribution. As
a result, the teacher’s learned distribution become more informative for the student to follow, thus improving the student’s
performance. Note that for a fixed student size and compute, the teacher must be sufficiently large and well-trained;
otherwise, supervised learning will outperform distillation. Without adequate teacher size or training, the student may not
benefit from the distillation process, leading to inferior performance compared to direct supervised learning.

We also see that the scatter data matches up well with the contour colors, despite these contour beings a difference of two
scaling laws, providing a verification of our setup.

Supervised learning always outperforms distillation given enough student compute or tokens. The trend observed
in Figure 14 mirrors that of Section 5.1. It demonstrates that, for a fixed teacher size and compute, supervised learning can
outperform distillation when the student’s compute is sufficiently large. With enough resources allocated to the student,
it can learn more effectively from the data directly, making distillation less advantageous in comparison. This advantage
only happens at a compute budget that grows with student size.
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Figure 13. IsoFLOP Teacher Contours with Fixed M students. (a) For a given teacher size NT , for a given teacher token DT , what
is the difference between the loss achieved by distillation and supervised learning. Blue indicates distillation outperforms supervised
learning, and red indicates when supervised learning outperforms distillation. The white horizontal dashed line indicates the student size.
(b) For a given teacher size NS , for a given teacher compute budget, what is the difference between the loss achieved by distillation and
supervised learning. Blue indicates distillation outperforms supervised learning, and red indicates when supervised learning outperforms
distillation. The white horizontal dashed line indicates the student size.
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Figure 14. Fixed M Teacher Contours with IsoFLOP students (compute). For a given student size and student compute budget, the
difference between the loss achieved by distillation and supervised learning. Blue indicates distillation outperforms supervised learning,
and red indicates when supervised learning outperforms distillation. The white horizontal dashed line indicates the teacher size.
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D.3. Fixed size or compute (teacher inference)

Fixed student size For a fixed student size, as the number of student tokens increases, the optimal teacher cross-entropy
decreases slightly; see Figure 15. This observation highlights an asymmetry between the growth of student size and student
tokens (or their rates in the scaling law), as the behavior here differs from that observed in Section 5.1. Notably, when
the student size is sufficiently large, such as NS = 30B, increasing the student tokens initially leads to a decrease in the
teacher’s loss, followed by a saturation point and a slow decrease in the optimal teacher’s loss.
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Figure 15. Student performance given a teacher varying distillation tokens. For four distillation student sizes NS ∈
{1B, 3B, 10B, 30B} the validation loss achieved by a students distilled on DS ∈ [250B, 16T ] tokens under a teacher with loss
LT ∈ [E, 2.5]. The red line indicates the value of the teacher loss resulting in the best performing student, and the vertical dashed line
indicates the number of tokens at which supervised pretraining outperforms distillation.

Fixed compute budget Given an inference budget NS , a set of teachers {(L(i)
T , N

(i)
T )}ni=1 and a total compute budget

CTotal, the number of distillation tokens is determined from Equation 9

DS = CTotal/(3F (NS) + δT−LogitsF (NT )), (27)

where F (N) is the forward Floating Operations (FLOPs) per token of a model of size N (see Appendix H). If δT−Logits = 0
then there is no price to pay for a larger teacher, and the conclusions are identical to those of the fixed token analysis of
Section 5.2. In the worst case scenario, δT−Logits = 1, then using a larger teacher will mean fewer distillation tokens are
available for the student. Due to the capacity gap phenomenon, at small compute budgets, this means it is actually better to
use a large weak teacher rather than a large strong teacher. Once compute is sufficient to allow enough distillation tokens,
a stronger teacher can be used for all student sizes (see Figure 16).
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Figure 16. Fixed compute distillation strategy. The student performance obtained for four total compute budgets CTotal ∈
{1021, 1022, 1023, 1024}FLOPs and four student sizes NS ∈ {1B, 3B, 10B, 30B} under a teacher of size NT ∈ [1B, 1T ] and
teacher loss LT ∈ [E, 2.5]. The red line indicates the value of teacher loss L∗

T (NT ) that results in the best student performance for each
teacher size NT .
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Table 5. Scenarios considered in our scaling law applications. Same as Table 2.

Compute Scenario δLgtT δPre
T Description

Best case (fully amortized teacher) 0 0 The teacher produces no additional FLOPs and so
we are free to choose the teacher L∗

T that mini-
mizes the student cross-entropy.

Teacher inference 1 0 We don’t account for the teacher cost because the
teacher already exists, or we intend to use the
teacher as e.g. a server model. We still need to
pay to use it for distilling a student.

Teacher pretraining 0 1 The teacher needs training, but we store the logits
for re-use, either during training, or after training
for distilling into sufficiently many students.

Teacher pretraining + inference 1 1 The teacher needs training and we pay for distill-
ing into one student, the worst case scenario.

D.4. Compute optimal distillation

D.4.1. SETUP

The solutions resulting in the losses give guidance on how to scale depending on the use case, and are the result of
constrained optimization

D∗
S , N

∗
T , D

∗
T = argmin

DS ,NT ,DT

LS(NS , DS , NT , DT ) s.t. FLOPs(NS , DS , NT , DT ) = C, (28)

where LS(NS , DS , NT , DT ) is the distillation scaling law (Equation 8), and

FLOPs(NS , DS , NT , DT ) ≈ 3F (NS)DS︸ ︷︷ ︸
Student
Training

+F (NT )(δ
Lgt
T DS︸ ︷︷ ︸
Teacher
Logits

+ δPre
T 3DT︸ ︷︷ ︸
Teacher
Training

) (29)

is the total number of floating operations performed in the entire distillation setup. F (N) is the forward FLOPs per
token of a model of size N (see Appendix H), and δLgtT , δPre

T ∈ [0, 1] indicate if we account for the cost of teacher
logit inference for the student targets and teacher pretraining cost in the total compute budget. For convenience, we
restate our compute scenarios of interest in Table 5). Constrained numerical minimization using Sequential Least SQuares
Programming (SLSQP) (Kraft, 1988) in SciPy (Virtanen et al., 2019). We allow numerical solutions for model sizes
and tokens NT , DS , DT ∈ [1M, 100P ]. While this token upper-limit is larger than available resources (Epoch AI, 2023),
it simplifies discussions when comparing to supervised learning at large compute budgets, which otherwise, for smaller
students, would only by using a fraction of the available compute.

We begin by looking at the student cross-entropy achievable in each compute scenarios alongside the corresponding teacher
cross-entropies in Appendix D.4.2. We then investigate the compute-optimal distillation configurations for each sce-
nario that produce those cross-entropies. We look at best case distillation in Appendix D.4.3, teacher inference in Ap-
pendix D.4.4, teacher pretraining in Appendix D.4.5, and teacher pretraining + inference in Appendix D.4.6. Finally, to
aid comparisons across methods, we present the token and parameter configurations for all methods in Appendix D.4.7 and
Appendix D.4.8 respectively. For completeness, in the following sections, some of the findings of Section 5.3 are restated.

D.4.2. CROSS-ENTROPY

In Figure 17 we show the student cross-entropies achieved in the compute optimal case for each scenario in Table 5, and
the teacher cross-entropies that enable those student cross-entropies in Figure 18.

Distillation and supervised learning produce the same student at large compute. The first thing to note in Figure 17
is that at low compute, in the best case and teacher inference scenarios, distillation outperforms supervised learning,
consistent with our expectations from distillation and the existing literature (see Appendix B.1). However, once enough the
compute is large enough6, distillation and supervised learning produce models with the same cross-entropy, i.e. in general,

6The level of compute at which this happens is larger for larger models, see Figure 17 for specific values.
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distillation does not allow us to produce better models that supervised learning does, however, distillation does produce
better models than supervised learning with modest resources. This behavior is consistent with the asymptotic analysis in
Appendix E.6, and can be understood through noting that although distillation modifies the learning process the student
undergoes, distillation does not alter the hypothesis space of the student, which is tied to the student size NS , is the same
hypothesis space in the supervised and distillation settings, and can be explored in the limit of infinite compute or data.
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Figure 17. Compute optimal distillation student cross-entropies. For eight student sizes, the optimal student validation cross-entropy
L∗

S in each of the distillation scenarios considered as the total compute is varied.

The compute at which distillation and supervised learning produce similar models grows with student size. Con-
tinuing the previous observation, we see in Figure 17 that supervised cross-entropy approaches the best case and teacher
inference student cross-entropies at a value of compute which increases with compute, meaning that larger students ben-
efit from distillation for larger compute budgets than supervised learning. This implies that if your target student size is
small and your compute budget is large, then supervised learning is more likely to be beneficial than if your target student
size is larger. The phenomenon happens because larger supervised models saturate in performance at larger values of D
(Equation 1), and distillation accelerates progress towards this saturation with the correct choice of teacher (Equation 8),
with more capable teachers producing more gains per token.

Including teacher training in compute produces student cross-entropies higher than in the supervised setting. In
Figure 17 supervised cross-entropy is always below the teacher pretraining and teacher pretraining + inference scenarios,
except at very large compute budgets, when supervised learning and these distillation scenarios produce similar student
cross-entropies. This means that if your only aim is to produce the model of a target size with the lowest cross-entropy
and you do not have access to a teacher, then you should choose supervised learning, instead of training a teacher and then
distilling. Conversely, if the intention is to distill into a family of models, or use the teacher as a server model, distillation
may be more computationally beneficial than supervised learning. This finding aligns with expectations, the alternative
implies distillation can outperform direct maximum likelihood optimization given fixed compute.

The optimal teacher cross-entropy decreases with increasing total compute. As shown in Figure 18, the optimal
teacher cross entropy loss has a decreasing trend with respect to the total compute. However, in the best case scenarios, at
low compute for larger student, where the number of student tokens is lower than the Chinchilla rule of thumb, an inflection
point happens in optimal teacher compute.

We now turn to investigating the optimal distillation configurations that achieve these student cross-entropies.
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Figure 18. Compute optimal distillation teacher cross-entropies. For eight student sizes, the optimal teacher validation loss L∗
T

resulting in lowest student validation loss L∗
S in each of the distillation scenarios considered (Table 5) the total compute is varied.

D.4.3. DISTILLATION (BEST CASE)

In the distillation (best case) scenario, δLgtT = δPre
T = 0, which means that we only account for compute associated with

the standard supervised learning case

FLOPs(NS , DS , NT , DT ) ≈ 3F (NS)DS︸ ︷︷ ︸
Student
Training

. (30)

We call this best case as the scenario reflects a freedom to choose the best distillation setting for a given student size NS ,
with all of the compute being put into training the student for as long as possible (maximal DS). In this sense we can
consider this the upper bound in performance for distillation in our experimental setting.
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Figure 19. Compute optimal configuration contours for distillation (best case). The compute optimal quantities (D∗
S , N∗

T , D∗
T )

giving rise to the student cross entropies for best case in Figure 17 for a range of student sizes. (N∗
T , D

∗
T ) are the supervised compute

optimal combination giving rise to L∗
T in Figure 18.

This scenario represents the setting where a teacher already exists, or we will use the teacher for another purpose, for
example a server model. In these scenarios, we do not need to worry about the teacher pretraining cost. Additionally, this
teacher may be used to produce the logits for many different students, or we may have saved the logits from the teacher
during its training. In these cases, the cost for producing the student logits can also be ignored.

The optimal quantities (D∗
S , N∗

T , D∗
T ) giving rise to the cross entropies in Figure 17 are shown in Figures 19 and 20.

In the best case scenario, L∗
T is determined, however N∗

T and D∗
T are not determined because they do not enter into the

compute constraint, yielding a one-dimensional family (NT (L
∗
T , DT ), DT ) of valid solutions to the minimization problem

(Equation 28). To provide some guidance for producing L∗
T , in Figure 18 we present the supervised compute optimal

(NT (L
∗
T , DT ), DT ), i.e. the combination that minimizes FLOPs ∝ F (NT )DT subject to L(NT , DT ) = LT .
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Figure 20. Compute optimal configurations for distillation (best case). For eight student sizes, the compute optimal quantities (D∗
S ,

N∗
T , D∗

T ) giving rise to the student cross entropies for best case in Figure 17. (N∗
T , D

∗
T ) are the supervised compute optimal combination

giving rise to L∗
T in Figure 18. This is a one-dimensional slice of Figure 19.

In this scenario, all the compute goes into student tokens, and so in Figure 20 we see optimal student tokens D∗
S increases

with compute at the same rate as we could for the supervised model, which is higher for smaller students. The optimal
teacher parameters N∗

T and tokens D∗
T move together to produce the L∗

T in Figure 18. Again, the exact values of N∗
T , D

∗
T

in Figure 20 represent the supervised compute optimal solution for producing the L∗
T , but are not the only solution in this

compute scenario, since N∗
T , D

∗
T are not uniquely determined by the compute constraint.

D.4.4. DISTILLATION (TEACHER INFERENCE)

In the distillation (teacher inference) scenario, δLgtT = 1 , δPre
T = 0, which means that we account for compute associated

with the standard supervised learning case as well as the cost for producing the logits for the student

FLOPs(NS , DS , NT , DT ) ≈ 3F (NS)DS︸ ︷︷ ︸
Student
Training

+F (NT )DS︸ ︷︷ ︸
Teacher
Logits

. (31)

This scenario represents the setting where a teacher already exists, but logits for the distillation still need producing. The
optimal quantities (D∗

S , N∗
T , D∗

T ) giving rise to the cross entropies in Figure 17 are shown in Figures 21 and 22.
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Figure 21. Compute optimal configuration contours for distillation (teacher inference). The compute optimal quantities (D∗
S , N∗

T ,
D∗

T ) giving rise to the student cross entropies for teacher inference in Figure 17.

The teacher should be overtrained. In the teacher inference scenario, D∗
T does not contribute directly to compute but

instead indirectly N∗
T subject to L∗

T . To minimize N∗
T at a given L∗

T , the solution is to maximize D∗
T as is seen in Figure 22;
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Figure 22. Compute optimal configurations for distillation (teacher inference). For eight student sizes, the compute optimal quanti-
ties (D∗

S , N∗
T , D∗

T ) producing the student cross entropies for teacher inference in Figure 17. This is a one-dimensional slice of Figure 21.

D∗
T takes the largest value allowed in our numerical optimization, 1017 tokens. Although not surprising, this demonstrates

the benefit of producing overtrained teachers, instead of taking the tempting strategy of using compute optimal teachers
followed by a long distillation process into a smaller student model.

As compute is increased, relatively less should be spent on student training, and more on teacher logit inference.
The compute allocations resulting from the optimal combination are shown in Figure 23. We see that in all cases, the
student training term (blue) decreases as compute increases, whereas the teacher logits (orange) increases. This happens
because as compute increases: i) optimal student tokens increases at a rate approximately independent of compute, ii) the
teacher size increases with compute to provide a stronger signal, while iii) the student size is fixed (see Figure 22).
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Figure 23. Compute optimal allocations for distillation (teacher inference). For eight student sizes, the compute optimal allocations
corresponding to the terms in Equation 29 for the compute optimal values in Figure 22.
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D.4.5. DISTILLATION (TEACHER PRETRAINING)

In the distillation (teacher pretraining) scenario, δLgtT = 0 , δPre
T = 1, which means that we account for compute associated

with training the teacher, in addition to the standard training cost of the student, but not the cost of producing the logits

FLOPs(NS , DS , NT , DT ) ≈ 3F (NS)DS︸ ︷︷ ︸
Student
Training

+3F (NT )DT︸ ︷︷ ︸
Teacher
Training

. (32)

This scenario represents when we want to figure out which teacher to produce to distill into sufficiently many different
students, storing the teacher logits for reuse, effectively ammortizing the cost of producing the logits. Here, contrary to the
previous two scenarios (Appendices D.4.3 and D.4.5), the teacher size NT and teacher tokens DT contribute directly to the
compute accounting (Equation 32). The optimal quantities (D∗

S , N∗
T , D∗

T ) giving rise to the cross entropies in Figure 17
are shown in Figures 24 and 25.
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Figure 24. Compute optimal configuration contours for distillation (teacher pretraining). The compute optimal quantities (D∗
S ,

N∗
T , D∗

T ) giving rise to the student cross entropies for teacher pretraining in Figure 17.
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Figure 25. Compute optimal configurations for distillation (teacher pretraining). For eight student sizes, the compute optimal
quantities (D∗

S , N∗
T , D∗

T ) giving rise to the student cross entropies for teacher pretraining in Figure 17. This is a one-dimensional size
of Figure 24.

The compute optimal teacher for distillation is a supervised compute optimal teacher. In Figure 25 we see that the
MT ≡ DT /NT ratio of the teacher is constant for all values of compute, and can be compared to the ratio in Figure 19.
This can be understood as there is no inference cost to pay for making the teacher large; we are only minimizing the training
compute budgets of two models, and the most efficient way to produce a teacher with a given cross-entropy LT is a teacher
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that is compute-optimal in a supervised sense. Note that this conclusion is the opposite to the finding in Appendix D.4.4.
There, the inference is expensive, and so the teacher should be overtrained. Here, teacher training is expensive, so teacher
training should be compute optimal.

As compute is increased, relatively less should be spent on teacher training, and more on student training. In
Figure 26 we see the compute allocations for the configurations shown in Figure 25, and see that student training relative
compute (blue) increases with increasing compute budget, while the teacher training (green) decreases with increasing
compute budget. This happens because, as in all compute scenarios, with increasing compute, the optimal student tokens
N∗

S increases (Figure 25). Teacher size and tokens are also increasing with increasing compute, providing a stronger signal
for the student with more tokens to learn. However, this increase in teacher size and tokens plateaus, while the student
tokens continues to increase. This is because here the teacher is compute optimal, and so the amount of compute needed
to improve the learning signal for the student is much less than the amount of compute needed to train the student for to
make use of that signal, due to the stronger diminishing returns with respect to DS at a fixed NS (Equation 8).
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Figure 26. Compute optimal allocations for distillation (teacher pretraining). For eight student sizes, the compute optimal allocations
corresponding to the terms in Equation 29 for the compute optimal values in Figure 25.

D.4.6. DISTILLATION (TEACHER PRETRAINING + INFERENCE)

In the distillation (teacher pretraining + inference) scenario, δLgtT = δPre
T = 1, which means that we account for all costs

associated with distilling a single student

FLOPs(NS , DS , NT , DT ) ≈ 3F (NS)DS︸ ︷︷ ︸
Student
Training

+F (NT )DS︸ ︷︷ ︸
Teacher
Logits

+3F (NT )DT︸ ︷︷ ︸
Teacher
Training

. (33)

This scenario can be thought of as the compute optimal worst case scenario for distillation, i.e. one teacher is trained only
for the purposes of one student. As in Appendix D.4.4, teacher size NT and teacher tokens DT contribute directly to the
compute accounting (Equation 33). The optimal quantities (D∗

S , N∗
T , D∗

T ) giving rise to the cross entropies in Figure 17
are shown in Figures 27 and 28.

Compute optimal teachers should be used for lower compute budgets and overtrained teachers should be used for
larger compute budgets. In Figure 28 we see a teacher configuration that interpolates between the teacher pretraining
(Appendix D.4.5) and teacher inference (Appendix D.4.4) compute scenarios. At low compute, the optimal number of
student tokens D∗

S is not too large, this means there is little penalty to increasing the teacher size, resulting in an approxi-
mately supervised compute-optimal teacher given a teacher compute budget. Once the optimal number of student tokens
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becomes higher than the optimal number of teacher tokens, there is significant penalty to increasing the teacher size. At
this point, the teacher solution starts to become the overtrained solution seen in teacher inference, the optimal teacher
tokens continue to increase polynomially, but this is not followed with an increase in the teacher size. For sufficiently high
compute, corresponding to a large number of student distillation tokens, the compute penalty for teacher size is so large
that optimal teacher size decreases with compute.
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Figure 27. Compute optimal configuration contours for distillation (teacher pretraining + inference). The compute optimal quan-
tities (D∗

S , N∗
T , D∗

T ) giving rise to the student cross entropies for teacher pretraining + inference in Figure 17.
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Figure 28. Compute optimal configurations for distillation (teacher pretraining + inference). For eight student sizes, the compute
optimal quantities (D∗

S , N∗
T , D∗

T ) giving rise to the student cross entropies for teacher pretraining + inference in Figure 17. This is a
one-dimensional size of Figure 27.

For small students, as compute grows, more should be spent on training the student and producing logits for the
student. In Figure 29 we see the compute allocations for the configurations shown in Figure 28. Compute optimal smaller
models tend to have smaller teachers, and optimal teacher tokens always grow at a slower rate than student tokens, and
so teacher the training cost is relatively small. As compute grows, the student is distilled on more tokens, and the teacher
always becomes slightly larger than the student, which gives rise to most compute being allocated to standard student
training compute component and producing the logits for this training.

For large students, as compute grows, more should be spent on training the teacher, until a transition happens
where more should be spent on training the student and producing logits for the student. The explanation for the
phenomenon is as above, except that the larger students need a more capable teacher to learn from as compute grows, and so
initially compute needs to bused to produce the teachers required. After a certain amount of compute, the large number of
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optimal student distillation tokens moves the optimal solution towards an overtrained teacher scenario, and more compute
being allocated to student training and logit production.
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Figure 29. Compute optimal allocations for distillation (teacher pretraining). For eight student sizes, the compute optimal allocations
corresponding to the terms in Equation 29 for the compute optimal values in Figure 28.

D.4.7. OPTIMAL TEACHER TRAINING AND STUDENT DISTILLATION TOKENS

To aid in comparing the different compute strategies presented in Appendices D.4.3 to D.4.6, we now present each compute
optimal value for all strategies, including supervised. Here, we show compute-optimal distillation student tokens D∗

S in
Figure 31 and compute-optimal teacher pretraining tokens D∗

T in Figure 31.
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Figure 30. Compute optimal distillation student tokens. For eight student sizes, the compute optimal student tokens D∗
S giving rise

to the student cross-entropies for all compute scenarios, including supervised.

In all scenarios, student tokens should be increased with compute similar to in the supervised case. We see in
Figure 30 that, as in Chinchilla (Hoffmann et al., 2022), supervised tokens are increased polynomially with compute. Dis-
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tillation (best case) follows the exact same allocation, as does distillation (pretraining) with asymptotically large compute.
All other methods follow the same increase rate, but with scenario-dependent offsets.
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Figure 31. Compute optimal distillation teacher tokens. For eight student sizes, the compute optimal teacher tokens D∗
T giving rise

to the student cross-entropies for all compute scenarios.

Optimal teacher tokens interpolate between scenarios based on compute allocation. In Figure 31 we can see more
clearly the interpolation behavior discussed in Appendix D.4.6. At low compute, teacher pretraining and teacher pre-
training + inference share optimal solutions because the number of student tokens N∗

S is small. At high compute, teacher
pretraining + inference approaches teacher inference, while teacher pretraining approaches best case, as N∗

S is large, and
costs associated with teacher pretraining become less important.

D.4.8. OPTIMAL TEACHER SIZE
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Figure 32. Compute optimal distillation teacher size. For eight student sizes, the compute optimal teacher size N∗
T giving rise to the

student cross-entropies for all compute scenarios.

Optimal teacher size interpolate between scenarios based on compute allocation. As in the optimal teacher tokens
N∗

T in Figure 31, the same mechanism causes interpolation behavior in optimal teacher size (see Figure 32).
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D.5. Compute and data efficiency gains for distillation compared to supervised learning

In this final section, we use the compute-optimal strategies developed through Appendices D.4.3 to D.4.6 and understand,
for each distillation compute scenario (Table 5) if it is more compute and/or data efficient to use distillation compared to
supervised learning in order to produce a desired model (i.e. of a given size NS with a desired performance, measured in
cross-entropy LS).

In Figure 33 we show the amount of compute needed to distill a student of a given size to a given cross-entropy as a multiple
of the compute that supervised learning needs to produce the same result. We do this for for each of the distillation compute
scenarios, whose optimal configurations are given in Appendices D.4.3 to D.4.6. In Figure 34 we show the same, except we
show the number of tokens needed to distill a student of a given size to a given cross-entropy as a multiple of the number
of tokens that supervised learning needs to produce the same result. Our distillation token accounting depends on compute
scenario:

DDist. = DS + δPre
T DT , (34)

i.e. we only count teacher tokens if the teacher pretraining cost is also included in the compute cost (see Equation 29).
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Figure 33. Compute optimal distillation compute ratios. For eight student sizes, the amount of supervised compute needed to produce
a student of the indicated size and cross-entropy. The horizontal dashed line indicates the break-even point, when doing supervised lean-
ing is as computationally efficient as the corresponding distillation compute scenario. Values greater (less) than one indicate distillation
is more (less) expensive than supervised learning for producing a model of the indicated size and cross-entropy. The vertical dashed line
indicates the lowest cross-entropy achievable by that student.

When teacher training is discounted, distillation is often more efficient. In Figure 33, the base case (blue) and teacher
inference (orange) compute scenarios are below the grey dashed line for cross-entropies slightly above the lowest possible
cross-entropy (vertical grey dashed line), meaning less compute is needed for distillation than supervised learning. This
compute efficiency translates into data efficiency (see Figure 34).

To produce the strongest student possible, supervised learning is more efficient. In Figures 33 and 34, the base
case (blue) and teacher inference (orange) compute scenarios attain values larger than one as the target cross-entropy LS

approaches the limiting value L(N = NS , D = ∞) for each student size NS , (vertical dashed line). This suggests i)
the existence of a more efficient training strategy where distillation is used as an initial training stage, with a transition to
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supervised learning based on a token or cross-entropy threshold, and ii) potentially increased importance of data mixtures
(λ ≤ 1, see Appendix G.1) when distilling with significant token and/or compute budgets. We leave this for future work.

In situations where teacher training is required, supervised learning is more efficient. As observed in Ap-
pendix D.4.2, for all student sizes, if teacher pretraining is included in the computational cost of producing a student,
supervised learning is always more efficient than distilling. This can be seen from Figure 33 as the teacher pretraining
(green) and teacher pretraining + inference (red) compute scenarios are above the grey dashed line, which means more
compute is needed for distillation than supervised learning in those compute scenarios. This compute efficiency translates
into data efficiency (see Figure 34).
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Figure 34. Compute optimal distillation data ratios. For eight student sizes, the number of tokens compute needed to produce a
student of the indicated size and cross-entropy. The horizontal dashed line indicates the break-even point, when doing supervised
leaning is as data efficient as the corresponding distillation compute scenario. Values greater (less) than one indicate distillation is
more (less) expensive than supervised learning for producing a model of the indicated size and cross-entropy. The vertical dashed line
indicates the lowest cross-entropy achievable by that student.

Distillation is more efficient for larger students. In Figure 33 we see in the pretrain + inference scenario, producing
a NS =500M student with a cross-entropy of 2.4 has roughly 3/4 the compute cost of producing the same model with
supervised learning, whereas producing a NS =10B student with a cross-entropy of 2.2 has roughly 1/2 the compute cost
of producing the same model with supervised learning. In terms of data (Figure 34), the 500M and 10B configurations
use roughly 2/3 and 1/2 the number of tokens of their supervised counterparts respectively. The efficiency gains from
distillation are potentially greater for larger students when considering compute or data.

E. Additional Results
In this section, we provide an extensive list of studies, including downstream evaluations of distillation. We cover the
models used as teachers, examine the Kullback-Leibler Divergence (KLD) between teacher and student in fixed token-to-
size ratios, and present supplementary materials to Section 4.1. Additionally, we investigate the limiting behavior of our
scaling law, weak-to-strong generalization, and conduct a model calibration study to assess fidelity. These analyses offer a
comprehensive view of the factors influencing distillation performance and the behavior of our proposed scaling laws.
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E.1. Downstream evaluations

In all settings, we optimize for and predict validation cross-entropy. To confirm that the validation cross-entropy is a good
proxy for the downstream evaluation that is the ultimate interest, in Figure 35 we show evaluations for the supervised
teachers and the distilled students on downstream evaluation tasks. ARC Easy (Bhakthavatsalam et al., 2021), ARC
Challenge (Bhakthavatsalam et al., 2021), HellaSwag (Zellers et al., 2019), Piqa (Bisk et al., 2020), Sciq (Welbl et al.,
2017), WinoGrande (Sakaguchi et al., 2021) and Lambada OpenAI (Paperno et al., 2016) are zero-shot tasks. TriviaQA
(Joshi et al., 2017) and WebQS (Berant et al., 2013) are one-shot tasks. TriviaQA evaluation is on the larger and more
challenging Web split. CoreEn is the average of both the zero-shot and one-shot tasks.

We have included GSM8K (Cobbe et al., 2021) and MMLU (Hendrycks et al., 2021b;a). GSM8K is used in an 8-shot
chain of thought setting, following LLaMA (Touvron et al., 2023a;b; Dubey et al., 2024). MMLU is used in a five-shot
setting. These perform near-random for most of the models, and only show a slightly upwards trend for models with low
cross-entropy. This near-random performance is due to the use of the C4 dataset in training, and we note that we do not
aim for competitive downstream evaluation results.

Finally, we note that the relation between cross-entropy and downstream performance for the supervised and distilled
models is similar. We suspect this is because the student behaves like a low variance expectation of a biased teacher in the
KL-matching distillation scenario (Menon et al., 2020), and we anticipate that the relationship between cross-entropy and
downstream performance may be different for alternative distillation strategies.

All models are evaluated using an internal version of the open-source lm-evaluation-harness (Gao et al., 2024).
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Figure 35. Model downstream evaluations. Each scatter point is a different model. The circular points correspond to distilled students,
whose color indicates the cross-entropy of the teacher used for that distillation process. The red crosses correspond to the supervised
models (i.e. the teachers). For a discussion of the individual metrics and datasets, see Appendix E.1.

47



Distillation Scaling Laws

E.2. Teachers used in distillation

In Figure 36 we show the cross-entropies of the models used as teachers in Section 4.2, and for fitting the supervised scaling
law: i) eleven of fixed-M ratio models following the Chinchilla rule of thumb D/N = M∗ ≈ 20 (Hoffmann et al., 2022),
ii) six models on D = 512B tokens (Figure 36a), and iii) four IsoFLOP profiles (Figure 36b). Together this produces 74
runs corresponding to tuples of (N,D,L).
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Figure 36. Supervised IsoFLOPs. (a) The cross-entropy of supervised models trained with either a Chinchilla optimal M = D/N ≈ 20
or on 512B tokens. (b) The cross-entropy supervised models trained with four ISOFLOP profiles C ∈ {3×1019, 1020, 3×1020, 1021}.
(c) The optimal supervised parameters N∗(C) = argminN L(C) for each IsoFLOP profile, and the loss L∗(C) achieved by that model.

Coefficient estimation (Appendix F.1) yields the scaling coefficients shown in Table 6, and a scaling law which has ≲ 1%
relative prediction error, including when extrapolated from weaker to stronger models (see Figure 5a).

E.3. Fixed-M teacher/fixed-M students and the capacity gap
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Figure 37. Fixed M Teacher/Fixed M Student. Students of three sizes trained with different MS = DS/NS = 20 ratios are distilled
from teachers with MT = DT /NT ≈ 20. This is a more complete version of Figure 3.

In Figure 37, the capacity gap in knowledge distillation can be seen. Improving a teacher’s performance does not always
improve a student’s, and even reduces the performance after a certain point. The KLD between teacher and student is an
increasing function of teacher size in all cases, which means as the teacher improves its own performance, the student finds
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the teacher more challenging to model, which eventually prevents the student from taking advantage of teacher gains. See
Appendix E.8.2 for an investigation using calibration to understand where this mismatch occurs.

E.4. Full distillation scaling law IsoFLOP profiles

In Figure 38a we provide the full six fixed M Teacher/IsoFLOP Student profiles, only two of which were shown in
Figure 2. These experiments enable the reliable determination of α′, β′, γ′, A′ and B′. In Figure 38b we provide the full
four IsoFLOP teacher/ fixed M student, only two of which were shown in Figure 3. These experiments enable the reliable
determination of c0, c1, f1 and d1.

Strong-to-weak generalization occurs. For the weaker teachers (NT ≤ 2.72B), The horizontal dashed line in each
pane shows the cross-entropy achieved by the teacher (Appendix E.2). we see that for students larger than the teacher
(NS > NT ) and for sufficiently large compute budgets, the student is able to outperform the teacher (see Appendix E.7
for a detailed one-dimensional slice).

A stronger teacher signal is needed in order for stronger students to outperfom the supervised baseline. The hor-
izontal dashed line in each pane shows the cross-entropy achieved by the student if trained using supervised learning
(Appendix E.2). We see that weaker students benefit more from distillation, as e.g. the 198M student has all observed data
below this dashed line, meaning all distillations outperform the supervised baseline. However, for the 1.82B student, only
1021 FLOP teachers produce distilled students that outperform the supervised baseline.
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Figure 38. Supervised IsoFLOPs. (a) Teachers of six sizes with MT = DT /NT ≈ 20 are distilled into Students with four IsoFLOP
profiles, and a small number with CS = 3× 1021. The horizontal grey and vertical black dashed lines indicate teacher cross entropy LT

and size NT respectively. (b) Students of four sizes trained with a M = DS/NS = 20 are distilled from teachers with four IsoFLOP
profiles. Horizontal (vertical) dashed lines indicate student supervised cross entropy L̃S (student size NS).
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E.5. Distillation scaling law IsoFLOP optima

The optimal loss values of each IsoFLOP in Figure 38a are shown in Figure 39.
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Figure 39. ISOFlop optima. a) The optimal student parameters N∗
S = argminNS

L(NS) that give the lowest student validation loss
for each teacher-student combination shown in Figure 38a. The dashed lines correspond to the validation loss of the optimal supervised
models trained with the four corresponding compute budget. b) The optimal teacher parameters N∗

T = argminNT
L(TS) that give

the lowest student validation loss for each teacher-student combination shown in Figure 3. The black dashed line correspond to the
validation loss of a M = D/N = 20 supervised model of the indicated student size. In both figures, the shaded region corresponds to
where weak to strong generalization may occur, as NS > NT (see Appendix E.7).

E.6. Distillation with infinite data

From the supervised scaling law (Equation 1) a model with N parameters has a cross-entropy lower bound

L(N) ≡ L(N,D = ∞) = E + (AN−α)γ (35)

which represents the best solution to the training objective subject to constraints from that model’s hypothesis space (Hoff-
mann et al., 2022) and is achieved when the number of training tokens is large (D → ∞). As the hypothesis space of a
model is independent of the procedure used to find the solutions, we anticipate that the student with NS parameters has a
cross-entropy lower bound that is the same as the supervised one Equation 35. However, it not immediately clear if this is
true in practice, since

LS(NS) ≡ LS(NS , DS = ∞, LT = L∗
T ) (36)

= L∗
T +

(A′N−α′

S )γ
′

(L∗
T )

c0

(
1 +

(
L∗
T d

−1
1

L(NS)

)1/f1
)−c1f1

, (37)

where L∗
T = argminL(NS , DS = ∞, LT ) is the teacher cross-entropy that minimizes Equation 8. Upon checking

numerically, we do find that Equation 35 is consistent with Equation 37 for a range of models N,NS ∈ [100M, 100B]
(Figure 40). We stress that unlike our three motivations for the equation properties (Section 4.3), this infinite data limit was
imposed added by hand, and is only true for certain values scaling coefficients. This lower bound consistency is evidence
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that that our distillation scaling law has desired behavior far outside of observed models, at least along the data and teacher
axes. We also note that only the optimal teacher for each student size produces a student cross-entropy lower bound that is
consistent with the supervised one. Any other choice produces higher student cross-entropies, either because the teacher is
too weak, or due to the capacity gap.
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Figure 40. Scaling behavior in the infinite data regime. For the optimal choice of teacher, the loss achieved by all student sizes under
distillation is consistent with the loss achievable by supervised learning. This is not true for any choice of teacher, only the optimal one,
which can be determined through numerical optimization of the provided distillation scaling laws (see Section 5).

E.7. Weak-to-strong generalization

In Figure 41 we see that weak-to-strong generalization (Burns et al., 2024; Ildiz et al., 2024) occurs only in the finite
distillation data regime, and when the number of tokens is sufficiently large, the student cross-entropy increases again,
eventually matching the teacher cross-entropy. This can be understood in the following way: i) when the student is larger
than the teacher, the student contains in its hypothesis space the function represented by the teacher, ii) when the student is
shown the teacher outputs on enough of the data manifold, it eventually matches what the teacher does on the whole data
manifold. We note this doesn’t explain how and why the student outperforms its teacher, and only constrains its asymptotic
(low and high distillation data) behaviors.
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Figure 41. Fixed M-Ratio Teacher varying student data. We look at strong to weak generalization (left) and weak to strong (right)
distillation, varying distillation tokens DS ∈ [8B, 512B].
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E.8. Model calibration

Calibration in LMs refers to the alignment between the model’s confidence in its predictions and the actual correctness of
those predictions. Well-calibrated models provide confidence scores that accurately reflect their probability of correctness,
enabling more decision-making. ECE is a common metric to quantify miscalibration, and measures the difference between
predicted confidence and actual accuracy across multiple confidence intervals

ECE =

M∑

m=1

|Bm|
NSamples

|Accuracy(Bm)− Confidence(Bm)| , (38)

where M is the number of bins, Bm is the set of samples whose confidence scores fall into the m-th bin, |Bm| de-
notes the number of samples in bin Bm, NSamples =

∑M
m=1 |Bm| is the total number of samples, Accuracy(Bm) and

Confidence(Bm) are the empirical accuracy and average confidence of the model being evaluated in bin m respectively.
Lower ECE indicates better model calibration.

To measure ECE, we use M = 21 bins uniformly partitioned across the output probability space. Accuracy and confidence
are computed in the standard manner: the predicted label is determined via the argmax over the output probabilities for
each prediction, and the confidence is defined as the maximum probability assigned to the predicted label. Accuracy is then
measured as the proportion of instances where the predicted label matches the ground truth. Notably, this approach focuses
solely on the maximum probability prediction, disregarding the calibration of lower-probability predictions. To assess
calibration across the entire output distribution rather than just the top prediction, alternative metrics could be considered.

E.8.1. TEACHERS

In Figure 42, we see the ECE for different sizes of teachers. For all models, ECE is between 0.4% and 0.6%, suggesting that
the models’ confidence estimates closely align with their actual accuracies. We also observe that the blue points, i.e. , the
teacher’s actual accuracy for predictions falling into specific confidence intervals, closely follow the diagonal, indicating
that the models are well-calibrated. This well-calibrated nature can be surprising, as large models can be overconfident.
For example, Mukhoti et al. (2020) indicates the overconfidence of large models observed in (Minderer et al., 2021) arises
from overfitting, regardless of the training set correctness.
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Figure 42. Teacher calibration. The calibration of teachers of seven different sizes. The x-axis shows the teacher probability assigned
to the most confident class, and the y-axis is the empirical accuracy of predictions within each confidence bin. Blue points represent
the teacher accuracy for predictions falling into specific confidence intervals. Orange points represent the proportion of samples in each
confidence bin (helpful for understanding sample distribution across confidence levels). The dashed line represents perfect calibration,
where confidence matches empirical accuracy. The ECE (Equation 38) for each teacher is shown as the title of each plot.

The primary distinction in our setup is that: i) our models are underparameterized (N < D), and ii) data is not repeated.
Consequently, overfitting to the training set does not occur (Aitchison, 2024), so model overconfidence does not arise to
the same extent as in many prior calibration studies. Instead, in our setting, increasing model size N or training tokens D,
improves the approximation of the seen distribution with minimal generalization gap, yielding better calibration (Carrell
et al., 2022; Blasiok et al., 2023). Our observation of good calibration in large models aligns with prior calibration findings
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for language model calibration (Zhu et al., 2023; Kadavath et al., 2022; OpenAI, 2023).

E.8.2. 198M STUDENTS TRAINED ON 20N TOKENS

In this section we consider students trained on the teacher distribution, as in our main study. We also study students trained
on the teacher top-1 distribution, as described in Appendix G.4, as the qualitative difference in behavior can be informative
for student design.

Evaluating the calibration of a student can be done in a number of ways:

1. We can compare student outputs relative ground-truth data, as in Appendix E.8.1 for the teachers.

2. We can compare student outputs with the outputs of its teacher.

Calibration against ground-truth. First, let’s consider comparison against ground truth data. In Figure 43 we show
student calibration with respect to the dataset labels for both teacher distribution distillation and teacher top-1 distillation.

1. Distilled on the full teacher distribution. In Figure 43a, we observe that the student is well-calibrated against ground
truth data. Similar to the teacher’s calibration plot in Figure 42, we see a small discrepancy at very low and very high
confidence values, and the ECE value is low.

2. Distilled on teacher top-1. In Figure 43b, we see that a student trained only on its teacher’s top-1 prediction, is
not calibrated against ground truth data. The blue points below the dashed line indicate an overconfident student,
i.e. , its predicted confidence is higher than the actual accuracy in that confidence range. This is because training the
student on top-1 assigns the student to the most plausible outcome rather than all the plausible outcomes with correct
frequencies. Confidence proportions are low for all bins that are not the most confident bin, and ECE is high, although
decreases with increasing teacher size NT .

Figure 43 shows that training the student on the teacher’s distribution results in a calibrated student, whereas training on
the teacher top-1 does not. Indeed, optimizing against the teacher’s top-1 is not a proper scoring metric, and that teacher
top-1 is not an unbiased estimator for the data, while the teacher distribution is.
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(a) Distillation target: teacher distribution.
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(b) Distillation target: teacher top-1.

Figure 43. Student calibration (data). Calibration of the student with respect to the actual data labels, trained with different teacher
sizes (NT ), on (a) the teacher distribution and (b) the teacher’s top-1. For axis definitions and the figure legend, refer to Figure 42. Blue
points below the dashed line indicate student overconfidence.

Calibration against teacher top-1. Next we investigate the first student calibration against the teacher. In Figure 44
we show student calibration with respect to the teacher’s top-1 label. That is, the next-token label used for accuracy
computation, and extract the students confidence is the most probable next-token according to the teacher, instead of the
label from data. Here no next token labels are used at all. These teacher top-1 labels are also used for the ECE calculation,
which is still computed using Equation 38.
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1. Distilled on the full teacher distribution. We see in Figure 44a that when distilled from the full teacher distribution,
the student is not calibrated against the teacher top-1. The blue points are above the dashed line, which means that the
empirical accuracy is higher than the model’s predicted confidence, i.e. with respect to the teacher top-1, the student
is underconfident. This can be understood by noting that the top-1 objective is an easier objective than modeling the
full vocabulary at each step.

2. Distilled on teacher top-1. In Figure 44b we observe that a student is distilled from its teacher’s top-1 is calibrated
with respect to teacher’s top-1.
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(a) Distillation target: teacher distribution.
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(b) Distillation target: teacher top-1.

Figure 44. Student calibration (teacher top-1). Calibration of the student with respect to the teacher’s top 1, trained with different
teacher sizes (NT ), on (a) the teacher distribution and (b) the teacher’s top-1. For axis definitions and the figure legend, refer to
Figure 42. Blue points above the dashed line indicate the student is underconfident.

Figure 44 shows that training the student on teacher top-1 results in calibration against teacher top-1, whereas a model
trained on data, or distilled on the full teacher distribution is not calibrated against teacher top-1. As above, this can be
understood as now teacher’s top-1 is now a proper scoring metric, and teacher top-1 is an unbiased estimator for itself.

Calibration against teacher distribution. Here we develop a modified calibration measure that will help us understand
if the student matches the teacher in a distributional sense. As we have two distributions to compare, we can ask, for a
given teacher confidence, what is the expected student confidence. This leads to ECEDist, a distributional form of ECE:

ECEDist(A,B) =

M∑

m=1

|Bm|
NSamples

|Confidence(Bm;A)− Confidence(Bm;B)| , (39)

and is similar in spirit to divergence measures like KLD. Bm, |Bm|, and NSamples are defined as before, and
ConfidenceS(Bm;A|B) is the average confidence of model A or B in bin m respectively. The bins Gm are always witin
the bins of confidence of model B. In the current evaluation, we take A as the teacher and B as the student, and we are
measuring the average confidence of the teacher is measured within a student’s confidence bin.

1. Distilled on the full teacher distribution. In Figure 45a, we see that when the student is confident, it matches the
teacher confidence. However, as the teacher model grows in size, when the student is less confident, it it systematically
underestimates its confidence. This suggests that the student has not effectively learned low-probability outcomes, or
that these outcomes are particularly challenging for the student to replicate. The underconfidence in these regions may
be a result of the distillation process not providing sufficient learning signal for these difficult cases, or the inherent
difficulty of capturing the uncertainty associated with low-confidence predictions. This observation of confidence
mismatch helps indicate which parts of the distribution the student finds challenging to model, giving rise to the
increasing KLD and capacity gap observed in Figure 4 and Appendix E.3.

2. Distilled on teacher top-1. In Figure 45b, for small teachers, we observe student overconfidence. As the teacher
increases in size, the student’s overconfidence in low-confidence bins transitions to underconfidence. At the same time,
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the student’s overconfidence in high-confidence bins improves, leading to an overall reduction in distributional ECE.
This pattern of overconfidence in the student is similar to what we saw in Figure 43b, but the change in behavior at
low-confidence bins as the teacher’s size varies is different. This shift in the student’s calibration behavior, especially
in low-confidence bins, aligns with findings from Figure 45a and may highlight the difficulty the small student faces
in learning rare events.
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(a) Train target: teacher distribution.
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(b) Train target: teacher top 1.

Figure 45. Student calibration (teacher distribution). Calibration of the student with respect to the teacher’s distribution, trained with
different teacher sizes (NT ), on (a) the teacher distribution and (b) the teacher’s top-1. For ECE calculation on the full distribution,
see Equation 39. For axis definitions and the figure legend, refer to Figure 42. Blue points below the dashed line indicate student
overconfidence, while points above the dashed line indicate underconfidence.

We can also inspect the student confidences within a bin of teacher confidences, and compute the distributional ECE
(Equation 39), swapping the roles of teacher and student (see Figure 46).

1. Distilled on the full teacher distribution. In Figure 45a we complete the picture from Figure 45a and see that the part
of the distribution the student struggles to model is actually the place where teacher is most confident.

2. Distilled on teacher top-1. In Figure 45b we see that the student is systematically overconfident for all values of
teaacher confidence, except for the largest teachers, where the student is underconfident when those teachers are most
confident.
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(a) Train target: teacher distribution.
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(b) Train target: teacher top 1.

Figure 46. Student calibration (under teacher confidence bins). Calibration of the student with respect to the teacher’s confidence
bins, trained with different teacher sizes (NT ), on (a) the teacher distribution and (b) the teacher’s top-1. For ECE calculation on the full
distribution, see Equation 39. For axis definitions and the figure legend, refer to Figure 42. Blue points below the dashed line indicate
the teacher is less confident than the student.

55



Distillation Scaling Laws

E.8.3. 198M STUDENTS TRAINED ON 128B TOKENS

In this section, we study the effect of increasing the number distillation tokens in Appendix E.8.2 from DS ≈ 20NS to
DS ≈ 512B. Here, we reserve discussion for the observed differences compared to Appendix E.8.2.
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(a) Train target: teacher distribution.
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(b) Train target: teacher Top 1.

Figure 47. Student calibration (data). Calibration of the student with respect to the actual data labels with increased training tokens.
Compare to Figure 43 for the effect of tokens and refer to Figure 42 for legend and axis explanations.

Calibration against ground-truth. As the number of distillation tokens increases, we observe a consistent decrease in
the ECE when the student is trained on the teacher’s distribution, as shown by the comparison between Figure 47a and
Figure 43a across different teacher sizes. However, when the student is trained on the teacher’s top-1 predictions, increasing
the number of tokens negatively impacts ECE, as evidenced by the comparison between Figure 47b and Figure 43b. This
suggests that the teacher’s top-1 predictions are not a reliable, unbiased estimator of the actual data, and increasing the
number of training tokens only exacerbates this issue. See Appendix G.4 for further discussion.

Calibration against teacher top-1. Increasing the number of distillation tokens leads to worse calibration between the
student and the teacher’s top-1 predictions when the student is trained on the full distribution. This change primarily occurs
in the low-confidence bins, and results in a higher ECE (compare Figure 48a and Figure 44a). However, when comparing
the ECEs for the student trained on the teacher’s top-1 predictions (Figures 44b and 48b), there is an improvement across
all teacher sizes. When the student is trained and evaluated using the same metric, increasing the training tokens helps
improve calibration, demonstrating consistency between the learning objective and the evaluation metric.
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(a) Train target: teacher distribution.
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(b) Train target: teacher top 1.

Figure 48. Student calibration (teacher top 1). Calibration of the student with respect to the teacher’s top 1 when the training tokens
have increased. Compare to Figure 44 for the effect of tokens and refer to Figure 42 for legend and axis explanations.
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Calibration against teacher distribution. A comparison between Figure 49a and Figure 45a shows that when the stu-
dent is trained on the teacher’s full distribution and evaluated against the full distribution using Equation 39, increasing the
number of training tokens consistently improves calibration across all teacher sizes. However, when the student is trained
on the teacher’s top-1 predictions, a quick comparison between Figure 49b and Figure 45b reveals worse calibration uni-
formly across all confidence bins.
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(a) Train target: teacher distribution.
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(b) Train target: teacher Top-1.

Figure 49. Student calibration (teacher distribution). Calibration of the student with respect to the teacher’s distribution as the number
of training tokens increases. Compare to Figure 45 for the effect of tokens and refer to Figure 42 for legend and axis explanations.

Similarly, when comparing within teacher confidence bins (Figure 50) increasing the number of distillation tokens from
20N to 128B primarily amplifies the observed phenomena at lower distillation token budgets, and improving calibration in
cases where there is a proper scoring metric present (Figure 50a).
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(a) Train target: teacher distribution.
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(b) Train target: teacher top 1.

Figure 50. Student calibration (teacher distribution). Calibration of the student with respect to the teacher’ confidence bins distribu-
tion as the number of training tokens increases. Compare to Figure 46 for the effect of tokens.

In general, increasing the number of training tokens has a positive effect when the training metric is an unbiased estimator
of the actual data or the measured calibration quantities (see Figures 47a, 48b, and 49a) and reduces the ECE, while it has
a negative impact when there is a mismatch between the learned and measured quantities (see Figures 47b, 48a, and 49b).
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F. Scaling coefficients
In this section, we analyze the process of deriving the coefficients for our scaling law. We follow the procedure outlined in
(Hoffmann et al., 2022; Besiroglu et al., 2024), while incorporating our modified scaling laws

F.1. Supervised scaling law coefficient estimation

First, let’s tackle the supervised scaling law Equation 1 restated for convenience

L(N,D) = E +

(
A

Nα
+

B

Dβ

)γ

. (40)

To aid numerical stability, we write this expression in log space. First note that for a, b > 0

log(a+ b) = log (exp log a+ exp log b) = LSE(log a, log b), (41)

where LSE is the log-sum-exp operator. We can now proceed to write the supervised scaling law in log form

logL(N,D;A,B,E, α, β) = log

[
E +

(
A

Nα
+

B

Dβ

)γ]
(42)

= LSE

[
logE, γ log

(
A

Nα
+

B

Dβ

)]
(43)

= LSE [logE, γ LSE (logA− αN, logB − αD)] . (44)

We make no assumptions about the relationships between the values (i.e. no parameter tying) and optimize

(A∗, B∗, E∗, α∗, β∗, γ∗) = argmin
{A,B,E,α,β,γ}

∑

i

Huberδ

(
logL(N (i), D(i);A,B,E, α, β)− L(i)

)
(45)

with a Huber δ = 10−4, where N (i), D(i) and L(i) are the model size, number of training tokens and loss achieved
by the i-th run. We fit on 73 samples over a grid of L-BFGS-B initializations given by: logA ∈ {0., 5., 10., 15., 20.},
logB ∈ {0., 5., 10., 15., 20.}, logE ∈ {−1.,−0.5., 0., 0.5, 1., 1.5.}, α ∈ {0., 0.5, 1., 1.5}, β ∈ {0., 0.5, 1., 1.5}, γ ∈
{0., 0.5, 1., 1.5}. The L ≥ 2.2 case corresponds to 48 samples.

F.2. Distillation scaling law coefficient estimation

Next, let’s address the distillation scaling law Equation 8 restated for convenience

LS(NS , DS , LT ) = LT +
1

Lc0
T

(
1 +

(
LT

L̃Sd1

)1/f1
)−c1∗f1 (

A′

Nα′
S

+
B′

Dβ′

S

)γ′

. (46)

As in Appendix F.1, to aid numerical stability during optimization, we write this in log space

logLS(NS , DS , LT ; θ) = log


LT +

1

Lc0
T

(
1 +

(
LT

L̃Sd1

)1/f1
)−c1∗f1 (

A′

Nα′
S

+
B′

Dβ′

S

)γ′
 (47)

= LSE

[
logLT ,−c0 logLT − c1f1 log

(
1 +

(
LT

d1L̃S

)1/f1
)

+ γ log

(
A′

Nα
S

+
B′

Dβ
S

)]
(48)

= LSE

[
logLT ,

(
− c0 log(LT )− c1f1 LSE

(
0,

1

f1

(
logLT − log L̃S − log d1

))

+ γ LSE (logA′ − α′ logNS , logB
′ − β′ logDS)

)]
, (49)
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where θ = {A′, B′, α′, β′, c0, c1, f1, d1}. We make no assumptions about the relationships between the values and opti-
mize

θ∗ = argmin
θ

∑

i

Huberδ

(
logLS(N

(i)
S , D

(i)
S , L

(i)
T ; θ)− L

(i)
S

)
(50)

with a Huber δ = 10−4, where N
(i)
S , D(i)

S , L(i)
T and L

(i)
S are the student model size, number of training distillation

tokens, the teacher pretraining loss and the student validation loss on the data achieved by the i-th run. We fit on 697
samples over a grid of L-BFGS-B initializations given by: logA′ ∈ {0., 5., 10., 15., 20.}, logB′ ∈ {0., 5., 10., 15., 20.},
α′ ∈ {0., 0.5, 1.}, β′ ∈ {0., 0.5, 1.}, γ′ ∈ {0., 0.5, 1.}, c0 ∈ {0., 0.5, 1., 1.5}, c1 ∈ {0., 0.5, 1., 1.5}, f1 ∈ {0., 0.5, 1., 1.5},
log d1 ∈ {−1.,−0.5, 0., 0.5, 1.}. The LS ≥ 2.3 case corresponds to 551 samples.

F.3. Scaling law coefficients parameteric fit

The fitting procedure outlined in Appendices F.1 and F.2 applied to data described in Section 4.2 yields the scaling co-
efficients and associated confidence intervals shown in Table 6. Note in the supervised case, our values of a and b are
consistent with those of Hoffmann et al. (2022).

Table 6. Scaling law parameter estimates accompanied by 90% confidence intervals obtained by bootstrapping (4096 resamples) follow-
ing the procedure of Besiroglu et al. (2024). a = β/(α+ β) and b = β/(α+ β) are the supervised compute optimal scaling estimates
for N and D respectively (Hoffmann et al., 2022).

Supervised Distillation

A(′) 3355 (3346, 3360) 2243 (2227, 2255)
B(′) 18186 (18157, 18236) 24181 (24084, 24266)
E 1.220 (1.190, 1.247)
α(′) 0.408 (0.405, 0.411) 0.321 (0.319, 0.324)
β(′) 0.431 (0.428, 0.433) 0.637 (0.634, 0.640)
γ(′) 0.452 (0.442, 0.461) 0.764 (0.732, 0.788)
c0 2.549 (2.425, 2.615)
c1 522.6 (522.6, 522.6)
f1 0.090 (0.088, 0.093)
d1 1.315 (1.302, 1.327)
a(′) 0.513 (0.513, 0.513) 0.664 (0.662, 0.665)
b(′) 0.486 (0.486, 0.486) 0.335 (0.334, 0.337)

Runs 73 697

We also note that our irreducible error term is lower than the one in Hoffmann et al. (2022). We suspect this is due to our
use of µP (Yang & Hu, 2021; Yang & Littwin, 2023; Yang et al., 2022; Wortsman et al., 2023; Yang et al., 2023).

G. Distilling language models in practice
In the following analyses, we explore the sensitivity of student performance under modification of distillation hyperparam-
eters. We demonstrate that the pure distillation setting (λ = 1, Appendix G.1), unit temperature (τ = 1, Appendix G.2),
and learning rate η = 0.01 (Appendix G.3) under µP (Yang & Hu, 2021; Yang & Littwin, 2023; Yang et al., 2022; Worts-
man et al., 2023; Yang et al., 2023) provides robust performance across model scales, while distribution truncation methods
(Top-k, Top-p) degrade performance unless combined with ground-truth next-token prediction (Appendix G.4). Finally,
we verify that forward KL divergence distillation, DKL(p̂T ||q̂S), consistently outperforms reverse KL (Appendix G.5).
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For ease of reference, we restate the components of the token-level loss for the student:

LNTP(x
(i), z(i)) = −

V∑

a=1

e(x(i))a log σa(z
(i)), (Next-token prediction) (51)

LZ(z
(i)) = || logZ(z(i))||22 =

∣∣∣∣∣

∣∣∣∣∣log
V∑

a=1

exp(z(i)a )

∣∣∣∣∣

∣∣∣∣∣

2

2

, (Z-loss) (52)

LKD(z
(i)
T , z

(i)
S ) = −τ2

V∑

a=1

σa

(
z
(i)
T

τ

)
log σa

(
z
(i)
S

τ

)
, (Distillation loss) (53)

LS(x
(i), z

(i)
T , z

(i)
S ) = (1− λ)LNTP(x

(i), z
(i)
S ) + λLKD(z

(i)
T , z

(i)
S ) + λZ LZ(z

(i)
S ). (Student loss) (54)

See Section 2 for a discussion of each of the terms.

G.1. Mixing coefficient (λ) sensitivity analysis

The distillation process combines two loss components: knowledge transfer from the teacher, λLKD(z
(i)
T , z

(i)
S ), and direct

learning from data, (1−λ)LNTP(x
(i), z

(i)
S ), weighted by the mixing coefficient λ (Equation 7). Our distillation scaling law

analysis is performed in the pure distillation setting (λ = 1). Here we show this simple choice provides robust performance
across a wide range of configurations.
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Figure 51. Mixing Coefficients λ. (a) Students of six sizes NS ∈ {198M, 266M, . . . , 2.72B} trained with a M = DS/NS = 20
ratio are distilled from teachers of size sizes NT ∈ {546M, 975M, . . . , 7.75B} trained with a M = DT /NT = 20 ratio with different
values of loss mixing coefficient λ ∈ [0, 1]. λ = 0 and λ = 1 correspond to supervised training and pure distillation cases respectively.
(b) The mixing coefficients λ∗ = argminλ L(λ) that give the lowest student validation loss for each teacher-student combination shown
in Figure 51a.
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We examine various λ values across different teacher-student configurations in Figure 51a and find that while the optimal
mixing coefficients λ∗ vary based on the specific teacher-student combinations (Figure 51b), the student cross-entropy
LS remains mostly flat for choices of λ > 0.5, with lower values of λ only preferred in the cases where the teacher is
particularly weak and where the supervised signal is more informative. From Figure 51a it is also possible to get a sense
of when distillation λ > 0 generally outperforms supervised learning λ = 0 under the same token budget.

To guide practitioners, Figure 51b shows empirically derived optimal mixing coefficients, λ∗, though the simplicity and
robustness of pure distillation makes it a reliable default choice for practical use and study.

G.2. Temperature (τ ) sensitivity analysis

In distillation, the temperature τ controls the entropy of teacher predictions by scaling logits z
(i)
T /τ and z

(i)
S /τ in the

knowledge distillation loss LKD (Equations 7 and 53). This scaling modulates the transfer of dark knowledge (Hinton
et al., 2015) – the log-probability ratios between incorrect categories encode the teacher’s understanding of relationships
between those categories. Our analysis across τ ∈ [0.5, 10] (Figure 52) reveals that higher temperatures (τ > 3) reduces
performance by attenuating these ratios in σa(z

(i)
T /τ), particularly harming smaller students that rely heavily on this

signal. Lower temperatures (τ < 1) similarly reduce effectiveness by concentrating probability mass on argmax tokens,
diminishing the transfer of relationships between lower-ranked predictions.

We find optimal performance at τ = 1 across all model scales, suggesting this temperature best preserves log-probability
structure. Unlike the original distillation setting, which relied on dark knowledge to represents hierarchical relationships
between incorrect classification predictions in the presence of a true label, language modeling is inherently ambiguous and
complex, with many valid continuations. It is precisely the understanding of the ambiguity of language we want to transfer
to the student, which is supported by our finding that maintaining the teacher’s original probability ratios (τ = 1) produces
the lowest student cross-entropies.
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Figure 52. Temperature τ Sensitivity Analysis. Students of four sizes NS ∈ {198M, 546M, 975M, 1.82B} trained with a M =
DS/NS = 20 ratio are distilled from teachers of sizes NT ∈ {546M, 1.82B, 4.82B, 7.75B} trained with a M = DT /NT = 20 ratio
with different distillation temperatures τ ∈ [0.5, 10].
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G.3. Learning rate (η) sensitivity analysis, verification of µP for distillation

The peak learning rate η determines the scale of student parameter updates in distillation. In our experiments we use a
simplified version of µP (Yang & Hu, 2021; Yang & Littwin, 2023; Yang et al., 2022; Wortsman et al., 2023; Yang et al.,
2023), described as µP (simple) in (Wortsman et al., 2024).

In the supervised case, in addition to improving the performance lower bound compared to the standard parameterization,
µP simplifies experimental settings as it enables hyperparameter transfer; the optimal peak learning rate η and initialization
scales found for a reference model size can be reused when changing model size7.

Here we validate that the optimal peak learning rate η∗ = 0.01 determined in the supervised case transfers to the distillation
setting. Sweeping values η ∈ [0.001, 0.1] (Figure 53) reveals that µP achieves optimal performance at η = 0.01 uniformly
across all configurations, from 198M to 1.82B parameter students and 546M to 7.75B parameter teachers, consistent with
the optimal peak learning rate in the supervised setting.

Performance varies smoothly and modestly around this optimum, with cross-entropy changing by less than 0.1 nats over
one order of magnitude in learning rate. This consistency validates µP’s guarantee of scale-invariant training dynamics
for distillation, confirming that our experimental setting for determining our distillation scaling law operates at the optimal
learning rate or sufficiently close to it in all of our settings. The observed moderate learning sensitivity in distillation
partially alleviates the requirement for careful learning rate tuning, showing that in practice the reference learning rate
found in the supervised setting can be safely reused in the distillation setting.
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Figure 53. Learning Rate η Sensitivity Analysis. Students of four sizes NS ∈ {198M, 546M, 975M, 1.82B} trained with a M =
DS/NS = 20 ratio are distilled from teachers of sizes NT ∈ {546M, 1.82B, 4.82B, 7.75B} trained with a M = DT /NT = 20 ratio
with different learning rates η ∈ [0.001, 0.1].

G.4. Distribution truncation methods: Top-k and Top-p sensitivity

We investigate how the truncation of the teacher distributions affects student performance. For these methods, when the
teacher produces a distribution p̂T (x

(i) = a|x(<i)), a ∈ {1, . . . , V } over the vocabulary for the student to match, only
some entries in the distribution are used. This is done primarily to reduce repeated inference and storage costs in the case
teacher outputs are being stored for re-use in the multiple distillations scenario discussed in Section 5.3. In our case, the

7µP only guarantees learning rate optimality when varying widths. Empirically, the learning rate is also stable when changing the
model depth within a reasonable range (Yang et al., 2022). To guarantee transfer across model depths one can additionally employ
depth-µP (Yang et al., 2024), although we do not use depth-µP here.
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vocabulary size V = 32168, so assuming storage in float32, means each token requires 32168 × 4 bytes ≈ 129KB,
and storing all of C4 (approximately 2T tokens) would take approximately 260 Petabytes, a significant amount of data,
roughly the total amount collected during the first ten years of the Large Hadron Collider (LHC) (CERN, 2018).

Given a truncation method M, can a truncated teacher output p̂(M)
T can be stored whilst still achieving the gains of

distillation? Concretely, the truncation p(M)(x|c) of a distribution p(x|c) with a truncation method M is

p(M)(x=a|c)=





p(x=a|c)∑
b∈SM

p(x=b|c) , a∈SM(p(·|c)),

0, otherwise,
(55)

where SM(p( · |c)) represents the set of retained categories (i.e. non-zero probabilities) in the truncated distribution, which
then undergoes renormalization over the retained categories.

We explore two complementary approaches: Top-k and Top-p (nucleus) sampling. As in all of our settings, we evaluate the
student cross-entropy against the data distribution with all categories, as this is the model property we are most interested
in (a model can trivially match the target distribution if all categories except one are removed).
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Figure 54. Distribution truncation analysis. Top-k (left) and Top-p (right) truncation of teacher logits z
(i)
T for student-teacher pairs

with NS in {198M, 546M, 1.82B} and corresponding NT in {7.75B, 1.82B, 546M}. Standard truncation degrades performance: at
k = 128, validation loss increases by 0.11 nats compared to full distillation (k = 32768), while Top-p with p = 0.9 degrades by 0.13
nats versus p = 1.0. Using λ = 0.7 with k = 128 maintains performance within 0.01 nats while enabling efficient post-hoc training.

For Top-k, we zero-out all but the largest k probabilities, and Top-p, we zero-out all but the smallest set of probabilities
that sum to at least p. The set defintions SM for Top-k and Top-p are

Sk(p̂) = Top(p̂, k), Sp(p̂) = {a :
∑

b∈sort↓(p̂,a)

p̂ ≤ p}. (56)

As the truncation parameters increase (k → V or p → 1), both methods approach the full teacher distribution, and the
student’s cross-entropy converges to the baseline using the entire p̂T . Conversely, aggressive truncation (small k or p)
induces quantization that preserves only high-probability tokens while discarding information in the tail of the distribution.

Our empirical analysis (Figure 54) reveals that both truncation methods directly correlate with reduced evaluation likeli-
hoods. However, this performance degradation can be effectively mitigated through a combination of truncated distribu-
tions and ground truth next-token prediction using a mixing coefficient λ ∈ (0, 1) (Equation 7). Specifically, with k = 128
and λ = 0.7, we achieve validation losses statistically indistinguishable from those obtained using the complete teacher
distribution. For large-scale distillation scenarios where maintaining multiple models in memory is prohibitive, particularly
with large teacher models, storing only the Top-k teacher predictions (with λ > 0) enables efficient post-hoc distillation.

G.5. Forward and reverse KL divergence

We investigate both forward (mode spreading) and reverse (mode seeking) Kullback-Leibler divergences for distillation
from NT = 1.82B to NS = 546M. The forward KLD DKL(p̂T ||q̂S) (Equation 7), minimizes Lforward = H(p̂T , q̂S) −
H(p̂T ), where H(p̂T ) is dropped during optimization as it depends on only fixed teacher parameters. In contrast, the
reverse KLD DKL(q̂S ||p̂T ) requires explicitly computing the student’s entropy, Lreverse = H(q̂S , p̂T )−H(q̂S).
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The forward KL achieves a lower data cross-entropy compared to the reverse KL (Table 7), with an average improvement
of 0.28 nats. This suggests that explicitly regularizing with respect to the student’s entropy during training may not provide
additional benefits for distillation quality. Given both the improved performance and reduced computational overhead of
forward KL (which avoids computing student entropy), we recommend using standard forward KL for distillation.

Table 7. Forward vs Reverse KL Divergence for NT = 1.82B to NS = 546M distillation. Reverse KL is slightly more expensive with
respect to vocabulary size V due to the entropy calculation.

Method Cross-Entropy Computational Cost

Forward KL 2.42 O(V )
Reverse KL 2.70 O(2V )

H. Parameters and Floating Operation Estimation
Here we outline the number of parameters (Appendix H.2) and the number of FLOPs per token (Appendix H.3) for our
experimental settings. The symbol notation is provided in Table 8. For our scaling laws, we find, as in Kaplan et al. (2020)
using that the number of non-embedding-parameters provides the cleanest fit and extrapolation behavior.

Our expressions for approximate compute (FLOPs per token) differ from prior work in that we are interested in small
models that are capable. This means we are unable to ignore the context-dependent term that arises from the quadratic
computational complexity of the attention mechanism. As our architectures are fixed aspect ratio, there is a modified
approximation we can use. This expression is discussed in Appendix H.1

For ease of reference, we provide a comparison of the expressions we use to commonly used existing expressions (Kaplan
et al., 2020; Hoffmann et al., 2022; Narayanan et al., 2021), and provide comments for significant differences.

Table 8. The notation we use for parameter and FLOPs estimation.
Component Notation

Sequence length/context size nctx
Vocabulary size nvocab
Number of blocks/layers nlayers
Number of query heads nheads
Number of key/value heads nkv-heads
Model/embedding dimension dmodel
Head dimension dhead
Feed-forward dimension dffn
Number of feed-forward linears nffn
Group size in Group Query Attention (GQA) nheads/nkv-heads gsize
Model aspect ratio dmodel/nlayers ρmodel
Feed-forward ratio dffn/dmodel ρffn

H.1. Alternative approximation for FLOPs per token as a function of N

From Table 10 and Equation 71 and Table 12 we can read our approximate values for non-embedding parameters and total
compute (dropping contributions from normalization layers) as8

N = nlayersd
2
model

(
2 +

2

gsize
+ nffnρffn

)
(57)

CForward = 2nlayersd
2
model

(
2 +

2

gsize
+ nffnρffn

)
+ 2nlayersnctxdmodel (58)

= 2N + 2nlayersnctxdmodel + 2nvocabdmodel. (59)

8It was shown in Porian et al. (2024) that ignoring the embedding parameters and FLOPs can lead to systematic estimation bias for
small models, and is one of the primary drivers between different exponents reported in Kaplan et al. (2020) and Hoffmann et al. (2022).
We find that the the non-embedding parameters gives a tighter scaling behavior. However, in the fixed-aspect-ratio setting, we are able
to use both the non-embedding parameters in the scaling law and the approximate total compute simultaneously, removing estimation
bias. Indeed, in the supervised setting, our coefficients a and b are consistent with those from Hoffmann et al. (2022) (see Table 6).
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Typically the term 2nlayersnctxdmodel would be dropped, and the embedding parameters included into the total parameters
(Hoffmann et al., 2022) or discarded (Kaplan et al., 2020) yielding the expression CForward and the familiar expression
C = 6ND (Kaplan et al., 2020; Hoffmann et al., 2022). For our investigation we are interested in small, capable models,
which may have a large context, and so both of these terms cannot be ignored in general at the peril of making a systematic
error in the region of configuration space we are most interested in. Fortunately, we will see that our choice of fixed aspect
ratio ρmodel = dmodel/nlayers architectures allows us a simple to use, more precise estimate. The trick will be to use this fixed
aspect ratio to come up with an approximation for nlayers and dmodel as a function of N and ρmodel. With these approximated,
the term 2nlayersnctxdmodel can be represented as a function of N . First define9

ω ≡ 2 +
2

gsize
+ nffnρffn (61)

so that

N = nlayersd
2
modelω. (62)

Then we can substitute in ρmodel ≡ dmodel/nlayers so that

N = nlayersd
2
modelω = n3

layersρ
2
modelω, (63)

and solve for nlayers and dmodel

nlayers =

(
N

ρ2modelω

)1/3

, dmodel =

(
Nρmodel

ω

)1/3

, (64)

The CForward term can then be represented as a function of N . The context-dependent term becomes

2nctxnlayersdmodel = 2nctxn
2
layersρmodel = 2

(
N

ρ2modelω

)2/3

ρmodelnctx ≡ 2nctxσ1N
2/3 (65)

where

σ1 =

(
1

ρ2modelω

)2/3

ρmodel =

(
1

ρmodelω2

)1/3

. (66)

The vocabulary projection term becomes

2nvocabdmodel = 2nvocab

(
Nρmodel

ω

)1/3

= 2nvocab

(ρmodel

ω

)1/3
N1/3 ≡ 2nvocabσ2N

1/3, (67)

where

σ2 =
(ρmodel

ω

)1/3
. (68)

In total
CForward = 2N + 2nctxσ1N

2/3 + 2nvocabσ2N
1/3 = 2N

(
1 + σ1

nctx

N1/3
+ σ2

nvocab

N2/3

)
, (69)

where σ1 and σ2 are independent of model and context size. In the large N limit, or the small nctx small nvocab limit this
becomes the familiar CForward = 2N . The backward FLOPS per token is taken as twice the forward FLOPs (Blondel &
Roulet, 2024)

CBackward = 2CForward. (70)

Given the simplicity of the compute expression as a function of N , the better tightness of fit in the scaling law, the
improved intuition that the model size more directly corresponds to work being done by the model, and the predictability of
hyperparameters at larger scales, we recommend the scaling law community consider adopting fixed aspect ratio models.

9In our setting (Appendix I) ω takes values

ω = 2 +
2

gsize
+ nffnρffn = 2 +

2

1
+ 3× 8

3
= 12. (60)
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H.2. Model parameters

In Table 9 we present our parameter counting compared to commonly used existing expressions (Kaplan et al., 2020;
Hoffmann et al., 2022; Narayanan et al., 2021). We present a convenient substitution in Table 10 which can be easier
to work with analytically. Our total expressions match the architecture we are using, which includes only gains for the
normalization layers, whereas while (Narayanan et al., 2021) has both weights and biases. We account for potential use
of (Ainslie et al., 2023) as well as use of gated linear attention mechanisms which are becoming prevalent in modern
architectures (Shazeer, 2020) including the one used in this work (Appendix I).

Table 9. Parameter counts for embedding projector, a single transformer layer, final normalization and output layer. Ours indicates the
expressions we use in the paper for the total number of parameters (note that the quantity N that appears in our scaling laws is the
number of non-embedding parameters, but still includes parameters associated with normalization layers). Approx. indicates taking
the within-section total and dropping all terms that are not at least quadratic in one of dmodel, nvocab, and will be used for estimating
the FLOPs per token from a given model size (Appendix H.1), and does not differ significantly from the number of non-embedding
parameters.

Parameters (Kaplan et al., 2020) (Hoffmann et al., 2022) (Narayanan et al., 2021) Ours (Total)

Embedding (nvocab + nctx)dmodel (nvocab + nctx)dmodel (nvocab + nctx)dmodel nvocabdmodel

Attention (one transformer layer)

PreNorm — — 2dmodel dmodel
QKNorm — — — 2dhead
QKV 3nheadsdmodeldhead 3nheadsdmodeldhead 3nheads(dmodel + 1)dhead (nheads + 2nkv-heads)dmodeldhead
Project nheadsdheaddmodel nheadsdheaddmodel (nheadsdhead + 1)dmodel nheadsdheaddmodel
Total 4nheadsdheaddmodel 4nheadsdheaddmodel 4nheadsdheaddmodel + 3(nheadsdhead + dmodel) 2(nheads + nkv-heads)dheaddmodel + 2dhead + dmodel
Approx. 4nheadsdheaddmodel 4nheadsdheaddmodel 4nheadsdheaddmodel + 3(nheadsdhead + dmodel) 2(nheads + nkv-heads)dheaddmodel

Feed-forward (one transformer layer)

PreNorm — — 2dmodel dmodel
MLP 2dmodeldffn 2dmodeldffn 2dmodeldffn + dffn + dmodel nffndmodeldffn
Total 2dmodeldffn 2dmodeldffn 2dmodeldffn + dffn + 3dmodel nffndmodeldffn + dmodel
Approx. 2dmodeldffn 2dmodeldffn 2dmodeldffn + dffn + 3dmodel nffndmodeldffn

OutputNorm — — — dmodel
Final logits — — — —

Table 10. Parameter counts displayed in Table 9 using simplified notation nheadsdhead = dmodel, dffn = ρffndmodel, and nheads = gsizenkv-heads.
Parameters (Kaplan et al., 2020) (Hoffmann et al., 2022) (Narayanan et al., 2021) Ours (Total)

Embedding (nvocab + nctx)dmodel (nvocab + nctx)dmodel (nvocab + nctx)dmodel nvocabdmodel

Attention (one transformer layer)

PreNorm — — 2dmodel dmodel
QKNorm — — — 2dhead
QKV 3d2model 3d2model 3(d2model + dmodel) (1 + 2/gsize)d

2
model

Project d2model d2model d2model + dmodel d2model
Total 4d2model 4d2model 4d2model + 6dmodel 2(1 + 1/gsize)d

2
model + 2dhead + dmodel

Approx. 4d2model 4d2model 4d2model + 6dmodel 2(1 + 1/gsize)d
2
model

Feed-forward (one transformer layer)

PreNorm — — 2dmodel dmodel
MLP 2ρffnd

2
model 2ρffnd

2
model 2ρffnd

2
model + (1 + ρffn)dmodel nffnρffnd

2
model

Total 2ρffnd
2
model 2ρffnd

2
model 2ρffnd

2
model + (3 + ρffn)dmodel nffnρffnd

2
model + dmodel

Approx. 2ρffnd
2
model 2ρffnd

2
model 2ρffnd

2
model + (3 + ρffn)dmodel nffnρffnd

2
model

OutputNorm — — — dmodel
Final logits — — — —

This results in an approximation for the number of non-embedding parameters, dropping subleading terms

N ≈ nlayersd
2
model

(
2 +

2

gsize
+ nffnρffn

)
(71)

which can be used to estimate forward FLOPs per token from the model size (Appendix H.1).
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H.3. FLOPs per token

In Table 11 we present our counting of the total number of FLOPs per token performed per token during a forward pass
compared to commonly used existing expressions (Kaplan et al., 2020; Hoffmann et al., 2022; Narayanan et al., 2021). We
present a convenient substitution in Table 12 which can be easier to work with analytically.

Beyond the potential accounting for gated linear layers and grouped query attention, the most important discrepancy
across methods is how the attention mechanism is handled. As was also noted in Porian et al. (2024), the expression used
in Kaplan et al. (2020) is consistent with efficiently computing a causal attention mechanism (Dao et al., 2022; Dao, 2024)
whereas Hoffmann et al. (2022); Narayanan et al. (2021) are consistent with counting attention FLOPs for a bidirectional
(non-causal) attention mechanism, where the masked component of the attention matrix (zero by construction) is still being
computed. We adopt the efficient expression of assuming a causal computation as this more closely reflects best practice.

Table 11. Forward FLOPs per for token for embedding projector, a single transformer layer, final normalization and output layer. Ours
indicates the expressions we use in the paper for the total (note that the quantity CForward that appears in compute constraints is the
number of non-embedding floating operations. Approx. indicates taking the within-section total and dropping all terms that are not at
least quadratic in one of dmodel, nvocab, and will be used for estimating the FLOPs per token from a given model size (Appendix H.1).

FLOPs (Kaplan et al., 2020) (Hoffmann et al., 2022) (Narayanan et al., 2021) Ours (Total)

Embedding 4dmodel 2nvocabdmodel — 2dmodel

Attention (one transformer layer)

PreNorm — — — —
QKNorm — — — —
QKV 3nheads2dmodeldhead 3nheads2dmodeldhead 3nheads2dmodeldhead (nheads + 2nkv-heads)2dmodeldhead
Logits 2nheadsnctxdhead 2nheadsnctxdhead 2nheadsnctxdhead nheadsnctxdhead
Softmax — 3nheadsnctx — 2.5nheadsnctx
Values — 2nheadsnctxdhead 2nheadsnctxdhead nheadsnctxdhead
Project nheads2dheaddmodel nheads2dheaddmodel nheads2dheaddmodel nheads2dheaddmodel
Total 2nheadsdhead(4dmodel + nctx) 4nheadsdhead(2dmodel + nctx) + 3nheadsnctx 4nheadsdhead(2dmodel + nctx) 4nheadsdhead(dmodel + nctx/2) + 4nkv-headsdmodeldhead + 2.5nheadsnctx
Approx. 2nheadsdhead(4dmodel + nctx) 4nheadsdhead(2dmodel + nctx) + 3nheadsnctx 4nheadsdhead(2dmodel + nctx) 4nheadsdhead(dmodel + nctx/2) + 4nkv-headsdmodeldhead

Feed-forward (one transformer layer)

PreNorm — — — —
MLP 4dmodeldffn 4dmodeldffn 4dmodeldffn 2nffndmodeldffn

OutputNorm — — — —
Final logits 2nvocabdmodel 2nvocabdmodel 2nvocabdmodel 2nvocabdmodel

Table 12. Forward FLOPs counts per token from Table 11 simplified using nheadsdhead = dmodel, dffn = ρdmodel, and nheads = gsizenkv-heads.
FLOPs (Kaplan et al., 2020) (Hoffmann et al., 2022) (Narayanan et al., 2021) Ours (Total)

Embedding 4dmodel 2nvocabdmodel — 2dmodel

Attention (one transformer layer)

PreNorm — — — —
QKNorm — — — —
QKV 6d2model 6d2model 6d2model 2(1 + 2/gsize)d

2
model

Logits 2dmodelnctx 2dmodelnctx 2dmodelnctx dmodelnctx
Softmax — 3nheadsnctx — 2.5nheadsnctx
Values — 2dmodelnctx 2dmodelnctx dmodelnctx
Project 2d2model 2d2model 2d2model 2d2model
Total 8d2model + 2nctxdmodel 8d2model + 4nctxdmodel + 3nheadsnctx 8d2model + 4nctxdmodel (4 + 4/gsize)d

2
model + 2nctxdmodel + 2.5nheadsnctx

Approx. 8d2model + 2nctxdmodel 8d2model + 4nctxdmodel + 3nheadsnctx 8d2model + 4nctxdmodel (4 + 4/gsize)d
2
model + 2nctxdmodel

Feed-forward (one transformer layer)

PreNorm — — — —
MLP 4ρffnd

2
model 4ρffnd

2
model 4ρffnd

2
model 2nffnρffnd

2
model

OutputNorm — — — —
Final logits 2nvocabdmodel 2nvocabdmodel 2nvocabdmodel 2nvocabdmodel

This results in an approximation for the number of non-embedding floating operations per token, dropping subleading
terms

CForward ≈ 2nlayersd
2
model

(
2 +

2

gsize
+ nffnρffn

)
+ 2nlayersnctxdmodel + 2nvocabdmodel (72)

which can be used to estimate forward FLOPs per token from the model size (Appendix H.1).
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I. Model architecture
All models are based on Gunter et al. (2024) and are trained using AXLearn (Apple, 2023). All models use decoupled
weight decay Loshchilov & Hutter (2019) of 10−4 for regularization, as well as a simplified version of µP (Yang & Hu,
2021; Yang & Littwin, 2023; Yang et al., 2022; Wortsman et al., 2023; Yang et al., 2023), following what is described as µP
(simple) in (Wortsman et al., 2024). Because of µP (simple), we fix the learning rate to 1e−2 across all model sizes. Multi-
headed attention (MHA) is used (gsize = 1), with Pre-Normalization (Nguyen & Salazar, 2019) using RMSNorm (Zhang
& Sennrich, 2019). We train all models with a sequence length of nctx = 4096, with RoPE (Su et al., 2024) positional
embeddings (base frequency set to 500k). All model architectures in this work are presented in Table 13, have a fixed
aspect ratio dmodel = 128 and a fixed ffn ratio ρffn = 8/3 coupled with gated linear activation (nffn = 3).

Table 13. The models used in this work. The different parameter values and FLOPs per token are shown in billions. N is the number
of non-embedding parameters and isthe value we use in our scaling laws. Ntotal counts all parameters in the model.Cfwd is the total
number of forward FLOPs per token given by the fulltotal in Tables 11 and 12.Cfwd-approx(2N) is the estimated value of forward FLOPs
per tokenbased on the 2N approximation, and is accompanied by its relative error.Cfwd-approx(2N+σ) is the estimated value of forward
FLOPs per tokenbased on the approximation given in Equation 69, and is accompanied by its relative error.The Cfwd-approx(2N+σ) is the
one we use in this work.

Name N (B) Ntotal (B) nlayers dmodel dff Cfwd (B) Cfwd-approx(2N) (B) Cfwd-approx(2N+σ) (B)

103M 0.1028 0.1363 8 1024 2816 0.3411 0.2056 (-39.74%) 0.3398 (-0.39%)
143M 0.1434 0.1811 9 1152 3072 0.4487 0.2867 (-36.10%) 0.4471 (-0.34%)
198M 0.1983 0.2402 10 1280 3456 0.587 0.3965 (-32.44%) 0.5853 (-0.29%)
266M 0.2657 0.3118 11 1408 3840 0.7524 0.5314 (-29.38%) 0.7505 (-0.25%)
340M 0.3398 0.3901 12 1536 4096 0.9333 0.6796 (-27.19%) 0.9312 (-0.22%)
435M 0.4348 0.4893 13 1664 4480 1.158 0.8695 (-24.91%) 1.156 (-0.19%)
546M 0.546 0.6047 14 1792 4864 1.417 1.092 (-22.96%) 1.415 (-0.17%)
664M 0.6636 0.7265 15 1920 5120 1.692 1.327 (-21.54%) 1.689 (-0.15%)
810M 0.8096 0.8767 16 2048 5504 2.025 1.619 (-20.03%) 2.022 (-0.14%)
975M 0.9755 1.047 17 2176 5888 2.4 1.951 (-18.69%) 2.397 (-0.12%)
1.15B 1.147 1.222 18 2304 6144 2.787 2.293 (-17.72%) 2.784 (-0.11%)
1.35B 1.355 1.434 19 2432 6528 3.25 2.709 (-16.65%) 3.247 (-0.10%)
1.59B 1.586 1.67 20 2560 6912 3.763 3.172 (-15.70%) 3.759 (-0.09%)
1.82B 1.821 1.909 21 2688 7168 4.284 3.642 (-14.99%) 4.28 (-0.09%)

2.1B 2.102 2.194 22 2816 7552 4.899 4.203 (-14.21%) 4.895 (-0.08%)
2.41B 2.41 2.506 23 2944 7936 5.571 4.819 (-13.49%) 5.567 (-0.07%)
2.72B 2.718 2.819 24 3072 8192 6.246 5.436 (-12.96%) 6.241 (-0.07%)
3.08B 3.082 3.187 25 3200 8576 7.034 6.165 (-12.36%) 7.03 (-0.06%)
3.48B 3.478 3.587 26 3328 8960 7.887 6.956 (-11.81%) 7.883 (-0.06%)
3.87B 3.87 3.983 27 3456 9216 8.736 7.74 (-11.40%) 8.731 (-0.05%)
4.33B 4.329 4.446 28 3584 9600 9.72 8.658 (-10.93%) 9.715 (-0.05%)
4.82B 4.823 4.944 29 3712 9984 10.78 9.646 (-10.49%) 10.77 (-0.05%)
5.31B 5.309 5.434 30 3840 10240 11.82 10.62 (-10.16%) 11.81 (-0.05%)
5.87B 5.873 6.003 31 3968 10624 13.02 11.75 (-9.78%) 13.01 (-0.04%)
6.48B 6.476 6.611 32 4096 11008 14.3 12.95 (-9.43%) 14.29 (-0.04%)
7.07B 7.066 7.204 33 4224 11264 15.56 14.13 (-9.16%) 15.55 (-0.04%)
7.75B 7.747 7.889 34 4352 11648 17 15.49 (-8.85%) 16.99 (-0.04%)
8.47B 8.47 8.617 35 4480 12032 18.52 16.94 (-8.55%) 18.52 (-0.03%)
9.17B 9.173 9.324 36 4608 12288 20.01 18.35 (-8.33%) 20.01 (-0.03%)

10B 10.05 10.2 37 4736 12672 21.85 20.1 (-8.02%) 21.84 (-0.03%)
10.8B 10.84 11 38 4864 13056 23.51 21.67 (-7.83%) 23.5 (-0.03%)
11.7B 11.66 11.83 39 4992 13312 25.26 23.33 (-7.64%) 25.25 (-0.03%)
12.6B 12.61 12.78 40 5120 13696 27.24 25.22 (-7.42%) 27.23 (-0.03%)

We rescale the gradients, such that the maximum of the global norm is 1.0. A cosine learning rate schedule is used with
warmup (2000 steps), with a final learning rate of one thousandths of the peak learning rate. A Z-loss (Chowdhery et al.,
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2023) of 10−4 is used for stability, slightly decreasing norm growth at the end of the training.

For all experiments, the English-only subset of the C4 dataset (Raffel et al., 2020) is used. The C4 dataset was chosen
because of its wide usage in the research community. While C4 is big enough for larger-scale experiments, it is small
enough to allow for reproduction of experiments. For all distillation trainings, the teacher is trained on a different split as
the student. The C4 dataset has roughly 180B tokens in total, which results in 90B unique tokens for the teacher training
and 90B unique tokens for the student training. Except for the largest models, all Chinchilla-optimal models do not repeat
data. Models that overtrain on more than 90B tokens will have data repetition too. Muennighoff et al. (2023b) has shown
(on the C4 dataset) that repeating data up to 4 times has negligible impact to loss compared to having unique data.

J. Contributions
All authors contributed to writing this paper, designing the experiments, discussing results at each stage of the project.

Writing and framing Majority of writing done by Dan Busbridge, Jason Ramapruam, and Amitis Shidani. Research
direction led by Dan Busbridge, with research framing, question identification, and prioritization done by all authors.

Scaling law experiments Fixed aspect ratio models (Appendix I) FLOP counting methods (Appendix H.1), and model
implementation done by Dan Busbridge, Amitis Shidani, and Floris Weers. Dataset preparation done by Floris Weers.
IsoFLOP experimental design (Section 4.1) done by Dan Busbridge. Teacher training and distillations done by Dan Bus-
bridge, Amitis Shidani, and Floris Weers. Longer training duration (512B token) teachers and students trained by Floris
Weers.

Scaling law analysis Original scaling law fitting code based on Besiroglu et al. (2024) developed by Amitis Shidani.
Generalized, JAX Just In Time (JIT) compilation compatible scaling law fitting code, and numerical minimization ap-
proaches for compute optimal analysis (Section 5 and Appendix D) done by Dan Busbridge. Functional form (Equation 8)
developed by Dan Busbridge, in collaboration with Jason Ramapuram, Amitis Shidani, Russ Webb, and Floris Weers.

Scaling law downstream metrics Implementations of calibration Appendix E.8, Cumulative Distribution Function
(CDF) and top-k metrics done by Amitis Shidani. Downstream model evaluations (Appendix E.1) done by Floris Weers.

Teacher student capacity gaps Kernel regression demonstration of the capacity gap phenomenon (Appendix C.1) done
by Etai Littwin. MLP synthetic demonstration of the capacity gap phenomenon (Appendix C.2) done by Russ Webb.

Distilling language models in practice Mixing coefficient sensitivity analysis (Appendix G.1) done by Dan Busbridge
and Jason Ramapuram. Temperature (Appendix G.2) and learning rate (Figure 53) sensitivity analyses done by Dan Bus-
bridge. Top-k and top-p distribution truncation (Appendix G.4) implementation and analyses done by Jason Ramapuram.
Mixing coefficient combined with truncation analysis (Appendix G.4) done by Jason Ramapuram. Reverse KL divergence
Appendix G.5 implementation and analysis done by Jason Ramapuram.
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