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ABSTRACT Multi-task and multi-domain learning methods seek to learn multiple tasks/domains, jointly or one after
another, using a single unified network. The primary challenge and opportunity lie in leveraging shared information
across these tasks and domains to enhance the efficiency of the unified network. The efficiency can be in terms of
accuracy, storage cost, computation, or sample complexity. In this paper, we introduce a factorized tensor network (FTN)
designed to achieve accuracy comparable to that of independent single-task or single-domain networks, while introducing
a minimal number of additional parameters. The FTN approach entails incorporating task- or domain-specific low-rank
tensor factors into a shared frozen network derived from a source model. This strategy allows for adaptation to numerous
target domains and tasks without encountering catastrophic forgetting. Furthermore, FTN requires a significantly smaller
number of task-specific parameters compared to existing methods. We performed experiments on widely used multi-
domain and multi-task datasets. We show the experiments on convolutional-based architecture with different backbones
and on transformer-based architecture. Our findings indicate that FTN attains similar accuracy as single-task or single-
domain methods while using only a fraction of additional parameters per task.

INDEX TERMS Low-rank adaptation, multi-domain/multi-task learning, tensor decomposition.

I. INTRODUCTION
The primary objective in multi-task learning (MTL) is to train a
single model that learns multiple related tasks, either jointly or se-
quentially. Multi-domain learning (MDL) aims to achieve the same
learning objective across multiple domains. MTL and MDL tech-
niques seek to improve overall performance by leveraging shared
information across multiple tasks and domains. On the other hand,
single-task or single-domain learning does not have that opportunity.
Likewise, the storage and computational cost associated with single-
task/domain models quickly grows as the number of tasks/domains
increases. In contrast, MTL and MDL methods can use the same net-
work resources for multiple tasks/domains, which keeps the overall
computational and storage cost small [1], [2].

In general, MTL and MDL can have different input/output
configurations, but we model them as task/domain-specific network

representation problems. Let us represent a network for MTL or
MDL as the following general function:

yt = Ft (x) ≡ F(x;Wt , ht ), (1)

where Ft represents a function for task/domain t that maps input x
to output yt . We further assume that F represents a network with
a fixed architecture and Wt and ht represent the parameters for
task/domain-specific feature extraction and classification/inference
heads, respectively. The function in (1) can represent the network
for specific task/domain t using the respective Wt , ht . In the case of
MTL, with T tasks, we can have T outputs y1, . . . , yT for a given in-
put x. In the case of MDL, we usually have a single output for a given
input, conditioned on the domain t . Our goal is to learn the Wt , ht

for all t that maximize the performance of MTL/MDL with minimal

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/VOLUME 6, 2025 1077

https://orcid.org/0000-0001-5584-3169
https://orcid.org/0009-0005-1147-2526
https://orcid.org/0000-0003-4191-301X
https://orcid.org/0000-0002-4272-423X
https://orcid.org/0000-0001-6690-9725
https://orcid.org/0000-0001-5993-3903
mailto:sasif@ucr.edu
https://doi.org/10.1109/OJSP.2025.3613142


IEEE OPEN JOURNAL OF SIGNAL PROCESSING, VOL. 6, 2025

FIGURE 1. Overview of different MTL/MDL approaches and our proposed method. (a) Fine-Tuning trains entire network per task/domain. (b)
Feature-Extractor trains a backbone network shared by all tasks/domains with task/domain-specific heads. (c) Our proposed method, Factorized Tensor
Network (FTN), adapts to a new task/domain by adding low-rank factors to shared layers. (d) Detailed overview of FTN. A single network adapted to
three downstream vision tasks (segmentation, depth, and surface normal estimation) by adding task-specific low-rank tensors (�Wt ).
Task/domain-specific blocks are shown in same colors.

computation and memory overhead compared to single-task/domain
learning.

Fig. 1(a), (b), (c) illustrate three typical approaches for
MTL/MDL. First, we can start with a pre-trained network and fine-
tune all the parameters (Wt ) to learn a target task/domain, as shown
in Fig. 1(a). Fine-Tuning approaches can transfer some knowledge
from the pretrained network to the target task/domain, but they ef-
fectively use an independent network for every task/domain [1], [3].
Second, we can reduce the parameter and computation complexity
by using a completely shared Feature-Extractor (i.e., Wt = Wshared

for all t) and learning task/domain-specific heads as last layers,
as shown in Fig. 1(b). While such approaches reduce the number
of parameters, they often result in poor overall performance be-
cause of limited network capacity and interference among features
for different tasks/domains [1], [3], [4]. Third, we can divide the
network into shared and task/domain-specific parameters or path-
ways, as shown in Fig. 1(c). Such an approach can increase the
network capacity, provide interference-free paths for task/domain-
specific feature extraction, and enable knowledge sharing across
the tasks/domains. In recent years, a number of such methods
have been proposed for MTL/MDL [1], [5], [6]. While existing
methods can provide performance comparable to single-task/domain
learning, they require a significantly large number of additional
parameters.

In this paper, we propose a parameter-efficient approach to fac-
torize a network into two distinct modules: a shared frozen module

and a task/domain-specific module. We refer to this architecture as
a factorized tensor network (FTN). FTNs adapt a network to target
domains or tasks by learning low-rank tensors and normalization
layers, such as batch normalization. An illustration of our pro-
posed method is shown in Fig. 1(d), where we represent network
parameters as Wt = Wshared + �Wt , where �Wt is a low-rank
tensor.

Similar parameter-efficient methods such as [7], [8], use low-rank
matrix adaptations to fine-tune their network. Our proposed method
represents low-rank adaptations as a summation of R rank-1 ten-
sors, significantly reducing the number of parameters in our network
while achieving better performance. LoRA [7] explores a similar
approach by using low-rank matrix factorization to adapt networks.
However, unlike LoRA, the low-rank tensor factorization in FTN
enables greater parameter reduction. Our experiments demonstrate
that FTN achieves better results than LoRA. While LoRA was origi-
nally designed for transformer architectures, we have shown a natural
extension of FTN to convolutional architectures. The recent method
SVFT [9] updates weights as a sparse combination of outer products
of singular vectors, training only the coefficients of these sparse
combinations. Our experiments indicate that FTN achieves superior
performance using fewer parameters than SVFT. FTN leverages ten-
sor factorization to efficiently approximate multi-dimensional data.
Our main motivation is to exploit the ability of tensor factorization to
model complex interactions and dependencies more effectively than
traditional 2D matrix representations [10], [11].
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A prior work, TAPS [1], differentially learns which layers of
a pre-trained network to adapt for a downstream task/domain by
learning an indicator function. The network uses adapted weights
instead of pre-trained weights if the indicator score is above a certain
threshold. This typically involves adapting high-parameterized layers
closer to the classifier/head, which uses significantly more parame-
ters than our FTN method. Existing parameter-efficient MTL/MDL
methods [3], [12], [13] introduce small task/domain-specific pa-
rameters while others [4], [14] add many parameters to boost the
performance irrespective of the task complexity. In our work, we
demonstrate the flexibility of FTNs by selecting the rank according
to the complexity of the task. Other approaches like RCM [5] adapt
incrementally to new tasks by reparameterizing the convolutional
layer into task-shared and task-specific parameters. However, unlike
FTN this architecture shows limitations in adapting based on the
complexity of the tasks and performs subpar along performance and
parameters. We demonstrate the effectiveness of our method using
different MTL and MDL datasets.

I. CONTRIBUTIONS.
The main contributions of this paper are as follows.
� We propose a new method for MTL and MDL, called fac-

torized tensor networks (FTN), that adds task/domain-specific
low-rank tensors to shared weights. FTNs can achieve similar
performance as the single-task/domain methods while using a
fraction of additional parameters.

� Our proposed method utilizes tensor-factorization and demon-
strates superior parameter-efficiency compared to matrix fac-
torization methods such as LoRA [7] or indicator based
adaptation methods such as TAPS [1].

� Our proposed FTNs can be viewed as a plug-in module that can
be added to any pretrained network and layer. We have shown
this by extending FTNs to transformer-based architectures.

� We performed empirical analysis to show that the FTNs enable
flexibility by allowing us to vary the rank of the task-specific
tensors based on the problem complexity.

II. RELATED WORK
Multi-task learning (MTL) methods commonly leverage shared
and task-specific layers in a unified network to solve related
tasks [15], [16]. These methods learn shared and task-specific rep-
resentation through their respective modules. Optimization-based
methods [17], [18] devise a principled way to evaluate gradients
and losses in multi-task settings. Branched and tree-structured MTL
methods [19] enable different tasks to share branches along a tree
structure for several layers. Multiple tasks can share computations
and features in any layer only if they belong to the same branch
in all the preceding layers. [5], [20] proposed MTL networks that
incrementally learn new tasks. ASTMT [20] proposed a network that
emphasizes or suppresses features depending on the task at hand.
RCM [5] reparameterizes the convolutional layer into non-trainable
and task-specific trainable modules. We compare our proposed
method with these incrementally learned networks. Adashare [21]
is another related work in MTL that jointly learns multiple tasks. It
learns task-specific policies and network pathways [22].

Multi-domain learning (MDL) focuses on adapting one network
to multiple unseen domains or tasks. MDL setup trains models
on task-specific modules built upon the frozen backbone network.
This setup helps MDL networks avoid negative transfer learning or
catastrophic forgetting, which is common among multi-task learning

methods. The work by [2], [23] introduces the task-specific pa-
rameters called residual adapters. The architecture introduces these
adapters as a series or parallel connection on the backbone for
a downstream task. Inspired by pruning techniques, Packnet [12]
learns on multiple domains sequentially on a single task to decrease
the overhead storage, which comes at the cost of performance. Simi-
larly, the Piggyback [3] method uses binary masks as the module for
task-specific parameters. These masks are applied to the weights of
the backbone to adapt them to new domains. To extend this work,
WTPB [24] uses the affine transformations of the binary mask on
their backbone to extend the flexibility for better learning. BA2 [25]
proposed a budget-constrained MDL network that selects the feature
channels in the convolutional layer. It gives a parameter-efficient
network by dropping the feature channels based on budget but at the
cost of performance. DA3 [26] introduces a memory- and parameter-
efficient method with a specific focus on on-device applications.
DA3 freezes multiplicative weights and masks and only updates
the additive bias terms. [27] paper learns the adapter modules and
the plug-in architecture of the modules using NAS. Spot-Tune [14]
learns a policy network, which decides whether to pass each image
through Fine-Tuning or pretrained networks. It neglects the parame-
ter efficiency factor and emphasises more on performance. TAPS [1]
adaptively learns to change a small number of layers in a pretrained
network for the downstream task.

Domain adaptation and transfer learning: The work in this field
usually focuses on learning a network from a given source domain to
a closely related target domain. The target domains under this kind
of learning typically have the same category of classes as source
domains [28]. Due to this, it benefits from exploiting the labels of
source domains to learn about multiple related target domains [29].
Some work has a slight domain shift between source and target data,
like different camera views [30]. At the same time, recent papers
have worked on significant domain shifts like converting targets
into sketch or art domains [29], [31]. Transfer learning is related
to MDL or domain adaptation but focuses on better generalizing
target tasks [32]. Most of the work in this field uses the popular
ImageNet as a source dataset to learn feature representation and
learn to transfer to target datasets. The method proposed in [33] uses
a pretrained (multi-task) teacher network and decomposes it into
multiple task/knowledge-specific factor networks that are disentan-
gled from one another. This factorization leads to sub-networks that
can be fine-tuned to downstream tasks, but they rely on knowledge
transfer from a teacher network that is pretrained for multiple tasks.
Modular deep learning methods [34] focus on transfer learning by
avoiding negative task interference and having parameter-efficient
modules.

Factorization methods in MDL/MTL: The method in [35] pro-
posed a unified framework for MTL/MDL using semantic de-
scriptors, without focusing on parameter-efficient adaptation. [36]
performs MTL/MDL by factorizing each layer in the network after
incorporating task-specific information along a separate dimension.
Both the networks in [35] and [36] require retraining from scratch
for new tasks/domains. In contrast, FTN can incrementally learn
low-rank factors to add new tasks/domains. [37] proposed a new
parameter-efficient network to replace residual networks by incor-
porating factorized tensors. The results in [37] are limited to learning
single-task networks, where the network is only compressed by up
to ∼ 60%. In [38], the authors proposed a network for MDL us-
ing Tucker decomposition. [39] paper focuses on solving inverse
problems in computational imaging applications. The method pro-
poses to modulate the weights of an unrolled pre-trained network for
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adaptation to multiple domains, measurement models, and noise. The
multiplicative modulation is applied on DCNN (a small parameter
network) with only rank-1 tensors.

Transformer-based methods in MDL/MTL: COMPACTER [40]
is a parameter-efficient fine-tuning method designed for large-scale
language models. It inserts task-specific weight matrices into a pre-
trained model’s weights as a sum of Kronecker products between
shared low-rank “slow” weights and task-specific “fast” rank-one
matrices. Adaptformer [41] introduces an effective adapter-based
approach for parameter-efficient fine-tuning of vision transformers
for a large variety of downstream visual recognition tasks. The
core idea is to insert the lightweight bottleneck adapters into the
feed-forward layer of a pretrained transformer. The adapter involves
two fully connected layers, a non-linear activation function, and a
scaling factor. LoRA [7] is a low-rank adaptation method proposed
for large language models, which freezes the pre-trained weights of
the model and learns low-rank updates for each transformer layer. It
updates weight matrices for query and value in every attention layer.
Similarly, KAdaptation [8] proposes a parameter-efficient adapta-
tion method for vision transformers. It represents the updates of
MHSA layers using the summation of Kronecker products between
shared parameters and low-rank task-specific parameters. We com-
pared both of these methods and have shown that FTN outperforms
along the number of parameters. Scaling and shifting your features
(SSF) [42] is another transformer method for parameter-efficient
adaptation that applies element-wise multiplication and addition to
tokens after different operations. SSF, in principle, is similar to fine-
tuning the Batch Normalization layer in convolutional layers, which
has scaling and shifting trainable parameters. FTN trains the Batch
Normalization layers and has the same effect as scaling and shifting
features when adapting to new tasks. [43] proposed inverted-pyramid
multi-task transformer, performs cross-task interaction among spatial
features of different tasks in a global context. Our method, FTN,
shares some high-level similarities with other parameter-efficient
adaptation methods such as LoRA, as both approaches aim to in-
troduce low-rank factors to adapt networks for multiple tasks and
domains. Our method is a natural extension to higher-order tensors,
and we demonstrate its effectiveness across both transformer and
convolutional network architectures. In addition, our method adds
parameter and performance efficiency compared to related methods,
as shown by our experiments.

In summary, our proposed method (FTN) offers a parameter-
efficient approach to achieve performance comparable to or better
than existing adaptation methods by utilizing a fraction of addi-
tional parameters. Our primary design consideration was to achieve
efficient adaptation, enabling incremental learning with additive fac-
tors. To achieve parameter efficiency, we introduce a small number
of trainable parameters through low-rank factorization applicable
to both convolutional and transformer-based networks. We utilize
frozen and trainable task-specific parameters to support incremental
learning without forgetting prior knowledge.

III. TECHNICAL DETAILS
Notations: In this paper, we denote scalars, vectors, matrices and
tensors by w, w, W, and W, respectively. The collective set of tensors
(network weights) is denoted as W.

A. FTN APPLIED TO CONVOLUTIONAL LAYERS
In our proposed method, we use task/domain-specific low-rank ten-
sors to adapt every convolutional layer of a pretrained backbone

network to new tasks and domains. Let us assume the back-
bone network has L convolutional layers that are shared across
all task/domains. We represent the shared network weights as
Wshared = {W1, . . . , WL} and the low-rank network updates for
task/domain t as �Wt = {�W1,t , . . . , �WL,t }. To compute features
for task/domain t , we update weights at every layer as Wshared +
�Wt = {W1 + �W1,t , . . . , WL + �WL,t }.

To keep our notations simple, let us only consider lth convo-
lutional layer that has k × k filters, Cin channels for input feature
tensor, and Cout channels for output feature tensor. We represent the
corresponding Wl as a tensor of size k2 × Cin × Cout . We represent
the low-rank tensor update as a summation of R rank-1 tensors as

�Wl,t =
R∑

r=1

wr
1,t ⊗ wr

2,t ⊗ wr
3,t , (2)

where wr
1,t , wr

2,t , wr
3,t represent vectors of length k2,Cin,Cout , respec-

tively, and ⊗ represents the Kronecker product.
Apart from low-rank tensor update, we also optimize over Batch

Normalization layers (BN) for each task/domain [44], [45]. The
BN layer learns two vectors � and β, each of length Cout . The
BN operation along Cout dimension can be defined as element-wise
multiplication and addition:

BN�,β (u) = �

(
u − E[u]√
Var[u] + ε

)
+ β. (3)

We represent the output of lth convolutional layer for task/domain t
as

Zl,t = BN�t ,βt (conv(Wl + �Wl,t , Yl−1,t )), (4)

where Yl−1,t represents the input tensor and Zl,t represents the output
tensor for lth layer. In our proposed FTN, we learn the task/domain-
specific factors {wr

1,t , wr
2,t , wr

3,t }R
r=1, and �t , and βt for every layer in

the backbone network.
In the FTN method, rank R for �W plays an important role in

defining the expressivity of the adapted network. We can define a
complex �W by increasing the rank R of the low-rank tensor and
taking their linear combination. Our experiments showed that this
has resulted in a significant performance gain.

Initialization: To establish a favorable starting point, we adopt a
strategy that minimizes substantial modifications to the frozen back-
bone network weights during the initialization of the task-specific
parameter layers. To achieve this, we initialize each parameter layer
from the Xavier uniform distribution [46], thereby generating �W
values close to 0 before their addition to the frozen weights. This
approach ensures the initial point of our proposed network closely
matches the pretrained network closely.

To acquire an effective initialization for our backbone network,
we leverage the pretrained weights obtained from ImageNet. We aim
to establish a robust and capable feature extractor for our specific
task by incorporating these pretrained weights into our backbone
network.

Number of parameters: In a Fine-Tuning setup with T
tasks/domains, the total number of required parameters at convo-
lutional layer l can be calculated as T · (k2 × Cin × Cout ). Whereas
using our proposed FTNs, the total number of frozen backbone
(Wl ) and low-rank R tensor (�Wl,t ) parameters are given by
(Cout × Cin × k2) + T · R · (Cout + Cin + k2). In our results section,
we have shown that the absolute number of parameters required
by our method is a fraction of what the Fine-Tuning counterpart
needs.
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Effect of Batch Normalization: In our experiment section, under
the ‘FC and BN only’ setup, we have shown that having task-specific
Batch Normalization layers in the backbone network significantly
affects the performance of a downstream task/domain. For all the
experiments with our proposed approach, we include Batch Nor-
malization layers as task-specific along with low-rank tensors and
classification/decoder layer.

B. FTN APPLIED TO TRANSFORMERS
The Vision Transformer (ViT) architecture [47] consists a series
of MLP, normalization, and Multi-Head Self-Attention (MHSA)
blocks. The MHSA blocks perform n parallel attention mechanisms
on sets of Key K , Query Q, and Value V matrices. Each of these
matrices has dimensions of S × dmodel , where dmodel represents the
embedding dimension of the transformer, and S is the sequence
length. The i-th output head (Hi) of the n parallel attention blocks
is computed as

Hi = SA(QWQ
i , KWK

i ,V WV
i ), (5)

where SA(·) represents the self-attention mechanism, WK
i , Wi

Q, WV
i

∈ R
dmodel ×d represent the projection weights for the key, query, and

value matrices, respectively, and d = dmodel/n. The heads Hi are then
combined using a projection matrix Wo ∈ Rdmodel ×dmodel to result in
the output of the MHSA block as

MHSA(H1, . . . , Hn) = Concat(H1, . . . , Hn ) · Wo. (6)

Following the adaptation procedure in [8], we apply our proposed
factorization technique to the weights in the MHSA block. We in-
troduce two methods for applying low-rank tensors to the attention
weights:

Adapting query and value weights: Our first proposed method,
FTN (Query and Value), adds the low-rank tensor factors to the query
WQ and value WV weights. These weights can be represented as
three-dimensional tensors of size dmodel × d × n. Using (2), we can
define and learn low-rank updates �Wq and �Wv for the query and
value weights, respectively.

Adapting output weights: Our second method, FTN (Output
projection), adds low-rank factors, �Wo, to the output projection
weights Wo ∈ Rdmodel ×d×n. Similar to the previous low-rank updates,
the updates to the output weights defined following (2).

Initialization: We initialize each low-rank factor by sampling from
a Gaussian distribution with μ = 0 and σ = 0.05. This ensures near-
zero initialization, closely matching the pretrained network.

Number of parameters: The total number of parameters needed
for R low-rank tensors and L MHSA blocks in FTN (Query and
Value) is 2LR(dmodel + d + n). FTN (Output Projection) requires
only LR(dmodel + d + n) to add a similar number of factors. These
additional parameters are significantly fewer than the parameters
required for fully fine-tuning the four attention weights, which equals
4Ld2

model . When compared to other parameter-efficient adaptation
methods such as LoRA [7] and KAdaptation [8], our methods
show superior parameter efficiency. The primary distinction is in
the method of weight factorization and decomposition. In LoRA,
to introduce rank R factors in the query and value weight matri-
ces, 4LRdmodel parameters are required. Our approach begins with
a three-dimensional representation of the attention weights, sized
dmodel × d × n. We chose this approach because it allows us to ex-
ploit the relationship between the attention heads, further improving
parameter efficiency. Moreover, we have explored different types of
updates within the self-attention mechanism and proposed two vari-
ants of our FTN (Query and Value and Output projection). SSF [42]

requires mLdmodel , where m is the number of SSF modules in each
transformer layer. In Table 3, we report the exact number of pa-
rameters and demonstrate that our proposed method, FTN (Output
Projection), has the best parameter efficiency.

IV. EXPERIMENTS AND RESULTS
We evaluated the performance of our proposed FTN on several
MTL/MDL datasets. We performed experiments for 1. Multi-
domain classification on convolution and transformer-based net-
works, and 2. Multi-task dense prediction. For each set of bench-
marks, we reported the performance of FTN with different rank
increments and compared the results with those from existing meth-
ods. All experiments are run on a single NVIDIA GeForce RTX 2080
Ti GPU with 12 GB memory.

A. MULTI-DOMAIN CLASSIFICATION
1) CONVOLUTION-BASED NETWORKS
Datasets: We use two MTL/MDL classification-based benchmark
datasets. First, ImageNet-to-Sketch, which contains five different
domains: Flowers, Cars, Sketch, Caltech-UCSD Birds (CUBs), and
WikiArt, with different classes. Second, DomainNet, which contains
six domains: Clipart, Sketch, Painting (Paint), Quickdraw (Quick),
Inforgraph (Info), and Real, with each domain containing an equal
345 classes. The datasets are prepared using augmentation tech-
niques as adopted by [1].

Training details: For each benchmark, we report the performance
of FTN for various choices for ranks, along with several benchmark-
specific comparative and baseline methods. The backbone weights
are pretrained from ImageNet, using ResNet-50 for the ImageNet-to-
Sketch benchmarks, and ResNet-34 on the DomainNet benchmarks
to keep the same setting as [1]. On ImageNet-to-Sketch we run FTNs
for ranks, R ∈ {1, 5, 10, 15, 20, 25, 50} and on DomainNet dataset
for ranks, R ∈ {1, 5, 10, 20, 30, 40}. In the supplementary material,
we provide the hyperparameter details to train FTN.

Results: We report the top-1% accuracy for each domain and the
mean accuracy across all domains for each collection of benchmark
experiments. We also report the number of frozen and learnable
parameters in the backbone network. Table 1 compares the FTN
method with other methods in terms of accuracy and number of
parameters. FTN outperforms every other adaptation-based method
in number of parameters while using 36.02 million parameters in the
backbone with rank-50 updates for all domains. The mean accuracy
performance is better than other adaptation-based methods and is
close to Spot-Tune [14] and Fine-Tuning, which requires nearly
165 M and 141 M parameters respectively. On the Wikiart dataset, we
outperform the top-1 accuracy with other adaptation-based methods.
The performance of baseline methods is taken from TAPS [1], as we
are running the experiments under the same settings.

Table 2 shows the results on the DomainNet dataset, which we
compare with TAPS [1] and Adashare [21]. Again, using FTN, we
significantly outperform comparison methods along the required pa-
rameters (rank-40 needs 25.22 million parameters only). Also, FTN
rank-40 attains better top-1% accuracy on the Infograph and Real
domain, while it attains similar performance on all other domains.
On DomainNet with resnet-34 and Imagenet-to-Sketch with resnet-
50 backbone, the rank-1 low-rank tensors require only 16,291 and
49,204 parameters per task, respectively. We have shown additional
experiments on this dataset under a joint optimization setup in section
4 of the supplementary material.

Analysis on rank: We create low-rank tensors (�W ) as a summa-
tion of R rank-1 tensors. We hypothesize that increasing R increases
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TABLE 1. Number of Parameters and top-1% Accuracy for Baseline Methods, Comparative Methods, and FTN With Varying Ranks on the Five Domains of
the ImageNet-to-Sketch Benchmark Experiments. Additionally, the Mean top-1% of Each Method Across All Domains is Shown. The ‘params’ Column
Gives the Number of Parameters Used as a Multiplier of Those for the Feature-Extractor Method, Along With the Absolute Number of Parameters
Required in Parentheses. Bold and underline Indicate the Best and Second-Best Results, Respectively.

TABLE 2. Performance of Different Methods With resnet-34 Backbone on DomainNet Dataset. Top-1% Accuracy is Shown on Different Domains With
Different Methods Along With the Number of Parameters. Bold and underline Indicate the Best and Second-Best Results, Respectively.

the expressive power of low-rank tensors. Our experiments confirm
this hypothesis, where increasing the rank improves the performance,
enabling more challenging task/domain adaptation. Fig. 2 shows
the accuracy vs. ranks plot, where we observe a trend of perfor-
mance improvement as we increase the rank from 1 to 50 on the
ImageNet-to-Sketch and from 1 to 40 on the DomainNet dataset. In
addition, we observe that some domains do not require high ranks.
Particularly, the Flowers and Cars domains attain good accuracy
at ranks 20 and 15, respectively. We can argue that, unlike prior
works [13], [14], which consume the same task-specific module for
easy and complex tasks, we can provide different flexibility to each
task. Also, we can add as many different tasks as we want by adding
independent low-rank factors for each task (with a sufficiently large
rank). In supplementary material, we present a heatmap that shows
the adaption of the low-rank tensor at every layer upon increasing the
rank. Section 2 of the supplementary materials shows an additional
experiment to demonstrate the effect on performance with different
numbers of low-rank factors.

2) TRANSFORMER-BASED NETWORKS
We compared our FTN method with several domain adaptation tech-
niques for supervised image classification. Our task is to adapt a

pretrained 12-layer ViT-B-224/32 (CLIP) model obtained from [8]
to new domains.

Datasets: We conducted experiments on the CIFAR10, CI-
FAR100, DTD, FER2013, and STL10 classification datasets, using
the official dataset splits.

Training details: For all experiments except SVFT [9], we set
the rank to R = 4. We followed a similar hyper-parameter tuning
procedure and implementation as outlined in [8], which utilizes
grid-search to obtain the optimal learning rate for each dataset. We
found that 5 × 10−6 was the optimal learning rate. Following the
approach in [7], we scaled the low-rank factors by α

R , where α is
a hyper-parameter, and R is the number of low-rank factors. We set
α = 10 and α = 100 for FTN (Query and Value) and FTN (Output
projection), respectively. We used a batch size of 64 and trained
for 100 epochs. For SVFT, we used its Plain variant from their
codebase to maintain a comparable number of additional parameters
and performed hyper-parameter tuning to determine optimal learning
rates for a fair comparison.

Results: In Table 3, we present the classification accuracy and the
total number of parameters for our proposed FTN methods, along
with related model adaptation methods. Results for Fine-tuning,
Feature extractor (Linear-probing), LoRA [7], and KAdaptation [8]
are obtained from [8]. The first proposed method, FTN (query and
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FIGURE 2. Accuracy vs Low-ranks: We show the top-1% accuracy against different low-ranks used in our method for different domains. We start with
‘only BN’ setup where without any low-rank we keep the Batch Normalization layers as task-specific. Then we show the performance improvement
through our approach upon increasing the rank-R.

TABLE 3. We Compared Performance Across Five Datasets in Terms of Accuracy and Total Parameters. FTN (O) Uses Low-Rank Factors for Output
Projection Weights, While FTN (Q&V) Applies Them to Query and Value Weights. Note That the Parameters Mentioned Exclude Task-Specific Heads, and
5 × (439.5M) Denotes a Fivefold Increase From the Base Network’s 87.9M Parameters. Bold and underline Indicate the Best and Second-Best Results,
Respectively.

TABLE 4. Dense Prediction Performance on NYUD Dataset Using
ResNet-18 Backbone With DeepLabv3+ Decoder. The Proposed FTN
Approach With R = {1, 10, 20, 30} and Other Methods. Bold and underline
Indicate the Best and Second-Best Results, Respectively.

value), surpasses LoRA in terms of average performance and re-
quires fewer additional parameters. FTN (query and value) requires a
comparable number of parameters to KAdaptation and performance
is 0.8% lower. In contrast, FTN (output projection) requires ap-
proximately half as many additional parameters as KAdaptation but
achieves comparable performance. Additionally, FTN outperforms

SVFT [9] on average while using fewer parameters. Fine-tuning and
Feature extractor methods require the least FLOPS due to the absence
of architectural modifications. Among the others, LoRA and FTN
(O) achieve comparable and second-best FLOPS. We calculate Wall-
clock time as the total duration, in seconds, required to complete a
single training epoch. The Feature extractor approach had the short-
est wall-clock time, as expected due to the frozen backbone. FTN
(O) achieves the best wall-clock performance among the remaining
methods, highlighting its training efficiency.

B. MULTI-TASK DENSE PREDICTION
Dataset: The widely-used NYUD dataset with 795 training and 654
testing images of indoor scenes is used for dense prediction exper-
iments in multi-task learning. The dataset contains four tasks: edge
detection (Edge), semantic segmentation (SemSeg), surface normals
estimation (Normals), and depth estimation (Depth). We follow the
same data-augmentation technique as used by [5].

Metrics: On the tasks of the NYUD dataset, we report mean
intersection over union for semantic segmentation, mean error for
surface normal estimation, optimal dataset F-measure [48] for edge
detection, and root mean squared error for depth estimation. We
also report the number of parameters used in the backbone for each
method.

Training details: ResNet-18 is used as the backbone network,
and DeepLabv3+ as the decoder architecture. The Fine-Tuning and
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Feature-Extractor experiments are implemented in the same way as
in the classification-based experiments above. We showed experi-
ments for FTNs with R ∈ {1, 10, 20, 30}. Further details are in the
supplementary material.

Results: Table 4 shows the performance of FTN with various
ranks and of other baseline comparison methods for dense prediction
tasks on the NYUD dataset. We observe performance improvement
by increasing flexibility through higher rank. FTN with rank-30
performs better than all comparison methods and utilizes the least
number of parameters. Also, we attain good performance on the
Depth and Edge task by using only rank-20. We take the performance
of baseline comparison methods from the RCM paper [5] as we run
our experiments under the same setting.

Section 6 of the supplementary materials presents additional ex-
periments on the multi-domain image generation application using
the FTN method.

V. CONCLUSION
We have proposed a simple, parameter-efficient, architecture-
agnostic, and easy-to-implement FTN method that adapts to new
unseen domains/tasks using low-rank task-specific tensors. Our work
shows that FTN requires the least number of parameters compared to
other baseline methods in MDL/MTL experiments and attains better
or comparable performance. We can adapt the backbone network in
a flexible manner by adjusting the rank according to the complexity
of the domain/task. We conducted experiments with different convo-
lutional backbones and transformer architectures for various datasets
to demonstrate that FTN outperforms existing methods.

Future work: In our current approach, we used a fixed rank for
each layer. Moving forward, we can explore adaptively selecting the
rank for different layers, which may further reduce the number of
parameters. MDL/MTL models are often challenged by task interfer-
ence or negative transfer learning when conflicting tasks are trained
together. Future work can address this by investigating which tasks
or domains should be learned jointly to mitigate such drawbacks.
Additionally, while our method requires a separate forward pass for
each task due to the shared backbone, we could further explore
branched or tree-structured models that enable task-specific layer
sharing to reduce latency.
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