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Abstract

Efficient equilibrium sampling of molecular con-
formations remains a core challenge in computa-
tional chemistry and statistical inference. Clas-
sical approaches such as molecular dynamics or
Markov chain Monte Carlo inherently lack amor-
tization; the computational cost of sampling must
be paid in-full for each system of interest. The
widespread success of generative models has in-
spired interest into overcoming this limitation
through learning sampling algorithms. Despite
performing on par with conventional methods
when trained on a single system, learned sam-
plers have so far demonstrated limited ability to
transfer across systems. We prove that deep learn-
ing enables the design of scalable and transferable
samplers by introducing ENSEMBLE, a 280 mil-
lion parameter all-atom transferable normalizing
flow trained on a corpus of peptide molecular dy-
namics trajectories up to 8 residues in length. EN-
SEMBLE draws zero-shot uncorrelated proposal
samples for arbitrary peptide systems, achieving
the previously intractable transferability across
sequence length, whilst retaining the efficient like-
lihood evaluation of normalizing flows. Through
extensive empirical evaluation we demonstrate
the efficacy of ENSEMBLE as a proposal for a
variety of sampling algorithms, finding a simple
importance sampling-based finetuning procedure
to achieve superior performance to established
methods such as sequential Monte Carlo. EN-
SEMBLE opens the door for further research into
sampling methods and finetuning objectives.
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Figure 1: ENSEMBLE exceeds the quantitative performance of
baseline on unseen peptide systems. Wasserstein-2 distances on
energy, dihedral angle, and TICA projection (7-W,), for molec-
ular dynamics, equivariant continuous normalizing flow (with
SNIS), and ENSEMBLE (with SNIS), at a range of energy eval-
uation (above) and GPU walltime budgets (below). Mean of 30
unseen tetrapeptide systems, ECNF evaluated only up to 10* en-
ergy evaluations due to prohibitive GPU walltime. ENSEMBLE
is the most performant method at any energy budget on all met-
rics. Whilst MD exceeds the performance of ENSEMBLE with
GPU hours on E-W, and T-W, it is significantly inferior on
TICA-Ws, indicating a failure to sample all metastable states.

1. Introduction

Accurately sampling molecular configurations from the
Boltzmann distribution is a fundamental problem in statis-
tical physics with profound implications for understanding
biological and chemical systems. Key applications include
protein folding Noé et al.| (2009); [Lindorff-Larsen et al.
(2011)), protein—ligand binding (Buch et al.,2011), and crys-
tal structure prediction (Kohler et al.,[2023); processes that
underpin advances in drug discovery and material science.

Conventional approaches such as Markov Chain Monte
Carlo MCMC) (Liul |2001)) and, in particular, Molecular Dy-
namics (MD) (Leimkuhler & Matthews,,[2015)) seek to tackle
this problem by proposing a general solution, which, how-
ever, has practical limitations due to its Markov nature. To
accurately integrate the corresponding Hamiltonian dynam-
ics, MD has to be simulated with a fine time-discretization
(on the order of femtoseconds), which produces highly cor-
related samples and prevents efficient exploration of the
modes of the Boltzmann density. Although running multi-
ple chains from different initializations is possible, every
chain has to be simulated for a long time to ensure proper
mixing, which cannot be efficiently parallelized. Finally, the
entire simulation has to be re-started from scratch for a new



Amortized Sampling with Transferable Normalizing Flows

system, which bottlenecks the speed of ab initio studies.

Deep learning-based samplers, although considered in dif-
ferent settings, abandon the Markov Chain approach to gen-
erating samples and shift the computational burden to a
one-time training phase, enabling fast and inexpensive infer-
ence compared to MCMC. In the most challenging scenario,
these methods consider having access only to the unnormal-
ized density function (analogous to MC methods) (Vargas
et al.| [2023; |/Akhound-Sadegh et al., 2024). Boltzmann Gen-
erators (BGs) (Noé et al., | 2019) consider a more practical
scenario when, in addition to the unnormalized density, a
dataset of MD trajectories is available, which does not nec-
essarily match the target density. To eliminate the error
introduced by the imperfections of the model and training
data, BGs rely on training likelihood-based models and
perform self-normalized importance sampling (SNIS) (Liu
2001) at inference time. The availability of the training
data and inference-time IS have enabled BGs to generalize
across small peptides of the same sequence length (Klein &
Noe, |2024), but they still fall short of generalizing to larger
and more diverse systems of interest.

In this work, we introduce ENSEMBLE, a large-scale nor-
malizing flow which demonstrates unprecedented abilities
to transfer to previously unseen systems of different amino
acids, sizes, and temperatures, outperforming MD for the
same computational budget (see Fig. [I). Our approach is
strikingly simple and scalable, which elucidates the potential
of the deep learning-based samplers for sampling applica-
tions. In particular, we achieve this through the following
series of contributions:

* We introduce ManyPeptidesMD; a novel dataset of
molecular dynamics trajectories for peptide systems
between 2 and 8 residues. The training dataset consists
of ~ 16,000 peptide sequences simulated for 50 ns
each, with ~ 8, 000 sequences for octopeptides alone.
This dataset is a superset of that of Klein et al.|(2023a)),
increasing the sequence count 10-fold.

* Building on the recently proposed TarFlow (Zhai et al.|
2024)), we propose architectural modifications, which
allow for better modeling of peptide systems, system-
transferable conditioning, and generation of peptide
sequences of varying length.

* We study the use of ENSEMBLE as a proposal distri-
bution for different Monte Carlo algorithms, finding
the learned proposal to be sufficiently powerful for ac-
curate sampling with standard SNIS, which does not
require tuning of parameters. Furthermore, resampled
generations can be used for efficient finetuning of EN-
SEMBLE on previously unseen systems.

¢ Finally, we empirically demonstrate that ENSEMBLE
achieves state-of-the-art performance when sampling

from the equilibrium distribution on previously unseen
peptide systems of length up to 8 residues surpassing
the continuous normalizing flow-based transferable
Boltzmann generator (Klein & Noel 2024) whilst gen-
erating proposals 4 - 10® times faster.

2. Background

2.1. Normalizing flows

The fundamental challenge of the probabilistic modeling
is the design of the density model that, at the same time,
allows for efficient generation of samples from this den-
sity. Normalizing flows (Rezende & Mohamed, 2015)) ap-
proach this challenge by defining a diffeomorphism — dif-
ferentiable invertible function with a differentiable inverse.
Namely, given a simple prior density ¢ (z) and a parame-
terized flow (diffeomorphism) f, ' (z), one can define the
push-forward distribution as the map of samples from a
simple prior distribution z ~ ¢.(2) via the learnable flow
x = fy'(2) ~ go(x) with the parameters . The density
of the push-forward distribution can then be found via the
change-of-variables formula

go(z) = / dz g-(2)3(x ~ f5 (=) =qz<f9(m))’8f%@

X
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where |0 fp(x)/0x] is the determinant Jacobian of the map
fo. However, for practical applications, one has to be able
to efficiently evaluate fy(2)~! in order to generate samples
and |0 fp(x)/0x| for evaluating the density via the change-
of-variables formula.

Auto-regressive normalizing flows (Kingma et al., 2016 [Pa{
pamakarios et al.|[2017} [Zhai et al.| 2024) define a rich fam-
ily of invertible maps with tractable Jacobian as a sequence
of transformations f, ' = f; ' o...0 f7! (o denotes the
composition), where each transformation z; = f; ' (2;11)
is defined as an auto-regression over the dimensions. That
is, the ¢-th coordinate of the output is

i=0,
i€ (1,d,
2

ali] = {thm,

zega[i] - exp(o(ze]: 4])) + pe(ze]: 4])

where we adopt slicing notation denoting the ¢-th dimension
as z[i] and all the dimensions up to i-th (exclusive) as z[: i|.
Notably, the auto-regressive structure allows for efficient
evaluation of the Jacobian determinant due to its lower-
triangular structure and the inverse function z;11 = fi(2¢),
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However, clearly, such transformation always leave the
leading dimension z;[0] untouched, that is why they have
to be interleaved with permutations over the dimensions
fo =m0 fro...0om o f1, where 7, is the permutation
across dimensions. In practice,Zhai et al.|(2024)) use simple
inversions for all 7; across the entire model.

Normalizing flows are versatile probabilistic models, which
allow for different training strategies: for learning target
unnormalized densities, variational inference (Rezende &
Mohamed, 2015), for generative modeling, the maximum
likelihood principle (Kingma & Dhariwall, 2018a). Analo-
gously, one can use the estimated densities at the inference
time, which we discuss in the next section.

2.2. Boltzmann generators

Despite allowing for different kinds of supervision at the
training time (target unnormalized densities or empirical
target distributions), the quality of samples generated at
the inference-time does not allow for scientific applica-
tions requiring high precision, e.g. free energy estimation.
Boltzmann generators address specifically this challenge by
doing self-normalized importance sampling (SNIS) at the
inference time. Namely, to evaluate the expectation of a
statistic ¢(z) w.r.t. the target Boltzmann density p(x) one
can use the following consistent Monte Carlo estimator

_p)
p(z ZZ 1 , Wi = A)7 i Q( )7

G= 1wa q(z

where gg(x) is the density of the learned normalizing flow.
The SNIS estimator converges, for n — oo, to the true value
E,(z)%(x). Furthermore, Tan et al. (2025) demonstrated
that one can reduce the variance of the SNIS estimator even
further by leveraging the scalability of the recently pro-
posed TarFlow (Zhai et al.l 2024) and combining it with the
continuous-time Sequential Monte Carlo (Jarzynskil, [1997}
Albergo & Vanden-Eijnden, [2024)).

Transferable Boltzmann Generators (TBG) (Klein & Noel,
2024) made a first attempt of learning a sampler that gen-
eralizes across different target densities corresponding to
the molecular systems of different type. In details, TBG
parameterizes the proposal distribution as a continuous nor-
malizing flow (CNF) (Chen et al.| 2018]), where the vector
field is defined by the equivariant graph neural network

(Klein et al., |2023b). The crucial part of the algorithm is the
peptide-dependent embedding of N different atoms

€ RVXGHD) - i ] = [ys, Ai, R, P, (5)

where z[i, :] corresponds to i-th atom in the system with the
spacial coordinates 1; € R3 and the conditional information
[A;, R;, P;] € R%: atom type A;, amino acid residue type
R;, and the position of the amino acid in the sequence P;.

Despite successful generalization to previously unseen
dipeptides when trained on 200 dipeptides (Klein et al.|
2023a), TBG architecture introduces significant bottlenecks
for inference and fine-tuning. Indeed, the learned CNF
requires accurate integration of the vector field and compu-
tationally expensive evaluation of its divergence for evalu-
ating the learned density model. For instance, to perform
importance sampling proportionally to the target Boltzmann
density, TBG requires around 4 GPU-days to produce 30k
samples for a single dipeptide system. Furthermore, the
expensive evaluation of density makes it infeasible to train
or finetune TBG via the reverse KL-divergence or create a
replay buffer of a substantial size.

3. Scalable transferable normalizing flows as
Boltzmann generators

3.1. Architecture of ENSEMBLE

ENSEMBLE builds on the recent TarFlow architecture (Zhai
et al., [2024), which parameterizes a sequence of autore-
gressive affine transformations via blocks of transformer
layers. The expressivity and favorable scalability of the
transformer layers enables TarFlow to effectively model
high dimensional data, whilst the affine autoregressive flow
parameterization ensure fast and accurate energy evaluation.
With minimal modifications TarFlow is capable of success-
fully modeling high-dimensional molecular data (Tan et al.)
2025)). Here we describe our design choices that make trans-
ferability possible.

Transferability across system dimensions We extend
TarFlow to support concurrent training on sequences of arbi-
trary length. Whilst transformers natively support sequences
of arbitrary length, special consideration is required within a
normalizing flow such as TarFlow that is defined for fixed in-
put and output dimensions. We therefore define appropriate
masking to the affine sequence updates and log-determinant
aggregation to prevent padding tokens influencing either
computation, under arbitrary sequence permutations. We
additionally replace the fixed-length learnable position em-
bedding with the more extrapolation-friendly sinusoidal
embedding. This design enables ENSEMBLE to efficient
train across a distribution of systems s by maximizing the
normalized log-likelihood

1
mg,X ES @Emr\/p(m |'s) IOg qe ({II) (6)
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Figure 2: All-atom block-wise autoregressive normalizing flow based on the TarFlow (Zhai et al.,2024). Peptide molecules are
encoded as the atom types A, residue types R, residue sequence position P, and residue length L. Atom positions in 3D Cartesian
coordinates define the system state. An embedding of the peptide molecule is applied as conditioning to the coordinates such that
ENSEMBLE achieves transferability between systems. Within each block the sequence z; is permuted and passed to a transformer,
defining an autoregressive affine update. In the backbone permutation the backbone [N, Ca;, Ci]le of all residues is updated before
any sidechains, providing additional diversity to the causal attention for global structure modeling.

where d(s) is the size of the system s. This extended archi-
tecture allows for parallel processing of data dimensions,
enabling transferability and scalability across lengths.

Adaptive system conditioning The standard TarFlow em-
ploys simple additive conditioning for class-conditional im-
age generation. Whilst we find this to be sufficient to define
a system-transferable normalizing flow, we follow many
large-scale atomistic transformer architectures in applying
conditioning through adaptive layer normalization, adaptive
scaling, and SwiGLU-based transition blocks |Abramson
et al.[(2024); |Geffner et al.|(2024)). The system conditioning
features are constructed from atom types A, residue types
R, sequence positions P, and sequence lengths L. Atom
and residue types are both embedded using lookup-table
based embedding layers, whilst sinusoidal embeddings are
a more suitable selection for the naturally ordered sequence
position and sequence length. Residue-level information is
repeated appropriately to give atom-level embeddings.

Chemistry-aware sequence permutations In the image
setting, TarFlow employ only an identity and flip permu-
tation to the sequence of image tokens (Zhai et al.| [2024).
When applying TarFlow to peptide systems Tan et al.| (2025))
similarly employ only an identity and flip permutation on
the atom ordering defined by the PDB formatting, in which
the sequence is defined per-residue starting with backbone
atoms followed by sidechain atoms. Whilst a simple identity
and flip may be appropriate for the regular grid of image
data, we argue this to be suboptimal for the diversity of
pair-wise geometric interactions present in molecular sys-
tems. This motivates our introduction of chemistry-aware
peptide permutation sequences, defined to promote effective
molecular modeling. We define the backbone permutation,
such that the backbone atoms [N;, C,, ;, C;]L | are updated
for the full peptide sequence, before the model returns to
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Figure 3: ENSEMBLE accurately samples from the Boltzmann
distributions of unseen octopepitde system.. Empirical results
for sampling from DGVAHALS peptide system, not present in
training data. Energy histogram (left) for MD data, ENSEMBLE
proposal and ENSEMBLE reweighted using SNIS, demonstrate
fine-grained detail accuracy. TICA plots for MD (center) and
SNIS-reweighted ENSEMBLE (right) illustrate mode coverage.

update the sidechains. By updating the coordinates of the
backbone atoms first, the model refines the global structure
of the peptide, defining the dihedral angles as a contigu-
ous sequence. Crucially, when the sidechain positions are
subsequently updated via causal attention, they are able to
attend to the backbone structure, hence enabling local up-
dates to be influenced by global macrostructure. We further
employ a backbone-flip permutation to provide additional
permutation diversity to the autoregressive modeling.

3.2. Inference and fine-tuning of ENSEMBLE

Applicability of Boltzmann Generators significantly de-
pends on the inference-time throughput and their transfer-
ability to previously unseen systems. Here, we describe
how one can perform inference-time importance sampling,
fine-tuning using the generated samples, and annealing of
the proposal to different target temperatures.

Importance sampling. At the inference time, one can
use ENSEMBLE to estimate the expectation of statistics
o(z) wrt. the target Boltzmann density p(z) via a
Self-Normalized Importance Sampling (SNIS) estimator.
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Namely, we consider standard SNIS, discrete-time annealed
importance sampling (AIS) (Neal,2001)), and continuous-
time AIS (Jarzynski, [1997; |Albergo & Vanden-Eijnden)
2024). All these estimators are of the form

n
w;
]EP(I)QD(I) ~ § P ‘p(zz) s Wy
i=1 2j=1"j

_ p(xi)
q(x;)

s @i~ g(@), D

where the only difference between them is the proposal
density ¢(x). Note that these estimators can be interpreted
as the expectation over the empirical distribution, i.e.

w;
=) = Ej ; ®)
; ijle(p(x) 5(2)P()
n w.
~ — - 1 5 5
p(x) ;zj:le (x — ;)

In practice, we compare p(z) with p(z) instead of measur-
ing statistics ¢(z). For completeness, we describe all the
considered estimators in Appendix

Self-refinement. For a previously unseen system s we
demonstrate the ability to fine-tune ENSEMBLE using the
Self-Refinement strategy. Namely, we iteratively generate
the empirical distribution p(x|s) by resampling the
samples from pre-trained model gy (z | s) proportionally to
p(z | s) and using these samples for fine-tuning ENSEMBLE.
Note that this is different from fine-tuning because the true
samples from the target are not available. In particular, we
update the parameters by maximizing the likelihood on the
resampled proposal, i.e.

max By (s [log go (2 | 5)]; ©

~ a w;
plz]s)= =0z — )
; D1 W 7
w; = detach(m).
qo(xi | s)
Temperature transfer. ENSEMBLE serves as an effi-
cient proposal for Boltzmann densities with different
temperatures; hence, allowing for transferability across
temperatures. In order to do this, we aim at changing the
temperature 7" = 1/4 of the learned density model while
generating samples, i.e.

_ af (=

Blogae(fy ' (2)) = Blogg.(z) — Blog ‘)872()
(10)
Note that, for the measure-preserving flows

log|0f, ' (2)/0z] = 0, one simply has to change
the temperature of the prior distribution (i.e. sample
z ~ ¢.(z)" instead of z ~ ¢.(2)) to change the temperature
of the density model, which is a standard technique in

the normalizing flow literature (Kingma & Dhariwall
2018a; |Dibak et al.,[2022). Although this assumption does
not usually hold in practice, we found that scaling the
temperature of the prior results in an efficient proposal for
the Boltzmann density with the corresponding temperature.

4. Experiments

To establish the performance of ENSEMBLE, we first intro-
duce a new molecular dynamics dataset for peptides, then
test the ability of ENSEMBLE to sample from unseen sys-
tems of up to 8 residues.

4.1. Molecular dynamics trajectory dataset

We introduce ManyPeptidesMD; a novel dataset of peptide
MD trajectories for sequences ranging from 2 to 8 residues
in length. This data is a superset of the trajectories at length
2 and 4 introduced by Klein et al.|(2023a)). Following Klein
et al.| (2023a) all simulation is performed using OpenMM
(Eastman et al., [2017) with the amber—14 forcefield. For
training, a total of 15,420 additional uniform sampled se-
quences are simulated for 50 ns, greatly increasing over
the prior dataset of 1647 sequences. For evaluation, 30
sequences of length 8 are randomly sampled such that all
amino acids are represented equally, and simulated for 1 ps.
The evaluation data at lengths 2 and 4 is unchanged from the
trajectories of Klein et al.|(2023a). Further details on dataset
collection and MD configuration provided in Appendix [A]

Table 2: Number of sequences used per peptide length for training
and evaluation.

Seq. length 2 3 4 5 6 7 8

Training 200 664 1457 1288 1967 2634 8867
Evaluation 16 — 30 — — — 30

4.2. Scale-transferability of ENSEMBLE

We train the first Boltzmann generators transferable across
peptide sequence length. We train the ENSEMBLE architec-
ture defined in Section [3.1] an unmodified TarFlow (Zhai
et al.l 2024) as in SBG (Tan et al.l [2025), and the equiv-
ariant continuous normalizing flow of Klein & Noe| (2024).
For the ECNF we use the improved training recipe of [Tan
et al.| (2025), denoted as ECNF++. All models are trained
for 5 x 10° iterations with batch size 512. Both ENSEM-
BLE and TarFlow are suitably scalable to long sequences
and are trained on the full dataset detailed in Section F.11
However, sampling 8 residue sequences with ECNF++ was
found prohibitively expensive, hence the training data was
limited to sequences up to and including length 4. Compre-
hensive training details are provided in Appendix |B| results
for the unweighted proposal distributions are provided in

Appendix [C]
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Table 1: Quantitative results for flows with importance sampling on peptide systems up to 8 residues. All flows evaluated using SNIS with

a budget of 10* energy evaluations. Best values in bold.

Sequence length — 2AA (16 systems) 4AA (30 systems) S8AA (30 systems)

Model | ESST E-W,| T-Whol] ESST EW,| T-W,| TICA-W,]| ESSt EW,| T-Wol| TICA-W, |
ECNF 0.173 0.500 0.285 — — — — — — — —
ENCF++ 0.021 3.139 0.592 0.008 8.745 2.579 0.678 — — — —
TarFlow 0.076 0.600 0.445 0.034 2.064 2.187 0.547 0.006  15.352 5.520 1.058
ENSEMBLE 0.119 0.523 0.379 0.058 1.565 2.051 0.522 0.009 12.201 5.354 1.047

To establish the performance of ENSEMBLE as a sampler
proposal distribution, we first evaluate the trained flows in
the Boltzmann generator setting. Here we generate a set
of proposal particles {z;}}¥,, evaluate model likelihoods
qo(w;) and reweight using SNIS as in Eq. (7). For all flows
we permit a sampling budget of 10* energy evaluations. The
primary evaluation metrics are the Wasserstein-2 distance
on: (i) the energy distribution E-W,, (ii) the dihedral angle
torus distribution 7-W, (iii) the first 2 TICA component
projections TICA-W,. The energy distribution is highly
sensitive to perturbation in bond length and angle, hence
E-W, measures accuracy on fine-grained details. The dihe-
dral angle tori and TICA projection describe macrostructure,
hence 7-W, and TICA-W, measure accuracy in terms of
metastable state coverage. We additionally report effective
sample size (ESS); the variance of the importance weights.
For metric definitions and further details on sampling evalu-
ation procedure please refer to Appendix

We present metrics for ENSEMBLE and baseline methods
in Table[I] where ECNF is the model trained by Klein &
Noe| (2024). Evidently on dipeptide sequences ECNF is
the most performant proposal, achieving the highest ESS,
lowest E-W,, and lowest T-W,. However, ENSEMBLE
has negligible reduction in 7-W> and TICA-W, despite
being trained to model a much wider range of systems, and
being orders of magnitude faster to sample. At scales of
tetra and octopeptides ENSEMBLE achieves the strongest
performance, confirming its efficacy as a proposal for pep-
tide systems of varying sequence length. ECNF++ performs
very poorly on both dipeptides and tetrapeptides, seemingly
struggling to concurrently model systems of varying length.
Fig. [T] confirms the success of ENSEMBLE with SNIS as
an amortized sampler, achieving the best performance per-
energy evaluation and per-hour on the critical TICA-W,
describing metastable state coverage, out performing both
an MD baseline and ECNF++. We additionally present
results on the unseen octopeptide DGVAHALS in Fig. [3
demonstrating the unprecedented scalability of ENSEMBLE;
further results are provided in [C|

4.3. Architecture ablation study

We proceed to ablate the TarFlow architectural variations
applied in ENSEMBLE, as described in Section[3.1} (i) the
adapt + transition blocks in the transformer layers, (ii) the

backbone permutations interleaved into our permutation se-
quence. To reduce computational cost, we ablate by training
on sequences of only 4 residues and less, all other training
details are unchanged from Section We present quan-
titative results for these modifications in Table[3l We see a
significant improvement in effective samples size on dipep-
tides, and across all metrics on tetrapeptides. These results
confirm the efficacy of these modifications for atomistic
modeling, particularly the backbone permutations which in-
troduce no additional runtime complexity over the standard
TarFlow.

Table 3: Ablation results for ENSEMBLE architecture components
on peptide systems up to 4 residues. SNIS is performed with a
fixed budget of 2.5 x 10* energy evaluations. Improvement over
standard TarFlow bolded.

Sequence length — 2AA (16 systems) AAA 30 systems)

Model | ESSt EW,| T-Wo| ESSt EW,| T-W,| TICA-W,]
TarFlow base 0.115 0.287 0.261 0.041 1.272 1.670 0.614
Adapt + Transition 0.147 0283 0273 0.053 0932 1.657 0.625
Backbone permutation  0.146  0.299 0.264  0.056 1.097 1.652 0.541

4.4. Sampling algorithms

Having established the unmatched scalable performance of
ENSEMBLE in the standard Boltzmann generator frame-
work, we now consider alternative sampling algorithms
made tractable by its efficient likelihood computation. We
evaluate SNIS, SMC in continuous time, SMC in discrete
time, and the simple instantiation of self-refinement defined
in Section[3.2} All methods are permitted a sampling budget
of 10° energy evaluation, further details on the method con-
figurations are provided in Appendix [D} Quantitative results
are presented in Table [d These results reveal the surpris-
ing result that, given a suitably strong proposal distribution,
SNIS is the strongest sampling algorithm, outperforming
both SMC variants. The performance of SNIS with self-
refinement at further improving the -V, provides strong
evidence in favor of proposal refinement within sampling
methods, as an alternative to resource allocation solely on
annealing-based methods. We provide qualitative results for
the unseen SAEL system in Fig. {4} illustrating the improved
enhanced mode coverage of ENSEMBLE with SNIS over a
MD baseline given an allocation of 10° energy evaluations.
These results provide further confirmation of ENSEMBLE
successful amortized sampling with ENSEMBLE.
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Table 4: Results for sampling algorithms using ENSEMBLE as
a proposal on peptide systems up to 4 residues. All algorithms
provided with fixed budget of 10° energy evaluations. Best values
bolded.

Sequence length — 2AA (16 systems 4AA (0 systems)

Algorithm | ESST EW,| T-Wo| ESST EW,| T-W,| TICAW, |
SNIS 0.121 0.369 0.264 0.058 1.137 1.613 0.503
SMC Continuous — 2.673 0.508 — 12.307 2313 0.687
SMC Discrete — 0.371 0.445 — 1.012 1.972 0.569
SNIS + self-refinement  0.072  0.327 0.283 0.033 0.829 1.720 0.543

TIC,
TIC,
TIC,

£e
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Figure 4: By drawing uncorrelated proposal samples, ENSEM-
BLE achieves greater metastable state coverage than molecular
dynamics for the same number of energy evaluations. TICA
projection plots for unseen tetrapeptide system (SAEL). After 10°
energy evaluations molecular dynamics (left) has traversed four
distinct metastable states, taken to be ground truth. However,
with an energy evaluation budget of 10° molecular dynamics ex-
plores only a single metastable state, highlighting the limitations
of simulation-based sampling methods for mode exploration. EN-
SEMBLE with SNIS wright) samples all 4 states given the same
budget of energy evaluations, indicating successful amortization
of the mode exploration problem.

Inference-time temperature transfer. We evaluate the
scaled prior (SP) technique for inference-time temperature
transfer introduced in Section We collect additional
1 us MD trajectories for the SAEL unseen tetrapeptide at
temperatures defined by geometric series between the base
model temperature of 310 K, and 800 K. We then perform
SNIS using 2 x 10° energy evaluations from ENSEMBLE,
both naively and with the scaled prior inference method.
Results are presented in Fig. 5} with scaled prior univer-
sally outperforming naive SNIS. We emphasize that scaled
prior does not require any finetuning and introduces negligi-
ble increase in complexity at inference. These results thus
demonstrate that ENSEMBLE is transferable not only in sys-
tem, but also in temperature, opening a variety of avenues
of further exploration.

5. Related Work

Normalizing Flows and Boltzmann Generators Nor-
malizing flows (Rezende & Mohamed, 2015} |Dinh et al.,
2016; Durkan et al., 2019; Kingma & Dhariwal, |2018b;
Kolesnikov et al.| 2024; Zhai et al.| [2024) fell out of favor as
generative models as GANs (Goodfellow et al.,[2014)) and
subsequently diffusion models (Song et al., 2021; Ho et al.,
2020) showed better empirical generative quality. However,
they have still found uses in scientific applications where
efficient likelihood calculations are necessary. Boltzmann
generators (Noé et al, 2019) leverage normalizing flows
(both discrete and continuous (Chen et al., 2018])) for SNIS
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Figure 5: Scaled prior greatly the ability of ENSEMBLE to
accurately reweight to arbitrary temperatures. Metrics for EN-
SEMBLE on SAEL unseen tetrapeptide, targeting the temperatures
up to 800 K. Naively applying SNIS to the target temperature
leads to a rapid degradation in energy distribution, and to a lesser
extent the dihedral angle distribution. Applying prior scaling as
defined in Section [3.2]leads to a significant improvement in energy
distribution at high temperatures and moderate improvement in
dihedral angles. Notably, the TICA distribution improves at higher
temperatures irrespective of scaled prior usage, although scaled
prior remains more effective.

given a target density for access to consistent independent
samples. However, their scalability has been limited to rel-
atively small problems until this work with transferability
only demonstrated up to dipeptides prior to this work (Klein
& Noel 2024) with the use of continuous normalizing flows
and flow matching (Lipman et al., 2023} |Albergo et al.,
2023; [Liu), [2022)), which is extremely expensive to sam-
ple from with likelihoods due to the need for divergence
calculation (Grathwohl et al., 2019)).

ML Accelerated MD sampling. Machine learning meth-
ods are a promising direction for accelerated sampling of
molecular conformations. One line of work uses ML to pre-
dict longer-time transitions directly (e.g., TimeWarp (Klein
et al.,[2023a)), while another focuses on generative model-
ing to approximate the Boltzmann distribution from pre-
collected data (Boltzmann emulators) (Wayment-Steele
et al., [2024; Lewis et al., |2025} Jing et al.||2024). However,
these generative models often lack the ability to compute
exact likelihoods efficiently, making proper reweighting or
free energy difference calculation difficult or impossible.

6. Conclusion

We demonstrate that deep learning-based sampling meth-
ods can efficiently transfer to previously unseen systems at
the unprecedented biomolecular scale. Furthermore, they
outperform conventional sampling algorithms such as MD
when compared for the same computational budget and
runtime. This fact re-evaluates the generalization abilities
of learned samplers and establishes new avenues for their
development.

Notably, ENSEMBLE demonstrates the state-of-the-art per-
formance whilst keeping the simplicity of many design
choices; thus, leaving a lot of room for improvement. In-
deed, the introduced architectural changes do not restrict the
architecture and can be adapted for other domains. Further-
more, the fact that standard SNIS achieves state-of-the-art
performance indicates that the learned proposal is very close
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to the target density. Clearly, this can be further improved by
applying and carefully tuning advanced Monte Carlo meth-
ods, e.g. SMC. Finally, our self-refinement strategy simply
trains on the samples collected via importance sampling and
can be further improved by using more advanced Monte
Carlo methods. In future work it would be interesting to
train ENSEMBLE on larger, more diverse, and more realistic
datasets such as the recent OMol25 (Levine et al., [2025)
dataset.

Limitations Whilst conventional Monte Carlo algorithms
make no assumption on the target density function, the
transferability of learned samplers including ENSEMBLE
depends on the assumption that the system is a member
of some structured space of energy functions, most com-
monly the chemical space of molecules. The same applies
for the transferability across temperatures. Despite demon-
strating surprising abilities to sample from the higher tem-
perature densities, we assume that precise transfer to, more
challenging, lower temperatures would require additional
conditioning, which ENSEMBLE currently lacks.
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A. Dataset

Sequence sampling Training sequences are collected for peptide lengths 3, 5, 6, 7, and 8 by uniformly sampling the 20
standard amino acids. For the 8-residue test data, a sequence of length 30 - 8 = 240 is constructed by concatenating 12 of
each amino acid. This sequence is then randomly permuted and split into peptides of length 8, ensuring that each amino
acid is represented uniformly. In both training and test sets, the N- and C-terminal residues are protonated to form the
zwitterionic state of the peptides. Initial structure files (PDB format) are generated using AmberTools’ t leap.

Molecular dynamics simulation Local energy minimization is performed with the Limited-memory Broy-
den—Fletcher—Goldfarb—Shanno (L-BGFS) algorithm. Energy minimization is followed by burn-in simulation of length
50 ps, after which samples are collected every 5 ps (train) or 10 ps (test) until the simulation budget is exhausted. Full MD
simulation parameters are provided in Table[3]

Table 5: OpenMM simulation parameters.

Force field amber-14

Integration time step 1 fs

Friction coefficient ~ 0.3ps~!

Temperature 310K

Nonbonded method  CutoffNonPeriodic
Nonbonded cutoff 2nm

Integrator LangevinMiddleIntegrator

Table 6: Training and evaluation dataset parameters.

Train Test

Burn-in period 50ps  50ps
Sampling interval 5ps  10ps
Simulation time 50ns 1lps

B. Training details

All models are trained for 5 - 10° iterations using a batch size of 512 with the AdamW optimizer (Loshchilov & Hutter,
2018). We employ a cosine learning rate schedule in which the initial and final learning rates are a reduction of the maximal
value by factor of 500, as well as exponential moving average with decay of 0.999. No overfitting was observed hence no
early stopping was required. Samples are normalized using a factor computed as the mean standard deviation across all
training samples, noting that a single value must be shared across systems of different dimensionality. An overview of all
training configurations is provided in Table[7]

Continuous Normalizing Flows We use the ECNF++ training recipe defined by Tan et al|(2025); this entails a learning
rate of 5 - 10~* and weight decay of 1 - 10~2, with default AdamW hyperparameters of AdamW £, 32 of (0.9,0.999). In
contrast the ECNF of [Klein & Noe|(2024) was trained without weight decay or exponential weight averaging. The channel
width and layer depth of both models is defined in Table 8]

TarFlows Following Zhai et al.[(2024) and Tan et al.|(2025) we use a learning rate of 1- 104, weight decay of 4 - 10~4, and
AdamW S, 35 of (0.9,0.95). Data augmentation is applied as random rotations and Gaussian center of mass augmentation,
in which every the entire system conformation is translated by a vector ¢ ~ N'(0, 0%13). The o2 value is chosen to match
that of the prior, which has a center of mass o2 = % where NN is the number of atoms. Given [N is in our case variable for a
single model trained on multiple systems, we use the mean value across training samples. The architecture width and depth
is provided in Table([§]

B.1. Computational requirements

All training experiments are run on a heterogeneous cluster of NVIDIA H100 and L40S GPUs using distributed data
parallelism. The training throughput for each model is presented in Table[9]
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Table 7: Overview of training configurations.

ECNF ECNF++  TarFlow / ENSEMBLE
Learning Rate 5-107*  5-107*  1.107*
Weight Decay 0.0 1-1072 4-107*
b1, B2 0.9,0.999 0.9,0.999 0.9,0.95
EMA Decay 0.0 0.999 0.999

Table 8: Overview of model scaling parameters. For TarFlow variants depth corresponds to number of parameterized transformations, for
ECNF variants this is simply the number of graph neural network layers.

ECNF ECNF++ TarFlow ENSEMBLE

Channels 128 256 384 384
Depth 9 9 8 8
Layers per block N/A N/A 8 8
Parameters (M) 1 4 115 285

Table 9: Training throughput for models presented in Table E} We highlight ECNF++ to be trained only on sequences up to length 4,
whereas TarFlow and ENSEMBLE are trained on sequences up to length 8.

ECNF++ TarFlow ENSEMBLE
Training iterations / H100 hour 960 1132 260

C. Additional results
C.1. Proposal Performance

We compare the performance of ECNF++, TarFlow, and ENSEMBLE before and after SNIS (with 10* samples) in Table
Evidently, ECNF++ demonstrates stronger performance with the initial proposals across a majority of metrics. In contrast,
TarFlow and ENSEMBLE perform poorly on the F-Ws without reweighting, but achieve comparable results to ECNF++
on the 7-W, and TICA-W,. Notably, the macrostructure 7-W, and TICA-W, metrics are in most cases worse after
resampling irrespective of the proposal flow used, a phenomenon we attribute to the small size of the particle set.

Table 10: Quantitative results for flows comparing the proposal performance and performance after importance sampling on peptide
systems up to 4 residues. SNIS performed with a budget of 10* energy evaluations.

Sequence length — 2AA (16 systems) 4AA (30 systems)
Model \L E—Wg \L T‘WQ i E—Wz \L T‘WQ i TICA—WQ \L
Proposal ~ 303.423 0.273 3.13-108 1.560 0.506
ENCF++ SNIS 3.139 0.592 8.745 2.579 0.678
Proposal 1.390-10'* 0301  5.931-10'  1.577 0.479
TarFlow
SNIS 0.600 0.445 2.064 2.187 0.547
ENSEMBLE Proposal 1.765-10'® 0294  7.444-10'  1.539 0.719
SNIS 0.523 0.379 1.565 2.051 0.522

C.2. Sequence-wise performance

Here we present sequence-wise performance for ECNF++, standard TarFlow, and ENSEMBLE using SNIS with 10* samples
for the unseen peptides at sequence lengths 2, 4 and 8.
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Figure 6: Dipeptide effective sample size. SNIS with 10" samples.
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Figure 7: Dipeptide energy Wasserstein-2 distance. SNIS with 10" samples.
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Figure 8: Dipeptide dihedral torus Wasserstein-2 distance. SNIS with 10* samples.
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Figure 9: Dipeptide TICA Wasserstein-2 distance. SNIS with 10* samples.
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Figure 10: Tetrapeptide effective sample size. SNIS with 10* samples.
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Figure 11: Tetrapeptide energy Wasserstein-2 distance. SNIS with 10* samples.
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Figure 12: Tetrapeptide dihedral torus Wasserstein-2 distance. SNIS with 10* samples.
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Figure 13: Tetrapeptide TICA Wasserstein-2 distance. SNIS with 10* samples.
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Figure 14: Octopeptide effective sample size. SNIS with 10" samples.
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Figure 15: Octopeptide energy Wasserstein-2 distance. SNIS with 10* samples.
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Figure 16: Octopeptide dihedral torus Wasserstein-2 distance. SNIS with 10* samples.
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Figure 17: Octopeptide TICA Wasserstein-2 distance. SNIS with 10* samples.
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C.3. Octopeptide Ramachandran plots
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Figure 18: Ramachandran plots for DGVAHALS unseen octopeptide system. Ground truth (left column),

column), ENSEMBLE SNIS with 10° samples (right column).
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C.4. Temperature Plots

We present TICA plots in Fig.[T9and energy distributions in Fig.[20]across a range of temperatures (310K, 393K, 498K,
631K, 800K). At each temperature, we generate 2 - 10° samples by scaling the prior with the inverse temperature 3, sampling
from N (0,1//3?%). For SNIS, we use the energy at the corresponding temperature to reweight the samples.

Temperature=310 K Temperature=393 K Temperature=498 K Temperature=631 K Temperature=800 K
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Figure 19: TICA plots for SAEL for different temperatures. Ground Truth MD (top row), ENSEMBLE proposal (middle row), ENSEMBLE
SNIS (bottom row) with 2 - 10° samples.
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Figure 20: Energy histogram plots for SAEL for different temperatures.

D. Evaluation details
D.1. Proposal sampling and likelihood evaluation

Equivariant continuous normalizing flows Sampling from a continuous normalizing flow (CNF) involves solving the
ODE defined by the parameterized vector field u; : [0, 1] x R"*3 — R"*3

dx
d—; = ui(z), o~ po (11)

The corresponding likelihoods can be obtained using the instantaneous change of variables formula

1
log pa (1) = log pol(0) — / V- () dt, (12)
0

where V- is the divergence operator. In practice both Eq. and Eq. can be integrated simultaneously with an ordinary
differential equation (ODE) solver. We use the Dormand—Prince-5 (dopri5) adaptive solver in all ECNF experiments. Given
the E(3) equivariance of the ECNF, samples are generated in both possible global chiralities. Following [Klein & Noe|(2024)
we check for incorrect global sample chirality and flip samples appropriately to match the L-amino acids present in the
evaluation data. Unlike [Klein & Noe| (2024) we do not omit any samples with unresolvable chirality. We additionally apply
logit clipping, removing the samples with the 0.2% highest importance weights before resampling Midgley et al| (2023).
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TarFlow variants As discussed in Section[2.1] samples are generated from a normalizing flow simply by applying fy to
prior samples z ~ N (0, Iy« p). Model likelihoods are obtained using the change of variables formula (Eq. ). Given the
lack of translation equivariance in the TarFlow, and the data augmentation applied during training, samples are generated
with an approximate scaled y3 distribution over centroid norm |[c|| = ||+ Zf;l x;:|| ~ oxs. This leads to adverse
behavior when resampling with finite samples, hence we apply the center of mass adjustment of (Tan et al., [2025), in which

the 3 probability density function is divided out of the proposal likelihoods

log pj(z) = log pe(z) — [10g<”§|3|,2> + g — log (\/EF(g)ﬂ (13)

where I' is the gamma function. This adjustment seeks to account for the radial component introduced by translation
non-equivariance. We additionally apply the same weight clipping threshold as in the ECNF when performing SNIS, or
before SMC.

D.2. Metrics

We report both effective sample size and a variety of Wasserstein-2 distances as evaluation metrics. For the Wasserstein
distances a subsample of 10* samples are randomly sampled from the evaluation trajectory as ground truth. Similarly, at
most 10* generated samples are employed; if a method has generated more samples a random subset is drawn without
replacement.

Effective sample size We compute the effective sample size (ESS) using Kish’s formula, normalized by the number of
samples generated

ESS({w;}Y,) = ~——~—% (14)

Empirical Wasserstein distance We compare generated samples to ground truth data, collected as defined in Appendix [A]

using empirical Wasserstein-2 distances. Given empirical distributions . = % iy 0y and v = % Z;"zl dy, » the empirical

Wasserstein-2 distance is defined as

where I1(11, ) denotes the set of couplings with marginals ;2 and v, and c(x, 3)? is a defined cost function. Different choices
of ¢(x,y)? define different measures of dissimilarity. We use the POT (Flamary et al., 2021) linear optimal transport solver
to compute the optimal couplings.

Energy cost The energy of a sample F(z) is sensitive to both bonded forces and non-bonded forces. For the energy
Wasserstein-2 distance E-WV, the cost function is simply

cp(x,y)? = |E(z) — E(y)|’ (16)

Dihedral torus cost The ¢ and ¥ backbone dihedral angles of a peptide conformation encode essential information
regarding secondary and tertiary structure. We compare generated and ground truth samples in angle space by defining the
dihedral angle vector

Dihedrals(z) = (¢1,%1, 92,92, ..., ¢r—1,¥r-1) (17

where L is the number of residues. Given the torus geometry implied by angle periodicity ¢; € (—m, 7|, a natural cost
function is the minimal signed angle difference

2L
cr(z,y)? = Z[(Dihedrals(a:)i — Dihedrals(y); 4+ ) mod 27 — 7]°. (18)

i=1
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This metric captures the geometric dissimilarity in dihedral angle space, respecting periodicity.

Time-lagged independent component analysis cost The time-lagged independent component analysis (TICA) projection
of time-series data captures directions along which the data exhibits maximal autocorrelation. Within molecular dynamics,
TICA is commonly used to detect distinct metastable states. Given mean-free time series data z;, the instantaneous (zero-lag)
empirical covariance and time-lagged empirical covariance matrix (at lag time 7) are computed as

1 T—1 1 T—1
A S AT A 5 AT
Coo = T Z Ty, Cor = T Z Tty r. (19)
t=1 t=1
TICA seeks linear projection vectors w € R that maximize autocorrelation at lag 7

max ————. (20)
The solution to which is obtained by solving the generalized eigenvalue problem

Co-,-/\ = )\Coow, (21)

where the eigenvalue \ measures the autocorrelation of the projected component at lag 7, and the eigenvector w defines
the corresponding slow mode. To define the TICA Wasserstein-2 distance TICA-W, we take the full evaluation trajectory
without subsampling and solve Eq. (Z]) to obtain the first two TICA projection vectors wq, wo. We may then define the
following cost function

2
crica(z,y)? = Z [w) @ — w;y]z (22)

j=1

defining similarity in TICA projection space. We emphasize that the TICA projection vectors are only computed on the
(full) evaluation trajectory, but that the samples ¥ are restricted to the 10* sample subset. In practice we compute the TICA
projection for the heavy atom subspace only.

D.3. Sampling algorithm configurations

In this section we define configurations for the sampling algorithms presented in Table[d] as well as the molecular dynamics
baseline used in Fig.|l{and Fig. E] In particular the allocation of the 10° energy evaluations within the method is defined.

Molecular dynamics baseline We follow the same procedure used for collecting the main datasets defined in Appendix [A]
where the parameters defined in Table[5]are unchanged. However, for the baseline the burn-in period is reduced to 5 ps and
sampling interval is reduced to 10 fs. The energy evaluations used by L-BFGS minimization are not counted towards the
budget of 10° but the burn-in iterations are counted, such that the collected trajectory represents 0.995 ns of simulation.

Annealed Importance Sampling We allocate the budget of 10° energy evaluations by generating a proposal set of
10* samples and performing 100 steps of annealing with resampling at every step. For the continuous variant, Langevin
dynamics is used with a step size oy of 10~7. Details of the formulation are found in Appendix For the discrete variant,
we apply Langevin dynamics with a step size of 10~, followed by a Metropolis-Hastings step to accept or reject proposals.
We assume sufficient smoothness in the intermediate densities to adaptively update the step size. Specifically, the step
size is dynamically adjusted to maintain a Metropolis-Hastings acceptance rate of approximately 60%. Further details of
discrete-time AIS are found in Appendix

Self-refinement We perform 4 rounds of self-refinement. In each round, we spend a portion of the budget to generate
2 - 10° samples and reweight using SNIS. The resulting reweighted samples are then used to finetune the model for 250
gradient steps with a batch size of 256. Notably, the finetuning does not spend the allocated budget as it does not involve
energy evaluations. After the final round, the remaining computational budget is allocated to generate a final set of 2 - 10°
samples, which are again SNIS reweighted to yield the empirical distribution p(z|s) for a given system s.
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Figure 21: Self-Refinement procedure. A pre-trained ENSEMBLE is finetuned at inference-time by iteratively generating samples,

reweighting them using SNIS, and training on the reweighted samples.

D.4. Computational requirements

All evaluation experiments are run on a heterogeneous cluster of NVIDIA L40S and RTX8000 GPUs. ECNF++ sampling is
parallelized across multiple nodes with unique seeds to reduce sequential runtime. All evaluation timings are recorded using

NVIDIA L40S GPUs. The sampling time required for 10* samples for each model is presented in Fig.
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Figure 22: Sampling time for 10" samples on NVIDIA L40S GPU for models presented in Table

E. Importance Sampling

E.1. Self-Normalized Importance Sampling (SNIS)

SNIS corresponds to the following estimator

Wy p(xi)

where one uses the learned density model of ENSEMBLE gp () as g(x).

E.2. Continuous-time Annealed Importance Sampling (AIS)

(23)

Below, we repeat the derivations from (Jarzynskil [1997; [Albergo & Vanden-Eijnden| [2024). Namely, we consider the

continuous family of marginal densities

1

w(o) = 5 ep(-Ui(e)). Z= [ do exp(~Ui(a).

21
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The PDE describing the time-evolution of this density is

0 ovU, oU,
o
2 ovU, oU,
= £ (Va0 E Vg ) + )| -2H 18y 0 2T 26)
2 2 av, ouU,
- — (V) LV loga)) + Faat) + (|- 24D + 5, , T @

This is a Feynman-Kac PDE which can be simulated (Del Moral, 2013) as the following SDE on the extended space of
states x; and weights wy

2
doy = — %VUt(x)dt +0ldWy , @0 ~ qo()

(28)
dlogw; = — 8U;£x) dt, wi—g=1.
The expectation of the statistics ¢(x) w.r.t. the density ¢r(x) then can be estimated using SNIS as follows
Egr () () = Zn: :Ui%j@(xé“) ) (29)
i=1 Zj:l wr
where (2%, w¥) are the solutions of the SDE Eq. (28).
For the inference time of ENSEMBLE, we define the continuous family of marginals as
q:(T) o exp ( (1—1t)logge(x) + tlogp(x)) , te[0,1], (30)
—Us(z)
where gg(z) is the learned density of ENSEMBLE. Thus, Eq. becomes
dzy = %2((1 —t)Vlog qg(z) + tVlog p(x))dt + o1 dWy, 4= ~ qo(x) 31)
dlogw; = (logp(z) —logge(x))dt, wi—g=1.
E.3. Discrete-time Annealed Importance Sampling (AIS)
Consider a sequence of marginal densities
qo(z) x exp(=Up(x)),...,qrx (x) x exp(—Ugk(x)). (32)
Let’s denote by k;(x; | z;—1) the kernel that satisfies the detailed balance w.r.t. g;(x), i.e.
@t (Te—1)ke (e | 20-1) = @ (ve) ke (@41 | 21) - (33)
Then, one can write importance sampling estimator for the final marginal as
/dCCK ik (x)p(rK) = /deﬂdfck kr(zx—1|2K)ax (2x)p(TK) (34)
= /deflde k(v |2x-1)ax (K -1)p(TK) (35)
EqK1(1K1)kK(xK|mKl)msﬁ(IK)~ (36)

Clearly, we can repeat the trick but now for gx 1 (25 —1). Thus, applying this trick recursively to different marginals, we
have

K-1
i
/de QK(ZCK)SD(-'I;K) = qu(xo)]Eévl«,mﬂ?K H W(p(mK>7 (37)
t=0

where Llyeooy L N kl(ml ‘LL'()) e k/’Kfl(fol |$K,2)/€K($K | 1‘[(71) . (38)
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Thus, we have the following SNIS estimator

[ e axta)ota) ~ ZZ“’K o) (39)
wie

where xt ~ kt(l‘t |l‘t_1) , t= 1) B K7 Zo ~ qO(:CO) (40)

logw; = —Us(z¢_1) + Us_1(w4—1) + logw;_, . 41)

Note that there is a lot of flexibility for the choice of k:(x: | :—1) because we do not use the densities of the transition
kernel for the weights. In particular, the Metropolis-Hastings algorithm with any proposal yields a reversible kernel (satisfies

the detailed balance), which result in a consistent final estimator. Furthermore, compared to the continuous-time AIS,
discrete-time AIS does not introduce the time-discretization error.

At the inference step of ENSEMBLE, we choose

1 2
a:(x) ocexp ((1—t)logay () + tlogp(w) ), 1=0, 2 5=, 1, (42)

=Ui(z)

and Metropolis-Adjusted Langevin Dynamics as the transition kernel k;(z; | z;—1) (Roberts & Tweedie, [1996).

F. Additional Architecture Details

Adaptive Layer Norm and Transition ENSEMBLE integrates adaptive layer normalization and transition modules from
(Gettner et al.l 2024) into the transformer blocks of the TarFlow architecture (Zhai et al.| 2024). The positions of the latent
vector z; are encoded using a sinusoidal positional encoding, which are added directly to z;. The conditional embedding is
used in the adaptive layer normalization and adaptive scale components. See Fig. 23] for details.

Since ENSEMBLE has more parameters from the adaptive layer normalization and transition components, we scale the
standard TarFlow model in two ways for a fair comparison: by increasing the width and by increasing the depth (i.e., the
number of transformer layers per block) to match the parameter count of ENSEMBLE. However, we observe neither of these
scaled variants matches the performance of ENSEMBLE.

Tt Transition

c »Scale = Softnmx
"- Adaptne e Lm( dr+ | Split T X Concat. Adaptiva fan ﬂ%daptive Linear+ |, |Adaptive| _,69
Atom. Pos. LN K +Linear; Scale J—'\ LN SwiGLU Scale
[ | g g
(oo foon = | = :

Cond. Embedding

Figure 23: Adaptive Layer Norm and Transition. The transformer block is modified to incorporate conditional information using
adaptive layer normalization and a transition block. Figure adapted from (Geftner et al.;2024)).
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