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Abstract
In recent years, there has been increasing inter-
est in the field of astrophysics in applying Neural
Ratio Estimators (NREs) to large-scale inference
problems where both amortization and marginal-
ization over a large number of nuisance parame-
ters are needed. Here, in order to assess the true
potential of this method to produce unbiased in-
ference on real data, we investigate the robustness
of NREs to distribution shifts and model misspec-
ification in the specific scientific application of
the measurement of dark matter population-level
parameters using strong gravitational lensing. We
investigate the behaviour of a trained NRE for
test data presenting distributional shifts inside the
bounds of training, as well as out of distribution,
both in the linear and non-linear parameters of this
problem. While our results show that NREs per-
form when tested perfectly in distribution, we find
that they exhibit significant biases and drawbacks
when confronted with slight deviations from the
examples seen in the training distribution. This
indicates the necessity for caution when applying
NREs to real astrophysical data, where underlying
distributions are not perfectly known and models
do not perfectly reconstruct the true underlying
distributions.

1. Introduction
One of the most striking open problems in modern astro-
physics is the fact that the nature of ∼ 80% of the matter
content of the universe is currently completely unknown
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to: Andreas Filipp <andreas.filipp@umontreal.ca>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

(Hinshaw et al., 2013; Planck Collaboration et al., 2020).
This mysterious form of matter, known as dark matter, is
believed to be a new, completely invisible particle which
interacts with regular matter only through gravity. Inferring
the nature of this new particle is one of the main goals of the
upcoming decade in the field of astrophysics and cosmology.

One of the most promising probes to tackle this problem is
strong gravitational lensing, which is the formation of multi-
ple images of distance light sources due to the deflection of
their light rays by the gravity of some intervening structures.
Both the lens and the line of sight between the observer
and the source are populated with dark matter halos, which
are clumps of dark matter. Due to its purely gravitational
effect, strong lensing is sensitive to the matter distribution
on sub-galactic scales and can independently probe the mass
distribution of matter, regardless of its light-emitting proper-
ties. Therefore, studying small deflections in strong lenses
can allow us to map out the distribution of dark matter inside
lensing galaxies, which, in turn, can inform us about the
particle properties of dark matter.

Measuring the effect of these small halos on lensed images,
however, is a very difficult, non-linear inverse problem, as
the signal is very weak and suffers from multiple degen-
eracies with other nuisance parameters (for example, the
morphology of the background source). Therefore, while it
is possible to constrain the total mass in the lens, referred to
as the Einstein radius, with a few percent uncertainty (e.g.,
Koopmans et al., 2006; Treu et al., 2009; Auger et al., 2010;
Brownstein et al., 2012; Bolton et al., 2012; Sonnenfeld
et al., 2013; Shu et al., 2016; 2017; Talbot et al., 2021),
individual detections of dark matter halos have only been
detected twice (Vegetti et al., 2010; Hezaveh et al., 2016b)
even though of the order of 10,000s are predicted to be in
every Milky Way-sized galaxy.

With a new generation of astrophysical surveys like the
Legacy Survey of Space and Time (LSST) at the Vera C.
Rubin Observatory and the Euclid space telescope in the up-
coming decade, the number of known strong lensing systems
is expected to grow from a few hundred to approximately
170,000 systems (Serjeant, 2014; Collett, 2015). This in-
creasing number has the potential to allow putting very tight
constraints on the particle properties of dark matter given
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an increased statistical power.

Inferring dark matter population parameters with strong
lensing is a high-dimensional problem characterized by
an intractable likelihood. This makes it difficult to apply
Bayesian statistics to the analysis methods. The properties
of the individual subhalos correspond to a high-dimensional
space that needs to be marginalized to obtain dark matter
properties at a population level. The marginalization is
challenging due to the diversity of observed lenses and the
complexity involved in computing likelihoods for different
dark matter models in such a high-dimensional space. Some
data analysis methods rely on detecting and studying the am-
plitude of spatial fluctuations through a power spectrum de-
composition (e.g., Hezaveh et al., 2016a; Cyr-Racine et al.,
2016; Brennan et al., 2019), or employ summary statistic
approaches (e.g., Birrer et al., 2017). These methods all
attempt to reduce the dimensionality of the likelihood func-
tion, often based on intuition. The reduction and underlying
assumptions can lead to biased results in the inference.

With the upcoming data increasing in volume as well as
in complexity, simple parametric traditional lens analysis
methods come to their limits, both because they are com-
putationally expensive and not sufficiently expressive to
capture the complexity of the data produced by these new
observatories.

As a result, the use of machine learning methods, and in
particular simulation-based inference methods, has signifi-
cantly increased in recent years (e.g., Perreault Levasseur
et al., 2017; Hezaveh et al., 2017; Cyr-Racine et al., 2019;
Ostdiek et al., 2020; Legin et al., 2023; Adam et al., 2023a;b;
Karchev et al., 2023; Wagner-Carena et al., 2023; 2024). In
the field of dark matter inference, an alternative approach in-
volves probing the population-wide effects of dark matter on
a sample of strong gravitational lenses, rather than searching
for individual detections of dark matter substructure.

Machine learning methods, which approximate the in-
tractable likelihood or directly learn the posterior distri-
bution from a simulated dataset, emerge as powerful tools
for analyzing the high-dimensional data spaces without re-
ducing the dimensionality and risking the loss of valuable
information in the observations. Neural networks, such as
neural ratio estimators (NREs) and neural posterior estima-
tors (NPEs), can be trained to obtain the intractable like-
lihood or the posterior of parameter distributions directly,
without reducing the dimensionality of the input data. Both
approaches can successfully marginalize nuisance parame-
ters and return the likelihood or posterior for the parameter
of interest. These neural networks types have become very
popular in strong gravitational lensing and are a promis-
ing avenue to circumvent the calculation of the intractable
likelihood (e.g., Brehmer et al., 2020; 2019; Coogan et al.,
2022; Mishra-Sharma, 2022; Zhang et al., 2022; Karchev

et al., 2023; Wagner-Carena et al., 2023; 2024; Zhang et al.,
2024).

In this work, we investigate and demonstrate the limitations
of NREs to data originating from out-of-distribution or small
deviations from the training distribution. As an example
case, we do this in the context of strong lens analysis to
determine population parameters of the nature of dark mat-
ter. We illustrate the effect on the posterior calculation from
NRE outputs in cases of imperfect knowledge of the under-
lying data distribution and data originating from parameters
slightly outside the training distribution.

2. Methods
2.1. Data Generation

Strong gravitational lensing is the formation of multiple im-
ages of distance light sources due to the deflection of their
light rays by the gravity of intervening structures, the lens.
To produce simulated images of this effect, both a back-
ground source image and a matter distribution for the lens
need to be generated. The lensed imaged is then obtained us-
ing a ray-tracing simulation through the lens density, which
we accomplish using the simulation package Caustics (Stone
et al., 2024).

To model the light of the background source, we use an
ensemble of Sérsic profiles (Sérsic, 1963). We combine
between 5 to 50 Sérsic profiles with a variety in sizes and
shapes to a single source, to mimic the complexity and
diversity of real lensed galaxies. For the main deflector, we
use a singular isothermal ellipsoid (SIE) profile (Barkana,
1998), and for the dark matter halos, we use Narrov-Frank-
White (NFW) profiles (Navarro et al., 1997). All dark matter
halos are sampled from a subhalo function that accounts
only for subhalos in the main deflector.

Dark matter subhalos are concentrations of dark matter or-
biting larger mass halos, typically encompassing galaxies or
clusters of galaxies. The size of these dark matter subhalos
is comparable to satellite galaxies, but do not necessarily
contain stars or other visible matter. Understanding sub-
structures in galaxies, including the particle properties of
dark matter and their potential redshift evolution, is a com-
plex and ongoing challenge. Individual subhalos and their
population properties are influenced by the underlying cos-
mology, dark matter particle properties, the host galaxy, and
other environmental factors. Modelling all these aspects
of dark matter subhalos is beyond the scope of this work.
Instead, we approximate the subhalo mass function with an
analytical power-law profile, to focus on the methodology
and to facilitate the study effects of distributional shifts on
NRE predictions.

The standard model of cosmology, the ΛCDM model, pre-

2



Submission and Formatting Instructions for ICML 2024

dicts a scale-invariant power spectrum of primordial fluctua-
tions. From that subhalos follow approximately a logarith-
mic mass distribution

dn
d log mhalo

= α ·Mhost ·mβ
halo (1)

α is a normalization constant of the profile, Mhost is the
mass of the host galaxy, and mhalo is the subhalo mass. To
quantify the abundance of dark matter, we introduce the
parameter fsub, which determines the ratio of mass in the
dark matter subhalos to the mass in the host galaxy:

fsub =

∫
dmhalo

dn
dmhalo

Mhost
(2)

This simplified dark matter halo mass function allows effi-
cient sampling of dark matter subhalos across different dark
matter models for our study. The parameters fsub and β de-
fine the dark matter population. We allow to vary them and
aim to infer those from simulated images using an NRE. The
predicted parameters for the power-law approximation from
ΛCDM are fsub ≈ 0.05 and β ≈ −0.9 (Dalal & Kochanek,
2002; Madau et al., 2008; Springel et al., 2008; Hiroshima
et al., 2018; Hsueh et al., 2020).

We aim to obtain posterior predictions on dark matter pa-
rameters, based on the anticipated data quality from the full
10-year survey of LSST. LSST is a ground-based survey
designed to map the entire southern hemisphere, produc-
ing approximately 20 TB of data each night, with images
taken in the optical wavelengths across the u-, g-, r-, i-,
z-, and y-bands. The expected pixel size is 0.2 arcsec-
onds, and the effective zenith seeing in LSST in r-band
is poised to be approximately 0.83, which can be approx-
imated by a Gaussian point spread function (PSF) with a
mean of µPSF = 0.83. The PSF is convolved with the
simulated image to imitate the atmospheric blurring. The
instrumental zero-point in the r-band is approximated at a
magnitude of 28.36, and the average night sky brightness
in the r-band is expected to be magsky = 21.20. The in-
strumental readout noise per pixel can be approximated
by σ2

inst = (readnoise2 + (DC ∗ t)) ∗ nexp
1, with an up-

per limit on the readout noise of readnoise = 8.8 elec-
trons/second/pixel, a maximum dark current of DC = 0.2
electrons/second/pixel, a planned exposure time of t = 15
seconds and approximately 300 visits, each with 2 expo-
sures, leading to nexp = 600 (Ivezić et al., 2019).

Figure 1 shows an example of all relevant components in
our simulation of the training data. From left to right, the
figure displays a convergence map κSIE generated by an SIE
profile within the training data distribution, a convergence
map of a sample of dark matter halos κNFW created using

1https://smtn-002.lsst.io/v/v2.0/index.
html

the dark matter parameters fsub = 0.05 and β = −0.9,
which align with the predictions of ΛCDM, a realization of
the source light, the lensed image derived from the provided
kappa maps and source light without PSF convolution and
noise, and finally, the lensed image with PSF convolution
and noise. As noted earlier, the data quality of the final
image, with noise and PSF convolution, is based on the
expected LSST data quality in the r-band.

Table 1 illustrates the training parameter distribution for
the lens and source profiles used to generate the training
sample for the NRE. The parameters are drawn from either
a uniform or normal distribution. The notation N (µ, σ)
indicates a normal distribution with mean µ and standard
deviation σ, and U [a − b] denotes a uniform distribution
between a and b.

Table 1: Parameter distribution for the simulation of the
main deflector and the source light. N (µ, σ) indicates a
normal distribution with mean µ and standard deviation σ,
and U [a− b] denotes a uniform distribution between a and
b.

Parameter Distribution
Lens galaxy
Einstein radius θE U [1.0− 1.5]
Axis ratio qSIE U [0.5− 0.99]
Orientation angle ϕSIE U [0.0− π]
Lens center (x̂SIE, ŷSIE) (0, 0)

Source light
Number of sources N U [5− 50]
Magnitude magsource N (23.5, 0.1)
Sérsic index nsérsic N (2.5, 0.5) ≥ 0.8
Axis ratio qsérsic U [0.5− 0.99]
Orientation angle ϕsérsic U [0.0− π]
Sérsic radius Rsérsic N (0.5, 0.3) ≥ 0.05
Source center x̂source, ŷsource N (0.0, 0.1)

Figure 2 displays 40 random samples of strong lens im-
ages generated from the training data parameter distribu-
tion outlined in Table 1. The images show the variety of
possible strong lens configurations that the network learns
to marginalize. The lens systems include closed Einstein
rings, doubly imaged sources, as well as quadruply imaged
sources. This diversity in strong lens populations can also
be seen in real observations of lensed systems.

2.2. Posterior Estimation

To obtain the posterior distribution p(ϑ|{xi}) for a set of
observed images {xi}, which are generated with the param-
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Figure 1: From the left to the right: a convergence map κSIE created by an SIE profile within the training data distribution,
a convergence map of a sample of dark matter halos κNFW created with the dark matter parameters fsub = 0.05 and
β = −0.9 corresponding to ΛCDM, a realization of the source light, the lensed image without PSF convolution and noise,
and the lensed image with PSF convolution and noise.

Figure 2: A sample of 40 random strong lens configurations generated from the training data parameter distribution. The
lens systems include a wide variety of closed Einstein rings, doubly imaged sources, as well as quadruply imaged sources.
The broad diversity is also seen in real observed lens systems.

eters of interest ϑ, we apply Bayes’ theorem:

p(ϑ|{xi}) =
p(ϑ)

∏
i p(xi|ϑ)∫

dϑ′p(ϑ′)
∏

i p(xi|ϑ′)

= p(ϑ)

[∫
dϑ′p(ϑ′)

∏
i

p(xi|ϑ′)

p(xi|ϑ)

]−1 (3)

with p(ϑ) is the prior on the parameters of interest.

The observations {xi} can explicitly depend on intermediate
model parameters θ, which in turn depend on the parameters
of interest ϑ. This is the case for the inference of dark
matter population parameters in strong lensing, where the
parameters defining the lens are the intermediate model
parameters and those defining the dark matter population
are of primary interest. The likelihood p(xi|ϑ) is then the
marginal of the likelihood p(xi, θ|ϑ) over all intermediate
model parameters θ

p(xi|ϑ) =
∫

dθp(xi, θ|ϑ) (4)

The marginalization integral is intractable and therefore the
likelihood p(xi|ϑ) is intractable as well, due to the high-

dimensional nature of the likelihood p(xi, θ|ϑ):
p(x, θ|ϑ) = plens(θlens)

× Pois(nh|n̄h(ϑ))

n∏
i

[pmass(mh,i|ϑ)p(ri)]

× pobs(x|f(lens,halos))
(5)

with plens the likelihood of the latent lens parameters θlens,
n̄h(ϑ) the expected number of subhalos as a function of the
parameter of interest ϑ = (fsub, β) defining the subhalo
mass function. nh is the realized number in a specific simu-
lation, and mh,i and ri are the masses and position of the
i-th subhalo in the simulated image. pmass is the normal-
ized subhalo mass function, and pobs is the probability of
observing the specific image x, taking into account Poisson
fluctuation and the point spread function.

NREs can learn to marginalize all latent parameters θ dur-
ing training and thus circumvent the calculation of the in-
tractable integral, enabling the posterior calculation from
equation 3.

2.3. Neural Ratio Estimator

The NRE architecture employed in this work follows the
approach of a ResNet with MLPs, as used in previous works
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(e.g., Brehmer et al., 2019; 2020; Zhang et al., 2022; Coogan
et al., 2022; Mishra-Sharma, 2022; Karchev et al., 2023;
Zhang et al., 2024). In the context of analyzing dark matter
population parameters from strongly lensed images, the
parameters handled by the NRE are categorized as follows:

Nuisance parameters θ: These include parameters defin-
ing the shape of the lensed images, such as the main
deflector parameters, the source parameters, as well as
the positions, masses, and numbers of individual dark
matter subhalos.

Parameter of interest ϑ: These include β and fsub, which
define the dark matter mass function from equations 1
and 2.

Observables x: These are the simulated images of strong
lens systems, generated with θ and ϑ. Examples of
these are shown in figure 2.

Rather than directly learning the likelihood of the intractable
integral in equation 4 or the posterior from equation 3, the
NRE estimates the marginal likelihood-to-evidence ratio
r(x|ϑ)

r(x|ϑ) = p(x|ϑ)
pref(x)

(6)

with pref(x) the evidence, which is the reference likelihood
of an observation x occurring under any possible dark matter
parameter ϑ.

pref(x) =

∫
dϑ′π(ϑ′)p(x|ϑ′) (7)

here, p(x|ϑ) is the likelihood of an observation x occur-
ring given a specific set of the dark matter parameters ϑ,
and π(ϑ′) is the proposal distribution of the dark matter
parameters, used in training data generation.

Predicting the marginal likelihood-to-evidence ratio r(x|ϑ),
rather than the intractable likelihood or the posterior directly,
allows for more efficient training. Given the ratio by equa-
tion 6, the likelihood from equation 5 simplifies to only
the term in the second line because the other terms cancel
out, as they do not depend on the parameters of interest
ϑ. This simplification can be used as the training objective
of the NRE to more efficiently train the NRE on the non-
marginalized likelihood-to-evidence ratio of a given specific
observation r(x, θ|ϑ) = p(x,θ|ϑ)

pref (x,θ)
if the mass distribution of

the dark matter halos is analytic and the probability of sam-
pled subhalo masses for a given lens, and the probability to
find them in their specific positions, are easily to infer. This
approach has been successfully implemented in previous
works (e.g., Brehmer et al., 2020; 2019).

The marginal likelihood-to-evidence ratio r(x|ϑ) can be
used to calculate the posterior from equation 3 by replacing

the fraction of likelihoods with the fraction of marginal
likelihood-to-evidence ratios:

p(xi|ϑ′)

p(xi|ϑ′)
=

p(xi|ϑ′)
pref (x)

p(xi|ϑ)
pref (x)

=
r(xi|ϑ′)

r(xi|ϑ)
(8)

Now the integral leading to the posterior is tractable and
low dimensional. The parameter space that needs to be
integrated over, defined by the parameter of interest ϑ, is
two-dimensional and the prior on ϑ is known and can even
be varied.

The NRE, in theory, predicts the marginal likelihood-to-
evidence ratio perfectly in the limit of unlimited training
data and perfect learning. However, this limit is unreachable.
Nonetheless, to ensure the reliability and accuracy of the
NRE at inference, the trained NRE can and needs to be
calibrated. Calibration addresses biases, over- or under-
confidences, and discrepancies in the uncalibrated outputs
produced by the NRE. The calibration procedure follows
previous works (e.g., Cranmer et al., 2016; Brehmer et al.,
2020; 2019; Karchev et al., 2023).

3. Results and Discussion
We evaluate the calibrated NRE on lenses drawn from the
training distribution as well as several variations. The re-
sulting posteriors are shown in Figure 3. All images were
generated with the ground truth parameters, denoted by the
red star, at fsub = 0.05 and β = −0.9, in line with ΛCDM
predictions (Dalal & Kochanek, 2002; Madau et al., 2008;
Springel et al., 2008; Hiroshima et al., 2018; Hsueh et al.,
2020).

For the tests, all lens and source parameters are sampled
from the training distribution from Table 1, with modifi-
cations applied to only single parameter distributions. All
changes in the parameter distributions are within reason-
able and minor deviations from the training distribution.
For most modifications, the changes in the observed image
are minimal to non-visible. The specific modified parame-
ters for each example in Figure 3 and their new, modified
distribution are listed in Table 2.

The left-hand side of Figure 3 shows variations in the lens
plane and noise levels. All rows show the posterior inferred
from 50, 100, and 500 lens systems. The top row on the
left side illustrates the posterior inferred from lenses gen-
erated from the training distribution for 50, 100, and 500
lens systems combined. The inferred posterior for lenses
generated with parameters taken exactly from the training
distribution is unbiased and recovers the ground truth well,
meaning that even when combining the inference over thou-
sands of lensed systems (which is significantly more than
shown here) the inference remains unbiased.
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Figure 3: Evaluation of the NRE on lenses drawn from the training distribution and minor variations in the underlying
parameter distributions. All evaluation datasets were generated with the ground truth, denoted by the red star, at fsub = 0.05
and β = −0.9, which corresponds to ΛCDM predictions. The modification of the parameter distributions of the individual
plots can be found in Table 2
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Table 2: Variation of parameter distributions used in Figure 3 in comparison to the training distribution from 1. First, the left
side of the Figure is explained, then on the right side, from top to bottom.

Plot Title Modified Parameter New Distribution
Training Distribution None
Einstein Radius Einstein radius θE N (1.4, 0.2) ≥ 1.0,≤ 1.5
EPL Lens Profile Power-law slope of lens γEPL N (2.0, 0.02)
External Shear Added external shear components γ1/2 N (0.0, 0.1)
TNFW Halo Profile Truncation of NFW, truncation scale τ 5
More Noise Noise in the image at 1% of the sky flux
Sky Flux Different magnitude of sky background magsky 21.4
Sérsic Radius Sérsic radius Rsérsic N (0.2, 0.2) ≥ 0.05
Sérsic Index Sérsic index nsérsic N (5.5, 1.5) ≥ 0.8
Source Position Source centers (x̂source, ŷsource) N (0.05, 0.15)
Number of Sérsic Blobs Number of Sérsic blobs in the source N U [40− 45]
Sérsic Ellipticity Source axis ratio qsérsic N (0.75, 0.2) ≥ 0.5,≤ 0.99
Two Source Center Source position (x̂source1, ŷsource1), (x̂source2, ŷsource2) N1(0.0, 0.1),N2(−0.2, 0.1)
Probes Dataset as Sources Analytic Sérsic source profiles to Probes dataset

In the second row of Figure 3, we vary the Einstein radius
distribution from a uniform distribution to a normal dis-
tribution with mean at µ = 1.4 and standard deviation of
σ = 0.2, but maintaining the same boundaries as in the
uniform training distribution. The inferred posterior for 50
and 100 lenses accurately recovers the ground truth but for
the case of 500 systems, multiple posterior modes develop.
This is an artifact of the distribution shift and causes the
posterior to have a bias detectable through coverage tests
such as TARP (Lemos et al., 2023).

The third row shows the posterior for the case of changing
the main deflector model from a SIE to an elliptical power
law (EPL) profile, with the mass slope drawn from a normal
distribution with mean µ = 2.0 and standard deviation
σ = 0.02. For the case of the mass slope of γEPL =
2.0 the EPL profile corresponds exactly to an SIE profile.
Even though the lens profile exhibits minimal variation,
with the standard deviation smaller than uncertainties on
the mass slope obtained from traditional lens modelling
(e.g., Koopmans et al., 2006; Treu et al., 2009; Auger et al.,
2009; 2010; Brownstein et al., 2012; Bolton et al., 2012;
Sonnenfeld et al., 2013; Shu et al., 2017; Chen et al., 2019;
Talbot et al., 2021), the posterior for as little as 50 lenses
is biased, and the ground truth lies not even within the 3σ
area.

For the posterior in the fourth row, we introduce a small ex-
ternal shear on top of the main deflector. The external shear
is defined by two components γ1,2. We add the shear with
a median of µ = 0.0 and standard deviation of σ = 0.1. In
traditional strong lens analysis, the external shear is highly
degenerate with the ellipticity of the lens profile and is usu-
ally used to model the environment of the lens (e.g., Oguri
et al., 2005; Koopmans et al., 2006; Auger et al., 2009; Son-

nenfeld et al., 2013; Shu et al., 2016; 2017; Talbot et al.,
2021). The small addition of external shear significantly
biases the network already for only 50 strong lenses heav-
ily, pushing the obtained posterior to the boundaries of the
parameters of interest.

The fifth row changes the substructure mass profiles from
NFW profiles to truncated NFW profiles with a truncation
scale of 5, i.e. the radius at which the mass profile gets
truncated is five times the scale radius. This modification
converts the infinite expanded NFW profiles into finite pro-
files. The resulting posterior shows clear biases, with the
ground truth outside the 1σ area even when combining as
little as 50 strong lenses.

In the sixth row, we examine the effect of adding Gaussian
noise at a one percent level of the sky flux. The minor varia-
tion in noise biases the network output strongly, excluding
the ground truth in the 1σ area for already a sample of only
50 lens systems.

The seventh and last row on the left side shows the impact
of reducing the sky flux in the simulations by setting it to
a higher magnitude, resulting in higher signal-to-noise in
observations. The posterior estimation from that is biased,
with the network compressing towards a single value. This
outcome highlights the sensitivity of the network to vari-
ations in sky background, which can vary widely across
different nights and sky areas.

The right-hand side of Figure 3 displays variations in the
source plane, with posterior results obtained from combin-
ing 50, 100, and 500 strong lens systems.

The first row varies the Sérsic radius of the individual Sérsic
source components to a normal distribution with a lower
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mean than the training distribution. This makes the source
images appear more structured and in general smaller. One
can see a noticeable bias on the obtained posteriors from the
network’s output.

In the second row, the distribution from which the Sérsic
indices for individual source components are sampled is var-
ied. We generate the source images from a normal distribu-
tion centred at a slightly different value than in the training
distribution. A higher Sérsic index leads to a smoother pro-
file and more flux associated with outer regions of the galaxy,
resulting in a less structured appearance of the source. The
posterior obtained is biased and over 3σ offset from the
ground truth for 100 combined lens systems.

For the posteriors in the third row, the mean of the source
position is set a little bit off-center, with a higher variation
than in the training distribution. This affects the source
images by producing a less focused source. This small shift
leads to a highly biased posterior estimation.

In the fourth row, we modify the number of Sérsic blobs
used to generate our sources from a range of 5-50 blobs to
40-45 blobs. Although this variation is within the training
distribution, it results in a higher inclusion of more struc-
tured sources, yielding a generally broader posterior than for
the training distribution. The ground truth still can be found
within the 1σ interval, but the posterior still appears biased
compared to that obtained from the training distribution.

The fifth row shows the impact when changing the prior on
the source axis ratio from a uniform to a normal prior, cen-
tred in the middle of the distribution with the same bound-
aries as the uniform training distribution. Compared to the
posterior obtained from the correct training distribution, the
posterior is slightly biased but still contains the ground truth
within the 1σ area. This very subtle and small change in the
underlying distribution of the ellipticity of the source profile
components has a visible and non-neglectable effect on the
posterior prediction.

In the sixth row, the source images are generated with two
different centers for the Sérsic profiles, distributed ran-
domly in two locations: one remaining centred as in the
training distribution at (x̂source1, ŷsource1) = (0.0, 0.0)
arcsec, and the other slightly offset to a mean position of
(x̂source2, ŷsource2) = (−0.2,−0.2) arcsec, both with a
standard deviation of σ = 0.1. The structure of the source
images in this setup is more peanut-shaped than round. The
results of the posterior estimation are strongly biased.

The seventh and last row on the right side shows the pos-
terior if we use pixelated source images based on real data
from the PROBES dataset, a high-quality sample of 2059
galaxies with 256 x 256 pixels (Stone & Courteau, 2019;
Stone et al., 2021). This approach introduces significantly
more structure and realism than the training dataset, result-

ing in out-of-distribution data and biased posterior estima-
tions.

Since variations of any individual parameter already pro-
duce biases in the inferred posteriors, we do not include tests
on variations of multiple parameters at the same time. The
comparison of these tests reveals that very small variations
with different effects on the lensed image can have the sim-
ilar effect of very strongly biasing the predicted posterior,
whereas variations with very similar effects can introduce
highly different effects on the bias and shape of the pos-
terior prediction. It is important to stress that the initial
parametrization used to train the NRE is within the range
of usual state-of-the-art parametrization for lens modelling
and that the deviations tested here are mostly physically
very small and could very well be expected to happen in
a realistic data analysis setting where the ground truth is
not available. Meanwhile, the effect of those changes in the
underlying parameter distributions on the NRE predictions
is highly non-linear and unpredictable, making it difficult
to trust the posteriors inferred with this model. This makes
NREs only applicable to cases where both the underlying
distribution of parameters and the physical model are per-
fectly known. For strong lensing and astrophysical data
analysis more generally, this is very rarely the case.

4. Conclusion
In conclusion, our findings demonstrate that, when ana-
lyzing strong lensing data to measure dark matter proper-
ties, NREs perform effectively provided the testing data
originates from a distribution and a physical model iden-
tical to that of the training and calibration data. In this
case, they provide unbiased posteriors that can be combined
in population-level inference over a large number of indi-
vidual observations, significantly outperforming traditional
methods. However, they fail to generalize to even slightly
out-of-distribution data or even to data that are within the
distribution but with distributions drawn from slightly differ-
ent priors. These limitations highlight the need for caution
when applying NREs to real astrophysical data, where such
ideal conditions are seldom met.

This indicates that NREs are a well-suited tool for research
requiring only simulated data, where the underlying distri-
bution is perfectly known. For instance, NREs are excellent
for making sensitivity predictions on for specific signals e.g.
in survey data, since they seamlessly allow for amortized
implicit marginalization over nuisance parameters.

Beyond the fields of strong lensing and astrophysics, this
case study is also an important lesson for other fields of
science where accuracy of inference is important and the
true data-generating process is not perfectly known.
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