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Abstract

Large language models (LLMs) have been used in many zero-shot learning prob-
lems, with their strong generalization ability. Recently, adopting LLMs in text-
attributed graphs (TAGs) has drawn increasing attention. However, the adop-
tion of LLMs faces two major challenges: limited information on graph struc-
ture and unreliable responses. LLMs struggle with text attributes isolated from
the graph topology. Worse still, they yield unreliable predictions due to both
information insufficiency and the inherent weakness of LLMs (e.g., hallucina-
tion). Towards this end, this paper proposes a novel method named Dynamic
Text Bundling Supervision (DENSE) that queries LLMs with bundles of texts
to obtain bundle-level labels and uses these labels to supervise graph neural net-
works. Specifically, we sample a set of bundles, each containing a set of nodes
with corresponding texts of close proximity. We then query LLMs with the bun-
dled texts to obtain the label of each bundle. Subsequently, the bundle labels are
used to supervise the optimization of graph neural networks, and the bundles are
further refined to exclude noisy items. To justify our design, we also provide
theoretical analysis of the proposed method. Extensive experiments across ten
datasets validate the effectiveness of the proposed method. Our code is available at
https://github.com/YushengZhao/bundle-neurips25.

1 Introduction

Text-attributed graphs (TAGs) [83, 87] are an important form of graph data, containing textual
descriptions associated with each node. By combining textual information with non-Euclidean graph
topology, TAGs serve as natural structured data representations in many applications, including
citation networks [67], social networks [61], e-commerce networks [48], and webpage networks
[11]. As complete labeling of these large networks is often time-consuming and costly, efforts have
been made to utilize semi-supervised learning [33, 74, 51], transfer learning [12, 102, 95, 52], and
few-shot/zero-shot learning [14, 91, 86] to understand text-attributed graphs with limited labels.

Large language models (LLMs) [84, 44] have been observed to exhibit strong zero-shot generalization
capability, enhancing the performance on various types of data, including visual signals [97], audio
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Figure 1: (a) Querying LLMs with individual texts and supervising graph learning with individual
labels. (b) By creating text bundles, we perform bundle queries to obtain bundle labels for supervision.

signals [92], texts [45], programming code [85, 94], time series [93], and graphs [76]. Recently,
there have been efforts in integrating LLMs in text-attributed graphs [20, 25, 101] for zero-shot
inference. One line of research integrates the graph topology into language models [9, 53, 101],
converting non-Euclidean topology into a sequence of tokens. However, building such foundation
models requires a large amount of data [77], and the conversion to Euclidean data inevitably incurs
information loss [47]. Another line of research directly utilizes the zero-shot generalization ability
of existing LLMs to understand node attributes [8, 38, 77], and utilizes the output of LLMs as
supervision signals for training graph neural networks (GNNs) [33] or as clustering centers [77].
However, the text attributes are often isolated from the graph topology, and the unreliable responses
from LLMs also pose challenges for subsequent operations.

Adopting LLMs in zero-shot inference on TAGs faces two major challenges: (1) LLMs receive limited
information on graph structure. Graph topology is non-Euclidean, making it difficult to transform into
token sequences with limited context windows. (2) LLMs yield unreliable responses. The inherent
weakness of LLMs (e.g., hallucination), together with limited information, makes the responses from
LLMs unreliable, damaging subsequent operations like clustering, classification, or supervision.

Towards this end, this paper proposes a novel method named dynamic text bundling supervision that
queries LLMs and supervises graph neural networks using text bundles. As is illustrated in Figure
1, conventional methods [10, 77] query LLMs with individual text items (for example, in citation
networks, this would be individual papers’ titles and abstracts). The LLMs then return the annotations
of these texts, which are used as supervision signals. This paradigm faces the two major challenges
mentioned above: the LLMs suffer from limited information, and the downstream supervision signals
are unreliable. By comparison, this work proposes to query LLMs and supervise subsequent graph
learning with text bundles. We first sample topologically or semantically similar text items to form a
text bundle, and then query the LLMs about the mode category (i.e., the most frequent category of the
text items in the bundle) as the bundle label. Subsequently, we design bundle supervision that uses
the bundle labels to train a graph neural network, and during this process, bundles are further refined
to exclude noisy items. In this way, the LLMs receive richer information from multiple interrelated
text items in a bundle (challenge 1), and the predicted bundle labels are more robust to the uncertainty
or misinterpretation of single text items with bundle supervision and refinement (challenge 2). We
perform both theoretical and empirical studies to demonstrate the effectiveness of our method.

The contribution of this paper can be summarized as follows. @ We introduce a new perspective that
connects bundle structure and text-attributed graphs to provide robust supervision of graph neural
networks. ® We propose a novel framework consisting of bundle sampling, bundle query, bundle
supervision, and bundle refinement. We also provide rigorous theoretical analysis of our method,
showing its tolerance to outlier nodes and the convergence properties of optimization. & We perform
extensive experiments on ten text-attributed graph datasets across various domains, and the results
validate the effectiveness of the proposed method compared to competing baselines.
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Figure 2: The overall framework of our method. We first sample nodes of proximity to form bundles
(a), which are then used to query the LLM about their main categories (b). Subsequently, the bundle
labels from the LLM’s response are used to supervise a graph neural network (c). During optimization,
we further refine the bundle to exclude noisy nodes (d).

2 Related Works

Text-Attributed Graphs. Text-attributed graphs (TAGs) are a special type of graphs whose nodes
are associated with textual attributes [83, 87]. They are common forms of data in many fields, such
as citation networks [4], knowledge graphs [66], social networks [37], web page networks [19], etc.
Research on TAGs generally focuses on combining textual attributes with graph structures, with
the help of text embedding methods [75, 56] and network embedding methods [78, 42, 31]. As
the annotation costs of TAGs are usually high, efforts have been made in semi-supervised learning
[50, 90], transfer learning [89, 21, 102, 96], and few-shot learning [24, 91, 86]. With the advancement
of large language models, this work makes a step further, focusing on the zero-shot inference of
text-attributed graphs [10, 76, 77] with the help of LLMs.

Large Language Model for Graphs. Large language models (LLMs) [84, 44] have shown impressive
performance in understanding data beyond natural languages, including programming languages
[28], sequences of numbers [29], mathematics [69], and graphs [10, 30, 65, 41]. LLMs exhibit strong
generalization ability, enabling few-shot or zero-shot inference on graphs. One line of research aims
to build a foundation model, incorporating graph structures into current language model architectures
[81, 16, 43, 76]. These methods often require training to align the graph structure and natural
language [88, 102], involving a large amount of labeled or paired data. Another line of research
makes use of the inference capability of existing LLMs to generate labels or related information of
graphs [71, 10, 8, 77]. However, they often use isolated nodes [77] or explicit descriptions that are
hard for LLMs to understand [72]. Additionally, the noisy labels generated by LLMs can further
harm subsequent inference operations (e.g., supervising neural networks, performing clustering) on
graphs. Compared to these methods, this paper proposes to use text bundles to query LLMs and
supervise graph neural networks, leading to richer information and more robust optimization.

3 Methodology

Problem Definition. We denote a text-attributed graph as G = (V, £, T,Y), where V is the set of
nodes, £ is the set of edges, 7 is the set of textual attributes, and ) is the set of node labels. Each
node v; € V is associated with textual descriptions ¢; € 7 and the corresponding label y;. For each
node, we can obtain its vectorized embedding via a text encoder fy, i.e., x; = fo(t;) € R4, We
denote the total number of nodes as n = |V|. A node bundle is defined as a set of nodes in the graph,
and a text bundle corresponding to the node bundle is defined as a set of text attributes associated
with the node bundle. For simplicity, we use the term bundle and notation B to denote the indices
of corresponding node bundles and text bundles. The goal of zero-shot inference on text-attributed
graphs is to infer the node labels ) according to the graph topology V, £, and the textual attributes 7T .

3.1 Framework Overview

The overall framework of the proposed method is illustrated in Figure 2. We first perform bundle
sampling, constructing node bundles according to topological or semantic proximity (Section 3.2).
With the obtained node bundles, we transform the corresponding text bundles into prompts and query
the LLM about the most frequent category of the bundle (Section 3.3). With these bundle labels,



we perform bundle supervision, training graph neural networks with entropy-based and ranking-
based supervision. Additionally, theoretical analysis is provided regarding the properties of bundle
supervision to justify our design (Section 3.4). During the optimization process, we further refine the
bundles dynamically to exclude noisy components (Section 3.5).

3.2 Bundle Sampling

We first introduce the method for sampling bundles. Intuitively, we aim for most nodes within a
bundle to belong to the same category (i.e. a strong mode), so that LLMs more easily predict the
mode category and the bundle label more accurately reflects the nodes it contains. To achieve this,
we sample nodes of close proximity. Specifically, we first randomly sample the core node v, from the
set of nodes V), and then sample the rest of the nodes. We fix the size of a bundle as np, and design
two criteria for sampling: topological proximity and semantic proximity.

Topological Proximity. For a given core node v, in graph G, a common assumption is that a node
is similar to nodes topologically close to itself [33, 18]. Formally, given two nodes v. and v, their
topological proximity can be measured by the length of the shortest path from v, and v, denoted as
d¥ (v, v), and we can define topologically similar nodes with respect to v, as:

NEwe) =1{i|1<d%wive) <k}, k=inf{z|N"(.)| >np—1} 1)

where k is an adaptive hop size. For core nodes with many (k-hop) neighbors, a smaller hop size is
used, and vice versa. We then sample (np — 1) nodes from the neighborhood N, g(vc) to form the
bundle B together with the original core node v.

Semantic Proximity. For graphs with heterophily, topological proximity hardly entails similarity
[100, 99, 98]. Therefore, we turn to semantic proximity utilizing vectorized representations of nodes.
Specifically, given embeddings of each node X = {x;} ;| and a core node v, with corresponding
embedding x., we construct the node bundle based on the closeness in the embedding space R%:

B={i|®eN(z)}, @)

where N/ ;B (z.) denotes the set of top np vectors in X that are closest to .. in terms of Euclidean
distance (i.e., Lo distance) in the embedding space.

In practice, different criteria are adopted for different types of graphs. For graphs with high homophily
(e.g., citation networks), topological proximity is used. For graphs with high heterophily (e.g.,
webpage networks), semantic proximity is adopted. We repeatedly sample a set of node bundles
as {B1,Ba, ..., By, }, where ng is the number of bundles. For simplicity, we omit the subscript of
bundles and use B for an arbitrary bundle in the following discussions.

3.3 Bundle Query

We then query LLMs to obtain information about the bundles. While it might be straightforward
to provide individual text attributes for node-level pseudo-labels, this approach carries the risk of
limited information (as the LLMs only receive information from a single isolated node attribute) and
unreliable responses (since the output pseudo-labels can be highly noisy). By using bundling, LLMs
receive more information from proximate nodes, making the decision regarding the mode category
easier than individual classification, which results in more reliable annotations.

With the node bundles selected, we obtain their corresponding text bundles and construct a single
prompt P () for each text bundle with dataset description and task description:

P(B) = (dataset_description) Concat({t;|i € B})(task_description), 3)
where the Concat(-) operator concatenates all the text attributes in the bundle. We then query the

LLM with the prompts to obtain the mode category of the bundle, denoted as 7.

3.4 Bundle Supervision

The bundle labels are then used to supervise a graph neural network. Since a bundle label represents
the mode category that most nodes in the bundle belong to, nodes from other categories may also be
included. Therefore, effective bundle supervision requires tolerance for these "outliers". To address



this, we design two supervisions: entropy-based supervision and ranking-based supervision. We
denote the graph neural network as gy, and it generates probability distributions for each node as:

{zitic, = 90 ({mi}ie1, &), pi = softmax(z;), 4
where z; € R is the logits, p; € R is the probability, and C' is the number of classes.

Entropy-based Supervision. When a bundle 3 has label 7, the nodes in it are likely to fall into class
2 on average. Therefore, we compute the bundle class distribution p(13) and the corresponding
bundle-level entropy-based objective function Lz as follows:

1 N
p(B) = softmax (B > z> ., Lpe = CE (p(B),j"), )
i€B

where CE(-, -) is the cross-entropy loss. We then theoretically demonstrate that this bundle supervi-
sion (i.e., Lpg) is more tolerant to outliers compared to individual supervision using cross-entropy.
Formally, we have the following theorem (with the proof in Appendix A):

Theorem 3.1. Given a bundle B, its corresponding bundle class distribution p(B) = (p1,pa, .. .,pc),
an outlier node v,,0 € B with probability distribution p, = (p},p5,...,ps), denote m’ =
argmax,{p,}& . If the bundle label § # m/, and p.,,, > py,s, we have:

OLBE OLig

< < h = CE 7 d —
0= Flogp, = Blogy,> "here £op =CE(PB).G) and Lig

1
— - CE (po, 9 6
Bl (Po,9), (6)
where ] is the bundle label, L g is bundle supervision and L is individual supervision.
Remark 1. Theorem 3.1 suggests that when encountering "outlier" nodes that conflict with the
predicted mode category and the bundle distribution (i.e., the condition § # m’ and pl,,, > pp in
the theorem), the bundle cross-entropy objective function (i.e., Lpg defined in Eq. 5) is more tolerant
compared to supervising the nodes in the bundle individually (i.e., L1 g defined in the theorem), as
evidenced by a smaller penalty imposed by the gradient.

Ranking-based Supervision. To ensure that the supervision focuses more on bundles where the
predicted bundle labels do not dominate the bundle’s bundle probability distribution, we adopt the
concept of ranking loss [7, 57, 79], and design a ranking-based loss as follows:

£r = —min (logp(B)y» — logmiax {p(B):},0) . ™)

where p(B); € R denotes the i-th component of vector p(53) (i.e., the predicted probability of class
i). When the category of the bundle label 7 is not the highest in the predicted bundle probability
distribution by the GNN gy, the bundle B is penalized by this loss function. On the other hand, when
the category of §/” has a high bundle probability p(B) ;5 (which does not necessitate all z;,i € B to
be high), the loss will be zero. In our implementation, a combination of the two supervision objectives
is used, leading to the final objective function as follows:

L=Lgg+ Lg. )

Theoretical Analysis. We then aim to present a rigorous theoretical analysis of the proposed method,
focusing in particular on the convergence of the bundle supervision process. Before going into the
details, we first examine the smoothness of our entropy-based objective £ 5. More specifically, we
have the following results (with the proof in Appendix B):

Theorem 3.2. Given a graph neural network gy, if its corresponding first-order and second-order
partial derivatives are bounded, that is, ||V 2 c(0)||c < G and max(|V?z;(0)]) < M where z;

is the ‘c’-th logit of the output vector z; = (2i1;- -, 2i,c) provided by GNN gy, then we can show
that the cross-entropy loss function Lpg(0) defined in Eq. 5 satisfies the following conditions:

i): The cross-entropy loss function Lpg(0) has a bounded gradient, i.e., ||VLpE(0)] 0 < ‘Z?G

where the symbol |B| represents the cardinality of bundle B;

ii): The second-order partial derivatives of the cross-entropy loss function Lgg(0) is also

bounded, namely, max (‘VQL:BE(H) D < %ﬁcﬂ), which simultaneously means the loss



Lpr(0)is (%ﬁgﬂ)) -smooth, that is,

an(M + GQ)
|B|

where ng is the dimension of the unknown parameter 6.

IVLpE(01) = VLpE(62)[2 < 161 — O2]|2,

Remark 2. [t is worth noting that, in Theorem 3.2, the symbol max (|M|) represents the maximum
absolute value among the elements of matrix M. Moreover, || - ||2 and || - || denote the standard Lo
norm and L, norm, respectively.

Remark 3. Theorem 3.2 indicates that the smoothness and differentiability of the graph neural
network gg can, to some extent, be inherited by our adopted cross-entropy loss function LpE.

With the results of Theorem 3.2, we next show that, under some mild conditions, the commonly
used gradient descent algorithm for training GNN gy can finally converge to a stationary point of
our adopted loss function £ = (Lpg + Lg). Before that, we first characterize the dynamics of the
general gradient descent algorithm, namely, we suppose 6; 1 = 0; — nVLg where > 0 is the
learning rate and the time ¢ € {1,2,...,T}. Subsequently, we present the detailed results regarding
the convergence of our adopted bundle supervision process, that is,

Theorem 3.3 (Proof is deferred to Appendix C). Under the assumptions of Theorem 3.2 and

the condition n < if, when the iteration index t is large, the model parameter 0,

B
ng (A‘/[-iI-GQ) ’
provided by gradient descent algorithm can effectively fit the predicted bundle label 47, namely,
9P € arg max;eq1,...,c} 1P, (B)i}, then we can verify that the final obtained model parameter 071
will converge to a stationary point of the adopted loss function L(0), that is to say, ||V L(01+1)]|2
can approach toward a small value as T — oc.

Remark 4. The proof of Theorem 3.3 builds upon the standard non-convex optimization frame-
works [27, 2, 36]. Moreover, it is important to emphasize that when our GNN model gg possesses
certain structural properties, extensive research has shown that the resulting stationary point of the
aforementioned gradient descent algorithm can exhibit strong generalization capabilities [35, 5] and
in some cases, may even correspond to a global minimum [70, 59, 55].

3.5 Bundle Refinement

During optimization of the graph neural network gy, the bundle 3 may include nodes that do not
belong to the category of /. To address this, we design the bundle refinement process that excludes
these noisy nodes by evicting those with lower confidence in class 5Z. Specifically, given the node-
level probability distribution in a bundle, i.e., p;, i € B, we denote the confidence of p; with respect
to class ¢ as pi 5. We evict the less confident node in the bundle as:

B+ {’L i€ B A p;gs > E%igpj’yB} , ©)

where < denotes the update of the bundle. Bundle refinement is performed multiple times during
the optimization process of gg. By evicting the less confident nodes that are potentially misaligned
with the bundle label, the noise in bundle supervision is further reduced. Through bundle refinement,
the initial bundles, sampled via topological or semantic proximity, are dynamically adjusted during
the supervision of the graph neural network to fulfill the predicted bundle label §” queried from the
LLM, making the proposed method robust. The overall algorithm is provided in Appendix D.

4 Experiments

4.1 Experimental Setup

Datasets. In the experiments, we use ten representative datasets, i.e., Cora [54], CiteSeer [17],
Wikics [58], History [62], Children [62], Sportsfit [62], Cornell [11], Texas [11], Wisconsin [11],
and Washington [11]. Among these datasets, Cora and CiteSeer are citation networks. Wikics is a
knowledge graph derived from Wikipedia. History, Children, and Sportsfit are e-commerce networks
of different types of products (i.e., history books, children’s literature, sports goods). Cornell,



Texas, Wisconsin, and Washington are web page networks of universities. The datasets cover both
homophilic and heterophilic graphs, with the first six datasets of high homophily and the last four of
low homophily. More details about the datasets can be found in Appendix E.

Compared Baselines. We compare a spectrum of methods with our method. The compared methods
include the following categories. » Text encoders, including SBERT [68], RoOBERTa [49], OpenAlI’s
Text-Embedding-3-Large (TE-3-Large) [63] and LLM2Vec [3]. » Generative LLMs, including
GPT-3.5-turbo [1] and GPT-40 [26]. » Graph self-supervised learning methods, including DGI [73]
and GraphMAE [23]. » Graph foundation models or graph learning methods with LLMs, including
OFA [46], GOFA [34], UniGLM [15], ZeroG [40], GraphGPT [72], LLAGA [6], and LLM-BP [77].
More details about the baseline methods can be found in Appendix F.

Implementation Details. In the experiments, we use GPT-40 [26] as the default LLM for bundle
query. In bundle sampling, we set the bundle size np as 5 and the number of bundles ng as 100 for
all datasets. For homophilic graphs, we use topological proximity for sampling and GCN [33] as the
default GNN, whereas semantic proximity and GloGNN [39] are used in heterophilic graphs. We
train the GNN on an NVIDIA RTX 3090 GPU for 500 epochs, and bundle refinement is performed at
the 300th and 400th epochs. More details of our implementation can be found in Appendix G.

Table 1: Prediction accuracies of our method compared to baselines across datasets. We mark the
best results in bold and the second-best with underline.

Method Cora CiteSeer WikiCS History Children Sportsfit Cornell — Texas Wisc. Wash.
SBERT 69.75 66.69 59.06 53.53 22.59 43.79 63.66 64.58 62.10 63.52
RoBERTa 70.71 66.95 59.08 55.39 24.25 41.51 61.68 62.25 60.33 60.60
TE-3-Large 71.90 66.24 61.78 50.15 24.68 58.39 81.50 75.42 73.14 66.35
LLM2Vec 67.34 67.13 62.34 53.14 25.56 57.00 81.26 76.68 73.36 65.92
GPT-3.5-turbo ~ 70.11 66.83 65.53 55.07 29.73 67.21 45.54 56.14 58.86 51.09
GPT-40 70.29 64.77 66.10 53.30 30.76 66.35 45.54 63.10 56.60 48.90
DGI 16.79 15.24 14.98 20.98 222 7.48 14.66 11.23 12.08 20.96
GraphMAE 15.13 8.11 8.91 36.36 7.24 30.50 23.04 17.65 23.02 24.89
OFA 20.36 41.31 30.77 8.25 3.05 15.18 29.84 11.77 4.80 6.04

GOFA 71.06 65.72 68.62 56.25 12.15 37.87 39.50 38.37 32.51 31.02
UniGLM 45.57 52.26 55.05 44.24 21.48 33.46 23.03 21.39 27.16 24.01

ZeroG 60.40 50.35 46.74 36.55 12.72 14.27 10.47 53.48 12.66 8.30

GraphGPT 17.48 13.93 33.59 12.31 9.94 4.53 10.18 18.48 12.35 20.64
LLAGA 11.62 19.52 10.98 7.95 10.09 1.84 12.57 15.51 15.09 10.48
LLM-BP 72.59 69.51 67.75 59.86 24.81 61.92 83.28 81.66 71.75 73.14

DENSE (ours)  75.09 72.37 71.03 67.31 31.75 75.88 84.82 92.51 87.17 81.66

4.2 Main Results

Comparison with Existing Methods. We compare our method against 15 baselines across 10 datasets
in Table 1. From the results, we can see that our method consistently outperforms competitive
baselines in all 10 datasets, showing the effectiveness of the proposed text bundling method. Text
embedding methods (e.g., SBERT, LLM2Vec) and generative LLMs (e.g., GPT-40) achieve moderate
performance on many datasets. However, their ignorance of the graph topology leads to weaker
performance, especially when the structures are important. Graph self-supervised learning methods
(e.g., DGI, GraphMAE) generally yield low accuracy without the assistance of LLMs and their strong
generalization capability. For foundation models (e.g., GOFA, ZeroG) that incorporate graphs in
LLMs for joint training, their high performance is not consistent, worsening with graphs out of their
original training distribution (e.g., in university web page networks). By comparison, our method
consistently outperforms baselines on various datasets covering different domains. Additionally, our
method is agnostic to the specific architecture of the graph neural network, allowing us to flexibly
benefit from the advancement of GNN architectures when facing different types of graph structures
(e.g., homophilic graphs and heterophilic graphs).

Performance Under Different LLM Backbones. We also show the prediction accuracies of our
method using different LLMs. Specifically, we provide results on five LLMs, including GPT-40 [26]
(used as default), GPT-3.5-turbo [1], GPT-4.1-nano [64], Deepseek-V3 [44], and Gemini-2.5-flash
[13]. The results on four datasets (i.e., Cora, History, Sportsfit, Texas) are shown in Table 2. As
can be seen from the results, using alternative LLMs generally yields satisfactory performance on
average. Among these LLMs, GPT-40 and Gemini-2.5-flash perform relatively better, while cheaper



Table 2: The prediction accuracies under different Table 3: Ablation studies on four datasets.
LLM backbones on four datasets. The best is

- ' Method Cora History  Sportsfit  Texas
marked in bold and the second-best underline. VI RS. 7048 6180 6560 8824
LLM Cora History ~ Sportsfit ~ Texas V2: 1Q. 71.96 63.95 72.61 84.49
GPT-40 75.09 67.31 75.88 9251 V3: w/o LBE 70.11 64.49 65.29 91.44
GPT-3.5-turbo 7325  69.87  69.82  89.30 Vé: w/o Lr 73.99 6673 7548  86.10
GPT-4.1-nano 7011 7109 6611  90.37 V5:w/ L 7343 6629 7405  85.03
Deepseek-V3 7528  67.00 7352  85.56 V6: w/o B.R. 73.89 66.55 73.00 91.98
Gemini-2.5-flash 7325  70.08 7498  93.05 DENSE (ours)  75.09 67.31 75.88 92.51

or older LLMs like GPT-3.5-turbo, GPT-4.1-nano, Deepseek-V3 yield decent accuracies as well. This
suggests that our method can benefit from the advancement of LLMs.

4.3 Ablation Studies

We investigate how the different mechanisms used in our method affect the final accuracy, and we
present the ablation studies in Table 3. We construct a set of variants of our method (marked as V1
to V6): V1 uses random sampling (R.S.) instead of topological proximity or semantic proximity to
obtain bundles. V2 uses individual query (I.Q.), asking the LLM about the category of each node
with the text attribute. V3 removes the entropy-based loss Lgg. V4 removes the ranking-based
loss L. V5 uses individual supervision, i.e., L7 defined in Theroem 3.1. V6 does not employ
bundle refinement. As can be seen from the results, each technique proposed is helpful for the overall
accuracy, and removing them causes performance degradation. Additionally, we find that bundle
sampling is important, especially when the number of classes is large (in this case, 12 classes for
History and 13 classes for Sportsfit, both of which witness a severe drop in accuracy with random
bundle sampling). One explanation is that inappropriate sampling causes the nodes in a bundle to
be more uniformly distributed across various categories, making it difficult to decide the bundle
class (with a weaker mode category) and perform bundle supervision (with noisier bundle labels).
Moreover, we find that individual supervision (L;g) is weaker than bundle supervision, which
suggests that our supervision method is more tolerant to bundle outliers.
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Figure 3: Left: prediction accuracies under different bundle sizes (i.e., np). Middle: prediction
accuracies with different numbers of bundles (i.e., ng). Right: accuracy comparison of individual
query (1.Q.), bundle query (B.Q.), and our method (Ours).

4.4 Hyperparameter Analysis

Effects of Bundle Size np. We also show the prediction accuracies using different bundle sizes np in
Figure 3 (Left). As can be seen from the figure, setting n to 5 achieves relatively good performance.
Smaller bundle sizes make it difficult to provide sufficient information about the neighborhood, while
larger bundle sizes have the risk of including categories other than the mode category. Moreover, we
observe that odd bundle sizes are relatively better than even ones. A possible explanation is that even
bundles are more likely to have ties (e.g., two nodes from class A and two from class B in a four-node
bundle), causing confusion and noisy supervision. This is less significant in datasets with a larger
number of classes (e.g., the History dataset with 12 classes), where odd bundles may also include a
node from the third class, failing to resolve the ties.

Effects of the Number of Bundles ns. We also show the prediction accuracies with different numbers
of bundles in Figure 3 (Middle). As can be seen from the figure, larger numbers of bundles generally



(a) Prompt Template: (b) Prompt Example (CiteSeer):

4 1\ 'd N\
We have <node_description> in We have description or opening text of scientific
<graph_description> from the following publications in a citation network from the following 6
<number of classes> categories: [<category 1>, categories: ['Agents', 'machine learning(ML)',
<category 2>,..,<category C>] 'information retrieval (IR)', 'database (DB)', "human-
Below are texts from <bundle_ size> computer interaction (HCI)', 'artificial intelligence (AI)’]
<node_refer name_ploral>. Below are texts from 5 papers.
[<nodeireferinameisingular> 1] [Paper 1]
<text attribute of node 1> Extracting Query Modifications from Nonlinear SVMs...
[<node_refer name_singular> 2] [Paper 2]
<text_attribute of node 2> Context and Page Analysis for Improved Web Search...
Please tell me the main category that most of the papers Please tell me the main category that most of the papers
belong to. Think carefully and then provide the final belong to. Think carefully and then provide the final
answer in the last line, using the format: "Final Answer: answer in the last line, using the format: "Final Answer:
<category>". <category>".

(. J/ | J

(c) LLM’s Response (CiteSeer, GPT-40):
p

To determine the main category that most of the papers belong to, let's analyze the content of each paper and try to
classify it according to the given 6 categories:

Paper 1: Extracting Query Modifications from Nonlinear SVMs. The focus is on query modifications and using support
vector machines (SVMs) to improve precision and recall in search. SVMs are a common tool in machine learning, and
the paper discusses dimensionality reduction and feature space, which fit within the machine learning domain. It also
talks about query modifications which slightly implies information retrieval (IR). Paper 2: Context and Page Analysis
for Improved Web Search. Discusses the development of a metasearch engine to improve web search efficiency and
precision by analyzing query contexts. The main focus is on handling web search limitations which aligns with
information retrieval (IR). Paper 3: ... Paper 4... Paper 5: ... (details omitted for paper 3,4, and 5)

Analyzing all papers, while machine learning techniques are frequently used, the persistent theme across most papers
revolves around improving search engines, query modifications, and personalized search, which are strongly
indicative of the "information retrieval (IR)" category.

Final Answer: information retrieval (IR)

\ J

Figure 4: The prompt template of bundle query (a), an example of the prompt on the CiteSeer dataset
(b), and an example of the response of GPT-4o to the query (c).

yield better accuracy. As one bundle corresponds to one query of the LLM, increasing the number
of bundles indicates additional feedback from the LLM, leading to additional supervision signals
that better cover the graph topology and bring robustness from redundancy. Nevertheless, additional
queries incur additional computation resources. Balancing performance and cost from querying
LLMs, we set the number of bundles ng to 100 in the experiments.

4.5 Further Analysis

Bundle Query v.s. Individual Query. We then show that the LLM can better handle bundle queries
than individual queries. Specifically, we provide the LLM’s classification accuracies given individual
queries (marked as 1.Q.) and bundle queries (marked as B.Q.) in Figure 3 (Right). From the figure,
we can see that predicting the main category of the text bundles is generally easier than classifying
individual text items, and in some datasets (e.g., CiteSeer, Cornell), the improvement is fairly large.
We also show the overall prediction accuracies of our method, and we can see a general connection
between the improvement of bundle queries and our method (compared to individual queries). This
shows that the proposed text bundling method increases the reliability and robustness of supervision
signals from LLMs and thereby improves the overall performance.

Prompt Examples and the LLM’s Response. We also provide the prompt template, an example of
the prompt, and the LLM’s response in Figure 4. In the prompt, we provide information about the
nodes and the graphs. We then ask the LLM to find the main category that most of the papers in
the text bundle belong to. For the LLM’s response, we can see that although machine learning is a
frequent topic of research among the papers in the bundle, the LLM discovers a "persistent theme
across most papers" to be strongly related to information retrieval. Without text bundling, the LLM
may hesitate between machine learning and information retrieval when classifying Paper 1, as its
analysis suggests that this paper "fits within the machine learning domain" and also "slightly implies
information retrieval". Such ambiguity would cause noise in classification results and be harmful for
potential subsequent operations (e.g., clustering, supervision of GNNs). By comparison, our method



allows the LLM to obtain more information, finding a persistent theme that represents most text items
in the bundle, improving the reliability of LLM’s response.

5 Discussions

Decision of Graph Homophily. In Section 3.2, we provide two approaches for bundle sampling:
topological proximity and semantic proximity, depending on the graph homophily. In practice, when
homophily is not obvious from the graph’s metadata, it is non-trivial to determine which sampling
technique to adopt. Therefore, we introduce an approach initially proposed by Wang et al. [77] that
estimates the graph homophily by querying the LLM with text pairs of adjacent nodes. The LLM is
asked to determine whether they belong to the same category. The ratio of positive response (i.e.,
"Yes") can be used as an indicator of graph homophily. In their paper, Wang et al. [77] show that it is
possible to effectively approximate the homophily degree with limited queries of less powerful LLMs
(e.g., GPT-40-mini). Other potentially useful techniques include computing the cosine similarity of
feature pairs from adjacent nodes instead of querying LLMs.

Potential Extension to Non-Text-Attributed Graphs. The proposed framework can be extended
to a more general setting where text attributes are not provided. Non-text-attributed graphs can be
converted to text-attributed graphs, which have been explored by Wang et al. [80]. By augmenting
non-text-attributed graphs with textual descriptions, we can apply the proposed DENSE framework
for zero-shot inference on these graphs.

Bundle Refinement Configurations. In Section 3.5 and Section 4.1, we mention that the bundle
refinement is performed at the 300th and 400th epochs, evicting one item each time. We make a
further explanation of these heuristic values: we want to refine the bundle multiple times, and as
the optimal bundle size is 5 (as empirically demonstrated in Section 4.4), evicting one item seems a
reasonable choice (evicting more than one item will significantly reduce the richness of information
in the bundle). As for the time of refinement, we observe that the model generally converges at the
300th epoch, and after refinement, it usually converges within another 100 epochs.

Limitations. This paper focuses on text-attributed graphs, where each node is associated with a
textual attribute. For graphs where node attributes are hard for LLMs to understand, the proposed
text bundling method is not directly applicable. For graph structures on which GNNs are inherently
weak or inferior to alternatives, this method may not be directly applicable.

Broader Impacts. As for broader impacts, the proposed text bundling method improves the zero-
shot inference ability of LLMs on text-attributed graphs, facilitating downstream applications in
many fields, including social network analysis, recommendation systems, web page analysis, and
knowledge graph understanding.

6 Conclusion

This paper investigates the important problem of zero-shot inference on text-attributed graphs with
the help of LLMs. While previous efforts suffer from limited information on graph structure and
unreliable responses, this paper proposes a novel method named dynamic text bundling supervision
that queries the LLM with text bundles to obtain bundle-level labels. Subsequently, the bundle labels
are used to supervise a graph neural network, which is then used for classification. We provide
theoretical analysis of our method, showing its tolerance of outlier nodes in the bundle and the
convergence properties of optimization. We further refine the nodes in the bundle to exclude noisy
items. Extensive experiments are performed on ten datasets across different domains against a number
of competing baselines, and the results confirm the effectiveness of the proposed method.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. For details, please refer to Section 1.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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and how they scale with dataset size.
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address problems of privacy and fairness.
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In Appendix A, B and C.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 4.1 and Appendix G.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: In Appendix G and the code url.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In Section 4.1 and Appendix G.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Repeated experiments over all baselines are costly.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Section 4.1 and Appendix G.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In Section 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In Section 4.1 and Appendix G.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: The LLM is used in our algorithm.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 3.1

Proof. For a bundle B3, we denote its (predicted) bundle-level class probability distribution as
p 2 p(B) = (p1,p2, ..., pc), with corresponding logits as z. Each node in the bundle corresponds

to a predicted logit vector z; = (2;.1, i 2, - - -, 2i,c), & € B. The bundle-level logits can be written as:
1
o= Gromns (Bz21,|B|zzi,2,...gzzi,c)
i€B ien

For an outlier node v, in the bundle, it has the (predicted) class probability distribution p, =
(1, D5, - .., D). We also denote their corresponding logits as z, = (21, 25, . .., 2¢;), Where p, =

softmax(z,). The most likely class for v, is m’ = argmax;{p;}_,. The bundle label predicted
by the LLM 4 has its one-hot form of y = (y1,¥2, - .., yc). The bundle supervision loss £ g and
individual supervision loss £; g can be written as:

c

Leg = —Zyi logp; = Zyz log (Z eXp ZZ ) Zylzz + IOgZeXp Zz

i=1 j=1 eXP(Zz

_ exp(2;)
SR VRIS

7j=1 eXp( )
__ 1 Z yiz, — log Z exp(z;
|B] \ 4 ! ;
i=1 j=1
We can then calculate the derivatives as follows. For £gg, we have:
c c
8£BE 6£BE 82’1 1 0
= . = e 2 + 1 i
92 0z 04 1Bl 0% ; izi +log ) exp(zi)

_ A (o elz) 1

Similarly, we can calculate the derivative of L as follows:

(10)

C C
OLig 1 0 / / L
e S 2| - E 2 41 E N = — () — ).
azé |B| azg ¢ y Z’L + Og - exp(zz) |B| (pz y )

For i = m’, we have:

6£BE_L( _ ) MJ_L(/ _ )
97 B P T m ) g T = ) Wme T )

m/’

Given the condition § # m and p;n, > pm, We have y,,» = 0, and
0LBE 1 1 1 1, OLrE

= — m’ — Ym’) = 57 Pm’ < — / ;= r — Ym’ ) =
ET: (P = Ymr) T AT (P — Ym) =
Obviously, p,,,» > 0, and therefore,

0< OLBE < 0Lk
6Z;rz’ 8Zm

As the probabilities p/,, is computed from the logits through softmax operations, we have z, =
log p}; 4+ Const., and therefore we have

0LBE < 0Lk

0< .
~ Ologpl,, — Ologp..,
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B Proof of Theorem 3.2

Proof. Like Appendix A, for a fixed bundle B, we denote its (predicted) bundle-level class probability
distribution as p(0) = py(B) = (p1(0),p2(0),...,pc(0)), with corresponding logits as z. More
specifically, we can rewrite the z and p as:

2(0) 2 (21(0),(0), ..., 200 <|B|z“ wzﬂ .;Zzi,c(m);

i€B i€B
i(0 .
pi(6) 2 M Vie{1,2,...,C).
Zj:l exp(zi(0))
Moreover, we also denote the one-hot form of bundle label ¢ predicted by the LLM as y =
(y1,92,...,yc). With this z2(0) and y as well as p(#), we then can rewrite the cross-entropy

loss function LBE(G) as:

EBE Z Yi IOg pl Z Yi 10g <Z:exp(’zl> Z yzzz +10g Z exp Zz

i 1eXp( (

after that, according to the chain rule of differentiation, we also can show

oL 9
VLipp(0) & af’f @) Z 5 (Pi(0) — )V (0) (11)
=1

where the final equality follows from Eq.(lO) in Appendlx A. As aresult, we have

IVLeE(0)|lo < 1pi(0) — yil * [IV2i(0)] 0o
\B\

= p’L — Yil * Vz; z )

JEB

C

JEB

1 2G
< <; @(pi(e) +yi)> G= 18]

where the first equality comes from Vz; () £ \Tls| > jen Vzj,i(0), the final inequality comes from

1pi(0) — | < |ps| + |ys] = pi(0) + i and the final equality from X | p;(0) 2 1and 3, y; 2 1.
Therefore, we verify the part i) in Theorem 3.2.

Next, we prove the part ii) in Theorem 3.2. At first, we show the second-order partial derivatives of
the cross-entropy loss function Lz g(6) with respect to € is also bounded. Similarly, from the result
of Eq.(11) and the chain rule of differentiation, we also can show that

C
V2Lpp(0) = ‘Tlg‘ D ((pi0) = y)V2i(0) + Vz(0)[Vpi(0)]7) , (12)
i=1

where the symbol [Vp;(#)]7 denotes the transport of the column gradient Vp; (6).

Subsequently, from the definition of p;(#) and the chain rule, we can show that

Opi( 9
Z@z] ) =p;(0) | Vz(0 ij )Vz;i(0) |, (13)

where the final equality follows from the results that ai Egg 2 pi(0) (1 —ps(0)) and gg JEZ; =
—pi(0)p;(8) when j # i.
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Merging Eq.(13) into Eq.(12), we have that
c
1
VLos(0) = g S 00) - 00+ 1 sz (Vo= 0r)

|B|Zzpl O SOOI

=1 5=1
As a result, we have
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where the symbol max (| M|) represents the maximum absolute value among the elements of matrix
M and the second inequality follows from max(|V?2;(6)|) < M and max (|V2(0)[Vz;(0)]7]) <
G?foranyi,j € {1,2,...,C}.

From the previously established boundedness of the second-order partial derivatives of Lpg(6), we
next show the smoothness of the cross-entropy loss function Lgg(6).

Firstly, if we suppose the dimension of the unknown parameter 6 is n4, we have that

IVLpE(01) — VLBE(02)]2
1
= V2Lprp(M01 4+ (1 = X)) (61 — 02) d)||2
A=0

1

< Vndl| V2Lpe(M1 + (1= X)) (61 — 62) dA[|
A=0

V2Lpe(M1 + (1 — A))dA
A=0

01 — 02]|2

2,00

where the first equality comes from the fundamental theorem of calculus, the first inequality from
|lz||2 < /m||Z|| Where m is the dimension of  and the final inequality comes from the definition
of (2, 00)-norm [22], i.e., for any matrix A € R™*", the (2, co)-norm of matrix A is defined as
[A]l2,00 = sup{||Az||o : 2 € R, [J[|2 = 1}.

From the definition of the norm || - ||2,00, We can show that

‘ 2,00

1
< [ Ve + (1= )] ax
A=0 '

1 2

V2Ler(M01 + (1 —X))dA
A=0

dng(M + G?)?
B>

where V2L 5 (A01 + (1 — X))[j ] is the j-th line of the Hessian matrix V2L (M1 + (1 — \)) and
the final inequality follows from the boundedness of the second-order partial derivatives of Lz (6).

1
. 2
_ /A:OjE?ll?}in} 192 L5\ + (1 — A ]| dA <
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As a result, we have

2nq(M + G?)

IVLBE(01) — VLER(0:)]|2 < B

01 — O2]|2.

C Proof of Theorem 3.3

Proof. Note that when the model parameter 6, can effectively fit the predicted bundle label 7,
namely, 7 € argmax;c1,. . oy {po, (B):}, we have Lz(0;) = 0 such that £L(6;) = Lpe(0:) +
Lr(0;) = Lpg and VL(0;) = VLpg(0;) when the iteration index ¢ is large. From the results of
Theorem 3.2, we know that, when the corresponding first-order and second-order partial derivatives
of our adopted GNN g are bounded, that s, | Vz; .(6)||sc < G and max(|V?z;c(0)|) < M where

2; ¢ 1s the ‘c’-th logit of the output vector z; £ (2i1,- -, 2i,c) provided by gy, the cross-entropy loss
function L (0) is (%JGQ)) -smooth. Therefore, we have that
Lpp(0ii1) < Lpp(0:) +(VLpE(0:),0i41 — 0r) + W(ATBTGQ)WHl — 043
= Lap0) |V Lap@0]3 + T D, — a0
14

= Lpr(t:) 77|VLBE(9t)§+7M(]\T[BJ|FG2)7’2|VLBE(9t)% "
= Lpp(0:) — (77 - WUQ) IVLBE(0:)]3,

where the first inequality follows from the (%ﬁ) -smoothness of the adopted cross-entropy

loss function £ (#) [60] and the three remaining equalities comes from 6,1 L9, — NV LR.

Finally, from Eq.(14), we have that

(77 - M4 G) )772) S IVLEEO)I3 < S (Lor:) ~ Lor(0ri1) = Lop(0))~LepOr).
t=1 t=1

|B|
As aresult, if n < %, we have that,
2321 IVLBe(0:)|5 < Lpp(01) — Lee(Or41)
< - 2 .
T (,’7 _ d(1\|4E;TG ),’72) T

ZiaIVLsE (01l
T

In other words, limp_, s, = 0. Furthermore, from the classic theory of cal-

culus, we know that, for a positive sequence {ai,...,an,...}, if lim, Z:Tla = 0, then
a, — 0 when n — oo. From this foundational result of calculus and the previous established

T 2
limitation limy-_,o, 2=1¥288EE — o we infer that limy o | VL5 (6711)]2 — O such that
HV‘C(QT—H)HZ = ||V£BE(9T+1)H2 — 0, when 1" — oo.
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D Overall Algorithm

We present the overall algorithm in Algorithm 1.

Algorithm 1 The overall algorithm of our method.

Require: A text-attributed graph G = (V, &, T), bundle size n g, and the number of bundles ng.

The set of epochs R where bundle refinement is performed. The total number of epochs for
training 7'

Ensure: The predicted category of each node in V.

1:

for:in1,2,...,ng do

2:  Sample a core node as v.;
3:  if graph G is a homophilic graph then
4: Sample (np — 1) nodes from NV} (v.) according to Eq. 1;
5: Construct the bundle using the core node v, and the (ng — 1) nodes sampled in the previous
step;
6: else
7: Sample n g nodes according to Eq. 2 to form the bundle;
8: endif
9:  Construct the prompt for each bundle using Eq. 3;
10:  Query the LLM to obtain the label for the bundle;
11: end for
12: forvin 1,2,...,7 do
13:  Calculate the entropy-based supervision using Eq. 5;
14:  Calculate the ranking-based supervision using Eq. 7;
15:  Calculate the final loss function using Eq. 8;
16:  Update the parameters in the graph neural network gy using gradient descent;
17:  if i € R then
18: Update all the bundles using Eq. 9;
19:  endif
20: end for
21: Predict the categories of each node in V using the graph neural network gg.
22: return The predicted category of each node in V.
Table 4: The statistics of the datasets.
Datasets Cora CiteSeer WikiCS History Children Sportsfit Cornell — Texas Wisc. Wash.
Number of Nodes 2708 3186 11701 41551 76875 173055 191 187 265 229
Number of Edges 10556 8450 431726 503180 2325044 3020134 292 310 510 394
Number of Classes 7 6 10 12 24 13 5 5 5 5

Homophily Ratio 0.809 0.764 0.678 0.662 0.464 0.900 0.115 0.067 0.152 0.149

E

Details about the Datasets

We provide more details about the datasets as follows:

Cora. The Cora dataset is introduced by McCallum et al. [54], consisting of computer science
research papers as nodes and their citation links as edges. Each paper is represented by its title
and abstract, and the nodes are labeled into 7 classes corresponding to different research topics.

CiteSeer. The CiteSeer dataset originates from the CiteSeer system described by Giles et al. [17].
Similar to Cora, this dataset is also a citation network, with nodes representing papers and edges
denoting citation relationships.

WikiCS. The WikiCS dataset is a graph of computer science Wikipedia articles proposed by
Mernyei and Fazekas [58]. Each node is represented by the text of Wikipedia articles, classified
into 10 subfields of computer science.

History, Children, and Sportsfit. These three datasets were constructed by Ni et al. [62] from
Amazon co-purchase data. Nodes represent products, edges represent frequent co-purchase
relationships, and text attributes contain titles or reviews. Each dataset uses a three-level product
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taxonomy for node labels. The History dataset contains history books as nodes with their co-
purchase edges across 12 categories. The Children dataset contains children’s books as nodes
connected by their co-purchase relationships as edges across 24 categories. The Sportsfit dataset
contains sports and fitness products as nodes with co-purchase edges across 13 categories.

Cornell, Texas, Wisconsin, and Washington. These datasets are collected by Craven et al.
[11], consisting of web pages from four universities. Nodes are web pages, edges are hyperlinks
between pages, and the node attributes are the corresponding page content. Each page is labeled
as one of seven types (e.g., student, faculty, department).

We also present the statistics of these datasets in Table 4.

F

Details about the Baseline Methods

We provide more details about the compared baseline methods as follows:

SBERT [68]. Sentence-BERT (SBERT) modifies pretrained BERT with Siamese and triplet
networks to obtain semantically meaningful sentence representations that can be compared with
similarity metrics. We use this as a text embedding method.

RoBERTa [49]. RoBERTa is an optimization of BERT removing the next-sentence prediction
objective, trains longer on more data with larger batches, and uses dynamic masking. It achieves
better results than BERT by carefully tuning hyperparameters and training recipes.

OpenATI’s Text-Embedding-3-Large [63]. OpenAl’s text-embedding-3-large is a text embed-
ding model that generates vectorized representations of texts °.

LLM2Vec [3]. LLM2Vec is an unsupervised solution converting decoder-only LLMs into
powerful text encoders with bidirectional attention, masked next-token prediction, and contrastive
learning.

GPT-3.5-turbo [1]. GPT-3.5-turbo is OpenAlI’s chat-optimized GPT-3.5 model. It offers a
cost-effective chat model in the GPT-3.5 series at a relatively low cost .

GPT-40[26]. GPT-40 is an auto-regressive multi-modal model that is cheaper than GPT-4 *. We
use this model for a fair comparison with Wang et al. [77].

DGI [73]. DGI is an unsupervised approach for learning node embeddings by maximizing
mutual information (MI) between local patch embeddings and a global summary of the graph
with GCN [33]. We use this as a graph unsupervised learning baseline.

GraphMAE [23]. GraphMAE is a masked auto-encoder that reconstructs masked node features
using a masking strategy and scaled cosine error loss. We use this as a graph unsupervised
learning baseline.

OFA [46]. OFA is a graph foundation model that describes the nodes and edges with natural
language, which is then processed by large language models to obtain graph embeddings.

GOFA [34]. GOFA integrates GNN layers into a frozen pre-trained LLM to combine semantic
and topological modeling abilities. The model is then pretrained on various graph-level tasks.

UniGLM [15]. UniGLM trains a unified graph language model across various text-attributed
graphs (TAGs) using a self-supervised contrastive learning objective with positive sampling and
a lazy contrastive module.

ZeroG [40]. ZeroG is a graph foundation model that encodes node attributes and class semantics
via prompts and a prompt-based subgraph sampling module.

GraphGPT [72]. GraphGPT is another graph foundation model that applies graph instruction
tuning to LLMs by grounding graph structures in text and uses dual-stage instruction tuning with
graph-text alignment.

LLAGA [6]. LLaGA is a graph foundation model that translates graph inputs into token embed-
dings through structure-aware translation and alignment tuning, preserving graph information in
tokens without modifying the base model.

2https://platform.openai.com/docs/models/text-embedding-3-large
3https://platform.openai.com/docs/models/gpt-3.5-turbo
*https://platform.openai.com/docs/models/gpt-40
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* LLM-BP [77]. LLM-BP is a zero-shot inference method on text-attributed graphs. It proposes
task-adaptive embeddings and adopts belief propagation with LLM-estimated parameters.

Table 5: The training time on various datasets.

Datasets Cora  CiteSeer WikiCS History Children Sportsfit Cornell — Texas Wisc. Wash.
Training Time (s) 11 14 47 59 155 258 20 16 24 20

G Additional Implementation Details

We perform experiments using various datasets. For dataset split, we follow previous works [9, 77]
and their official implementations > ©. For the raw text data, we also use the data sources from existing
works [11, 83, 9, 77] and the version from a Hugging Face repository ’. For the text encoder fg, we
use the task-adaptive embedding proposed in [77]. For the GNN classifier gg, we use GCN [33] for
Cora, CiteSeer, WikiCS, History, Children, and Sportsfit. The GCN is implemented with two layers
of convolutions with jumping knowledge [82] by default. We use GloGNN [39] for the Cornell,
Texas, Wisconsin, and Washington datasets. The hyperparameters of GloGNN follow its official
implementation ®. For optimization, we use the Adam optimizer [32] with a learning rate of 0.001,
and optimize for 500 epochs by default. For bundles, the bundle size is set to 5, and the number of
bundles is set to 100. For hardware, we use an NVIDIA RTX 3090 GPU with 24GB of memory. As
the time for querying GPTs from online sources depends on network conditions, we only measure
the time for training GNNs in Table 5.

Table 6: The prompt parameters of different datasets.

Datasets <node_description> <graph_description> <node_refer_name_ploral> <node_refer_name_singular>

Cora opening text of machine learning citation network papers Paper
papers
Citeseer descrlpllop lororenaiiextol citation network papers Paper
scientific publications

WikiCS entry and content of wikipedia knowledge graph entries Entry

History description or title of the book e-commerce network books Book

Children description or title of the child e-commerce network books Book

literature

Sportsfit the title of a good in sports & fitness e-commerce network products Product

Cornell webpage text university webpage network webpages Webpage
Texas webpage text university webpage network webpages Webpage

Wisconsin webpage text university webpage network webpages Webpage

Washingt webpage text university webpage network webpages Webpage

H Prompt Details

We also provide additional details about the prompt. Specifically, given the prompt template in Figure
4, we fill the prompt parameters using the texts in Table 6 together with the number of classes in
Table 4 and specific classes attached to each dataset to form the final prompts.

>https://github.com/CurryTang/TSGFM
®https://github.com/Graph-COM/LLM_BP
"https://huggingface.co/datasets/Graph-COM/Text-Attributed-Graphs
8https://github.com/RecklessRonan/GloGNN
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