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ABSTRACT

In the context of MDPs with high-dimensional states, reinforcement learning can
achieve better results when using a compressed, low-dimensional representation
of the original input space. A variety of learning objectives have therefore been
used to learn useful representations. However, these representations usually lack
interpretability of the different features. We propose a representation learning
algorithm that is able to disentangle latent features into a controllable and an
uncontrollable part. The resulting representations are easily interpretable and can
be used for learning and planning efficiently by leveraging the specific properties of
the two parts. To highlight the benefits of the approach, the disentangling properties
of the algorithm are illustrated in three different environments.

1 INTRODUCTION

Learning from high-dimensional data remains a challenging task. Particularly for reinforcement
learning (RL), the complexity and high dimensionality of the Markov Decision Process (MDP) state
often leads to complex or intractable solutions. A direct application of RL on high-dimensional input
spaces therefore typically yields instabilities and poor performance. In order to still facilitate learning
from high-dimensional input data, an encoder architecture can be used to compress the inputs into a
lower-dimensional latent representation. To this extent, a plethora of work has successfully focused
on discovering low-dimensional encoded representations that accommodate the underlying features
for the task at hand (Jonschkowski & Brock, 2015; Jaderberg et al., 2017; Francois-Lavet et al., 2019;
Yar, 2021; Lee et al., 2020; Schwarzer et al., 2021; Kostrikov et al., 2021; Laskin et al., 2020b;a).

The resulting low-dimensional representations however tend to seldom contain specific disentangled
features, which leads to disorganized latent information. This means that the latent states can represent
the information from the state in any arbitrary way, leading to non-optimal interpretability. In line
with structuring a latent representation, Francois-Lavet et al. (2019) have shown notions and use
of interpretability in MDP representations. When expanding this notion of interpretability to be
compatible with RL, it has been argued that the agent’s state should be an important element of a latent
representation, since it generally represents what is controllable by the policy. In this light, Thomas
et al. (2017) have introduced the concept on isolating and disentangling controllable features in a
low-dimensional maze environment, by means of a selectivity loss. Furthermore, Kipf et al. (2020)
took an object-centric approach to isolate distinct controllable objects. Controllable features however
only represent a fragment of an environment, where in many cases the uncontrollable features are
of equal importance. For example, in the context of a distribution of mazes, for the prediction of
the next controllable (agent) state following an action, the information about the wall structure is
crucial (See Fig. 1). A representation would therefore benefit from incorporating controllable ánd
uncontrollable features, preferably in a disentangled, interpretable arrangement.

In an MDP setting, we show that a latent representation can be disentangled into two parts, where
one part is designed to contain controllable features and the other part is designed to contain
uncontrollable features. This allows for a precise and visible separation of the latent features,
improving interpretability, representation quality and possibly moving towards a basis for building
causal relationships between an agent and its environment. The learning algorithm consists of both
an action-conditioned and a state-only forward predictor, along with an entropy and an adversarial
loss, which reliably isolate and disentangle the controllable versus the non-controllable features.
Furthermore, we show that learning and planning can achieve strong performance when it is applied
on the human-interpretable disentangled latent representation.
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Figure 1: Visualization in a maze environment of (a) four random pixel states and (b) the disentangle-
ment of the controllable latent zc ∈ R2 on the horizontal axes, and the uncontrollable latent zu ∈ R1

on the vertical axis. The representation is trained on high-dimensional pixel tuples (st, at, rt, st+1),
sampled from a replay buffer B, gathered from random actions taken in the four maze environments
shown in (a). All possible states are encoded (zt = f(st; θenc) and plotted in (b) with the transition
prediction for each possible action, revealing a clear disentanglement between the controllable agent’s
position and the uncontrollable wall architecture.

2 PRELIMINARIES

We consider an agent acting within an environment, where the environment is modeled as a discrete
Markov Decision Process (MDP) defined as a tuple (S,A, T , R, γ). Here, S is the state space, A
is the action space, T : S × A → S is the environment’s transition function, R : S × A → R is
the environment’s reward mapping and γ is the discount factor. We consider the setting where we
have access to a replay buffer (B) of visited states st ∈ S that were followed by actions at ∈ A
and resulted in the rewards rt ∈ R and the next states st+1. One entry in B contains a tuple of past
experiences (st, at, rt, st+1). The agent’s goal is to learn a policy π : S → A that maximizes the
expectation of the discounted return V π(s) = Eτ [

∑T
t=0 γ

tR(st, at) | st = s], where τ is a trajectory
following the policy π.

Furthermore, we examine the setting where a high-dimensional state (st ∈ Rv) is compressed into a
lower-dimensional latent state zt ∈ Z = Rw where Z represents the latent space with w typically
smaller than v. This is done by means of a neural network encoding f : S → Z .

3 ALGORITHM

We aim for an interpretable and disentangled representation of the controllable and uncontrollable
latent features. We define controllable features as the characteristics of the MDP that are directly
affected by any action a ∈ A, such as the position of the agent. The uncontrollable features are
those attributes that are not or only marginally affected by the actions. We show that the proposed
disentanglement is possible within a single encoder by designing losses and gradient propagation
through two separate parts of the latent representation. Additionally, we aim to enforce structure in
our representation by means of forward prediction in latent space.

We consider environments where the high-dimensional states are pixel inputs. These pixel inputs
are subsequently encoded into a latent state zt = (zc, zu) ∈ Z ∈ Rnc + Rnu , with the superscripts
c and u representing the controllable and uncontrollable features, and the superscripts nc and nu

2



Under review as a conference paper at ICLR 2023

Figure 2: Overview of the disentangling architecture, with dashed lines representing gradient propa-
gation and green rectangles representing parameterized prediction functions.

representing their respective dimensions. The compression is done by means of a convolutional
encoder parameterized by θenc according to:

zt = (zct , z
u
t ) = f(st; θenc). (1)

An overview of the proposed algorithm is illustrated in Fig. 2 and the details are provided hereafter.
In this section, all losses and transitions are given under the assumption of a continuous abstract
representation and a deterministic transition function. The algorithm could be adapted by replacing the
losses related to the internal transitions with generative approaches (in the context of continuous and
stochastic transitions) or a log-likelihood loss (in the context of stochastic but discrete representations).

3.1 CONTROLLABLE FEATURES

To isolate controllable features in the latent representation, zct is used to make an action-conditioned
forward prediction in latent space. In the context of a continuous latent space and deterministic
transitions, zc is updated using a mean squared error (MSE) forward prediction loss Lc =

∣∣ẑct+1 −
zct+1

∣∣2, where ẑct+1 is the action-conditioned forward prediction of the parameterized function
Tc(z, a; θc) : Z ×A → Z:

ẑct+1 = Tc(zt, at; θc) + zct (2)

and the prediction target zct+1 is part of the encoder output f(st+1; θenc). Note that the full latent
state zt is necessary in order to predict ẑct+1 (e.g. the uncontrollable features could represent a wall or
other static structure that is still necessary for the prediction of the controllable features). Furthermore,
the uncontrollable latent zu is accompanied by a stop gradient to ensure that there are no controllable
features present in zu. When minimizing Lc, both θenc and θc are updated, which allows shaping the
representation zc as well as learning the internal dynamics.

3.2 UNCONTROLLABLE FEATURES

To express uncontrollable features in the latent space, zut is used to make a state-only (not conditioned
on the action at) forward prediction in latent space. This enforces uncontrollable features within
the uncontrollable latent space zu, since features that are action-dependent cannot be accurately
predicted with the preceding state only. Following a prediction, zu is then updated using a MSE
forward prediction loss Lu =

∣∣ẑut+1 − zut+1

∣∣2, with ẑut+1 defined as:
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ẑut+1 = Tu(z
u
t ; θu) + zut (3)

and Tu(z; θu) : Z → Z representing the parameterized prediction function. The target zut+1 is part of
the output of the encoder f(st+1; θenc). When minimizing Lu, both θenc and θu are updated. In this
way the loss Lu drives the latent representation zu, which is conditioned on θenc, to only represent
parts of the input state st that are not conditioned on the action at.

3.3 AVOIDING PREDICTIVE REPRESENTATION COLLAPSE

Minimizing a forward prediction loss in latent space Z is prone to collapse (Francois-Lavet et al.,
2019; Gelada et al., 2019), due to the convergence of Lc and Lu when f(st; θenc) is a constant
∀ st ∈ S . To avoid representation collapse when using forward predictors, an entropy loss is used to
enforce sufficient diversity in the latent representation:

LH1
= exp

(
− Cd

∥∥zt − z̄t
∥∥
2

)
(4)

where Cd represents a constant hyperparameter and z̄t is a ‘negative’ batch of latent states zt, which
is obtained by shifting each position of latent states in the batch by a random number between 0
and the batch size. In the random maze environment, an additional entropy loss is added to further
diversify the controllable representation:

LH2
= exp

(
− Cd

∥∥zct − z̄ct
∥∥
2

)
(5)

where zct is obtained from a single trajectory. The resulting entropy loss LH thus consists of
LH1

+ LH2
. The total loss propagating through the encoder is now:

Lenc = Lc + Lu + LH (6)

3.4 GUIDING FEATURE DISENTANGLEMENT WITH ADVERSARIAL LOSS

When using a controllable latent space zc ∈ Rx, x ∈ N, where x > g, with g representing the number
of dimensions needed to portray the controllable features, some information about the uncontrollable
features in the controllable latent representation might be present (see Appendix D.2). This is due
to the non-enforcing nature of Lc, since the uncontrollable features are equally predictable with or
without the action. To ensure that no information about the uncontrollable features is kept in the
controllable latent representation, an adversarial component is added to the architecture in Fig. 2.
This is done by updating the encoder with an adversarial loss Ladv and reversing the gradient (Ganin
et al., 2016). The adversarial loss is defined as

Ladv =
∣∣ẑuadv

t − zut
∣∣2 (7)

with

ẑuadv
t = Tadv(z

c
t ; θadv), (8)

where ẑuadv
t is the uncontrollable prediction of the parameterized function Tadv(z; θadv) : Z → Z

and zut is the target.

Intuitively, since the parameters of Tadv(z; θadv) are being updated with Ladv and the parameters of
f(s; θenc) are being updated with −Ladv, the prediction function can be seen as the discriminator
and the encoder can be seen as the generator (Goodfellow et al., 2014). The discriminator tries to
give an accurate prediction of the uncontrollable latent zu given the controllable latent zc, while
the generator tries to counteract the discriminator by removing any uncontrollable features from the
controllable representation. When using an adversarial loss, the total loss propagating through the
encoder consists of:
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Lenc = Lc + Lu + LH − Ladv. (9)

Where the minus term in −Ladv represents a gradient reversal to the encoder. Note that the losses are
not scaled, as this did not prove to be necessary for the experiments conducted.

3.5 DOWNSTREAM TASKS

By disentangling a latent representation in a controllable and an uncontrollable part, one obtains
human-interpretable features. This is a key aspect, however it is also important to test whether a
notion of human interpretability equals good performance.

This is examined by training an RL agent on the learned and subsequently frozen latent representation;
the action at is chosen following an ϵ-greedy policy, where a random action is taken with a probability
ϵ, and with (1− ϵ) probability the policy π(s) = argmax

a∈A
Q(z, a; θ) is evaluated, where Q(z, a; θ)

is the Q-network trained by Deep Double Q-Learning (DDQN) (van Hasselt et al., 2016). The
Q-network is trained with respect to the target Yt:

Yt = rt + γQ(zt+1, argmax
a∈A

Q(zt+1, a; θ); θ
−) . (10)

With γ representing the environment’s discount factor and θ− the target Q-network’s parameters.
The target Q-network’s parameters are updated as an exponential moving average of the original
parameters θ according to: θ−k+1 = (1− τ)θ−k + τθk, where subscript k represents a training iteration
and τ represents a hyperparameter controlling the speed of the parameter update. The resulting
DDQN loss is defined as LQ =

∣∣Yt −Q(zt, a; θ)
∣∣2.

4 EXPERIMENTS

In this section, we showcase the disentanglement of controllable and uncontrollable features on three
different environments: (i) a quadruple maze environment, (ii) the catcher environment and (iii) a
random maze environment. The first environment is relatively simple and is used to showcase the
algorithm’s ability to disentangle low-dimensional latent representations. The catcher environment
examines a setting where the uncontrollable features are not static, and the random maze environment
is used to showcase disentanglement in a more complex distribution of environments, followed by
the application of downstream tasks with learning and planning. The base of the encoder is derived
from Tassa et al. (2018) and consists of two convolutional layers, followed by a fully connected
layer for low-dimensional latent representations or an additional CNN for a higher-dimensional
latent representation such as a feature map. For the full network architectures, we refer the reader
to Appendix C. In all environments, the encoder f(s; θenc) is trained from a buffer B filled with
transition tuples (st, at, rt, st+1) using randomly sampled actions at ∈ A.

4.1 MAZE ENVIRONMENT

The maze environment consists of an agent and a selection of four distinct, handpicked wall ar-
chitectures. The environment’s state is provided as pixel observations st ∈ R1×48×48, where an
action moves the agent by 6 pixels in each direction (up, down, left, right) except if this direction is
obstructed by a wall. There is no reward (rt = 0 ∀ (st, at) ∈ (S,A)) and there is no terminal state.

We take a two-dimensional controllable representation (zc ∈ R2) and a one-dimensional uncon-
trollable representation (zu ∈ R1). The remaining hyperparameters and details can be found in
Appendix A. The experiments are conducted using a buffer B filled with random trajectories from
the four different basic maze architectures. The encoder’s parameters are updated using Lenc in
Equation 6 with LH = LH1

. After 50k training iterations, a clear disentanglement between the
controllable (zc) and uncontrollable (zu) latent representation can be seen in Fig. 1. One can observe
that the encoder is updated so that the one-dimensional latent representation zu learns different
values that define the type of wall architecture. A progression to this representation is provided in
Appendix D.1.
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Figure 3: Visualization of the latent feature disentanglement in the catcher environment after 200k
training iterations, with zt = f(st; θenc) ∈ R2 + R6×6. In (a) and (b), the left column shows
zct , the middle column is zut and the right column is the pixel state st. The dashed lines separate
observations where the ball position or the paddle position are kept fixed for illustration purposes. zc
clearly tracks the agent position while zu tracks the falling ball. In b), note that even when having a
two-dimensional controllable state (only 1 is needed, see Appendix A), the adversarial loss makes
sure that distinct ball positions have a negligible effect on zc, even when the high-level features of
the agent and the ball might be hard to distinguish.

4.2 CATCHER ENVIRONMENT

As opposed to the maze environment, the catcher environment has uncontrollable features that
are non-stationary. The ball is dropped in a random place at the top of the environment and is
falling irrespective of the actions, while the paddle position is directly modified by the actions. The
environment’s states are defined as pixel observations st of size R1×51×51. At each time step, the
agent moves left or right by 3 pixels. Since we are only doing unsupervised learning, we consider the
context where there is no reward (rt = 0 ∀ (st, at) ∈ (S,A)) and an episode ends whenever the
ball reaches the paddle or the bottom of the frame.

We take zc ∈ R2 and zu ∈ R6×6. To test disentanglement, zc is of a higher dimension than needed
since the paddle (agent) only moves on the x-axis and would therefore require only one feature
(see Appendix D.2 for the simpler setting with zc ∈ R1). To show disentanglement, the redundant
dimension of zc should not or negligibly have information about zu. The encoder’s parameters
are updated using Lenc in Equation 9 with LH = LH1

. After 200k iterations, a selection of state
observations st and their encoding into the latent representation z = (zc, zu) can be seen in Fig. 3.

4.3 RANDOM MAZE ENVIRONMENT

The random maze environment is similar to the maze environment from Section 4.1, but consists of a
large distribution of procedurally generated mazes with complex wall structures. The environment’s
state is provided as pixel observations st ∈ R1×48×48, where an action moves the agent by 6
pixels in each direction. We consider zc ∈ R2 and zu ∈ R6×6. This environment tests the
generalization properties of a disentangled latent representation, as there are over 25 million possible
maze architectures, corresponding to a probability of less then 4 ·10−8 to sample the same maze twice.
Note because zc is 2-dimensional, results with and without adversarial loss are in practice extremely
close. After 50k training iterations, the latent representation z = (zc, zu) shows an interpretable
disentanglement between the controllable and the uncontrollable features (See Fig. 4). Instead of
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Figure 4: The disentangled latent state representations of four different random maze observations.
The left column represents the controllable latent representation zct ∈ R2, with the current state as
blue dots, the remaining states in the same maze as red dots and the estimated latent transitions for
each action as colored lines. The middle column represents the uncontrollable latent representation
zut ∈ R6×6 and the right column is the original pixel state st ∈ R1×48×48.

using a scalar to ‘describe’ the uncontrollable features zu (see Fig. 1), using a feature map for zu
allows training an encoding that provides an interpretable shape of the actual wall architecture.

Using an Inverse Predictor An inverse prediction loss is often referred to when speaking of
controllable features (Jonschkowski & Brock, 2015; Pathak et al., 2017; Badia et al., 2020). A
single-step inverse prediction loss is defined as:

ât = I(zct , z
c
t+1, z

u
t ; θinv). (11)

Here, ât is the predicted action and I(zct , z
c
t+1, z

u
t ; θinv) : Z → A is the inverse prediction network.

To see whether an inverse predictor can generate structured, controllable representations in the random
maze environment, we replace the action-conditioned forward predictor with an inverse predictor, so
that zc is no longer updated with Lc but with Linv (See Appendix A.3 for details on Linv).

The resulting representation can be seen in Fig. 6a. It seems that using Linv, causes an absence of
interpretable structure in the controllable latent representation zct . Furthermore, there is a less precise
disentanglement between the controllable and uncontrollable features, as differences can be seen in
zct when encoding equal agent positions as pixel states st. In addition, an inverse predictor does not
allow forward prediction in latent space, which can be used for planning as shown hereafter.

Reinforcement Learning In order to verify whether a human-interpretable disentangled latent
encoding is informative enough for downstream tasks, we formalize the random maze environment
into an MDP with rewards. The agent acquires a reward rt of -0.1 at every time step, except when it
finds the key in the top right part in which case it acquires a positive reward of 1. The episode ends
whenever the positive reward is obtained or a total of 50 environment steps have been taken. At an
episode end, a new random wall structure is generated, and the agent starts over in the bottom left
section of the maze (See Fig. 5).

Training is done for 500k iterations with the hyperparameters found in Appendix B. To see whether
an interpretable disentangled latent representation is useful for RL, we compare different scenarios
of (pre)training. The resulting performances are compared in Fig. 5. We find that a disentangled
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Figure 5: Performance of different (pre)trained representations on the random maze environment,
measured as a mean (full line) and standard error (shaded area) over 5 seeds. The ‘Interpretable’
setting uses an encoder pre-trained with 50k random iterations to acquire a representation as in Fig. 4,
after which the encoder is frozen and a Q-network is trained on top with DDQN for 500k iterations.
The ‘Interpretable + Planning’ curve is similar to the ‘Interpretable’ setting, but uses a planning
algorithm with a depth of 3 instead of an ϵ-greedy policy. The ‘DDQN’ setting uses an encoder
trained end-to-end with DDQN for 500k iterations and the ‘Inverse Prediction’ setting is equal to the
’Interpretable’ setting but has an encoder pre-trained with Linv instead of an Lc for the controllable
latent features zc. On the right, a subset of random mazes used in the reward evaluation is shown.

structured representation is suitable for downstream tasks, as it achieves comparable performance
to training an encoder end-to-end with DDQN for 500k iterations. Although their performance is
similar, Fig. 6b shows that an encoder trained with DDQN often loses any form of interpretability.
Moreover, we show in Fig. 5 that an attempt to isolate controllable features with an inverse prediction
loss leads to poor downstream performance in the random maze environment.

Planning As seen in Fig. 4, after pre-training with the unsupervised losses, an interpretable disentan-
gled representation with the corresponding agent transitions is obtained. Due to this disentanglement
of the controllable and uncontrollable features, we can for instance employ prior knowledge that the
uncontrollable features are static, and run a planning algorithm in the controllable latent space only.
The planning algorithm used is derived from Oh et al. (2017), and is used to successfully plan only in
the controllable subset of the latent representation zc, while using the same input for zu regardless
of planning depth. More details on the planning algorithm can be found in Appendix A.2. It can be
observed that even when planning with a relatively small depth of 3, we achieve better performance
than the pre-trained representation with an ϵ-greedy policy and than the pure DDQN-updated encoder.

5 RELATED WORK

Many works have focused on converting high-dimensional image inputs to a compact, abstract
representation to improve generalization and performance. Learning this representation can make
use of auxiliary tasks in addition to the pure RL objectives (Jaderberg et al., 2017). One way to
ensure a meaningful latent space is to implement architectures that require a pixel reconstruction
loss such as a variational (Kingma & Welling, 2014; Higgins et al., 2017) or a deterministic (Yar,
2021) autoencoder. Others combined basic pixel reconstruction with latent planning (Hafner et al.,
2019; 2021) or prediction (Francois-Lavet et al., 2019; Gelada et al., 2019). Although reconstruction
losses prevent latent collapse and ensure a rich latent space, it also facilitates the reconstruction of
task-irrelevant noise, thus possibly keeping irrelevant features in the latent space.

More closely related to our work is the work by Thomas et al. (2017), which connects individual latent
features to independently controllable states in a maze using a reconstruction loss and a selectivity
loss. The work by Francois-Lavet et al. (2019) visualizes the representation of an agent and its
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(a) Lc = Linv
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(b) Lenc = LQ

Figure 6: Visualization of the latent representation when substituting the action-conditioned forward-
prediction loss Lc for an inverse-prediction loss Linv for the 50k iterations of pre-training (a) and
when end-to-end updating the encoder with only the Q-loss LQ from DDQN for 500k iterations
(b). In both figures, the left column represent the controllable representation zc, the middle column
represents the uncontrollable representation zu and the right column represents the original pixel
state s. Evidently, the controllable representation in (a) lacks disentanglement and interpretability.
Furthermore, the representation in (b) seems to have very little structure at all.

transitions in a maze environment, but does not disentangle the agent state in its controllable and
uncontrollable parts, which limits the interpretability analysis and does not allow simplifications
during planning. The work by Kipf et al. (2020) uses an object-oriented approach to isolate different
controllable features, using graph neural networks (GNN’s) and a contrastive forward prediction loss.
A deeper study of predictive losses by Rakelly et al. (2021) shows the limitations and benefits of
different predictive losses in control-dominant environments, albeit in a stochastic mutual information
(MI) setting. Slightly related are also the works by Pathak et al. (2017); Badia et al. (2020), who try
to focus on the controllable features of an environment with inverse-prediction losses and use these
features to guide exploratory behaviour. Lastly, sharing similarity in terms of the separation of the
latent representation, Fu et al. (2021) use a reconstruction-based adversarial architecture that divides
their latent representation into reward relevant and irrelevant features.

6 CONCLUSION AND DISCUSSION

We have developed an algorithm that disentangles controllable and uncontrollable features in a
single encoder architecture, while showing the potential use of this for downstream learning and
planning. Disentanglement of controllable and uncontrollable features in the latent representation of
high-dimensional MDPs can be achieved by propagating an action-conditioned forward prediction
loss and a state-only forward prediction loss through distinct sections of the latent representation.
Additionally, an entropy loss and an optional adversarial loss were used to respectively avoid collapse
and further disentangle the latent representation. We have showed that these kinds of representations
are human-interpretable and are able to work well with reinforcement learning. Furthermore, we
showed that an action-conditioned forward predictor can be preferred as compared to an inverse
predictor in terms of isolating controllable features in the representation. Additionally, by employing
forward prediction in latent space, we were able to successfully plan in the controllable representation
while leveraging the properties of the environment. In particular, we kept zu static regardless of
planning depth in the context of a distribution of randomly generated mazes.

Nevertheless, as environments become more complex, interpretability will be harder to enforce due
to the increasing number of latent dimensions needed. Specific benefits can also be obtained with
a specific design of the encoder architecture. Future work is needed to disentangle an encoder’s
latent representation into minimal, structured features, and finding more algorithmic benefits of this
disentanglement in more complex environments. For example, in the context of safety, a disentangled
interpretable representation could allow incorporating latent state constraints in a planning algorithm.
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A ADDITIONAL MATERIAL

A.1 ABLATION OF THE ENTROPY SCALAR

Without using a pixel reconstruction loss, the entropy loss LH is crucial in avoiding the trivial solution
for any latent forward predictor (Francois-Lavet et al., 2019; Gelada et al., 2019). The entropy scalar
that regulates the LH however remains the most influential hyperparameter. When Cd is chosen too
low, the representation collapses or remains in a compact cluster. On the other hand, when Cd is
chosen too high, unnecessary shapes are formed to enforce large individual latent distances. Two
ablations of the entropy scalar Cd are shown in Fig. 7.
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Figure 7: Ablation of the hyperparameter Cd, where a higher value of Cd enforces less entropy in
the representation, while a lower value of Cd especially pushes the controllable features zc towards
shapes that ensure large distances between samples.

A.2 PLANNING

We use a planning algorithm derived from Oh et al. (2017); Francois-Lavet et al. (2019), where we
employ d-step planning as:

Q̂d((ẑct , z
u), a) =

{
P ((ẑct , z

u), a; θr) + Γ((ẑct , z
u), a; θγ) max

a′∈A∗
Q̂d−1((ẑct+1, z

u), a′), if d > 0

Q((ẑct , z
u), a; θ), if d = 0

(12)

QD
plan((ẑ

c
t , z

u), a) =

D∑
d=0

Q̂d((ẑct , z
u), a) (13)

Where P (st, a; θr) : Z ×A → R represents the reward predictor and Γ(s, a; θγ) : Z ×A → γ rep-
resents the discount value predictor. The action is chosen by taking the argmax of QD

plan((ẑ
c
t , z

u), a).
Note in the results from Section 4.3, we are only forward predicting in the controllable latent space
zc, and that zu remains a fixed value regardless of planning depth. This is possible by making use
of the prior knowledge of the maze environments together with a disentangled controllable and
uncontrollable latent representation.

A.3 INVERSE PREDICTION

A common single-step inverse prediction is defined as:

ât = f(st, st+1) (14)

where ât is the predicted action and f(st, st+1) represents an arbitrarily structured function. In the
random maze environment, we use a parameterized inverse predictor which predicts in latent space:
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ât = I(zct , z
c
t+1, z

u
t ; θinv) (15)

Where I(·; θinv) ∈ I : Z → A is a parameterized inverse prediction function. Note that we only
need an arbitrary timestep for zu, since we assume it is a static feature in our environment. Since we
have 4 actions, we use the 4-dimensional logit output ât to calculate the inverse prediction loss Linv

as:

S(âi) =
exp(âi)∑na

j=1 exp(âj)
, Linv = −

na∑
i=1

ai log(S(âi)) (16)

Here, na is the number of actions, S(âi) represents the softmax operator and ai is the actual action,
given as a 0 or 1 truth label. This is more commonly known as the Cross-Entropy loss computation.

B EXPERIMENT DETAILS

The Pytorch framework was used for all experiments, as well as the Adam optimizer (Kingma & Ba,
2015). We employ a batch size of 32 tuples (st, at, rt, st+1) for every update.

Simple Maze The replay buffer B is filled with 5k transitions from each of the four wall architec-
tures. The transitions are collected by the agent following a random policy. The learning rate for the
encoder is 5 · 10−5, for the action-conditioned forward predictor 1 · 10−3 and for the uncontrollable
forward predictor 5 · 10−5. The entropy scalar Cd is set to 15.

Catcher The replay buffer B is filled with 25k transitions. The transitions are collected by the
agent following a random policy. A new random maze is created after 50 time-steps or when the
reward is acquired. The learning rate for the encoder is 2 · 10−5, for the action-conditioned forward
predictor 4 · 10−5 and for the uncontrollable forward predictor 1 · 10−5. When using the adversarial
loss, we use a learning rate of 1 · 10−3 for the adversarial predictor. The entropy scalar Cd is set to 5.

Random Maze The replay buffer B is filled with 50k transitions, representing around 1000 maze
architectures. The transitions are collected by the agent following a random policy. The learning rates
used are equal to those of the catcher environment; for the encoder 2 ·10−5, for the action-conditioned
forward predictor 4 · 10−5 and for the uncontrollable forward predictor 1 · 10−5. After freezing the
encoder, we train the action-conditioned forward predictor for an additional 250k iterations on the
same 50k transitions in the buffer B. For updating the Q-network with DDQN, we use a learning rate
of 1 · 10−4, and a τ of 0.02. The entropy scalar Cd is set to 13. When using planning, we employ a
learning rate of 5 · 10−5 for the reward and discount prediction networks.

Entropy Loss For the catcher and random maze environment, given that zc is 1 or 2-dimensional,
and zu is a 36-dimensional feature map, we alleviate dimensional mismatch when calculating the
entropy loss in 4. This is done by taking a random subset of 15 out of 36 feature values in zu for
every batch.

C NETWORK ARCHITECTURE

We use the same base encoder for all experiments, made up of 2 convolutional layers of 32 channels
each, with a kernel size of 3 and stride 2, except for the final layer which has stride 1. Both
convolutional layers have a Rectified Linear Unit (ReLU) nonlinear activation.

In the quadruple maze environment, the output of the base convolutional encoder is flattened and used
as an input to a single linear layer with 3 outputs (zc + zu) and a hyperbolic tangent (tanh) activation
function.

In the catcher and random maze environments, we use the following encoder head to extract the
uncontrollable features; the base convolutional layers are followed by a single convolutional layer
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with 32 channels, a kernel size of 4 and a stride of 1. This layer is followed by a ReLU activation
function and an AveragePool layer with an output size of 6. For the controllable features, we flatten
the output of the base convolutional encoder and use this as an input to a linear layer with 200 neurons
and a tanh activation function. This layer is followed by another linear layer with nc neurons and a
tanh activation function.

The transition and prediction models all have the same structure, with linear layers of 32-128-128-
32-x neurons where x is the output dimension in line with the predicted feature’s dimension. The
linear layers all have tanh activation functions except for the final output. Only the action-conditioned
transition predictor of the random maze environment has larger layer sizes, with linear layers of
128-512-512-128-2, to account for slightly more complicated transitions. The DQN network used is
of size 128-512-512-128-4, with an output value corresponding to each possible action.

D ADDITIONAL FIGURES

D.1 QUADRUPLE MAZE

1 0 1 1 0 1
1

0

1

(a) 1k iterations

1 0 1 1 0 1
1

0

1

(b) 2k iterations

1 0 1 1 0 1
1

0

1

(c) 5k iterations

Figure 8: Progression of the separation of the controllable zc (x and y-axis) and uncontrollable zu

(z-axis) features in the maze environment.

D.2 CATCHER
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Figure 9: Comparison of training the representation for the catcher environment with either 1 or
2-dimensions for the controllable representation zc. When using more dimensions for zc than needed,
it can be observed that some information of the ball position can be present in zc.
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