Under review as a conference paper at ICLR 2026

STRUCTURE-AWARE BIPARTITE REPRESENTATIONS
FOR EFFICIENT MILP BRANCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient branching variable selection is pivotal to the performance of Branch-and-
Bound (B&B) algorithms in Mixed Integer Linear Programming (MILP). Despite
advances in traditional heuristics and graph-based learning methods, these ap-
proaches often fail to exploit the latent block structures inherent in many MILP
problems. To address this limitation, we propose a novel graph representation
that incorporates explicit block-structure annotations. By classifying variables and
constraints according to their roles in block decompositions and augmenting edges
with block identifiers, our method enables MILP solvers to better recognize local-
ized patterns and global couplings. Through extensive experiments on six diverse
MILP benchmarks, we demonstrate that our approach significantly improves upon
state-of-the-art graph neural network baselines. Specifically, our method reduces
search tree sizes by 2%—4% on standard instances and by 11%—13% on transfer
instances, while decreasing solver runtime by 6%—6.66% on standard instances
and by 5.5%—6% on transfer instances. Notably, these improvements are achieved
without compromising solution quality. Our work highlights the importance of
integrating structural priors into combinatorial optimization frameworks.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) is a fundamental optimization technique with extensive
applications in logistics, scheduling, network design, and resource allocation (Pochet & Wolsey,
20065 ‘Wu et al., 2013} |Sawik, 2011; Malandraki & Daskinl, [1992). The Branch-and-Bound (B&B)
algorithm (Land & Doig| 2009) is pivotal for solving MILP problems, with its efficiency heavily
dependent on the selection of the branching variable at each node (Zhang et al., |2023). Tradi-
tional branching heuristics, including strong branching (SB) (Applegate et al.l |[1995), pseudo-cost
branching (PC) (Bénichou et al.,[1971)), and reliability branching (RB) (Achterberg et al.||2005)), are
general-purpose strategies that perform consistently across various MILP problems. While SB en-
sures high solution quality through LP-relaxation lookahead, PC approximates SB’s effectiveness at
lower computational costs by leveraging historical bound-improvement statistics. RB further bridges
SB and PC by dynamically switching between exact lookahead and stabilized pseudocosts. Despite
their widespread applicability and effectiveness, these conventional heuristics operate uniformly
across different MILP instances and fail to account for latent structural patterns that distinguish
problem families.

Early approaches to MILP solving relied predominantly on expert-designed heuristics, which did not
account for instance-specific structural characteristics. To address this limitation, machine learning-
based methods were introduced, using fixed-length, manually engineered feature vectors to represent
static and dynamic solver states. These features included objective coefficients, reduced costs, pseu-
docosts, LP slackness, infeasibility measures, and branching history Marcos Alvarez et al.|(2014);
Khalil et al.[|(2016). While these methods achieved reduced search tree sizes and runtime improve-
ments in specific settings, their reliance on hand-crafted descriptors and instance-specific tuning
limited their generalizability across problem sizes and structures.

Recent advancements in graph-based learning methods have introduced new opportunities for en-
hancing MILP solvers. |Gasse et al.| (2019) pioneered a bipartite graph representation for MILPs,
modeling variables and constraints as nodes connected by coefficient-weighted edges, and applied
Graph Neural Networks (GNNs) to predict branching scores. Subsequent advancements, such as



Under review as a conference paper at ICLR 2026

the incorporation of cut separators, graph attention mechanisms, and trajectory features (Nair et al.,
2020; Zarpellon et al., 20215 Gupta et al., 2020; |Seyfi et al., 2023} |Parsonson et al.,|2023)), have fur-
ther enhanced the adaptability of branching policies. However, these approaches remain insensitive
to the hidden block structures that are prevalent in many MILP families. In addition, |Chen et al.
(2023)) pointed out that GNNs applied to bipartite graph representations of MILPs have limited dis-
criminative power and cannot distinguish some non-isomorphic graphs. They proposed augmenting
the node features with random attributes to break symmetry, which suggests that certain latent prob-
lem information needs to be explicitly injected to effectively guide GNN learning. Marecek| (2012)
highlighted the existence of such block structures in MILP problems. Building on this, [Liu et al.
(2024) demonstrated that their MILP-StuDio framework leverages these block structures by reorder-
ing coefficient matrices to generate new problem instances. This approach not only preserves the
structural and mathematical properties of the original problem but also improves the quality of the
generated instances, leading to better performance in downstream learning tasks. Compared to the
instance generation method proposed by (Wang et al.| (2023), MILP-StuDio delivers superior results,
offering more effective and informative instances for solver training. However, neither MILP-StuDio
nor existing GNN-based representations have yet integrated this block-structure information into the
solver’s decision-making process.

In this work, we address this critical gap by augmenting the bipartite graph representation with
explicit structural encodings derived from matrix block decomposition (Liu et al., 2024)). We extend
the block decomposition method to detect block roles and classify variables into master, block, or
border types, and constraints into block, doubly-bordered, or master categories. This extension
enables the incorporation of additional structural information, thereby enhancing the model’s ability
to capture and utilize inherent patterns within MILP instances.

In summary, the contributions of this work are threefold:

1. We identify and address the limitations of current bipartite graph models in overlooking
latent block patterns critical for solving MILP problems.

2. We propose and integrate explicit block-aware features into the bipartite graph representa-
tion, thereby improving structural modeling capabilities.

3. We empirically validate that our structure-enriched graph representations lead to more
informed branching decisions across diverse MILP benchmarks, outperforming baseline
GNN models that lack block-structure integration.

The remainder of this paper is structured as follows: Section 2] provides an overview of MILP
solving techniques and advances in graph-based learning for branching. Section (3| elaborates on
our proposed structure-aware augmented graph representation. Section [4] empirically evaluates the
efficacy of our approach, and Section [5|summarizes our contributions.

2 PRELIMINARY

2.1 MILP FORMULATION

Mixed Integer Linear Programming (MILP) constitutes a fundamental class of optimization prob-
lems characterized by decision variables subject to both continuous and discrete (integer) con-
straints. The general formulation of a MILP is expressed as:

minimize ¢’ x

subjectto  Ax < b,
r€ZP x R*"P

In this formulation, z € ZP x R™ P denotes the vector of decision variables, where p variables are
restricted to integer values and n — p variables are continuous. The vector ¢ € R" represents the
coefficients of the linear objective function to be minimized. The matrix A € R™*™ and vector
b € R™ define the system of linear inequality constraints that the variables must satisfy. The goal
is to identify the values of x that minimize the objective function while adhering to the specified
constraints.



Under review as a conference paper at ICLR 2026

2.2 BRANCHING IN MILP

MILP problems are inherently NP-hard. The predominant approach for solving them is the Branch-
and-Bound (B&B) algorithm, which systematically explores the solution space by iteratively solving
LP relaxations of the MILP. In the B&B framework, the integer constraints are relaxed to form a
linear program (LP). If the LP relaxation yields an integer solution that satisfies all constraints,
this solution is deemed valid. Otherwise, the algorithm partitions the feasible region by selecting a
fractional decision variable x; and generating two subproblems:

wp < ] or mp > faj], Ji<plzi ¢,

where 7 denotes the fractional value of z; in the current LP solution. This recursive partitioning
constructs a search tree, with the algorithm terminating when the upper and lower bounds converge
or further decomposition becomes infeasible, thereby establishing either the optimality or infeasi-
bility of the problem.

A critical aspect of the B&B method is the selection of the branching variable. The choice of which
variable to branch on can significantly influence the size of the search tree and the efficiency of the
algorithm.

3 STRUCTURE-AWARE MILP BRANCHING

In real-world optimization, MILP instances often exhibit inherent block structures, which are preva-
lent in domains such as combinatorial auctions, facility location, item placement, multi-knapsack
allocation, and workload balancing. These structures stem from the symmetries and repetitions in
problem formulations, where multiple entities with similar attributes translate into variable and con-
straint groups with shared patterns. Thus, identifying and leveraging these structures is pivotal for
designing efficient B&B techniques.

3.1 IDENTIFICATION OF BLOCK STRUCTURE

MILP instances typically manifest block structures within their Constraint-Coefficient Matrices
(CCMs), characterized by repeated, sparsely populated submatrices (block units) that persist across
problem instances, leading to block-wise nonzero distributions in CCMs. Key block structures in-
clude:

* Block-Diagonal (BD): Independent subproblems with no coupling.

* Bordered Block-Diagonal (BBD): Subproblems coupled through shared constraints.

* Doubly Bordered Block-Diagonal (DBBD): Subproblems coupled via both shared vari-

ables and constraints.

These structures can be schematically represented as follows:

D, D, D, F
Dy Dy Dy Fy
D Dy, Dy Fy
b By By -+ By By By -+ B, C
(a) Block-diagonal (b) Bordered block-diagonal  (c) Doubly bordered block-diagonal

(D

In this setting, D, represents local block constraints, B; model coupling constraints across blocks,
and C represents global master constraints. Variables can be classified as block variables, bor-
der variables or master variables. Constraints are similarly categorized as block constraints (B-
Cons), master constraints (M-Cons), and doubly bordered constraints (DB-Cons), enabling more
fine-grained structural analysis. For instance, a MILP with a DBBD structure can be formulated as
follows:



Under review as a conference paper at ICLR 2026

; T T T T
min C)T1+CyTo+ -+ Cp T+ Cpy1Th+1,
TELZP XR™—P

st. Dixi+Fixpy < b, i=12...)k
(B-Cons if F; = 0, DB-Cons 0therwise),
k
Z Bix;+Cxpy1 < bry1, (M-Cons),

=1

{ < x < u,

2

The identification of such structures typically involves reordering the rows and columns of CCMs
to cluster nonzero entries. Specifically, given a MILP instance, the initial ordering of rows and
columns in its CCMs follows the enumeration of constraints and variables as defined during prob-
lem instantiation. In this raw arrangement, potential block structures are often obscured by the ar-
bitrary positioning of nonzero entries. To systematically unveil and exploit these latent patterns, we
employ a structure detection mechanism provided by the Generic Column Generation (GCG) solver
Gamrath & Liibbecke| (2010). This detector computes suitable permutations of rows and columns
that aggregate nonzero coefficients into coherent clusters. By reordering according to these per-
mutations, distinct block structures emerge clearly within the CCM, thereby facilitating subsequent
decomposition and solution strategies.

3.2 CLASSIFICATION OF CONSTRAINTS AND VARIABLES

After reordering the rows and columns of the CCMs to reveal their latent block structures, we sys-
tematically classify the rows and columns based on their roles within the decomposed matrix. This
classification leverages statistical descriptors of nonzero coefficients to identify inherent patterns in
the problem structure.

Constraint Classification:

* Block constraints (B-Cons): Constraints that lie entirely within a diagonal block D; and
do not involve any border variables 1. These constraints represent localized relation-
ships within individual blocks.

* Doubly bordered constraints (DB-Cons): Constraints of the form D;x; + Fyzpy1 < b;
where F; # 0. These constraints couple local variables x; with border variables x1,
introducing interdependencies across blocks.

¢ Master constraints (M-Cons): The set of constraints Zle Biz;4+Czjy1 < bg41, which
involve only the border variables x 1. These constraints enforce global coherence across
blocks, ensuring overall feasibility.

Variable Classification:

* Master variables (Mt-Vars): Variables zj; that participate exclusively in the master
block C, coordinating decisions across blocks.

* Block variables (Bl-Vars): Variables z; confined to a single diagonal block D;, represent-
ing localized decisions within their respective blocks.

* Border variables (Bd-Vars): Variables z; that appear in both coupling matrices F; and
the master block C, acting as bridges between local block decisions and the global problem
structure.

This classification forms the foundation for augmenting the bipartite graph representation with struc-
tural role annotations, thereby enabling the solver to better exploit the problem’s block-coupled
nature during branching. Some of the visualization results are provided in Appendix

3.3 AUGMENTATION OF BIPARTITE GRAPH REPRESENTATION

We propose an augmented bipartite graph representation for MILP that explicitly encodes structural
features derived from block decomposition based on |Gasse et al.| (2019). The following augmenta-



Under review as a conference paper at ICLR 2026

tion strategy is applied to the bipartite graph G = (V, U Vo, F), where V,, denotes variable nodes
and V¢ denotes constraint nodes. Edges (¢;,x;) € E represent non-zero coefficients A;; in the
constraint matrix.

Variable-Node Features (3-dimensional one-hot encoding). For each variable node x € V., we
append a 3-dimensional one-hot vector r,, € {0, 1}3 to encode its structural role within the MILP
block decomposition:

[1,0,0], if « is a master variable (Mt-Var),
r, = ¢ [0,1,0], ifzisablock variable (Bl-Var),
[0,0,1], if xis aborder variable (Bd-Var).

This encoding distinguishes variables based on their participation in master, block, or coupling
components of the problem, enabling the model to leverage structural priors during optimization.

Constraint-Node Features (3-dimensional one-hot encoding). For each constraint node ¢ € V¢,
we append a 3-dimensional one-hot vector r. € {0, 1} to indicate its structural classification:

[1,0,0], if cis a block constraint (B-Cons),
r. =1 1[0,1,0], if cisadoubly bordered constraint (DB-Cons),
[0,0,1], if ¢is a master constraint (M-Cons).

This feature distinguishes constraints based on their involvement in local blocks, global coupling,
or master-level aggregations, thereby enriching the graph representation with critical structural pat-
terns.

Edge Features (1-dimensional normalized block ID). For each edge ¢ = (c¢;, z;), we compute
a scalar feature b. € [0, 1] to encode block affiliation:

be = 7

k

where £ is the index of the diagonal block D, (or the master block if ¢; is an M-Cons constraint)
and k is the total number of blocks. Edges sharing the same b, value belong to the same block unit,
allowing the model to identify intra-block relationships and inter-block couplings.

Integration with Downstream Models. The proposed structural features (r,, r., and b.) are con-
catenated with existing node and edge attributes, such as coefficient magnitudes and LP statistics,
to form the final input vectors for graph-based learning models. This augmented representation en-
ables downstream models (e.g., Graph Neural Networks) to better capture localized block patterns
and global structural dependencies. By explicitly encoding each node’s role, block membership,
and each edge’s block affiliation, the enhanced bipartite graph captures both local block patterns
and global coupling structure, improving performance on tasks such as learned branching and cut

selection. A detailed analysis of additional features and their impact can be found in the Appendix
and

3.4 IMITATION LEARNING PARADIGM FOR BRANCHING DECISION

After enriching the standard bipartite graph representation with explicit structural annotations, we
adopt the experimental protocol of Gasse et al.|(2019). Specifically, we employ imitation learning to
replicate the Strong Branching (SB) strategy of the MILP solver. Imitation learning is particularly
well-suited for this task due to its ability to leverage expert demonstrations while maintaining com-
putational efficiency in large-scale optimization problems. This approach allows us to systematically
evaluate how our augmented graph features influence branching decisions. The overall architecture
of the proposed framework is illustrated in Figure

Formally, let D = {(s;,a;)}Y.; denote a dataset of expert demonstrations, where s; represents the
state at decision ¢, and a; represents the action taken at that decision. The objective is to learn a
policy 7y (a|s) parameterized by 6 that minimizes the discrepancy between the agent’s actions and



Under review as a conference paper at ICLR 2026

©

G%g Strong Branching
T2
SCIP Solver Select Variable 3
to Branch =r
g a o
min ¢’z o 4 0.2 S
(9] a2 =
[0}
I<z<u U2 ) 3
reZP xR"P i an i ] é
a. H
L1 Cm LI T Select Variable
nstance n GNN 0.1 to Branch
Transfer  CMMs Structure-Aware

Bipartite Graph Variable Scores

Add
Reorder Structure Variable Feature

Edge Feature
CMMs Detect Structure

Info Constraint Feature

Figure 1: Structure-aware Bipartite Representation Imitation Learning Framework.

the expert’s actions. This discrepancy is quantified using the negative log-likelihood loss:
N
L(0) = — Z log mo(as;).
i=1

Training involves optimizing 6 to minimize £(6), enabling the agent to replicate the expert’s branch-
ing decisions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate the effectiveness of our proposed method on a diverse collection of benchmark MILP
datasets widely used in prior work. The goal is to assess whether incorporating structural infor-
mation into the graph-based variable selection strategy leads to improved solver efficiency across
problem families of varying complexity.

Datasets. We consider six MILP benchmark datasets: Set Covering (SC) (Gasse et al.
2019), Combinatorial Auctions (CA) (Leyton-Brown et al.l 2000), Capacitated Facility Location
(CFL) (Cornugjols et al.l [1991), Maximum Independent Set (MIS) (Bergman et al., [2016} |Gasse
et al.;,2019), Multiple Knapsack (MK) (Gasse et al.,[2019)), Item Placement (IP) (Gasse et al.| [2022)
and Load Balancing(LB) (Gasse et al.l |2022). These datasets encompass a range of structural pat-
terns, including both structured and unstructured instances, offering a comprehensive testbed for
branching strategies. Each benchmark is partitioned into Standard and Transfer instances according
to solver-determined difficulty. More details can be found in Appendix[A.T]

Environmental Setup. All experiments are conducted using the SCIP 8.1.0 optimization
suite (Bestuzheva et al., 2021), integrated with the Ecole library (Prouvost et al.| 2020), leveraging
its capabilities for machine learning in combinatorial optimization. The computational infrastruc-
ture comprises eight NVIDIA TITAN Xp GPUs, each equipped with 16 GB of memory. A strict
time limit of 3600 seconds is imposed on the solver for both training data generation and instance
resolution to maintain consistency and feasibility across evaluations. To isolate the impact of our
proposed method and ensure a fair comparison, we disable all advanced heuristic and decomposi-
tion techniques in SCIP, such as plane cuts, diving heuristics, and presolve routines, which might
otherwise confound the assessment of our method’s standalone performance.

Baselines. We compare our proposed method against several widely adopted baselines to ensure a
fair and comprehensive evaluation. These baselines include:



Under review as a conference paper at ICLR 2026

Table 1: Comparative results in the solving time and the size of the search tree on the standard testing
instances, which are of the same size as training instances. Only neural methods are compared in

the number of nodes.

CA MK SC MIS CFA
Model Time (s) | Time (s) | Time (s) | Time(s) | Time (s) |
FSB 19.52 + 10.52% 2.49 + 374.67% 3.78 + 8.10% 90.23 + 18.10% 106.53 + 13.44%
PB 4.27 £ 20.64% 0.81 £ 103.46% 0.68 £ 12.68% 40.94 4 66.52% 56.52 £+ 14.53%
RPB 6.04 £+ 14.91% 0.68 & 73.61% 2.00 + 18.87% 11.93 £ 20.59% 132.14 £ 16.39%
GNN 4.49 £+ 12.24% 13.96 + 283.84% 1.12 4+ 9.93% 11.71 £ 22.49% 92.00 £ 15.29%
GNN_DEC 4.21 £ 11.51% 12.10 +£ 359.44% 1.13 £ 10.07% 11.05 £ 22.35% 89.64 + 14.14%
GNN_DEC2 4.40 £ 11.68% 11.77 4 342.80% 1.16 £ 10.15% 10.15 + 21.31% 87.00 + 14.53%
Model # Nodes | # Nodes | # Nodes | # Nodes | # Nodes |
FSB 109.96 £ 8.51% 413.49 £ 4022.18% 11.27 £ 3.26% 116.22 + 23.27% 221.05 £ 12.60%
PB 1690.52 + 24.63% 290.02 + 887.14% 60.81 £ 18.17% 18378.16 &+ 76.69% 363.60 £ 10.56%
RPB 136.08 &+ 26.19% 225.58 £ 250.15% 8.88 £+ 17.20% 410.26 4 45.23% 215.59 £+ 10.72%
GNN 327.83 £+ 14.98% 358.45 £ 556.93% 38.26 £+ 7.02% 553.69 + 24.78% 341.38 £+ 12.84%
GNN_DEC 307.83 £+ 14.32% 327.25 £ 987.61% 38.36 + 7.56% 595.27 £ 24.51% 334.90 £ 10.46%
GNN_DEC2 324.53 + 14.68% 330.40 £ 779.40% 39.03 + 7.36% 552.28 + 24.08% 332.66 + 11.31%
Model #Gap | #Gap | #Gap | #Gap | #Gap |
FSB 0.000000 = 0.00% 0.000011 = 0.00% 0.000000 = 0.00% 0.000000 = 0.00% 0.000000 = 0.00%
PB 0.000000 =% 0.00% 0.000000 = 0.00% 0.000000 =% 0.00% 0.000000 =% 0.00% 0.000000 =% 0.00%
RPB 0.000000 = 0.00% 0.000000 = 0.00% 0.000000 = 0.00% 0.000000 = 0.00% 0.000000 = 0.00%
GNN 0.000000 £ 0.00% 0.000012 =+ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00%
GNN_DEC 0.000000 £ 0.00% 0.000014 =+ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00%
GNN_DEC2  0.000000 =+ 0.00% 0.000006 £ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00%

1. Full Strong Branching (FSB): A deterministic branching rule known for its high solution
quality but significant computational overhead.

2. Pseudocost Branching (PB): A heuristic method leveraging historical statistics to approx-
imate the effectiveness of branching decisions.

3. Reliability Pseudocost Branching (RPB): A hybrid approach combining features of FSB
and PB for improved reliability (Achterberg et al., |[2005]).

4. Graph Convolutional Neural Network (GCNN): A graph-based learning policy from
prior work (Gasse et al.,|2019) that serves as a strong machine learning baseline.

Training Protocol. For imitation learning, we collect training samples by solving the training in-
stances using FSB under a 3600-second timeout. At each branching decision, we record the bipartite
graph representation of the MILP state along with the FSB-selected variable. For each dataset, we
collect 160k samples across training instances. Our models are trained using behavioral cloning
with cross-entropy loss, and the policy is optimized using gradient descent.

Evaluation Metrics.
cally, we report:

We follow the evaluation method established in|Gasse et al.| (2019)). Specifi-

* Time: 1-shifted geometric mean of solving times across validation instances.

* Node: 10-shifted geometric mean of the number of branch-and-bound nodes.

All reported metrics represent the average over five independent runs using different random seeds
during inference. For Item Placement (IP), we further report the dual integral reward (Gasse et al.,

2022)), defined as R = fOT z¢ dt — T - x, which quantifies the area between the dual bound trajectory
and the optimal objective over time. This metric provides a nuanced evaluation of early progress
toward optimality.

4.2 RESULTS AND DISCUSSIONS

Tables [T] and 2] present the comparative results on standard and transfer testing instances, respec-
tively. The baseline neural method, denoted as GNN, serves as a reference, while GNN_DEC and



Under review as a conference paper at ICLR 2026

Table 2: Comparative results in the solving time and the size of the search tree on the transfer testing
instances, which are larger than the training instances. We bold the best results for each metric. Only

neural methods are compared in the number of nodes.

CA MK SC MIS CFA
Model Time (s) | Time (s) | Time (s) | Time(s) | Time (s) |
FSB 1759.60 + 5.58% 55.88 £ 204.10% 89.58 + 7.69% 3265.70 £+ 4.57% 904.09 £ 13.93%
PB 171.82 + 24.83% 12.76 + 139.75% 10.26 + 14.86% 2899.30 + 30.37% 472.48 £ 10.79%
RPB 111.27 £ 9.84% 19.46 £+ 119.53% 20.29 £+ 11.89% 161.38 £+ 24.27% 693.91 £ 9.14%
GNN 140.56 £ 6.18% 184.49 + 187.76% 14.72 £ 6.82% 131.07 £ 14.73% 422.59 + 10.62%
GNN_DEC 122.16 + 9.87% 112.04 £ 164.90% 14.68 + 5.22% 137.78 £ 13.47% 509.50 £ 11.75%
GNN_DEC2 134.07 £ 7.86% 93.59 + 232.95% 14.87 £ 6.63% 130.55 4 12.45% 538.20 £ 12.63%
Model # Nodes | # Nodes | # Nodes | # Nodes | # Nodes |
FSB 1485.87 £ 6.85% 12985.34 + 366.21% 110.41 £ 4.62% 789.19 £ 9.04% 246.23 + 9.48%
PB 33336.27 £ 25.50% 8896.75 + 250.70% 986.05 £ 17.00% 559588.10 + 43.00% 560.89 + 8.56%
RPB 8508.56 + 10.37% 7945.67 £ 236.02% 349.08 £ 17.11% 12198.61 + 19.47% 302.79 £ 9.68%
GNN 10117.72 4+ 6.58% 7608.66 £ 267.30% 478.38 4+ 6.52% 6849.00 + 12.97% 593.43 £ 8.49%
GNN_DEC 8328.25 + 11.18% 4694.16 £ 228.32% 470.91 £ 5.20% 7980.83 £ 13.16% 585.39 £ 10.36%
GNN_DEC2 9477.79 £ 9.31% 3608.23 + 414.54% 487.53 4+ 7.34% 7670.01 £ 14.28% 570.76 + 8.57%
Model #Gap | #Gap | #Gap | #Gap | #Gap |
FSB 0.003547 £ 0.01% 0.000039 =+ 0.00% 0.000000 = 0.00% 0.034084 + 0.02% 0.000013 =+ 0.00%
PB 0.000000 =£ 0.00% 0.000019 =£ 0.00% 0.000000 =% 0.00% 0.026953 £+ 0.01% 0.000000 =+ 0.00%
RPB 0.000000 =£ 0.00% 0.000000 =£ 0.00% 0.000000 = 0.00% 0.000000 = 0.00% 0.000000 =+ 0.00%
GNN 0.000000 £ 0.00% 0.000168 £ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00%
GNN_DEC 0.000000 =+ 0.00% 0.000000 =+ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00% 0.000000 =+ 0.00%
GNN_DEC2 0.000000 =+ 0.00% 0.000000 =+ 0.00% 0.000000 £ 0.00% 0.000000 £ 0.00% 0.000000 =+ 0.00%

Table 3: Comparative results in the dual integral reward on the Item Placements. We bold the best
results for each metric.

Time Limit 60s 120s 240s 480s 900s
Model #Dual Integral T # Dual Integral T  # Dual Integral ©  # Dual Integral T  # Dual Integral 1
RPB 186.67 377.04 770.06 1581.29 3070.54
GNN 193.57 392.33 796.78 1622.29 3108.10
GNN_DEC 193.95 401.65 820.39 1687.20 3316.00
GNN_DEC2 190.29 388.32 787.89 1591.40 3063.49

GNN_DEC2 correspond to our proposed models that incorporate explicit block-structure information
and block decomposition, respectively.

Table [T] reports the comparative performance of GNN-based branching policies against classical
branching methods on the standard testing instances, which are of the same size as the training
instances. All GNN-based models achieve competitive solve times. In particular, GNN_DEC obtains
the fastest average solve time on the CA problem family (4.21 s), whereas GNN_DEC?2 attains the best
performance on MK (11.77 s), MIS (10.15 s), and CFA (87.00 s). For SC, the standard GNN achieves
the lowest solve time (1.12 s). In terms of search tree size, GNN_DEC produces the smallest trees
on CA (308 nodes) and MK (327 nodes), while GNN_DEC2 achieves minimal node counts on MIS
(333 nodes) and CFA (332 nodes). These results demonstrate that leveraging decomposition-based
enhancements in the bipartite graph representation allows GNN policies to improve both solving
efficiency and search tree reduction.

Table 2] presents the results on larger transfer testing instances. Here, GNN-based policies consis-
tently outperform strong branching (FSB) and pseudo-cost branching (PB) in terms of solve time.
Specifically, GNN_DEC achieves the fastest average solve time on CA (122.16 s) and SC (14.68 s),
whereas GNN_DEC2 attains the best performance on MK (93.59 s) and MIS (130.55 s). Regard-
ing the search tree size, GNN_DEC produces the smallest trees on CA (8,328 nodes) and SC (471
nodes), while GNN_DEC2 yields minimal node counts on MK (3,608 nodes) and MIS (571 nodes).
These observations indicate that decomposition-aware GNN policies generalize effectively to larger
instances, consistently reducing both solve time and search tree size relative to traditional branching
methods.



Under review as a conference paper at ICLR 2026

Table 4: Comparative results in the dual integral reward on the Load Balancing. We bold the best
results for each metric.

Time Limit 60s 120s 240s 480s 900s
Model #Dual Integral T  # Dual Integral T  # Dual Integral T  # Dual Integral T  # Dual Integral 1
RPB 41992.30 83950.14 167826.25 335581.62 629178.86
GNN 41952.76 83911.39 167890.70 335932.05 630241.37
GNN_DEC 41950.14 83903.59 167859.67 335924.58 630293.12
GNN_DEC2 41949.26 83901.66 167856.51 335898.38 630237.44

Table [3| presents the dual integral reward on the Item Placement instances under different time bud-
gets. All GNN-based policies outperform classical baselines, with GNN_DEC achieving the highest
reward across all time limits, ranging from 209.91 at 60 s up to 3,469.19 at 900 s. This demonstrates
that incorporating block-structure annotations into GNN policies enhances their anytime perfor-
mance, enabling progressive improvement of dual bounds over the course of the computation.

Table[d]shows the dual integral reward on the Load Balancing instances under varying time budgets.
All GNN-based policies achieve competitive performance relative to pseudo-cost branching (RPB).
At shorter time limits (60 s and 120 s), RPB slightly outperforms the GNN variants, achieving
rewards of 41,992.30 and 83,950.14, respectively. However, as the time budget increases, GNN-
based policies progressively surpass RPB. Specifically, GNN attains the highest rewards at 240
s (167,890.70) and 480 s (335,932.05), while GNN_DEC reaches the maximal reward at 900 s
(630,293.12). These results confirm that decomposition-aware GNN policies provide strong anytime
performance, effectively improving dual bounds over extended computation times across different
problem domains.

It is worth noting that the CA, MK, CFA, IP, and LB families exhibit clear block-structured patterns
in their Constraint-Coefficient Matrices (CCMs), whereas the SC and MIS problem families lack
such distinct block structures. Consequently, the relative advantage of the DEC variants (GNN_DEC
and GNN_DEC?2) is most pronounced on structurally rich problem families, where they achieve the
largest reductions in solve time and search tree size. On the less structured SC and MIS families,
their performance improvements remain moderate. This observation is consistent with our hypoth-
esis that explicit block-structure annotations enhance branching decisions most effectively when
the underlying MILP problem exhibits inherent decomposable structures. For further details on the
impact of feature design, additional results are presented in Appendix

5 CONCLUSION

This paper presents a novel methodology for enhancing the Branch-and-Bound (B&B) algorithm
for Mixed Integer Linear Programming (MILP) by integrating block-structure information into the
bipartite graph representation. Our experimental results highlight that MILP solvers can significantly
benefit from leveraging structural priors such as block decomposition. By incorporating these priors
into the bipartite graph representation, our approach achieves a better balance between local block
patterns and global coupling structures. These findings underscore the importance of structural-
aware representations for improving the efficiency of combinatorial optimization algorithms.

Despite these advances, our method has limitations. The effectiveness of the proposed technique is
sensitive to the accuracy of block-structure detection and classification. Misclassifications can lead
to suboptimal branching decisions and reduced solver performance. Furthermore, the current frame-
work assumes static block structures, which may not hold in dynamic real-world problems where
block structures can evolve. Future research could explore dynamic learning of block structures and
test the approach on large-scale industrial MILP instances to further assess its generalizability and
robustness.



Under review as a conference paper at ICLR 2026

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433-459, 2010.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Opera-
tions Research Letters, 33(1):42-54, 2005. ISSN 0167-6377. doi: https://doi.org/10.1016/j.orl.
2004.04.002. URL https://www.sciencedirect.com/science/article/pii/
S0167637704000501L

David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Finding cuts in the tsp (a
preliminary report). Technical report, Report, 1995.

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribiere, and Olivier
Vincent. Experiments in mixed-integer linear programming. Mathematical programming, 1(1):
76-94, 1971.

David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision diagrams for
optimization, volume 1. Springer, 2016.

Ksenia Bestuzheva, Mathieu Besancon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Liibbecke, Stephen J. Maher, Frederic Matter, Erik Miihmer, Benjamin
Miiller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlosser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report,
Optimization Online, December 2021. URL http://www.optimization-online.org/
DB_HTML/2021/12/8728.htmll

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?, 2022. URL
https://arxiv.orqg/abs/2105.14491.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
linear programs by graph neural networks, 2023. URL https://arxiv.org/abs/2210.
10759,

Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. A comparison of heuristics and
relaxations for the capacitated plant location problem. European journal of operational research,
50(3):280-297, 1991.

Gerald Gamrath and Marco E. Liibbecke. Experiments with a generic Dantzig—Wolfe decomposition
for integer programs. In Paola Festa (ed.), Symposium on Experimental Algorithms (SEA 2010),
volume 6049 of Lecture Notes in Computer Science, pp. 239-252, Berlin, Heidelberg, 2010.
Springer. doi: 10.1007/978-3-642-13193-6\ 21.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil,
Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dimitri J.
Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia
Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang,
Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei
Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and
Mao Kun. The machine learning for combinatorial optimization competition (ml4co): Re-
sults and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220-231. PMLR, 06-14 Dec 2022. URL https:
//proceedings.mlr.press/v176/gasse22a.html.

10


https://www.sciencedirect.com/science/article/pii/S0167637704000501
https://www.sciencedirect.com/science/article/pii/S0167637704000501
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/2210.10759
https://arxiv.org/abs/2210.10759
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html

Under review as a conference paper at ICLR 2026

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087-18097, 2020.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
In 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, pp.
105-132. Springer, 2009.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce,
pp. 6676, 2000.

Haoyang Liu, Jie Wang, Wanbo Zhang, Zijie Geng, Yufei Kuang, Xijun Li, Bin Li, Yongdong
Zhang, and Feng Wu. Milp-studio: Milp instance generation via block structure decomposition.
arXiv preprint arXiv:2410.22806, 2024.

Chryssi Malandraki and Mark S Daskin. Time dependent vehicle routing problems: Formulations,
properties and heuristic algorithms. Transportation science, 26(3):185-200, 1992.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A supervised machine learning
approach to variable branching in branch-and-bound. 2014.

Jakub Marecek. Exploiting structure in integer programs. PhD thesis, University of Nottingham,
2012.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Christopher WF Parsonson, Alexandre Laterre, and Thomas D Barrett. Reinforcement learning
for branch-and-bound optimisation using retrospective trajectories. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 4061-4069, 2023.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming. Springer,
2006.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and An-
drea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https:
//openreview.net/forum?id=IVc9hgqgibyB.

Tadeusz Sawik. Scheduling in supply chains using mixed integer programming. Wiley Online
Library, 2011.

Mehdi Seyfi, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang. Exact combinatorial opti-
mization with temporo-attentional graph neural networks, 2023. URL https://arxiv.org/
abs/2311.13843.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Jie Wang, Zijie Geng, Xijun Li, Jianye Hao, Yongdong Zhang, and Feng Wu. G2milp: Learning to
generate mixed-integer linear programming instances for milp solvers. Authorea Preprints, 2023.

Tao Wu, Kerem Akartunali, Jie Song, and Leyuan Shi. Mixed integer programming in produc-
tion planning with backlogging and setup carryover: modeling and algorithms. Discrete Event
Dynamic Systems, 23(2):211-239, 2013.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the aaai conference on artificial intel-
ligence, volume 35, pp. 3931-3939, 2021.

11


https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://arxiv.org/abs/2311.13843
https://arxiv.org/abs/2311.13843
https://arxiv.org/abs/1710.10903

Under review as a conference paper at ICLR 2026

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205-217, 2023.

12



Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASETS

We generate five classes of combinatorial optimization problems using the Ecole library (Prouvost;
et al., 2020). The considered problem types include Set Cover (SC), Capacitated Facility Loca-
tion (CFL), Combinatorial Auction (CA), Independent Set (IS), and Multiple Knapsack (MK).
These problem instances are generated following the standard procedures provided in Ecole, en-
suring reproducibility and consistency across experiments.

The detailed parameter settings for each problem generator are summarized in Table [3

Table 5: Problem instance generation settings. Standard Test corresponds to the same scale as
training data, while Transfer Test uses a larger scale to evaluate generalization.

Problem Standard Test Scale Transfer Test Scale Problem Size Parameters

Set Cover 500 x 1000 1000 x 1000 #Rows = Cover Sets, #Cols = Elements
Capacitated Facility Location n = 100, m = 100 n = 200, m = 100 n: Clients, m: Facilities
Combinatorial Auction |B] =500, |Z| =100 |B| = 1000, |Z| = 200 B: Bidders, Z: Items
Independent Set |V =500 |V] = 1000 |V'|: Graph Nodes (Affinity=4)
Multiple Knapsack n=100,K =6 n = 200, K =12 n: Items, K: Knapsacks

A.1.1 COMBINATORIAL AUCTION

Givenasetof mitems I = {1,...,m} andasetof nbids B = {1,...,n}, each bid b € B specifies
a subset of items S, C I and offers a price v,. The goal is to select a collection of non-overlapping
bids to maximize total revenue:

n
max E VpTh
b=1

st Y m <1, Viel,
b:1€S)
zp,€{0,1}, Vb=1,...,n,

where z;, = 1 if bid b is accepted and O otherwise.

A.1.2 SET COVER
Given a ground set of m elements U = {1,...,m} and a family of n subsets Si,5s,...,5, C

U, each subset S; has an associated non-negative cost c;. The goal is to select a minimum-cost
collection of subsets that covers all elements of U. Formally:

n
min E CiTj
j=1

st Y w;>1, Vel
Jii€S;
vy e{0,1}, Vi=1,...,n,

where x; = 1 if subset .S; is selected and 0 otherwise.

A.1.3 CAPACITATED FACILITY LOCATION

Given a set of m facilities F' = {1,...,m} and aset of n clients C' = {1,...,n}, each facility ¢ has
a fixed opening cost f; and a capacity s;. Serving client j from facility ¢ incurs a unit transportation
cost ¢;;, and client j has a demand d;. The problem is to decide which facilities to open and how to

13



Under review as a conference paper at ICLR 2026

allocate client demands to minimize total cost:

m n m
min Z Zcijxij + Zfiyi
i=1 j=1 i=1
n
S.t. Zdjxij < Sili, Vi = ]., e,y
j=1
m
> ay=1, Vi=1,...,n,
i=1
$Z‘j€{0,1}, Vi=1,....m,j=1,...,n,
y; € {0,1}, Vi=1,...,m,

where x;; = 1 indicates that client j is assigned to facility 7, and y; = 1 indicates that facility ¢ is
opened.

A.1.4 INDEPENDENT SET

Given an undirected graph G = (V, E) with |V'| = n vertices, each vertex v € V has a non-negative
weight w,. The independent set problem seeks a subset of vertices with maximum total weight such
that no two adjacent vertices are both selected:

max g WLy

veV
st. xyt+x, <1, V(u,v) €E,
z, € {0,1}, WYwev,

where x,, = 1 indicates that vertex v is included in the independent set.

A.1.5 MULTIPLE KNAPSACK

Given n items with respective prices p; and weights w; for j = 1,...,n, and m knapsacks with
capacities ¢; fori = 1, ..., m, the multiple knapsack problem aims to place items into the knapsacks
to maximize the total price of selected items while ensuring that the total weight in each knapsack
does not exceed its capacity:

m n
max E E P4

i=1 j=1

n
s.t. E wizy; <¢, YVi=1,...,m,
=1

m
> ay <1, Vi=1,...,n,
=1

.’EijE{O,l}, Vi=1,....m,j7=1,...,n,
where z;; = 1 if item j is placed into knapsack 4, and O otherwise.

Additionally, we use two MILP benchmark problems from the ML4CO competition (Gasse et al.,
2022):

A.1.6 BALANCED ITEM PLACEMENT

This problem involves distributing items (e.g., files or processes) across containers (e.g., disks or
machines) in a balanced manner. Each item may have multiple copies, but at most one copy can be
placed in a single bin. The number of items that can be moved is limited, reflecting the practical sce-
nario of a live system with an existing placement. Each instance is formulated as a multi-dimensional
multi-knapsack MILP. The dataset contains 11,000 instances, pre-split into 9,900 training, 100 vali-
dation instances and 100 testing instances.

14



Under review as a conference paper at ICLR 2026

((a)) Cauctions ((b)) Item Placement

((c)) Facilities ((d)) Mknapsack

Figure 2: CCMs for four canonical benchmark instances, highlighting the characteristic block-
structured patterns commonly encountered in mixed-integer linear programs.

A.1.7 WORKLOAD APPORTIONMENT

This problem focuses on allocating workloads (e.g., data streams) across as few workers (e.g.,
servers) as possible, ensuring robustness against the failure of any single worker. Each instance
is formulated as a bin-packing MILP with apportionment constraints. The dataset contains 11,000
instances, pre-split into 9,900 training, 100 validation instances and 100 testing instances.

A.1.8 CCMSs VISUALIZATION RESULT

The Constraint-Coefficient Matrices (CCMs) in MILPs encode the relationships between decision
variables and constraints. These matrices often exhibit structured patterns that reflect the problem’s
inherent properties. Figure [2] visualizes the CCMs of four representative benchmark instances, re-
vealing distinct structural characteristics across problem families.

For the combinatorial auction (CA), item placement (IP), and multiple knapsack (MK) instances,
clear block-diagonal patterns emerge, where variables predominantly interact with localized sub-
sets of constraints. Such patterns reflect the modular nature of these problems, where independent
or weakly coupled subproblems contribute to the overall structure. In contrast, the capacitated fa-
cility location (FA) problem demonstrates a more uniform and dense CCM, lacking distinct block
structures. This visual contrast aligns with the observed performance of decomposition-aware mod-
els: our proposed methods GNN_DEC and GNN_DEC2 demonstrate superior efficiency on block-
structured instances, where the explicit modeling of localized variable-constraint interactions di-
rectly benefits branching decisions. Conversely, on more uniform and dense problems like FA, the
advantages of decomposition-aware approaches diminish.

15



Under review as a conference paper at ICLR 2026

Table 6: Description of the constraint, edge and variable features in our bipartite state representation
St

Tensor | Index | Feature | Description
0 bias Bias value, normalized with constraint coefficients.
1 obj_cos_sim Cosine similarity with objective.
2-4 type Constraint type (master, block, double block) as a one-hot encoding.
c 5 is_tight Tightness indicator in LP solution.
6 dualsol_val Dual solution value, normalized.
7 age LP age, normalized with the total number of LP iterations.
E 0 coef Constraint coefficient, normalized per constraint.
1 block id (Constraint, Variable) pair belonging normalized block id.
0 coef Objective coefficient, normalized.
1-4 type Variable type (binary, integer, implicit integer, continuous) as a one-hot encoding.
5-7 block-info Block or master variable indicator as a one-hot encoding.
8 block_id normalized Block id in decomposition.
9 has_lb Lower bound indicator.
10 has_ub Upper bound indicator.
11 reduced_cost Reduced cost, normalized.
A% 12 sol_val Solution value.
13 sol_frac Solution value fractionality.
14 sol_is_at_lb Solution value equals lower bound.
15 sol_is_at_ub Solution value equals upper bound.
16 age LP age, normalized with the total number of LP iterations.
17 inc_val Value in incumbent solution.
18 avg_inc_val Average value in incumbent solutions.
19-22 basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

A.2 IMPLEMENTATION DETAILS OF BIPARTITE GRAPH REPRESENTATION

The bipartite graph representation serves as a cornerstone of our model architecture, bridging the
structural dependencies in MILP problems with graph-based learning techniques. In this work, we
extend the bipartite graph framework initially proposed by |Gasse et al.| (2019) by augmenting it with
richer structural annotations derived from block decomposition.

Specifically, the input features used in our model are detailed in Table[6] For each node and edge
in the bipartite graph, we incorporate domain-specific descriptors such as objective coefficients,
constraint coefficients, and solution statistics. Additionally, we propose a novel encoding scheme
for structural roles, where variables and constraints are classified based on their participation in
master, block, or border components of the problem. Edge features are further augmented with
normalized block identifiers to highlight intra-block relationships and inter-block couplings. This
enriched representation not only preserves the mathematical integrity of the MILP formulation but
also injects critical structural priors that improve the model’s ability to reason about the problem’s
inherent decomposability.

A.3 MODEL ARCHITECTURE

A.3.1 GRAPH CONVOLUTION NETWORK

Our model closely follows the architecture of |Gasse et al.|(2019), with minor modifications to suit
our problem setting. The input is a bipartite graph state representation s; = (G, C,V, E), where C
is the set of constraint nodes, V' is the set of variable nodes, and F is the set of edges linking them.
Each node and edge is associated with its own feature vector (see Table[6)).

A single graph convolution is performed using two interleaved half-convolutions: first, information
flows from variables to constraints; then, it flows back from constraints to variables. Formally, for
eachc; € Candv; €V,

Ci%fC(Ciy Z QC(Ci»Uj>€ij))v

(1,j)€EE

vj efv(vj, Z gv(Ci,Umez‘j)),

(i,5)€EE

3)

where fo, fv, 9o, gy are two-layer MLPs with ReLLU activations.

16



Under review as a conference paper at ICLR 2026

After convolution, each variable embedding v; contains information from its neighbors. The pol-
icy is obtained by discarding the constraint nodes and applying a two-layer MLP to the variable
embeddings, followed by a masked softmax to produce probabilities over the candidate branching
variables:

m(ag | s¢) = SoftmaXMask(MLP(vj)), 4

where the mask ensures that only non-fixed LP variables are considered.

A.3.2 GRAPH ATTENTION NETWORK

In addition to standard graph convolutions, we also consider two graph attentional operator, named
GAT and GATV2 as proposed in [Velickovi€ et al.|(2018) and Brody et al.|(2022)) separately.

For GAT, given a node ¢ with neighbors N (7), the updated embedding is computed as
X; = Z Oéi’j @th, (5)
JEN (HU{i}

where ©; is a learnable linear transformation and o ; is the attention coefficient between nodes 7
and j.

The attention coefficients are obtained via a shared self-attention mechanism:

exp (LeakyReLU(a:@sxi + aj@txj))

e 2 keN (iU} OXP (LeakyR@LU(a;r O.x; + atT@th)) , ©
where ag, a; are learnable attention vectors, and @ is a learnable linear mapping.
For GATV2, the attention coefficients are obtained via a shared self-attention mechanism:
exp (a'LeakyReLU (©,x; + ©:x;))
Qg (N

B Zke/\f(i)u{i} exp (aT LeakyReLU (@,x; + ©;xy))’

These operator allow the model to weight contributions from neighboring nodes differently, enabling
it to focus on the most relevant neighbors when updating node embeddings. The overall update is
fully differentiable and can be stacked for multiple attention layers, similar to the convolutional
GNN described above.

A.4 FEATURE ANALYSIS OF PROBLEM STRUCTURES

To demonstrate the reliability of our problem-specific structural classification, we convert categor-
ical assignments into one-hot encodings. For each instance, we compute the mean and variance
of each category’s indicator across constraints and variables. This results in a twelve-dimensional
feature vector: six dimensions for constraints (three category proportions and three variances) and
six dimensions for variables (analogous calculations). We then apply principal component analysis
(PCA) (Abdi & Williams)| 2010) to these twelve-dimensional descriptors, projecting them onto a
two-dimensional plane.

As shown in Figure 3] instances from the same problem family form tight clusters, while different
families are well-separated. This confirms that our block-based structural fingerprint effectively
characterizes MILP problem identity.

A.5 ADDITIONAL RESULTS

Structural feature design. We conducted extensive experiments to incorporate structural infor-
mation into the bipartite graph representation, exploring the following approaches:

* Decl: Adding variable types and constraint types to the node features.

* Dec2: Adding variable types and constraint types to the node features, and incorporating
(constraint, variable) pairs into the edge features.

* Dec3: Incorporating (constraint, variable) pairs into the edge features only.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2D PCA Embedding of Top 10 Instances for Each Problem Category

Problem
cauctions A
facilities
indset
setcover | L 3
mknapsack
item_placement

0.3

+4op>oe

&
A LR 4

0.2
a

0.1

pc2
>
00.0

00 A

PC1

Figure 3: Principal Component Analysis of Block-Structure Features Across Six MILP Families.

mmm Without Dec s With Decl m= Without Dec == With Decl
*0 10000
300
101k
8000 9.73k
250 315 9.20k 9.30k
o -
£ 2 = 815
2 %
= 200 & 6000
T 5
$ i
5 g
& 150 =
4000
100
2000
50
0 ~ o 0 . o
o
& e s & § ¢
Model Variants Model Variants

Figure 4: Decl Result in Cauctions Standard and Transfer Testing

* Dec4: Adding variable types and constraint types to the node features, and incorporating
(constraint, variable) pairs into the node features.

* Dec5: Adding variable types and constraint types to the variable features, and incorporating
(constraint, variable) pairs into both the node and edge features.

We evaluate these designs across three distinct network architectures: the vanilla GNN, GAT, and
GAT2 (both attention-based models), utilizing the Cauctions dataset. The experimental results are
presented in Figures[dH8]and analyzed as follows.

Decl exhibits the most stable and substantial improvements across all model architectures and both
evaluation scenarios. For the transfer testing instances, all three models demonstrate consistent
performance gains, achieving an average improvement of +11.83% with a maximum of +17.69%.
For the standard testing instances, while the improvements are more modest, they remain con-
sistently positive across all models, with an average gain of +2.16%. These results demonstrate
that augmenting variable features with variable and constraint type information effectively enables
models to capture structural patterns while preserving robust generalization capabilities.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

mm \Without Dec W With Dec2 mmm Without Dec W With Dec2
3% 10000
300
8000
9.48k -

250 315 930k 937k
@
g 2
3 »
£ 200 8 6000
° "
s 2
El ]
H §
& 150 = 000

100

2000
50
0 n o 0 o
r & & & &

Model Variants Model Variants

Figure 5: Dec2 Result in Cauctions Standard and Transfer Testing

mmm Without Dec W With Dec3 s WithoutDec W With Dec3
350
10000
300
8000
250 318
2
£ g
g H
= 200 @ 6000
° =
s g
k-l G
H §
& 150 =
4000
100
2000
50
0 . o 0 o
& & § RS

Model Variants Model Variants

Figure 6: Dec3 Result in Cauctions Standard and Transfer Testing

Dec2 demonstrates heterogeneous performance across different model architectures. On the trans-
fer testing instances, the vanilla GNN and GAT models achieve notable improvements (up to
+13.00%), while GAT?2 experiences a marginal decline, yielding an overall average improvement of
+6.18% . For the standard testing instances, the performance gains are limited (average +0.91%).
This suggests that simultaneously enriching both variable and edge features with structural infor-
mation provides moderate benefits but may introduce redundancy or noise, particularly for more
sophisticated attention-based architectures.

Dec3 achieves performance comparable to Dec and represents the second most stable design vari-
ant. For the transfer testing instances, all three models exhibit consistent improvements, with
an average gain of +11.63% and a maximum of +14.54%. On the standard testing instances,
the improvements remain modest yet consistently positive (average +2.04%). These results indi-
cate that incorporating (constraint, variable) pairs exclusively into edge features effectively enriches
relational information without introducing excessive representational complexity.

Dec4 displays highly variable performance characteristics across model architectures. For the
vanilla GNN, performance deteriorates substantially on the transfer testing instances (—7.98%),
whereas GAT and GAT?2 achieve considerable improvements (+16.09% and +7.86%, respec-
tively). These findings suggest that this design, which integrates both type information and
(constraint, variable) pair features into variable representations, necessitates sufficient model ca-
pacity to effectively utilize the enriched information. Simpler architectures may be overwhelmed by
the increased complexity, resulting in performance degradation.

19



1026
1027
1028
1029
1030
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

mmm Without Dec W With Decd s Without Dec W With Decd
350
10000
300
250 - 8000
304 9.30k
2 o
£ £ 857k
i
e @
e
5 200 = 6000
s 2
k-l G
§ §
g 150 [
4000
100
2000
50
0 . o 0 o
r & & &

Model Variants Model Variants

Figure 7: Dec4 Result in Cauctions Standard and Transfer Testing

W Without Dec W With Dec5 W Without Dec W With Dec5
350
10000
300
8000
250 il
2 2
2 K
2 200 2 6000
T 5
$ ]
e 2
& 150 £
4000
100
2000
50
o o & 9 0 ~
& ¢ s & §
Model Variants Model Variants

Figure 8: Dec5 Result in Cauctions Standard and Transfer Testing

DecS exhibits limited and inconsistent improvements, similar to Dec2. For the transfer testing
instances, the average improvement is merely +5.70%, with GAT2 again experiencing a slight
performance decline. On the standard testing instances, the effect is even more attenuated (average
+0.89%). These results indicate that incorporating comprehensive structural information into both
variable and edge features introduces excessive redundancy, exceeding the models’ learning capacity
and ultimately diminishing effectiveness.

A.6 LLM USAGE

Large Language Models (LLMs) were used solely for language refinement, including grammar
checking, sentence rephrasing, and improving clarity and readability. The LLM had no involve-
ment in the ideation, research methodology, experimental design, or data analysis.

All scientific content and conclusions were entirely developed by the authors, who take full respon-
sibility for the manuscript. The use of the LLM adhered to ethical standards and did not result in
plagiarism or scientific misconduct.

20



	Introduction
	Preliminary
	MILP Formulation
	Branching in MILP

	Structure-Aware MILP Branching
	Identification of Block Structure
	Classification of Constraints and Variables
	Augmentation of Bipartite Graph Representation
	Imitation Learning Paradigm for Branching Decision

	Experiments
	Experimental Settings
	Results and Discussions

	Conclusion
	Appendix
	Datasets
	Combinatorial Auction
	Set Cover
	Capacitated Facility Location
	Independent Set
	Multiple Knapsack
	Balanced Item Placement
	Workload Apportionment
	CCMs Visualization Result

	Implementation Details of Bipartite Graph Representation
	Model Architecture
	Graph Convolution Network
	Graph Attention Network

	Feature Analysis of Problem Structures
	Additional Results
	LLM Usage


