
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURE-AWARE BIPARTITE REPRESENTATIONS
FOR EFFICIENT MILP BRANCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient branching variable selection is pivotal to the performance of Branch-and-
Bound (B&B) algorithms in Mixed Integer Linear Programming (MILP). Despite
advances in traditional heuristics and graph-based learning methods, these ap-
proaches often fail to exploit the latent block structures inherent in many MILP
problems. To address this limitation, we propose a novel graph representation
that incorporates explicit block-structure annotations. By classifying variables and
constraints according to their roles in block decompositions and augmenting edges
with block identifiers, our method enables MILP solvers to better recognize local-
ized patterns and global couplings. Through extensive experiments on six diverse
MILP benchmarks, we demonstrate that our approach significantly improves upon
state-of-the-art graph neural network baselines. Specifically, our method reduces
search tree sizes by 2%–4% on standard instances and by 11%–13% on transfer
instances, while decreasing solver runtime by 6%–6.66% on standard instances
and by 5.5%–6% on transfer instances. Notably, these improvements are achieved
without compromising solution quality. Our work highlights the importance of
integrating structural priors into combinatorial optimization frameworks.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) is a fundamental optimization technique with extensive
applications in logistics, scheduling, network design, and resource allocation (Pochet & Wolsey,
2006; Wu et al., 2013; Sawik, 2011; Malandraki & Daskin, 1992). The Branch-and-Bound (B&B)
algorithm (Land & Doig, 2009) is pivotal for solving MILP problems, with its efficiency heavily
dependent on the selection of the branching variable at each node (Zhang et al., 2023). Tradi-
tional branching heuristics, including strong branching (SB) (Applegate et al., 1995), pseudo-cost
branching (PC) (Bénichou et al., 1971), and reliability branching (RB) (Achterberg et al., 2005), are
general-purpose strategies that perform consistently across various MILP problems. While SB en-
sures high solution quality through LP-relaxation lookahead, PC approximates SB’s effectiveness at
lower computational costs by leveraging historical bound-improvement statistics. RB further bridges
SB and PC by dynamically switching between exact lookahead and stabilized pseudocosts. Despite
their widespread applicability and effectiveness, these conventional heuristics operate uniformly
across different MILP instances and fail to account for latent structural patterns that distinguish
problem families.

Early approaches to MILP solving relied predominantly on expert-designed heuristics, which did not
account for instance-specific structural characteristics. To address this limitation, machine learning-
based methods were introduced, using fixed-length, manually engineered feature vectors to represent
static and dynamic solver states. These features included objective coefficients, reduced costs, pseu-
docosts, LP slackness, infeasibility measures, and branching history Marcos Alvarez et al. (2014);
Khalil et al. (2016). While these methods achieved reduced search tree sizes and runtime improve-
ments in specific settings, their reliance on hand-crafted descriptors and instance-specific tuning
limited their generalizability across problem sizes and structures.

Recent advancements in graph-based learning methods have introduced new opportunities for en-
hancing MILP solvers. Gasse et al. (2019) pioneered a bipartite graph representation for MILPs,
modeling variables and constraints as nodes connected by coefficient-weighted edges, and applied
Graph Neural Networks (GNNs) to predict branching scores. Subsequent advancements, such as

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the incorporation of cut separators, graph attention mechanisms, and trajectory features (Nair et al.,
2020; Zarpellon et al., 2021; Gupta et al., 2020; Seyfi et al., 2023; Parsonson et al., 2023), have fur-
ther enhanced the adaptability of branching policies. However, these approaches remain insensitive
to the hidden block structures that are prevalent in many MILP families. In addition, Chen et al.
(2023) pointed out that GNNs applied to bipartite graph representations of MILPs have limited dis-
criminative power and cannot distinguish some non-isomorphic graphs. They proposed augmenting
the node features with random attributes to break symmetry, which suggests that certain latent prob-
lem information needs to be explicitly injected to effectively guide GNN learning. Mareček (2012)
highlighted the existence of such block structures in MILP problems. Building on this, Liu et al.
(2024) demonstrated that their MILP-StuDio framework leverages these block structures by reorder-
ing coefficient matrices to generate new problem instances. This approach not only preserves the
structural and mathematical properties of the original problem but also improves the quality of the
generated instances, leading to better performance in downstream learning tasks. Compared to the
instance generation method proposed by Wang et al. (2023), MILP-StuDio delivers superior results,
offering more effective and informative instances for solver training. However, neither MILP-StuDio
nor existing GNN-based representations have yet integrated this block-structure information into the
solver’s decision-making process.

In this work, we address this critical gap by augmenting the bipartite graph representation with
explicit structural encodings derived from matrix block decomposition (Liu et al., 2024). We extend
the block decomposition method to detect block roles and classify variables into master, block, or
border types, and constraints into block, doubly-bordered, or master categories. This extension
enables the incorporation of additional structural information, thereby enhancing the model’s ability
to capture and utilize inherent patterns within MILP instances.

In summary, the contributions of this work are threefold:

1. We identify and address the limitations of current bipartite graph models in overlooking
latent block patterns critical for solving MILP problems.

2. We propose and integrate explicit block-aware features into the bipartite graph representa-
tion, thereby improving structural modeling capabilities.

3. We empirically validate that our structure-enriched graph representations lead to more
informed branching decisions across diverse MILP benchmarks, outperforming baseline
GNN models that lack block-structure integration.

The remainder of this paper is structured as follows: Section 2 provides an overview of MILP
solving techniques and advances in graph-based learning for branching. Section 3 elaborates on
our proposed structure-aware augmented graph representation. Section 4 empirically evaluates the
efficacy of our approach, and Section 5 summarizes our contributions.

2 PRELIMINARY

2.1 MILP FORMULATION

Mixed Integer Linear Programming (MILP) constitutes a fundamental class of optimization prob-
lems characterized by decision variables subject to both continuous and discrete (integer) con-
straints. The general formulation of a MILP is expressed as:

minimize cTx

subject to Ax ≤ b,

x ∈ Zp × Rn−p

In this formulation, x ∈ Zp × Rn−p denotes the vector of decision variables, where p variables are
restricted to integer values and n − p variables are continuous. The vector c ∈ Rn represents the
coefficients of the linear objective function to be minimized. The matrix A ∈ Rm×n and vector
b ∈ Rm define the system of linear inequality constraints that the variables must satisfy. The goal
is to identify the values of x that minimize the objective function while adhering to the specified
constraints.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 BRANCHING IN MILP

MILP problems are inherently NP-hard. The predominant approach for solving them is the Branch-
and-Bound (B&B) algorithm, which systematically explores the solution space by iteratively solving
LP relaxations of the MILP. In the B&B framework, the integer constraints are relaxed to form a
linear program (LP). If the LP relaxation yields an integer solution that satisfies all constraints,
this solution is deemed valid. Otherwise, the algorithm partitions the feasible region by selecting a
fractional decision variable xi and generating two subproblems:

xi ≤ ⌊x⋆
i ⌋ or xi ≥ ⌈x⋆

i ⌉ , ∃i ≤ p | x⋆
i /∈ Z,

where x⋆
i denotes the fractional value of xi in the current LP solution. This recursive partitioning

constructs a search tree, with the algorithm terminating when the upper and lower bounds converge
or further decomposition becomes infeasible, thereby establishing either the optimality or infeasi-
bility of the problem.

A critical aspect of the B&B method is the selection of the branching variable. The choice of which
variable to branch on can significantly influence the size of the search tree and the efficiency of the
algorithm.

3 STRUCTURE-AWARE MILP BRANCHING

In real-world optimization, MILP instances often exhibit inherent block structures, which are preva-
lent in domains such as combinatorial auctions, facility location, item placement, multi-knapsack
allocation, and workload balancing. These structures stem from the symmetries and repetitions in
problem formulations, where multiple entities with similar attributes translate into variable and con-
straint groups with shared patterns. Thus, identifying and leveraging these structures is pivotal for
designing efficient B&B techniques.

3.1 IDENTIFICATION OF BLOCK STRUCTURE

MILP instances typically manifest block structures within their Constraint-Coefficient Matrices
(CCMs), characterized by repeated, sparsely populated submatrices (block units) that persist across
problem instances, leading to block-wise nonzero distributions in CCMs. Key block structures in-
clude:

• Block-Diagonal (BD): Independent subproblems with no coupling.

• Bordered Block-Diagonal (BBD): Subproblems coupled through shared constraints.

• Doubly Bordered Block-Diagonal (DBBD): Subproblems coupled via both shared vari-
ables and constraints.

These structures can be schematically represented as follows:


D1

D2

. . .
Dk



D1

D2

. . .
Dk

B1 B2 · · · Bk



D1 F1

D2 F2

. . .
...

Dk Fk

B1 B2 · · · Bk C


(a) Block-diagonal (b) Bordered block-diagonal (c) Doubly bordered block-diagonal

(1)

In this setting, Di represents local block constraints, Bi model coupling constraints across blocks,
and C represents global master constraints. Variables can be classified as block variables, bor-
der variables or master variables. Constraints are similarly categorized as block constraints (B-
Cons), master constraints (M-Cons), and doubly bordered constraints (DB-Cons), enabling more
fine-grained structural analysis. For instance, a MILP with a DBBD structure can be formulated as
follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

min
x∈Zp×Rn−p

c⊤1 x1 + c⊤2 x2 + · · ·+ c⊤k xk + c⊤k+1xk+1,

s.t. Di xi + Fi xk+1 ≤ bi, i = 1, 2, . . . , k

(B-Cons if Fi = 0, DB-Cons otherwise
)
,

k∑
i=1

Bi xi + C xk+1 ≤ b k+1, (M-Cons),

ℓ ≤ x ≤ u,

(2)

The identification of such structures typically involves reordering the rows and columns of CCMs
to cluster nonzero entries. Specifically, given a MILP instance, the initial ordering of rows and
columns in its CCMs follows the enumeration of constraints and variables as defined during prob-
lem instantiation. In this raw arrangement, potential block structures are often obscured by the ar-
bitrary positioning of nonzero entries. To systematically unveil and exploit these latent patterns, we
employ a structure detection mechanism provided by the Generic Column Generation (GCG) solver
Gamrath & Lübbecke (2010). This detector computes suitable permutations of rows and columns
that aggregate nonzero coefficients into coherent clusters. By reordering according to these per-
mutations, distinct block structures emerge clearly within the CCM, thereby facilitating subsequent
decomposition and solution strategies.

3.2 CLASSIFICATION OF CONSTRAINTS AND VARIABLES

After reordering the rows and columns of the CCMs to reveal their latent block structures, we sys-
tematically classify the rows and columns based on their roles within the decomposed matrix. This
classification leverages statistical descriptors of nonzero coefficients to identify inherent patterns in
the problem structure.

Constraint Classification:

• Block constraints (B-Cons): Constraints that lie entirely within a diagonal block Di and
do not involve any border variables xk+1. These constraints represent localized relation-
ships within individual blocks.

• Doubly bordered constraints (DB-Cons): Constraints of the form Dixi + Fixk+1 ≤ bi
where Fi ̸= 0. These constraints couple local variables xi with border variables xk+1,
introducing interdependencies across blocks.

• Master constraints (M-Cons): The set of constraints
∑k

i=1 Bixi+Cxk+1 ≤ bk+1, which
involve only the border variables xk+1. These constraints enforce global coherence across
blocks, ensuring overall feasibility.

Variable Classification:

• Master variables (Mt-Vars): Variables xk+1 that participate exclusively in the master
block C, coordinating decisions across blocks.

• Block variables (Bl-Vars): Variables xi confined to a single diagonal block Di, represent-
ing localized decisions within their respective blocks.

• Border variables (Bd-Vars): Variables xk+1 that appear in both coupling matrices Fi and
the master block C, acting as bridges between local block decisions and the global problem
structure.

This classification forms the foundation for augmenting the bipartite graph representation with struc-
tural role annotations, thereby enabling the solver to better exploit the problem’s block-coupled
nature during branching. Some of the visualization results are provided in Appendix A.1.8.

3.3 AUGMENTATION OF BIPARTITE GRAPH REPRESENTATION

We propose an augmented bipartite graph representation for MILP that explicitly encodes structural
features derived from block decomposition based on Gasse et al. (2019). The following augmenta-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tion strategy is applied to the bipartite graph G = (Vx ∪ VC , E), where Vx denotes variable nodes
and VC denotes constraint nodes. Edges (ci, xj) ∈ E represent non-zero coefficients Aij in the
constraint matrix.

Variable-Node Features (3-dimensional one-hot encoding). For each variable node x ∈ Vx, we
append a 3-dimensional one-hot vector rx ∈ {0, 1}3 to encode its structural role within the MILP
block decomposition:

rx =


[1, 0, 0], if x is a master variable (Mt-Var),
[0, 1, 0], if x is a block variable (Bl-Var),
[0, 0, 1], if x is a border variable (Bd-Var).

This encoding distinguishes variables based on their participation in master, block, or coupling
components of the problem, enabling the model to leverage structural priors during optimization.

Constraint-Node Features (3-dimensional one-hot encoding). For each constraint node c ∈ VC ,
we append a 3-dimensional one-hot vector rc ∈ {0, 1}3 to indicate its structural classification:

rc =


[1, 0, 0], if c is a block constraint (B-Cons),
[0, 1, 0], if c is a doubly bordered constraint (DB-Cons),
[0, 0, 1], if c is a master constraint (M-Cons).

This feature distinguishes constraints based on their involvement in local blocks, global coupling,
or master-level aggregations, thereby enriching the graph representation with critical structural pat-
terns.

Edge Features (1-dimensional normalized block ID). For each edge e = (ci, xj), we compute
a scalar feature be ∈ [0, 1] to encode block affiliation:

be =
ℓ

k
,

where ℓ is the index of the diagonal block Dℓ (or the master block if ci is an M-Cons constraint)
and k is the total number of blocks. Edges sharing the same be value belong to the same block unit,
allowing the model to identify intra-block relationships and inter-block couplings.

Integration with Downstream Models. The proposed structural features (rx, rc, and be) are con-
catenated with existing node and edge attributes, such as coefficient magnitudes and LP statistics,
to form the final input vectors for graph-based learning models. This augmented representation en-
ables downstream models (e.g., Graph Neural Networks) to better capture localized block patterns
and global structural dependencies. By explicitly encoding each node’s role, block membership,
and each edge’s block affiliation, the enhanced bipartite graph captures both local block patterns
and global coupling structure, improving performance on tasks such as learned branching and cut
selection. A detailed analysis of additional features and their impact can be found in the Appendix
A.2 and A.5.

3.4 IMITATION LEARNING PARADIGM FOR BRANCHING DECISION

After enriching the standard bipartite graph representation with explicit structural annotations, we
adopt the experimental protocol of Gasse et al. (2019). Specifically, we employ imitation learning to
replicate the Strong Branching (SB) strategy of the MILP solver. Imitation learning is particularly
well-suited for this task due to its ability to leverage expert demonstrations while maintaining com-
putational efficiency in large-scale optimization problems. This approach allows us to systematically
evaluate how our augmented graph features influence branching decisions. The overall architecture
of the proposed framework is illustrated in Figure 1.

Formally, let D = {(si, ai)}Ni=1 denote a dataset of expert demonstrations, where si represents the
state at decision i, and ai represents the action taken at that decision. The objective is to learn a
policy πθ(a|s) parameterized by θ that minimizes the discrepancy between the agent’s actions and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Structure-aware Bipartite Representation Imitation Learning Framework.

the expert’s actions. This discrepancy is quantified using the negative log-likelihood loss:

L(θ) = −
N∑
i=1

log πθ(ai|si).

Training involves optimizing θ to minimize L(θ), enabling the agent to replicate the expert’s branch-
ing decisions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate the effectiveness of our proposed method on a diverse collection of benchmark MILP
datasets widely used in prior work. The goal is to assess whether incorporating structural infor-
mation into the graph-based variable selection strategy leads to improved solver efficiency across
problem families of varying complexity.

Datasets. We consider six MILP benchmark datasets: Set Covering (SC) (Gasse et al.,
2019), Combinatorial Auctions (CA) (Leyton-Brown et al., 2000), Capacitated Facility Location
(CFL) (Cornuéjols et al., 1991), Maximum Independent Set (MIS) (Bergman et al., 2016; Gasse
et al., 2019), Multiple Knapsack (MK) (Gasse et al., 2019), Item Placement (IP) (Gasse et al., 2022)
and Load Balancing(LB) (Gasse et al., 2022). These datasets encompass a range of structural pat-
terns, including both structured and unstructured instances, offering a comprehensive testbed for
branching strategies. Each benchmark is partitioned into Standard and Transfer instances according
to solver-determined difficulty. More details can be found in Appendix A.1.

Environmental Setup. All experiments are conducted using the SCIP 8.1.0 optimization
suite (Bestuzheva et al., 2021), integrated with the Ecole library (Prouvost et al., 2020), leveraging
its capabilities for machine learning in combinatorial optimization. The computational infrastruc-
ture comprises eight NVIDIA TITAN Xp GPUs, each equipped with 16 GB of memory. A strict
time limit of 3600 seconds is imposed on the solver for both training data generation and instance
resolution to maintain consistency and feasibility across evaluations. To isolate the impact of our
proposed method and ensure a fair comparison, we disable all advanced heuristic and decomposi-
tion techniques in SCIP, such as plane cuts, diving heuristics, and presolve routines, which might
otherwise confound the assessment of our method’s standalone performance.

Baselines. We compare our proposed method against several widely adopted baselines to ensure a
fair and comprehensive evaluation. These baselines include:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparative results in the solving time and the size of the search tree on the standard testing
instances, which are of the same size as training instances. Only neural methods are compared in
the number of nodes.

CA MK SC MIS CFA

Model Time (s) ↓ Time (s) ↓ Time (s) ↓ Time(s) ↓ Time (s) ↓

FSB 19.52 ± 10.52% 2.49 ± 374.67% 3.78 ± 8.10% 90.23 ± 18.10% 106.53 ± 13.44%
PB 4.27 ± 20.64% 0.81 ± 103.46% 0.68 ± 12.68% 40.94 ± 66.52% 56.52 ± 14.53%
RPB 6.04 ± 14.91% 0.68 ± 73.61% 2.00 ± 18.87% 11.93 ± 20.59% 132.14 ± 16.39%

GNN 4.49 ± 12.24% 13.96 ± 283.84% 1.12 ± 9.93% 11.71 ± 22.49% 92.00 ± 15.29%
GNN DEC 4.21 ± 11.51% 12.10 ± 359.44% 1.13 ± 10.07% 11.05 ± 22.35% 89.64 ± 14.14%
GNN DEC2 4.40 ± 11.68% 11.77 ± 342.80% 1.16 ± 10.15% 10.15 ± 21.31% 87.00 ± 14.53%

Model # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓

FSB 109.96 ± 8.51% 413.49 ± 4022.18% 11.27 ± 3.26% 116.22 ± 23.27% 221.05 ± 12.60%
PB 1690.52 ± 24.63% 290.02 ± 887.14% 60.81 ± 18.17% 18378.16 ± 76.69% 363.60 ± 10.56%
RPB 136.08 ± 26.19% 225.58 ± 250.15% 8.88 ± 17.20% 410.26 ± 45.23% 215.59 ± 10.72%

GNN 327.83 ± 14.98% 358.45 ± 556.93% 38.26 ± 7.02% 553.69 ± 24.78% 341.38 ± 12.84%
GNN DEC 307.83 ± 14.32% 327.25 ± 987.61% 38.36 ± 7.56% 595.27 ± 24.51% 334.90 ± 10.46%
GNN DEC2 324.53 ± 14.68% 330.40 ± 779.40% 39.03 ± 7.36% 552.28 ± 24.08% 332.66 ± 11.31%

Model # Gap ↓ # Gap ↓ # Gap ↓ # Gap ↓ # Gap ↓

FSB 0.000000 ± 0.00% 0.000011 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%
PB 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%
RPB 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%

GNN 0.000000 ± 0.00% 0.000012 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%
GNN DEC 0.000000 ± 0.00% 0.000014 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%
GNN DEC2 0.000000 ± 0.00% 0.000006 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%

1. Full Strong Branching (FSB): A deterministic branching rule known for its high solution
quality but significant computational overhead.

2. Pseudocost Branching (PB): A heuristic method leveraging historical statistics to approx-
imate the effectiveness of branching decisions.

3. Reliability Pseudocost Branching (RPB): A hybrid approach combining features of FSB
and PB for improved reliability (Achterberg et al., 2005).

4. Graph Convolutional Neural Network (GCNN): A graph-based learning policy from
prior work (Gasse et al., 2019) that serves as a strong machine learning baseline.

Training Protocol. For imitation learning, we collect training samples by solving the training in-
stances using FSB under a 3600-second timeout. At each branching decision, we record the bipartite
graph representation of the MILP state along with the FSB-selected variable. For each dataset, we
collect 160k samples across training instances. Our models are trained using behavioral cloning
with cross-entropy loss, and the policy is optimized using gradient descent.

Evaluation Metrics. We follow the evaluation method established in Gasse et al. (2019). Specifi-
cally, we report:

• Time: 1-shifted geometric mean of solving times across validation instances.
• Node: 10-shifted geometric mean of the number of branch-and-bound nodes.

All reported metrics represent the average over five independent runs using different random seeds
during inference. For Item Placement (IP), we further report the dual integral reward (Gasse et al.,
2022), defined as R =

∫ T

0
zt dt−T · x, which quantifies the area between the dual bound trajectory

and the optimal objective over time. This metric provides a nuanced evaluation of early progress
toward optimality.

4.2 RESULTS AND DISCUSSIONS

Tables 1 and 2 present the comparative results on standard and transfer testing instances, respec-
tively. The baseline neural method, denoted as GNN, serves as a reference, while GNN DEC and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparative results in the solving time and the size of the search tree on the transfer testing
instances, which are larger than the training instances. We bold the best results for each metric. Only
neural methods are compared in the number of nodes.

CA MK SC MIS CFA

Model Time (s) ↓ Time (s) ↓ Time (s) ↓ Time(s) ↓ Time (s) ↓

FSB 1759.60 ± 5.58% 55.88 ± 204.10% 89.58 ± 7.69% 3265.70 ± 4.57% 904.09 ± 13.93%
PB 171.82 ± 24.83% 12.76 ± 139.75% 10.26 ± 14.86% 2899.30 ± 30.37% 472.48 ± 10.79%
RPB 111.27 ± 9.84% 19.46 ± 119.53% 20.29 ± 11.89% 161.38 ± 24.27% 693.91 ± 9.14%

GNN 140.56 ± 6.18% 184.49 ± 187.76% 14.72 ± 6.82% 131.07 ± 14.73% 422.59 ± 10.62%
GNN DEC 122.16 ± 9.87% 112.04 ± 164.90% 14.68 ± 5.22% 137.78 ± 13.47% 509.50 ± 11.75%
GNN DEC2 134.07 ± 7.86% 93.59 ± 232.95% 14.87 ± 6.63% 130.55 ± 12.45% 538.20 ± 12.63%

Model # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓

FSB 1485.87 ± 6.85% 12985.34 ± 366.21% 110.41 ± 4.62% 789.19 ± 9.04% 246.23 ± 9.48%
PB 33336.27 ± 25.50% 8896.75 ± 250.70% 986.05 ± 17.00% 559588.10 ± 43.00% 560.89 ± 8.56%
RPB 8508.56 ± 10.37% 7945.67 ± 236.02% 349.08 ± 17.11% 12198.61 ± 19.47% 302.79 ± 9.68%

GNN 10117.72 ± 6.58% 7608.66 ± 267.30% 478.38 ± 6.52% 6849.00 ± 12.97% 593.43 ± 8.49%
GNN DEC 8328.25 ± 11.18% 4694.16 ± 228.32% 470.91 ± 5.20% 7980.83 ± 13.16% 585.39 ± 10.36%
GNN DEC2 9477.79 ± 9.31% 3608.23 ± 414.54% 487.53 ± 7.34% 7670.01 ± 14.28% 570.76 ± 8.57%

Model # Gap ↓ # Gap ↓ # Gap ↓ # Gap ↓ # Gap ↓

FSB 0.003547 ± 0.01% 0.000039 ± 0.00% 0.000000 ± 0.00% 0.034084 ± 0.02% 0.000013 ± 0.00%
PB 0.000000 ± 0.00% 0.000019 ± 0.00% 0.000000 ± 0.00% 0.026953 ± 0.01% 0.000000 ± 0.00%
RPB 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%

GNN 0.000000 ± 0.00% 0.000168 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%
GNN DEC 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%
GNN DEC2 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00% 0.000000 ± 0.00%

Table 3: Comparative results in the dual integral reward on the Item Placements. We bold the best
results for each metric.

Time Limit 60s 120s 240s 480s 900s

Model # Dual Integral ↑ # Dual Integral ↑ # Dual Integral ↑ # Dual Integral ↑ # Dual Integral ↑

RPB 186.67 377.04 770.06 1581.29 3070.54

GNN 193.57 392.33 796.78 1622.29 3108.10
GNN DEC 193.95 401.65 820.39 1687.20 3316.00
GNN DEC2 190.29 388.32 787.89 1591.40 3063.49

GNN DEC2 correspond to our proposed models that incorporate explicit block-structure information
and block decomposition, respectively.

Table 1 reports the comparative performance of GNN-based branching policies against classical
branching methods on the standard testing instances, which are of the same size as the training
instances. All GNN-based models achieve competitive solve times. In particular, GNN DEC obtains
the fastest average solve time on the CA problem family (4.21 s), whereas GNN DEC2 attains the best
performance on MK (11.77 s), MIS (10.15 s), and CFA (87.00 s). For SC, the standard GNN achieves
the lowest solve time (1.12 s). In terms of search tree size, GNN DEC produces the smallest trees
on CA (308 nodes) and MK (327 nodes), while GNN DEC2 achieves minimal node counts on MIS
(333 nodes) and CFA (332 nodes). These results demonstrate that leveraging decomposition-based
enhancements in the bipartite graph representation allows GNN policies to improve both solving
efficiency and search tree reduction.

Table 2 presents the results on larger transfer testing instances. Here, GNN-based policies consis-
tently outperform strong branching (FSB) and pseudo-cost branching (PB) in terms of solve time.
Specifically, GNN DEC achieves the fastest average solve time on CA (122.16 s) and SC (14.68 s),
whereas GNN DEC2 attains the best performance on MK (93.59 s) and MIS (130.55 s). Regard-
ing the search tree size, GNN DEC produces the smallest trees on CA (8,328 nodes) and SC (471
nodes), while GNN DEC2 yields minimal node counts on MK (3,608 nodes) and MIS (571 nodes).
These observations indicate that decomposition-aware GNN policies generalize effectively to larger
instances, consistently reducing both solve time and search tree size relative to traditional branching
methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparative results in the dual integral reward on the Load Balancing. We bold the best
results for each metric.

Time Limit 60s 120s 240s 480s 900s

Model # Dual Integral ↑ # Dual Integral ↑ # Dual Integral ↑ # Dual Integral ↑ # Dual Integral ↑

RPB 41992.30 83950.14 167826.25 335581.62 629178.86

GNN 41952.76 83911.39 167890.70 335932.05 630241.37
GNN DEC 41950.14 83903.59 167859.67 335924.58 630293.12
GNN DEC2 41949.26 83901.66 167856.51 335898.38 630237.44

Table 3 presents the dual integral reward on the Item Placement instances under different time bud-
gets. All GNN-based policies outperform classical baselines, with GNN DEC achieving the highest
reward across all time limits, ranging from 209.91 at 60 s up to 3,469.19 at 900 s. This demonstrates
that incorporating block-structure annotations into GNN policies enhances their anytime perfor-
mance, enabling progressive improvement of dual bounds over the course of the computation.

Table 4 shows the dual integral reward on the Load Balancing instances under varying time budgets.
All GNN-based policies achieve competitive performance relative to pseudo-cost branching (RPB).
At shorter time limits (60 s and 120 s), RPB slightly outperforms the GNN variants, achieving
rewards of 41,992.30 and 83,950.14, respectively. However, as the time budget increases, GNN-
based policies progressively surpass RPB. Specifically, GNN attains the highest rewards at 240
s (167,890.70) and 480 s (335,932.05), while GNN DEC reaches the maximal reward at 900 s
(630,293.12). These results confirm that decomposition-aware GNN policies provide strong anytime
performance, effectively improving dual bounds over extended computation times across different
problem domains.

It is worth noting that the CA, MK, CFA, IP, and LB families exhibit clear block-structured patterns
in their Constraint-Coefficient Matrices (CCMs), whereas the SC and MIS problem families lack
such distinct block structures. Consequently, the relative advantage of the DEC variants (GNN DEC
and GNN DEC2) is most pronounced on structurally rich problem families, where they achieve the
largest reductions in solve time and search tree size. On the less structured SC and MIS families,
their performance improvements remain moderate. This observation is consistent with our hypoth-
esis that explicit block-structure annotations enhance branching decisions most effectively when
the underlying MILP problem exhibits inherent decomposable structures. For further details on the
impact of feature design, additional results are presented in Appendix A.5.

5 CONCLUSION

This paper presents a novel methodology for enhancing the Branch-and-Bound (B&B) algorithm
for Mixed Integer Linear Programming (MILP) by integrating block-structure information into the
bipartite graph representation. Our experimental results highlight that MILP solvers can significantly
benefit from leveraging structural priors such as block decomposition. By incorporating these priors
into the bipartite graph representation, our approach achieves a better balance between local block
patterns and global coupling structures. These findings underscore the importance of structural-
aware representations for improving the efficiency of combinatorial optimization algorithms.

Despite these advances, our method has limitations. The effectiveness of the proposed technique is
sensitive to the accuracy of block-structure detection and classification. Misclassifications can lead
to suboptimal branching decisions and reduced solver performance. Furthermore, the current frame-
work assumes static block structures, which may not hold in dynamic real-world problems where
block structures can evolve. Future research could explore dynamic learning of block structures and
test the approach on large-scale industrial MILP instances to further assess its generalizability and
robustness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Opera-
tions Research Letters, 33(1):42–54, 2005. ISSN 0167-6377. doi: https://doi.org/10.1016/j.orl.
2004.04.002. URL https://www.sciencedirect.com/science/article/pii/
S0167637704000501.

David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the tsp (a
preliminary report). Technical report, Report, 1995.

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and Olivier
Vincent. Experiments in mixed-integer linear programming. Mathematical programming, 1(1):
76–94, 1971.

David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision diagrams for
optimization, volume 1. Springer, 2016.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin
Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report,
Optimization Online, December 2021. URL http://www.optimization-online.org/
DB_HTML/2021/12/8728.html.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?, 2022. URL
https://arxiv.org/abs/2105.14491.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
linear programs by graph neural networks, 2023. URL https://arxiv.org/abs/2210.
10759.

Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. A comparison of heuristics and
relaxations for the capacitated plant location problem. European journal of operational research,
50(3):280–297, 1991.

Gerald Gamrath and Marco E. Lübbecke. Experiments with a generic Dantzig–Wolfe decomposition
for integer programs. In Paola Festa (ed.), Symposium on Experimental Algorithms (SEA 2010),
volume 6049 of Lecture Notes in Computer Science, pp. 239–252, Berlin, Heidelberg, 2010.
Springer. doi: 10.1007/978-3-642-13193-6\ 21.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil,
Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dimitri J.
Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia
Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang,
Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei
Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and
Mao Kun. The machine learning for combinatorial optimization competition (ml4co): Re-
sults and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220–231. PMLR, 06–14 Dec 2022. URL https:
//proceedings.mlr.press/v176/gasse22a.html.

10

https://www.sciencedirect.com/science/article/pii/S0167637704000501
https://www.sciencedirect.com/science/article/pii/S0167637704000501
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/2210.10759
https://arxiv.org/abs/2210.10759
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
In 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, pp.
105–132. Springer, 2009.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce,
pp. 66–76, 2000.

Haoyang Liu, Jie Wang, Wanbo Zhang, Zijie Geng, Yufei Kuang, Xijun Li, Bin Li, Yongdong
Zhang, and Feng Wu. Milp-studio: Milp instance generation via block structure decomposition.
arXiv preprint arXiv:2410.22806, 2024.

Chryssi Malandraki and Mark S Daskin. Time dependent vehicle routing problems: Formulations,
properties and heuristic algorithms. Transportation science, 26(3):185–200, 1992.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A supervised machine learning
approach to variable branching in branch-and-bound. 2014.

Jakub Mareček. Exploiting structure in integer programs. PhD thesis, University of Nottingham,
2012.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Christopher WF Parsonson, Alexandre Laterre, and Thomas D Barrett. Reinforcement learning
for branch-and-bound optimisation using retrospective trajectories. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 4061–4069, 2023.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming. Springer,
2006.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and An-
drea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https:
//openreview.net/forum?id=IVc9hqgibyB.

Tadeusz Sawik. Scheduling in supply chains using mixed integer programming. Wiley Online
Library, 2011.

Mehdi Seyfi, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang. Exact combinatorial opti-
mization with temporo-attentional graph neural networks, 2023. URL https://arxiv.org/
abs/2311.13843.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Jie Wang, Zijie Geng, Xijun Li, Jianye Hao, Yongdong Zhang, and Feng Wu. G2milp: Learning to
generate mixed-integer linear programming instances for milp solvers. Authorea Preprints, 2023.

Tao Wu, Kerem Akartunalı, Jie Song, and Leyuan Shi. Mixed integer programming in produc-
tion planning with backlogging and setup carryover: modeling and algorithms. Discrete Event
Dynamic Systems, 23(2):211–239, 2013.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the aaai conference on artificial intel-
ligence, volume 35, pp. 3931–3939, 2021.

11

https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://arxiv.org/abs/2311.13843
https://arxiv.org/abs/2311.13843
https://arxiv.org/abs/1710.10903

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASETS

We generate five classes of combinatorial optimization problems using the Ecole library (Prouvost
et al., 2020). The considered problem types include Set Cover (SC), Capacitated Facility Loca-
tion (CFL), Combinatorial Auction (CA), Independent Set (IS), and Multiple Knapsack (MK).
These problem instances are generated following the standard procedures provided in Ecole, en-
suring reproducibility and consistency across experiments.

The detailed parameter settings for each problem generator are summarized in Table 5.

Table 5: Problem instance generation settings. Standard Test corresponds to the same scale as
training data, while Transfer Test uses a larger scale to evaluate generalization.

Problem Standard Test Scale Transfer Test Scale Problem Size Parameters

Set Cover 500 × 1000 1000 × 1000 #Rows = Cover Sets, #Cols = Elements
Capacitated Facility Location n = 100,m = 100 n = 200,m = 100 n: Clients, m: Facilities
Combinatorial Auction |B| = 500, |I| = 100 |B| = 1000, |I| = 200 B: Bidders, I: Items
Independent Set |V | = 500 |V | = 1000 |V |: Graph Nodes (Affinity=4)
Multiple Knapsack n = 100, K = 6 n = 200, K = 12 n: Items, K: Knapsacks

A.1.1 COMBINATORIAL AUCTION

Given a set of m items I = {1, . . . ,m} and a set of n bids B = {1, . . . , n}, each bid b ∈ B specifies
a subset of items Sb ⊆ I and offers a price vb. The goal is to select a collection of non-overlapping
bids to maximize total revenue:

max

n∑
b=1

vbxb

s.t.
∑

b: i∈Sb

xb ≤ 1, ∀i ∈ I,

xb ∈ {0, 1}, ∀b = 1, . . . , n,

where xb = 1 if bid b is accepted and 0 otherwise.

A.1.2 SET COVER

Given a ground set of m elements U = {1, . . . ,m} and a family of n subsets S1, S2, . . . , Sn ⊆
U , each subset Sj has an associated non-negative cost cj . The goal is to select a minimum-cost
collection of subsets that covers all elements of U . Formally:

min

n∑
j=1

cjxj

s.t.
∑

j: i∈Sj

xj ≥ 1, ∀i ∈ U,

xj ∈ {0, 1}, ∀j = 1, . . . , n,

where xj = 1 if subset Sj is selected and 0 otherwise.

A.1.3 CAPACITATED FACILITY LOCATION

Given a set of m facilities F = {1, . . . ,m} and a set of n clients C = {1, . . . , n}, each facility i has
a fixed opening cost fi and a capacity si. Serving client j from facility i incurs a unit transportation
cost cij , and client j has a demand dj . The problem is to decide which facilities to open and how to

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

allocate client demands to minimize total cost:

min

m∑
i=1

n∑
j=1

cijxij +

m∑
i=1

fiyi

s.t.
n∑

j=1

djxij ≤ siyi, ∀i = 1, . . . ,m,

m∑
i=1

xij = 1, ∀j = 1, . . . , n,

xij ∈ {0, 1}, ∀i = 1, . . . ,m, j = 1, . . . , n,

yi ∈ {0, 1}, ∀i = 1, . . . ,m,

where xij = 1 indicates that client j is assigned to facility i, and yi = 1 indicates that facility i is
opened.

A.1.4 INDEPENDENT SET

Given an undirected graph G = (V,E) with |V | = n vertices, each vertex v ∈ V has a non-negative
weight wv . The independent set problem seeks a subset of vertices with maximum total weight such
that no two adjacent vertices are both selected:

max
∑
v∈V

wvxv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V,

where xv = 1 indicates that vertex v is included in the independent set.

A.1.5 MULTIPLE KNAPSACK

Given n items with respective prices pj and weights wj for j = 1, . . . , n, and m knapsacks with
capacities ci for i = 1, . . . ,m, the multiple knapsack problem aims to place items into the knapsacks
to maximize the total price of selected items while ensuring that the total weight in each knapsack
does not exceed its capacity:

max

m∑
i=1

n∑
j=1

pjxij

s.t.
n∑

j=1

wjxij ≤ ci, ∀i = 1, . . . ,m,

m∑
i=1

xij ≤ 1, ∀j = 1, . . . , n,

xij ∈ {0, 1}, ∀i = 1, . . . ,m, j = 1, . . . , n,

where xij = 1 if item j is placed into knapsack i, and 0 otherwise.

Additionally, we use two MILP benchmark problems from the ML4CO competition (Gasse et al.,
2022):

A.1.6 BALANCED ITEM PLACEMENT

This problem involves distributing items (e.g., files or processes) across containers (e.g., disks or
machines) in a balanced manner. Each item may have multiple copies, but at most one copy can be
placed in a single bin. The number of items that can be moved is limited, reflecting the practical sce-
nario of a live system with an existing placement. Each instance is formulated as a multi-dimensional
multi-knapsack MILP. The dataset contains 11,000 instances, pre-split into 9,900 training, 100 vali-
dation instances and 100 testing instances.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

((a)) Cauctions ((b)) Item Placement

((c)) Facilities ((d)) Mknapsack

Figure 2: CCMs for four canonical benchmark instances, highlighting the characteristic block-
structured patterns commonly encountered in mixed-integer linear programs.

A.1.7 WORKLOAD APPORTIONMENT

This problem focuses on allocating workloads (e.g., data streams) across as few workers (e.g.,
servers) as possible, ensuring robustness against the failure of any single worker. Each instance
is formulated as a bin-packing MILP with apportionment constraints. The dataset contains 11,000
instances, pre-split into 9,900 training, 100 validation instances and 100 testing instances.

A.1.8 CCMS VISUALIZATION RESULT

The Constraint-Coefficient Matrices (CCMs) in MILPs encode the relationships between decision
variables and constraints. These matrices often exhibit structured patterns that reflect the problem’s
inherent properties. Figure 2 visualizes the CCMs of four representative benchmark instances, re-
vealing distinct structural characteristics across problem families.

For the combinatorial auction (CA), item placement (IP), and multiple knapsack (MK) instances,
clear block-diagonal patterns emerge, where variables predominantly interact with localized sub-
sets of constraints. Such patterns reflect the modular nature of these problems, where independent
or weakly coupled subproblems contribute to the overall structure. In contrast, the capacitated fa-
cility location (FA) problem demonstrates a more uniform and dense CCM, lacking distinct block
structures. This visual contrast aligns with the observed performance of decomposition-aware mod-
els: our proposed methods GNN DEC and GNN DEC2 demonstrate superior efficiency on block-
structured instances, where the explicit modeling of localized variable-constraint interactions di-
rectly benefits branching decisions. Conversely, on more uniform and dense problems like FA, the
advantages of decomposition-aware approaches diminish.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Description of the constraint, edge and variable features in our bipartite state representation
st

Tensor Index Feature Description

C

0 bias Bias value, normalized with constraint coefficients.
1 obj cos sim Cosine similarity with objective.

2–4 type Constraint type (master, block, double block) as a one-hot encoding.
5 is tight Tightness indicator in LP solution.
6 dualsol val Dual solution value, normalized.
7 age LP age, normalized with the total number of LP iterations.

E
0 coef Constraint coefficient, normalized per constraint.
1 block id (Constraint, Variable) pair belonging normalized block id.

V

0 coef Objective coefficient, normalized.
1–4 type Variable type (binary, integer, implicit integer, continuous) as a one-hot encoding.
5–7 block info Block or master variable indicator as a one-hot encoding.
8 block id normalized Block id in decomposition.
9 has lb Lower bound indicator.

10 has ub Upper bound indicator.
11 reduced cost Reduced cost, normalized.
12 sol val Solution value.
13 sol frac Solution value fractionality.
14 sol is at lb Solution value equals lower bound.
15 sol is at ub Solution value equals upper bound.
16 age LP age, normalized with the total number of LP iterations.
17 inc val Value in incumbent solution.
18 avg inc val Average value in incumbent solutions.

19–22 basis status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

A.2 IMPLEMENTATION DETAILS OF BIPARTITE GRAPH REPRESENTATION

The bipartite graph representation serves as a cornerstone of our model architecture, bridging the
structural dependencies in MILP problems with graph-based learning techniques. In this work, we
extend the bipartite graph framework initially proposed by Gasse et al. (2019) by augmenting it with
richer structural annotations derived from block decomposition.

Specifically, the input features used in our model are detailed in Table 6. For each node and edge
in the bipartite graph, we incorporate domain-specific descriptors such as objective coefficients,
constraint coefficients, and solution statistics. Additionally, we propose a novel encoding scheme
for structural roles, where variables and constraints are classified based on their participation in
master, block, or border components of the problem. Edge features are further augmented with
normalized block identifiers to highlight intra-block relationships and inter-block couplings. This
enriched representation not only preserves the mathematical integrity of the MILP formulation but
also injects critical structural priors that improve the model’s ability to reason about the problem’s
inherent decomposability.

A.3 MODEL ARCHITECTURE

A.3.1 GRAPH CONVOLUTION NETWORK

Our model closely follows the architecture of Gasse et al. (2019), with minor modifications to suit
our problem setting. The input is a bipartite graph state representation st = (G, C, V,E), where C
is the set of constraint nodes, V is the set of variable nodes, and E is the set of edges linking them.
Each node and edge is associated with its own feature vector (see Table 6).

A single graph convolution is performed using two interleaved half-convolutions: first, information
flows from variables to constraints; then, it flows back from constraints to variables. Formally, for
each ci ∈ C and vj ∈ V ,

ci ← fC

(
ci,

∑
(i,j)∈E

gC(ci, vj , eij)
)
,

vj ← fV

(
vj ,

∑
(i,j)∈E

gV (ci, vj , eij)
)
,

(3)

where fC , fV , gC , gV are two-layer MLPs with ReLU activations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

After convolution, each variable embedding vj contains information from its neighbors. The pol-
icy is obtained by discarding the constraint nodes and applying a two-layer MLP to the variable
embeddings, followed by a masked softmax to produce probabilities over the candidate branching
variables:

π(at | st) = SoftmaxMask
(
MLP(vj)

)
, (4)

where the mask ensures that only non-fixed LP variables are considered.

A.3.2 GRAPH ATTENTION NETWORK

In addition to standard graph convolutions, we also consider two graph attentional operator, named
GAT and GATv2 as proposed in Veličković et al. (2018) and Brody et al. (2022) separately.

For GAT, given a node i with neighbors N (i), the updated embedding is computed as

x′
i =

∑
j∈N (i)∪{i}

αi,jΘtxj , (5)

where Θt is a learnable linear transformation and αi,j is the attention coefficient between nodes i
and j.

The attention coefficients are obtained via a shared self-attention mechanism:

αi,j =
exp

(
LeakyReLU(a⊤s Θsxi + a⊤t Θtxj)

)
∑

k∈N (i)∪{i} exp
(
LeakyReLU(a⊤s Θsxi + a⊤t Θtxk)

) , (6)

where as,at are learnable attention vectors, and Θs is a learnable linear mapping.

For GATv2, the attention coefficients are obtained via a shared self-attention mechanism:

αi,j =
exp

(
a⊤LeakyReLU (Θsxi +Θtxj)

)∑
k∈N (i)∪{i} exp (a

⊤LeakyReLU (Θsxi +Θtxk))
. (7)

These operator allow the model to weight contributions from neighboring nodes differently, enabling
it to focus on the most relevant neighbors when updating node embeddings. The overall update is
fully differentiable and can be stacked for multiple attention layers, similar to the convolutional
GNN described above.

A.4 FEATURE ANALYSIS OF PROBLEM STRUCTURES

To demonstrate the reliability of our problem-specific structural classification, we convert categor-
ical assignments into one-hot encodings. For each instance, we compute the mean and variance
of each category’s indicator across constraints and variables. This results in a twelve-dimensional
feature vector: six dimensions for constraints (three category proportions and three variances) and
six dimensions for variables (analogous calculations). We then apply principal component analysis
(PCA) (Abdi & Williams, 2010) to these twelve-dimensional descriptors, projecting them onto a
two-dimensional plane.

As shown in Figure 3, instances from the same problem family form tight clusters, while different
families are well-separated. This confirms that our block-based structural fingerprint effectively
characterizes MILP problem identity.

A.5 ADDITIONAL RESULTS

Structural feature design. We conducted extensive experiments to incorporate structural infor-
mation into the bipartite graph representation, exploring the following approaches:

• Dec1: Adding variable types and constraint types to the node features.
• Dec2: Adding variable types and constraint types to the node features, and incorporating
(constraint, variable) pairs into the edge features.

• Dec3: Incorporating (constraint, variable) pairs into the edge features only.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 3: Principal Component Analysis of Block-Structure Features Across Six MILP Families.

Figure 4: Dec1 Result in Cauctions Standard and Transfer Testing

• Dec4: Adding variable types and constraint types to the node features, and incorporating
(constraint, variable) pairs into the node features.

• Dec5: Adding variable types and constraint types to the variable features, and incorporating
(constraint, variable) pairs into both the node and edge features.

We evaluate these designs across three distinct network architectures: the vanilla GNN, GAT, and
GAT2 (both attention-based models), utilizing the Cauctions dataset. The experimental results are
presented in Figures 4–8 and analyzed as follows.

Dec1 exhibits the most stable and substantial improvements across all model architectures and both
evaluation scenarios. For the transfer testing instances, all three models demonstrate consistent
performance gains, achieving an average improvement of +11.83% with a maximum of +17.69%.
For the standard testing instances, while the improvements are more modest, they remain con-
sistently positive across all models, with an average gain of +2.16%. These results demonstrate
that augmenting variable features with variable and constraint type information effectively enables
models to capture structural patterns while preserving robust generalization capabilities.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: Dec2 Result in Cauctions Standard and Transfer Testing

Figure 6: Dec3 Result in Cauctions Standard and Transfer Testing

Dec2 demonstrates heterogeneous performance across different model architectures. On the trans-
fer testing instances, the vanilla GNN and GAT models achieve notable improvements (up to
+13.00%), while GAT2 experiences a marginal decline, yielding an overall average improvement of
+6.18%. For the standard testing instances, the performance gains are limited (average +0.91%).
This suggests that simultaneously enriching both variable and edge features with structural infor-
mation provides moderate benefits but may introduce redundancy or noise, particularly for more
sophisticated attention-based architectures.

Dec3 achieves performance comparable to Dec and represents the second most stable design vari-
ant. For the transfer testing instances, all three models exhibit consistent improvements, with
an average gain of +11.63% and a maximum of +14.54%. On the standard testing instances,
the improvements remain modest yet consistently positive (average +2.04%). These results indi-
cate that incorporating (constraint, variable) pairs exclusively into edge features effectively enriches
relational information without introducing excessive representational complexity.

Dec4 displays highly variable performance characteristics across model architectures. For the
vanilla GNN, performance deteriorates substantially on the transfer testing instances (−7.98%),
whereas GAT and GAT2 achieve considerable improvements (+16.09% and +7.86%, respec-
tively). These findings suggest that this design, which integrates both type information and
(constraint, variable) pair features into variable representations, necessitates sufficient model ca-
pacity to effectively utilize the enriched information. Simpler architectures may be overwhelmed by
the increased complexity, resulting in performance degradation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Dec4 Result in Cauctions Standard and Transfer Testing

Figure 8: Dec5 Result in Cauctions Standard and Transfer Testing

Dec5 exhibits limited and inconsistent improvements, similar to Dec2. For the transfer testing
instances, the average improvement is merely +5.70%, with GAT2 again experiencing a slight
performance decline. On the standard testing instances, the effect is even more attenuated (average
+0.89%). These results indicate that incorporating comprehensive structural information into both
variable and edge features introduces excessive redundancy, exceeding the models’ learning capacity
and ultimately diminishing effectiveness.

A.6 LLM USAGE

Large Language Models (LLMs) were used solely for language refinement, including grammar
checking, sentence rephrasing, and improving clarity and readability. The LLM had no involve-
ment in the ideation, research methodology, experimental design, or data analysis.

All scientific content and conclusions were entirely developed by the authors, who take full respon-
sibility for the manuscript. The use of the LLM adhered to ethical standards and did not result in
plagiarism or scientific misconduct.

20

	Introduction
	Preliminary
	MILP Formulation
	Branching in MILP

	Structure-Aware MILP Branching
	Identification of Block Structure
	Classification of Constraints and Variables
	Augmentation of Bipartite Graph Representation
	Imitation Learning Paradigm for Branching Decision

	Experiments
	Experimental Settings
	Results and Discussions

	Conclusion
	Appendix
	Datasets
	Combinatorial Auction
	Set Cover
	Capacitated Facility Location
	Independent Set
	Multiple Knapsack
	Balanced Item Placement
	Workload Apportionment
	CCMs Visualization Result

	Implementation Details of Bipartite Graph Representation
	Model Architecture
	Graph Convolution Network
	Graph Attention Network

	Feature Analysis of Problem Structures
	Additional Results
	LLM Usage

