
Published as a conference paper at ICLR 2024

DYNAMIC SPARSE NO TRAINING ○:
TRAINING-FREE FINE-TUNING FOR SPARSE LLMS

Yuxin Zhang1,2† Lirui Zhao1† Mingbao Lin3 Yunyun Sun4 Yiwu Yao4

Xingjia Han4 Jared Tanner5 Shiwei Liu5,6,7 Rongrong Ji1,8‡∗

1Key Laboratory of Multimedia Trusted Perception and Efficient Computing,
Ministry of Education of China, Xiamen University 2 Pengcheng Lab 3 Tencent Youtu Lab

4Huawei Technologies, 5University of Oxford, 6University of Texas at Austin
7Eindhoven University of Technology, 8Institute of Artificial Intelligence, Xiamen University

ABSTRACT

The ever-increasing large language models (LLMs), though opening a potential
path for the upcoming artificial general intelligence, sadly drops a daunting
obstacle on the way towards their on-device deployment. As one of the most well-
established pre-LLMs approaches in reducing model complexity, network pruning
appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or
re-training) necessity under the massive volumes of model parameter and training
data. To close this industry-academia gap, we introduce Dynamic Sparse No
Training (DS○T1), a training-free fine-tuning approach that slightly updates
sparse LLMs without the expensive backpropagation and any weight updates.
Inspired by the Dynamic Sparse Training, DS○T minimizes the reconstruction
error between the dense and sparse LLMs, in the fashion of performing iterative
weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose,
DS○T particularly takes into account the anticipated reduction in reconstruction
error for pruning and growing, as well as the variance w.r.t. different input data
for growing each weight. This practice can be executed efficiently in linear time
since its obviates the need of backpropagation for fine-tuning LLMs. Extensive
experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks
demonstrate the effectiveness of DS○T in enhancing the performance of sparse
LLMs, especially at high sparsity levels. For instance, DS○T is able to outperform
the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient
training-free manner and open new venues to scale the great potential of sparsity
to LLMs. Codes are available at https://github.com/zyxxmu/DSnoT.

1 INTRODUCTION

Large language models (LLMs) (Zhang et al., 2022a; Touvron et al., 2023a; Brown et al., 2020)
have recently emerged as the new favorite in various domains of natural language processing
(NLP) (Wei et al., 2022b;a; Bubeck et al., 2023). Nevertheless, LLMs face a significant constraint:
their extensive parameterization and computational demands present substantial challenges in terms
of storage and deployment. For example, the GPT-175B model (Brown et al., 2020) eats up 320G
of memory to load its parameters in FP16 precision, requiring at least five A100-80G GPUs for
inference (Frantar & Alistarh, 2023). In response to this issue, there has been a surge of interest
in compressing LLMs, as it holds the promise of LLMs while remarkably reducing memory usage
and computational costs. To date, the majority of current effort for LLM compression falls into
quantization (Yao et al., 2022; Lin et al., 2023; Frantar et al., 2022; Dettmers et al., 2023; 2022;
Xiao et al., 2023; Shao et al., 2024; Ma et al., 2024), which compresses LLMs by diminishing the
number of bits employed to represent weights or hidden states.

∗†Equal contribution ‡Corresponding author: rrji@xmu.edu.cn
1Pronounced “DS No T”.

1

https://github.com/zyxxmu/DSnoT

Published as a conference paper at ICLR 2024

Figure 1: Perplexity on WikiText-2 (left) and running time (right) of different methods for pruning
LLaMA-V1 model family at 60% sparsity rate. Without any training, DS○T consistently improves
the performance of sparse LLMs, all within a linear time spectrum.

On the other hand, network pruning (LeCun et al., 1989; Han et al., 2015; Mocanu et al., 2018), a
technique that removes superfluous weights to create a sparse and lightweight model, has received
relatively little attention (Frantar & Alistarh, 2023; Sun et al., 2023). The plausible reason is
that, network pruning usually appreciates at least one, usually many, iterations of fine-tuning or
re-training to guarantee top performance (Frankle & Carbin, 2019; Yin et al., 2023). This fine-tuning
step would cause a significant amount of compute and memory footprints due to the colossal model
size and massive training data of modern LLMs, which even unnerves large corporations, let alone
individual researchers.

Two previous arts have explored the possibility to scale pruning to billion-level LLMs without any
fine-tuning. SparseGPT (Frantar & Alistarh, 2023) formulates LLM pruning as a layer-wise weight
reconstruction problem, where the target falls into mitigating the output discrepancy, w.r.t., recon-
struction error, between dense and sparse LLMs. To solve the row-Hessian challenge, i.e., the need
for calculating the expensive inversion of a huge matrix for each row individually, SparseGPT itera-
tively applies OBS (Hassibi et al., 1993) to individually prune and updates weights in a column-wise
manner, ultimately reaching the same optimal solution as applying the closed-form regression recon-
struction. Wanda (Sun et al., 2023) proposes a new pruning metric that takes both weight magnitude
and their corresponding input activations into consideration, performing on part with SparseGPT
without the need for the expensive second-order information. The intuition behind Wanda lies in the
existence of emergent outlier feature dimensions in large-scale LLMs which are significantly larger
than typical features and meanwhile are essential for the optimal performance of LLMs (Dettmers
et al., 2022). While these two approaches enable LLM pruning without performing fine-tuning,
their performance is still far from satisfactory, e.g., starting to lose performance at 20% sparsity with
LLaMA-30B. Therefore, it is imperative to enable fine-tuning for sparse LLMs to fully unlock the
potential of sparsity to escalate the affordability of LLMs.

In a parallel vein, Dynamic Sparse Training (DST), as outlined in previous research (Mocanu et al.,
2018; Liu et al., 2019; Evci et al., 2020), has garnered considerable attention recently due to its
significant saving potentials in the context of neural network training. Instead of training an entire
network, DST selectively updates and maintains a subset of the network throughout the training pro-
cess, while allowing the sparse network topology to dynamically evolve via a weight operation (Mo-
canu et al., 2018). Given its demonstrated efficacy in achieving efficient training, DST seems to be
a promising candidate for efficient LLMs fine-tuning. However, it is essential to note that DST in-
trinsically requires the training of subnetworks via backpropagation, and the effectiveness of mask
adaptation highly relies on a sufficient number of weight updates (Liu et al., 2021). Moreover, prior
studies have indicated its failure when employed for fine-tuning small-scale BERT-level language
models (Liu et al., 2023).

Fortunately, it is noteworthy that the pruning-and-growing step employed in DST solely stands as
a training-free methodology, enabling sparse mask adaptation based on certain weight status, e.g.,
magnitude (Mocanu et al., 2018). This offers an alternative perspective for addressing the aforemen-
tioned challenge: While fine-tuning sparse LLMs through backpropagation can result in substantial
computational overhead, we can explore the possibility of iteratively updating sparse mask in a
training-free fashion as a viable alternative. Based on this intuition, we introduce a training-free

2

Published as a conference paper at ICLR 2024

fine-tuning approach – Dynamic Sparse No Training (DS○T). This approach empowers the fur-
ther refinement of sparse LLMs without any weight updates. To facilitate mask adaptation in favor
of the sparse reconstruction problem, we propose new criteria for mask pruning and growing, by
considering both the expectation and variance of the reconstruction error reduction when recovering
a specific weight. It is worth emphasizing that the DS○T functions independently of the need for
computationally intensive operations, such as gradient or Hessian matrices. Instead, it exclusively
relies on a singular matrix multiplication operation to assess the reconstruction error.

We conduct comprehensive experiments to evaluate the effectiveness of DS○T with a variety of
LLMs, including LLaMa-V1 (Touvron et al., 2023a) and LLaMa-V2 (Zhang et al., 2022a), Vi-
cuna (Chiang et al., 2023), and OPT families (Zhang et al., 2022a), from 7 billion to 70 billion
parameters. Our results demonstrate that DS○T consistently improves the performance of sparse
LLMs by a good margin, especially at high sparsity levels > 50%. For instance, DS○T is able to
improve the performance over Magnitude pruning, SparseGPT, and Wanda by 1.1e6, 4.31, and 1.87
perplexity with OPT-13B on WikiText-2 at 60% sparsity only using 7.3s on a single NVIDIA A100
GPU. Our work provides fresh insights in efficient sparse LLM fine-tune without weight updates
and we hope to encourage more research in exploring benefits of sparsity in LLMs.

2 RELATED WORK

Network Sparsification. The process of eliminating redundant weights, known as network sparsi-
fication or network pruning, has served as a practical strategy to diminish the complexity of deep
neural networks over the past decades (LeCun et al., 1989; Han et al., 2015). Despite the substantial
body of literature, network pruning can be roughly classified based on the granularity of sparsity
and the dependency of the pre-trained dense models. I. Granularity of Sparsity: The granular-
ity of sparsity varies from coarse grains to fine grains. The coarse-grained granularity can be a
group of weights (Gray et al., 2017; Ding et al., 2017), a complete neuron (Jiang et al., 2018); a
filters/channels (Li et al., 2017), or an attention head (Voita et al., 2019), etc. On the other hand,
fine-grained granularity eliminates the least important weights based on the selected criteria, regard-
less of where they are (Gale et al., 2019). The advantage of coarse-grained sparsity is its pronounced
acceleration effect, which yet typically suffers from larger performance loss. Fine-grained sparsity
enjoys performance superiority compared to other more structured forms of sparsity but receives
limited support in common hardware. Nonetheless, recent advancements of dedicated fine-grained
sparse patterns, such as N:M sparsity (Zhou et al., 2021; Zhang et al., 2022b), can be effectively
accelerated. As such, this paper focuses on fine-grained network pruning. II. Dependency of Pre-
trained Networks: In parallel, sparsification techniques can be grouped into dense-to-sparse, and
sparse-to-sparse methods based on the necessity of an over-parameterized dense network. The for-
mer entails embarking from a pre-trained dense model and discovering a sparse network (Han et al.,
2015; Wen et al., 2016; Molchanov et al., 2017; Gale et al., 2019; Kurtic et al., 2022), usually fol-
lowed by a retraining process to recover the optimal accuracy. On the other hand, sparse-to-sparse
methods aim to train sparse neural networks from scratch, omitting any preliminary steps involving
dense pre-training (Mocanu et al., 2018; Lee et al., 2019; Evci et al., 2020; Wang et al., 2020; Liu
et al., 2021). Among them, Dynamic Sparse Training (DST) (Mocanu et al., 2018; Evci et al.,
2020; Liu et al., 2021) stands out and receives upsurging interest due to its promise in saving both
training and inference phases. In contrast to the conventional practices of pre-training followed by
pruning, DST distinguishes itself by commencing with a randomly initialized sparse neural net-
work. During a single training run, it dynamically adjusts the sparse network topology by such as
pruning-and-growing, without the need for pre-training, while maintaining moderate training costs
by, for example, keeping the similar sparsity ratios across all varying masks (Mostafa & Wang, 2019;
Dettmers & Zettlemoyer, 2019; Yuan et al., 2021; Jayakumar et al., 2020).

While the crux of this paper focuses on the first category, i.e., pruning a pre-trained LLM model,
our proposed method is mainly inspired by the pruning-and-growing utilized in DST to iteratively
refine the binary masks in a training-free manner, even though we do not conduct weight training as
such. Another line of research, akin to our approach, demonstrates the existence of “supermasks”
within randomly initialized network (Zhou et al., 2019; Ramanujan et al., 2020; Huang et al., 2022)
or pre-trained networks (Mallya et al., 2018; Wortsman et al., 2020; Zhang et al., 2023), exhibiting
the capacity to achieve commendable performance solely by seeking binary masks. However, it is
imperative to note that these methods heavily rely on backpropagation, which is ill-suited for LLMs.

3

Published as a conference paper at ICLR 2024

Pruning of LLMs. Compared to the well-established promise of pruning in pre-LLM small-scale
models, the advancement of pruning in the context of LLMs appears to exhibit relatively modest
progress. Firstly, traditional pruning generally requires at least one iteration of re-training to recover
performance. Considering the substantial model size and massive datasets associated with LLMs,
the prospect of conducting such resource-intensive re-training becomes a formidable challenge. To
mitigate the above challenge, researchers have introduced pruning algorithms specifically devised
for LLMs compression. Ma et al. (2023) explored structured sparse LLM by applying Taylor prun-
ing (Molchanov et al., 2017) to remove entire weight rows, followed by the parameter efficient fine-
tuning (PEFT) technique (Hu et al., 2021) fine-tuning. However, the fine-tuning phase still demands
a considerable amount of data while the performance suffers a significant degradation, attributed
primarily to the coarse-grained level of sparsity. Recent research endeavours have evolved towards
the direction of unstructured pruning in one-shot without fine-tuning, demonstrating significant pro-
gresses. SparseGPT (Frantar & Alistarh, 2023) incorporates the Hessian inverse for pruning and
subsequent residual weight updates, whereas Wanda (Sun et al., 2023) directly arrives at a sparse
LLM model by a criterion depicted by the multiplication of the absolute values of weights and their
activations with the aim to preserve outliers (Dettmers et al., 2022) emerged in LLMs. DS○T serves
as an orthogonal perspective and can be organically integrated on top of them.

3 DYNAMIC SPARSE NO TRAINING – DS○T

Preliminary. LLM pruning entails the removal of a certain proportion of pre-trained weights to
obtain a sparse LLM, with the objective of achieving minimal discrepancy between the output of
the sparse and dense models (Hassibi et al., 1993). Solving this problem can be very arduous given
the immense scale of LLMs. Therefore, it is more practical to formalize LLM pruning as a layer-
wise reconstruction problem (Hubara et al., 2021; Frantar & Alistarh, 2023). Denote the weights
of one dense LLM layer as W ∈ RCout,Cin , where Cout and Cin stand for the number of output and
input channels respectively. Supposing we have N calibration samples, the input activation can be
represented as A ∈ RCin,N×L with L be the sequence length. Pruning can be viewed as devising a
binary mask M ∈ {0, 1}Cout,Cin to indicate whether weights are removed or not. Hence, the problem
of LLM pruning given a specific pruning rate p can be formalized as:

min
M,W

||W ∗A− (M⊙W) ∗A︸ ︷︷ ︸
∆

||2, s.t. 1−
∥M∥0

Cout · Cin
= p, (1)

where ∗, ⊙, || · ||2 denote matrix multiplication, dot product operation, and ℓ2 norm, respectively.

Reconstruction Error

Dense
Weights

LLM
Pruning

Growing Pruning

Update

Figure 2: Framework of DS○T.

Note we refer ∆ ∈ RCout,N ·L as to the reconstruction error
for ease of the following text.

Dynamic Sparse No Training. The problem defined in
Eq. (1) can be addressed from two complementary per-
spectives. Firstly, it can be resolved through the initial-
ization of sparse networks i.e., devising criteria to prune
weights that exhibit minimal impact on model output. For
instance, SparseGPT (Frantar & Alistarh, 2023) employs
second-order Hessian inverses, while Wanda (Sun et al.,
2023) considers products of weight and activation norm as
the guide for weight removal. Secondly, for the obtained
sparse networks, the remaining weights can be naturally
fine-tuned to further compensate for the reconstruction er-
ror (Han et al., 2015). Unfortunately, this requires sub-
stantial training resources, which is not practical given the
large volumes of LLMs. Therefore, SparseGPT adjusts the
remaining weights via an iterative OBS update (Hassibi &
Stork, 1992), which as a consequence remarkably reduces
the computing demands.

In this work, our focus is on the second part, i.e., how to efficiently reduce the reconstruction error of
a given pruned sparse network to its dense counterpart? Instead of fully fine-tuning (Han et al., 2015)
or partially updating the pruned LLMs (Frantar & Alistarh, 2023) to recover performance, we intro-
duce an ultra-efficient yet effective alternative to refine the sparse mask after pruning based on their

4

Published as a conference paper at ICLR 2024

contribution to the reconstruction error. Our approach is inspired by the pruning-and-growing opera-
tion used in Dynamic Sparse Training (Mocanu et al., 2018; Evci et al., 2020). DST incorporates the
processes of weight pruning and weight growing within the framework of sparse network training,
contributing to the discovery of improved sparse topologies. Note that this pruning-and-growing
operation solely serves as a training-free approach that is able to adapt sparse masks towards a de-
sirable perspective, e.g., loss minimization. Based on this insight, we propose DS○T, a training-free
fine-tuning method for sparse LLMs that strips weights updating in DST and keeps the pruning-and-
growing by converting the optimization objective to the reconstruction error of each weight row.
We isolate pruning-and-growing from network training, and formulate it as an iterative approach to
progressively optimize sparse masks towards the desirable ones achieving minimal reconstruction
error represented by Eq. (1).

Algorithm 1: Pseudocode of DS○T.
Input: A sparse layer with weight W⊙, maximum

cycle T , update threshold ϵ.
Workflow of DS○T:

Initialize reconstruction error ∆ via Eq. (1)
for r = 1 to Cout do

for t = 1 to T do
Obtain the growing index i via Eq. (2).
Obtain the pruning index j via Eq. (3).
Mr,i = 1
Mr,j = 0
Update reconstruction error ∆r via

Eq. (1).
if ∆r < ϵ then

break

return Fine-tuned sparse weights W ⊙M.

Specifically, DS○T starts with a sparse LLM
which can be pruned by any existing crite-
ria (Jaiswal et al., 2023; Sun et al., 2023; Fran-
tar & Alistarh, 2023). Then, it performs itera-
tive weight growing and pruning by looking at
the reconstruction error as defined in Eq. (1),
with especially-designed criteria to decrease
the output discrepancy between sparse LLMs
and their dense counterparts. The framework
of DS○T is illustrated in Figure 2 and its main
parts are detailedly described below.

Growing Criterion. As each output neu-
ron is computed independently, we use one
weight row Wr and the corresponding mask
Mr for illustration. Given sparse weight row
Mr⊙Wr, we attempt to revive pruned weight
that leads to the most decrease on ∆r across
different input activations. Therefore, our growing criterion considers both the expectation and vari-
ance of the reconstruction error change when recovering a weight back. In particular, the index i of
the revived weights is derived as follows:

i =

 argmax
k

¬Mr,k ·Wr,k · E[Ar]/Var(Ar), if E[∆r] > 0,

argmin
k

¬Mr,k ·Wr,k · E[Ar]/Var(Ar), otherwise, (2)

where E(·) and Var(·) stand for the expectation and variance of given inputs across N ×L different
tokens. To explain, E[Ar] ·Wr represents the expected influence of weight growing on ∆r. Thus,
based on the sign of the reconstruction error ∆r, we can determine which weight should be restored
to approach the decrease of ∆r. Furthermore, we consider introducing the variance of the input
activation to achieve a more robust revival. This is intuitive because if the influence of weight on ∆r

exhibits high variance across different inputs, restoring it may not result in stable error reduction.

Pruning Criterion. After choosing revived weights, we need to select another weight for pruning
in order to maintain a fixed sparsity rate. However, the circumstances here are distinct: if we prune
weights based on the impact of reconstruction error change as per Eq. (2), there is a risk of removing
weights that significantly influence the output. This concern becomes especially critical when prun-
ing LLMs due to the presence of emergent large magnitude features within them (Dettmers et al.,
2022; Wei et al., 2022a; Schaeffer et al., 2023). To alleviate this, we utilize a transformed version
of the Wanda metric (Sun et al., 2023). In addition to its standard criterion for pruning weights, we
mandate that the selected weights should also contribute positively towards the reduction of recon-
struction error when being pruned. This helps in preserving critical weights from removal without
compromising the stable decrease of reconstruction error during the training-free fine-tuning pro-
cess. Therefore, the pruning index j is obtained as follows:

j =

argmin

k,Mr,k·Wr,k·E[Ar]<0

Mr,k · |Wr,k| · ||Ar||2, if E[∆r] > 0,

argmin
k,Mr,k·Wr,k·E[Ar]>0

Mr,k · |Wr,k| · ||Ar||2, otherwise. (3)

5

Published as a conference paper at ICLR 2024

Table 1: WikiText-2 Perplexity comparison for pruning LLMs at 60% sparsity rate.

LLaMA-V1 LLaMA-V2 Vicuna OPT

Method 7B 13B 30B 65B 7B 13B 70B 13B 13B

Dense 5.68 5.09 4.10 3.56 5.47 4.88 3.32 5.94 10.12

Magnitude 5.6e2 2.3e2 15.97 8.18 6.9e3 10.11 13.35 14.39 1.1e6
w. DS○T 66.70 30.71 10.81 7.37 40.01 9.41 6.77 12.02 2.4e2

SparseGPT 10.41 8.43 6.81 5.83 10.14 7.88 5.10 10.02 21.23
w. DS○T 9.65 7.73 6.69 5.64 9.67 7.57 5.07 9.38 16.92

Wanda 10.69 8.75 6.56 5.90 10.79 8.40 5.25 9.54 15.88
w. DS○T 10.22 8.46 6.44 5.75 10.59 8.18 5.20 9.18 14.01

Workflow. Given the criteria depicted above, the workflow of DS○T is outlined in Algorithm 1.
In particular, it iteratively performs weight growing and pruning with respect to Eq. (2) and Eq. (3),
with the reconstruction error updated until it reaches a pre-defined threshold. Meanwhile, we set
a maximum pruning-and-growing cycle T to prevent certain rows from being unable to reach the
settled threshold ϵ.

Remark. It’s noteworthy that Algorithm,1 outlines the processing of each row in a sequential man-
ner, primarily for the sake of simplicity. However, it’s imperative to acknowledge that each row can,
in fact, undergo parallel processing by employing a binary indicator to assess whether a particular
row has satisfied the termination condition. Furthermore, the DS○T process eliminates the neces-
sity for resource-intensive procedures such as backpropagation or the computation of gradient and
Hessian matrices. Instead, it relies solely on several matrix multiplications to calculate the recon-
struction error, a task that can be executed efficiently on GPUs. Subsequently, during each iteration
of the DS○T process, the only operation is to update the reconstruction error through straightfor-
ward addition and subtraction operations during the pruning-and-growing process. This approach
effectively circumvents the introduction of additional algorithmic complexity. In summary, DS○T
preserves the simplicity associated with pruning LLMs, akin to the approaches employed in Wanda
and Magnitude pruning.

4 EXPERIMENTAL RESULTS

4.1 SETTINGS

Implementation details. The implementation details of our proposed DS○T are presented as fol-
lows, mostly conforming to the existing setups (Frantar & Alistarh, 2023; Sun et al., 2023). In
context to pruning configuration, we adhere to SparseGPT (Frantar & Alistarh, 2023), where a uni-
form sparsity is imposed for all layers with the first embedding layer and the final classification head
skipped. Meanwhile, the calibration data consists of 128 segments, each with 2048 tokens. These
segments are randomly selected from the first shard of the C4 dataset (Raffel et al., 2020). For the
hyper-parameter settings, we set the maximum cycle T = 50 and the update threshold ϵ = 0.1 in
all experiments. Given sparse LLMs, we apply DS○T to fine-tune each layer in a progressive man-
ner. We implement DS○T in PyTorch (Paszke et al., 2019) and use the HuggingFace Transformers
library (Wolf et al., 2019) for handling models and datasets. All pruning experiments are conducted
on NVIDIA A100 GPUs with 80GB of memory.

Baselines. We principally work with the LLaMA-V1 (Touvron et al., 2023a), LLaMA-V2 (Touvron
et al., 2023b), Vicuna (Chiang et al., 2023), and OPT families (Zhang et al., 2022a), from 7 billion to
70 billion parameters, which are among the most powerful and open-source Large Language Models
(LLMs) in the field today. We run DS○T on sparse LLMs pruned by various methods including (1)
Magnitude-based pruning (Han et al., 2015) that discards weights based on their magnitudes. (2)
SparseGPT (Frantar & Alistarh, 2023) that utilizes second-order Hessian inverses to ascertain unim-
portant weights. (3) Wanda (Sun et al., 2023) that removes weights with the smallest magnitudes
multiplied by the corresponding input activation norms.

Evaluation. In accordance with prior studies (Frantar et al., 2022; Dettmers et al., 2023; Yao
et al., 2022; Frantar & Alistarh, 2023), we assess the performance of pruned models by calcu-

6

Published as a conference paper at ICLR 2024

Table 2: WikiText-2 perplexity performance of DS○T for fine-tuning sparse LLaMA-V1-7B/65B
pruned by the Wanda metric at varying sparsity rates.

LLaMA-V1-7B LLaMA-V1-65B

Sparsity 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

Wanda 7.26 10.69 88.84 4.80e3 6.41e5 4.57 5.90 15.24 2.06e3 3.21e4
w. DS○T 7.12 10.22 62.05 4.12e3 8.43e4 4.54 5.75 12.93 1.82e3 2.09e4

lating the perplexity of language generation experiments on separate validation sets derived from
WikiText2 (Merity et al., 2016). While perplexity has served as a stable and robust indicator of the
generative performance of models (Dettmers & Zettlemoyer, 2023), we also examined the zero-shot
capabilities of pruned models. In detail, we report the accuracy in six zero-shot tasks including
PIQA (Bisk et al., 2020), StoryCloze (Mostafazadeh et al., 2017), ARC Easy and Challenge (Clark
et al., 2018), HellaSwag (Zellers et al., 2019) and OpenBookQA (Mihaylov et al., 2018). We imple-
ment the lm-eval-harness (Gao et al., 2021) for the execution of all zero-shot tasks, with the report
including both the accuracy results on each benchmark and overall average accuracy.

4.2 LANGUAGE MODELING

Quantitative results. The results for fine-tuning sparse LLM models at a uniform sparsity rate
of 60% are presented in Table 1. Irrespective of the datasets used for evaluation, DS○T consis-
tently delivers performance improvement for sparse LLMs with their original sizes varying from
7B to 70B. For instance, when pruning LLaMA-V1 with 7B parameters, DS○T is able to enhance
the performance of Magnitude (Jaiswal et al., 2023), SparseGPT (Frantar & Alistarh, 2023), and
Wanda (Sun et al., 2023) by 4.94e2, 0.76, and 0.47 perplexity on the Wikitext-2 validation sets,
respectively. It is worth noting that, without any weight updating, DS○T consistently demonstrates
better performance than SparseGPT, which requires expensive second-order Hessian inverses to up-
date the sparse model. For larger models, the efficacy of DS○T is still hold with performance
gain from 13.35 to 6.77 perplexity when fine-tuning sparse LLaMA-V2-70B obtained by magnitude
pruning (Han et al., 2015). These findings suggest DS○T’s versatility, being adaptable to boost the
performance of sparse LLMs with different parameter budgets.

Varying Sparsity Rates. We further investigate the efficacy of DS○T when fine-tuning sparse
LLMs with varying pruning rates. Table 2 shows that DS○T offers effective performance enhance-
ment across various pruning methods at different sparsity levels. Particularly, this improvement
becomes increasingly evident as the sparsity level grows.

Table 3: Time overhead (in seconds)
for pruning LLaMA-V1 model family.

Method 7B 13B 30B 65B
SparseGPT 209 337 721 1285
Wanda 0.3 0.5 1.1 1.9

Wanda+DS○T 4.3 7.4 15.7 23.7

Table 4: Comparion with LoRA fine-
tuning using 50% sparse LLaMA-7B.

Method Time Cost Perplexity
Wanda+LoRA 4h 6.87
Wanda+DS○T 4.3s 7.12

Table 5: Wikitext-2 perplexity comparison for pruning
LLaMA-V1 model family with N:M pattern.

Method Sparsity 7B 13B 30B 65B
Dense - 5.68 5.09 4.10 3.56
SparseGPT 4:8 8.61 7.40 6.17 5.38
w. DS○T 4:8 8.32 7.05 6.10 5.12
Wanda 4:8 8.57 7.40 5.97 5.30
w. DS○T 4:8 8.45 7.25 5.91 5.26

SparseGPT 2:4 11.00 9.11 7.16 6.28
w. DS○T 2:4 10.03 8.36 6.82 5.80
Wanda 2:4 11.53 9.58 6.90 6.25
w. DS○T 2:4 10.89 9.05 6.76 6.14

Computing efficiency. We further demonstrate the efficiency of DS○T. Following Wanda, we only
report the total pruning time and exclude the forward pass process shared by all methods. Table 3
compares the quantitative wall-clock overhead evaluated on NVIDIA A100 GPUs. It is indeed
encouraging to observe that, as a fine-tuning approach, DS○T maintains a comparable computing
time to Wanda, while demonstrating significantly higher efficiency compared to SparseGPT.

Comparison with LoRA Fine-tuning. To further demonstrate the ultra efficiency of DS○T in
terms of fine-tuning, we also compare DS○T with parameter efficient fine-tuning (PEFT) method

7

Published as a conference paper at ICLR 2024

Table 6: Zero-shot Accuracy comparison for pruning LLaMA-V1 model family at 60% sparsity rate.

Params Method PIQA HellaSwag StoryCloze ARC-e ARC-c OBQA Mean

7B

Dense 78.7 56.9 76.8 75.3 41.8 34.0 60.6

SparseGPT 73.1 44.8 71.5 62.6 30.2 24.4 51.1
w. DS○T 73.7 47.2 72.3 62.8 30.9 29.4 52.7

Wanda 73.0 43.6 69.7 62.8 30.3 25.0 50.7
w. DS○T 73.2 43.7 70.0 63.6 30.8 25.8 51.2

13B

Dense 79.1 59.9 78.4 77.4 46.5 33.2 62.4

SparseGPT 75.6 49.0 74.8 68.4 36.2 27.6 55.2
w. DS○T 75.8 51.5 75.8 69.8 36.3 28.8 56.3

Wanda 74.9 48.9 74.5 68.9 34.9 27.6 54.9
w. DS○T 75.0 49.1 75.1 69.2 35.4 28.0 55.3

30B

Dense 81.1 63.3 79.1 80.4 52.9 36.0 65.4

SparseGPT 76.8 55.0 78.4 74.7 43.3 32.2 60.1
w. DS○T 77.3 58.0 78.8 74.8 45.6 32.8 61.2

Wanda 77.7 56.7 79.1 76.2 46.5 31.6 61.3
w. DS○T 78.1 56.7 79.7 76.8 46.6 32.6 61.7

65B

Dense 81.2 64.6 80.2 81.3 52.9 38.2 66.4

SparseGPT 79.6 58.3 80.5 77.4 46.6 33.4 62.6
w. DS○T 79.9 59.8 80.4 78.1 46.9 34.6 63.3

Wanda 79.9 58.9 80.6 78.2 47.1 34.8 63.3
w. DS○T 80.9 59.6 80.2 78.2 47.7 36.0 63.7

LoRA (Hu et al., 2021). Table 4 presents a comparison of the time and performance of both methods
in fine-tuning sparse LLaMA-7B. LoRA leverages the complete C4 dataset for a 5-hour fine-tuning
and achieved a perplexity of 6.84. In stark contrast, DS○T only requires a brief duration of 4.3s and
128 samples to deliver a comparable performance, 7.12 perplexity. Taking into consideration the
additional parameter burden incorporated by LoRA, the efficiency and practicality of DS○T is hold.

N:M Fine-grained Sparsity. Compared with unstructured sparsity, N:M fine-grained sparsity offers
more practical speedup on the NVIDIA Ampere sparse tensor core (Nvidia, 2020). Thus, we also
evaluate the effectiveness of DS○T on N:M fine-grained sparsity. Given the unique pattern of N:M
sparsity that stipulates N non-zero components within M consecutive weight block, our implemen-
tation of DS○T involves a restriction on the position of pruning-and-growing weights. In particular,
we select the pruned weight within the same block as the revived weight, thus the N:M charac-
teristic is still maintained after fine-tuning. Table 5 lists the results for pruning LLaMA-V1 model
family at 2:4 and 4:8 sparse patterns. Interestingly, even with the aforementioned extra restriction,
DS○T can achieve more significant performance improvement compared to previous methods. For
instance, when pruning LLaMA-V1 with 7B parameters, DS○T archives a perplexity of 10.89, en-
hancing Wanda (11.53) by a noticeable 0.64 ppl. Similar findings can be concluded when it comes
to other models and sparse patterns. These results highlight the effectiveness of DS○T in boosting
the performance of sparse LLMs, even with more complex sparsity constraints.

4.3 ZERO-SHOT TASKS

Following (Frantar & Alistarh, 2023; Sun et al., 2023), we also provided the accuracy performance of
the LLaMA-V1 model family pruned at 50% sparsity rate on seven downstream zero-shot tasks. Av-
eraging the accuracy over all tasks suggests DS○T’s efficacy for enhancing sparse LLMs of any size.
Particularly, DS○T improves the average accuracy of SparseGPT by 1.6% when pruning LLaMA-
V1-7B (52.7% for DS○T and 51.1% for SparseGPT). For task-wise performance, DS○T is benefi-
cial on all tasks, while there is not a fixed superiority for fine-tuning models obtained by different
pruning methods. This phenomenon may evidence the reported relatively noisy evaluation results
from these zero-shot experiments (Dettmers et al., 2022). However, the advantages of consistent
performance improvement and efficiency of DS○T for zero-shot tasks are obvious.

8

Published as a conference paper at ICLR 2024

Figure 3: (left) Effect of the update schedule (T, ϵ) and (right) number of calibration sequences.

4.4 PERFORMANCE ANALYSIS

Next, we investigate the influence of the components within DS○T, unfolds as its update schedule,
pruning-and-growing criteria, and robustness to calibration samples. All experimental setups are
based on the LLaMA-7B model pruned by the Wanda metric (Sun et al., 2023) with 60% sparsity.

Update schedule. In Figure 3 (left), we examine the performance of DS○T under different hyper-
parameter setting for the update schedule, including the maximum cycle C and stop threshold ϵ. The
best performance is obtained with 50 cycles and 0.1 updating threshold. To analyze, smaller C and
larger ϵ both lead to an insufficient procedure for the decrease in reconstruction error. In contrast,
running DS○T without termination conditions also resulted in poor performance, most likely due to
over-fitting of calibration data.

Robustness to calibration samples. In Figure 3 (right), we show the performance of pruning meth-
ods with varying numbers of sampled sequences for calibration. As can be observed, SparseGPT
suffers serious performance degradation when calibration samples are limited, mostly due to the
difficulty in estimating Hessian inverses in such cases. Fortunately, DS○T consistently the perfor-
mance of SparseGPT, even if only very few samples are given. These results further highlight the
robustness of DS○T for mitigating the reconstruction error.

Table 7: Effect of the pruning and growing criteria.

Pruning
Growing |Wr,k| · ||Ar||2 Eq. (3) Eq. (2)

|Wr,k| · ||Ar||2 10.72 10.49 10.27
Eq. (2) 11.24 10.61 10.84
Eq. (3) 10.52 10.37 10.22

Pruning-and-growing criteria. We further
investigate the influence on criteria for prune
and grow in Table 7. Note that when we
transfer Eq. (2) to the prune criteria, the elec-
tion of extreme values is also correspond-
ingly reversed. As for the prune criterion, it
can be seen that pruning weights that could
bring the most reduction in reconstruction
error actually led to a significant perfor-
mance decrease. This indicates that while pursuing the reduction of reconstruction error, it is also
essential to keep weights that exhibit an extremely large influence on the output, e.g., weights within
outlier channel. On the other hand, our proposed criteria based on the expectation and variance of
the reconstruction error reduction achieved the best results among all growing criteria.

5 CONCLUSION

In this work, we introduce DS○T, a training-free fine-tuning approach that enhances the perfor-
mance of sparse LLMs without the expensive backpropagation or any weight updates. Taking in-
spiration from the success of sparse training in the pre-LLM pruning age, DS○T adapts iterative
weights growing and pruning in a sparse LLM, with a transferred target for minimizing the recon-
struction error between dense and sparse LLMs outputs. To furnish guidance in the selection of
weights to be pruned and grown, we introduce novel criteria that take into account the expectation
and variance of the reconstruction error reduction by growing each weight concerning different in-
puts. Extensive experiments on pruning representative LLMs across various language benchmarks
demonstrate the efficiency and effectiveness of DS○T in boosting the performance of sparse LLMs.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This work was supported by National Science and Technology Major Project (No.
2022ZD0118202), the National Science Fund for Distinguished Young Scholars (No.62025603),
the National Natural Science Foundation of China (No. U21B2037, No. U22B2051, No. 62176222,
No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, No. 62002305 and
No. 62272401), and the Natural Science Foundation of Fujian Province of China (No.2021J01002,
No.2022J06001).

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence
(AAAI), volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems (NeurIPs), 33:1877–1901,
2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning (ICML), pp. 7750–7774. PMLR, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems
(NeurIPs), 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao Wang, Xuehai Qian,
Yu Bai, Geng Yuan, et al. Circnn: accelerating and compressing deep neural networks using
block-circulant weight matrices. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 395–408, 2017.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning (ICML), pp. 2943–
2952, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot. In
International Conference on Machine Learning (ICML), 2023.

10

Published as a conference paper at ICLR 2024

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
compression for generative pretrained transformers. In International Conference on Learning
Representations (ICLR), 2022.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning. In
International Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–14, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Scott Gray, Alec Radford, and Diederik P Kingma. Gpu kernels for block-sparse weights. arXiv
preprint arXiv:1711.09224, 3:2, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems (NeurIPS), pp.
1135–1143, 2015.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems (NeurIPS), pp. 164–171, 1992.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei,
Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, et al. You can have bet-
ter graph neural networks by not training weights at all: Finding untrained gnns tickets. arXiv
preprint arXiv:2211.15335, 2022.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in Neural Information Processing Systems (NeurIPs), 34:21099–21111, 2021.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and Zhangyang Wang. The emergence of essential spar-
sity in large pre-trained models: The weights that matter. arXiv preprint arXiv:2306.03805, 2023.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast: Top-
k always sparse training. Advances in Neural Information Processing Systems (NeurIPs), 33:
20744–20754, 2020.

Chunhui Jiang, Guiying Li, Chao Qian, and Ke Tang. Efficient dnn neuron pruning by minimizing
layer-wise nonlinear reconstruction error. In IJCAI, volume 2018, pp. 2–2, 2018.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
for large language models. arXiv preprint arXiv:2203.07259, 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pp. 598–605, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations (ICLR), 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations (ICLR), 2017.

11

Published as a conference paper at ICLR 2024

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

S Liu, DC Mocanu, ARR Matavalam, Y Pei, and M Pechenizkiy. Sparse evolutionary deep learn-
ing with over one million artificial neurons on commodity hardware. arxiv. arXiv preprint
arXiv:1901.09181, 2019.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989–7000. PMLR, 2021.

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, Ajay Jaiswal, and
Zhangyang Wang. Sparsity may cry: Let us fail (current) sparse neural networks together! arXiv
preprint arXiv:2303.02141, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
International Conference on Learning Representations (ICLR), 2024.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In Proceedings of the European conference on computer
vision (ECCV), pp. 67–82, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature Communications, 9:1–12, 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations (ICLR), 2017.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural net-
works by dynamic sparse reparameterization. In International Conference on Machine Learning
(ICML), pp. 4646–4655, 2019.

Nasrin Mostafazadeh, Michael Roth, Annie Louis, Nathanael Chambers, and James Allen. Lsdsem
2017 shared task: The story cloze test. In Proceedings of the 2nd Workshop on Linking Models of
Lexical, Sentential and Discourse-level Semantics, pp. 46–51, 2017.

Nvidia. Nvidia a100 tensor core gpu architecture, 2020. https://
www.nvidia.com/content/dam/enzz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 8026–8037, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

12

https://www.nvidia.com/content/dam/enzz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/enzz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/enzz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Published as a conference paper at ICLR 2024

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 11893–11902, 2020.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? arXiv preprint arXiv:2304.15004, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In International Conference on Learning Representations (ICLR), 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations (ICLR), 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems (NeurIPs), 35:24824–24837, 2022b.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in Neural Information Processing Systems (NeurIPs), 29, 2016.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems (NeurIPs), 33:15173–15184, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning (ICML), pp. 38087–38099. PMLR, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems (NeurIPs), 35:27168–27183, 2022.

Lu Yin, Shiwei Liu, Meng Fang, Tianjin Huang, Vlado Menkovski, and Mykola Pechenizkiy. Lot-
tery pools: Winning more by interpolating tickets without increasing training or inference cost.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 37, pp. 10945–
10953, 2023.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems (NeurIPs), 34:
20838–20850, 2021.

13

Published as a conference paper at ICLR 2024

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong
Ji. Learning best combination for efficient n: M sparsity. In Advances in Neural Information
Processing Systems (NeurIPS), 2022b.

Yuxin Zhang, Mingbao Lin, Fei Chao, Yan Wang, Ke Li, Yunhang Shen, Yongjian Wu, and Ron-
grong Ji. Lottery jackpots exist in pre-trained models. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2023.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n: M fine-grained structured sparse neural networks from scratch. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems (NeurIPS), pp.
3597–3607, 2019.

14

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 COMPLEMENTARY EXPERIMENTAL RESULTS

In this section, we supplement the main paper with more experimental outcomes, including a wider
spectrum of results at varying sparsity rates, robustness analysis under random seeds, and quantita-
tive comparison with varying numbers of calibration sequences.

Varying Sparsity Rates. This part delivers extended results of DS○T when fine-tuning sparse
LLMs at alternating sparsity rates as a supplement to Section 4. The performance of various LLMs
with sparsity rates oscillating between 10% and 90%, are presented in Table 8. Beneficial enhance-
ments are consistently observable at all examined sparsity levels when employing DS○T, with the
significance of improvements escalating concurrently with the increase in sparsity. It is notewor-
thy that the acceleration resultant from unstructured sparsity comes into play predominantly at high
sparsity levels (exceeding 60%) Gale et al. (2020), thereby accentuating the indispensable efficacy
of DS○T.

Table 8: WikiText-2 perplexity performance for fine-tuning LLMs at varying sparsity rates.

Model Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

LLaMA-V1-7B Wanda 5.70 5.82 6.00 6.39 7.26 10.69 88.84 4.80e3 6.41e5
LLaMA-V1-7B w. DS○T 5.68 5.73 5.89 6.28 7.12 10.22 62.05 4.12e3 8.43e4

LLaMA-V1-13B Wanda 5.10 5.13 5.25 5.51 6.15 8.75 55.89 3.66e3 1.54e6
LLaMA-V1-13B w. DS○T 5.09 5.11 5.05 5.29 6.08 8.46 43.31 1.12e3 1.95e5

LLaMA-V2-7B Wanda 5.49 5.59 5.74 6.06 6.92 10.79 75.01 2.36e3 7.87e3
LLaMA-V2-7B w. DS○T 5.48 5.49 5.65 5.85 6.81 10.59 53.12 1.12e3 2.35e3

LLaMA-V2-13B Wanda 4.91 4.99 5.13 5.37 7.88 8.30 46.05 1.06e3 1.22e5
LLaMA-V2-13B w. DS○T 4.89 4.91 5.01 5.25 7.57 8.13 33.19 2.59e2 3.49e4

OPT-13B Wanda 10.13 10.09 10.12 10.63 11.92 15.88 55.07 13722 7.61e5
OPT-13B w. DS○T 10.12 10.08 10.11 10.41 11.28 14.01 45.10 8.43e3 2.33e5

Varying Number of Sample Sequences. Table 9 shows the quantitative results of different methods
with varying numbers of calibrated sequences in complementary with Figure 3. Indeed, SparseGPT
largely outperforms Wanda when the sample number starts to exceed 512. The performance gap gets
larger with the length of 2048. It is worth mentioning that the efficacy of DS○T is indeed obvious
when very limited numbers of calibration samples are given. Meanwhile, it is also encouraging to
see that DS○T can consistently improve the performance of SparseGPT and Wanda even with 2048
calibrated sequences. This highlights the effectiveness of DS○T even when the pruning baseline is
considerably strong, i.e., SparseGPT with long input length.

Table 9: WikiText validation perplexity for different methods in pruning LLaMA-V1-7B at 50%
sparsity with varying number of calibration sequences.

Sample Length 1 2 8 16 32 64 128 256 512 1024 2048

Wanda 13.18 12.11 11.29 11.04 10.83 10.68 10.69 10.65 10.54 10.68 10.77
w. DS○T 12.52 11.22 10.91 10.71 10.62 10.42 10.22 10.15 10.12 10.38 10.41

SparseGPT 30.23 26.04 12.92 11.87 11.45 10.79 10.40 10.41 10.39 9.93 9.99
w. DS○T 17.19 15.61 11.62 11.02 10.33 10.04 10.04 10.03 10.02 9.66 9.70

15

Published as a conference paper at ICLR 2024

Robustness Analysis. We further perform a robustness analysis of DS○T. Given that the results in
Table 1 is evaluated under a fixed calibration set, Table 10 show the results with different calibration
sets under 5 random seeds. The variance across random seeds is very low, suggesting the stability
of DS○T, corroborating its efficacy as a tool in fine-tuning sparse LLMs.

Table 10: WikiText validation perplexity for pruning LLaMA-V1 and LLaMA-V2 models at 60%
sparsity. We report the mean and standard deviation under 5 random seeds.

LLaMA-V1 LLaMA-V2

Method 7B 13B 7B 13B

Dense 5.68 (±0.00) 5.09 (±0.00) 5.47 (±0.00) 4.88 (±0.00)

SparseGPT 10.42(±0.04) 8.43(±0.02) 10.14 (±0.03) 7.88(±0.01)
w. DS○T 9.64(±0.03) 7.73(±0.02) 9.68(±0.03) 7.57(±0.01)

Wanda 10.69(±0.01) 8.75(±0.01) 10.79(±0.01) 8.40(±0.01)
w. DS○T(±0.01) 10.22(±0.01) 8.46(±0.01) 10.59(±0.01) 8.18(±0.01)

16

	Introduction
	Related Work
	Dynamic Sparse No Training – DS254T
	Experimental Results
	Settings
	Language Modeling
	Zero-shot Tasks
	Performance Analysis

	Conclusion
	Appendix
	Complementary experimental results

