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ABSTRACT

The NER task is largely developed based on well-annotated data. However, in
many scenarios, the entities may not be fully annotated, leading to performance
degradation. A common approach for this problem is to distinguish unlabeled
entities from negative instances using labeled data. However, the vast differences
between entities make such empirical approaches difficult to realize. Our solution is
to treat unlabeled entities based on both empirical inference and random sampling.
To this end, we propose a simple yet effective two-step method that consists of a
novel Positive-Unlabeled (PU-learning) algorithm and negative sampling, in which
PU-learning distinguishes part of the unlabeled entities from negative instances
based on confidence threshold. In general, the proposed method can mitigate
the impact of unlabeled entities at the outset and can be easily applied to any
character-level NER model. We verify the effectiveness of our method on several
NER models and datasets, showing a strong ability to deal with unlabeled entities.
Finally, in real-world situations, we establish new state-of-the-art results on many
benchmark NER datasets.

1 INTRODUCTION

Named entity recognition (NER) is a well-studied task in natural language processing (NLP), which
has received significant attention (Huang et al., 2015; Ma & Hovy, 2016; Akbik et al., 2018; Li et al.,
2020b). Previous methods have reached great success in the area of NER (Zhang & Yang, 2018; Gui
et al., 2019; Jin et al., 2019). However, the majority of them rely on the well annotated data and
ignore the potential unlabeled entities, which are commonly encountered in many cases. Li et al.
(2020c) discovered that NER models suffer significantly from the lack of annotations and referred to
this as the unlabeled entity problem.

Recently, numerous approaches have been developed to alleviate the unlabeled entity problem. These
works can be divided into two groups. To begin with, Li et al. (2020c) used negative sampling
and trained a span-based model to mitigate the misguidance of unlabeled entities. The random
sampling method is flexible since it makes no assumptions or inferences about unlabeled entities.
This line of work was further extended by Li et al. (2022) which used a new weighted sampling
distribution to perform a better sampling. Another line of work makes full use of the labeled data to
approximate the true label sequences or detect the potential unlabeled entities. For instance, Mayhew
et al. (2019) proposed the Constrained Binary Learning method which adaptively trained a binary
classifier and assigned weights to each token using the CoDL framework (Chang et al. (2007)). Peng
et al. (2019) trained a PU-learning (Liu et al., 2002; 2003; Elkan & Noto, 2008) classifier to perform
label prediction which can unbiasedly and consistently estimate the task loss. Jie et al. (2019) used
the k-fold cross-validation to estimate a distribution in partial CRF model (Tsuboi et al. (2008)).
Furthermore, Peng et al. (2021) trained a span selector using reinforcement learning in the process
of negative sampling. These approaches mitigate the impact of unlabeled entities by rational use of
labeled data.

The current methods have achieved great improvement in datasets with unlabeled entities. Despite
the success, they also have some limitations. In particular, the approaches that use labeled data rely
on the quality of labeled data and usually cannot fully recognize the unlabeled entities. Moreover,
the random sampling approach does not consider the role of labeled data at all, thus will loss some
helpful information. Therefore, entirely ignoring or relying on the labeled data may be suboptimal in
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handing unlabeled entities. We believe that some unlabeled entities are identifiable, but others are
not. Thus, combining the advantages of both kinds of approaches is necessary to better solve the
unlabeled entity problem.

In this work, our goal is to find a more proper way to deal with unlabeled entities. Through empirical
studies, we found that the labeled data does have the ability to identify the unlabeled entities. However,
such ability is limited since we can only detect a part of the unlabeled entities precisely and the others
are still uncertain. Our idea is to handle unlabeled entities by steps to obtain a better performance. In
general, we propose a two-step method that can be easily generalized to many existing NER models.
To begin with, we generate a novel PU-learning algorithm based on self-supervision to detect some
unlabeled entities with high confidence. Then, we apply negative sampling to mitigate the influence
of the other unlabeled entities. Inspired by the empirical study, we detect unlabeled entities at the
start of the training before fitting the noise. Furthermore, we use the angle-based technique ((Zhang
& Liu (2014); Zhang et al. (2016); Fu et al. (2022)) to enhance our PU-learning algorithm, which is
first encountered in deep neural networks.

We verify the effectiveness of the proposed method using four classic Chinese NER models and six
benchmark Chinese NER datasets. The proposed method generally enables significant improvement
of all baseline models on synthetic datasets. In real-world situations, our approach also delivers new
state-of-the-art performances. Notably, the additional computational cost caused by our method is
significantly small.

2 PRELIMINARIES

2.1 UNLABELED ENTITY PROBLEM

Unlabeled entity problem occurs when some ground truth entities are not annotated, and as result, are
treated as negative instances. This problem may caused by the negligence of human annotator or the
limited coverage of machine annotator.

Figure 1: The unlabeled entity problem.

For instance, given a phrase “ùé(Manchester United) ¥�(Football Fan)” which adopts BIO
tagging scheme. The true label sequence is {B-ORG,I-ORG,B-PER,I-PER}. As shown in Figure 1,
when the unlabeled entity problem occurs, the entity “ùé” is not annotated and the corresponding
labels are replaced with tag O.

2.2 MOTIVATION

As shown in Li et al. (2020c), there are two causes for performance degradation in unlabeled entity
problem: the reduction of annotated entities and the misguidance of unlabeled entities. The second
cause has far more influence than the first one and it can be mitigated by removing all unlabeled
entities (Li et al. (2020c)). Ideally, we would be able to detect all unlabeled entities correctly.
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However, the unlabeled entities are always confused with true O-chars. Here, O-char denotes the
character with the tagging O in BIO or BMESO tagging scheme. Therefore, the current challenge is
how to discriminate between unlabeled entities and true O-chars.

Figure 2: Difference between unlabeled entities and true O-chars.

Arpit et al. (2017) showed that the deep neural networks learn simple patterns first and subsequently
fit the noise. Motivated by this, we conduct a simple study to understand the training process for
unlabeled entities. To begin with, we introduce the definition of O-value. For character-level sequence
labeling tasks, we always generate a k-dimensional decision vector for one character to match the
classification, where k is the number of tags. Given the decision vector h ∈ Rk of character c. The
O-value of character c is defined as h[o], which is the value in h corresponding to the O tag. Then,
we train 30 epochs in the synthetic Weibo dataset with 50% unlabeled entities and plot the average
O-values for unlabeled entities and true O-chars. Note that we count every character to calculate the
average. As shown in Figure 2, the average O-value for unlabeled entities is much smaller than the
true O-chars in the first few epochs. With the increase of epochs, their difference becomes smaller
and almost disappears. The result indicates that the unlabeled entities are learned by steps, which
confirms the point of Arpit et al. (2017).

Since the difference in average O-values is significant, we try to detect unlabeled entities by their
O-values. We fix the number of epochs at 2, select a portion of O-chars from small to large according
to the O-values and analyze the results for detecting unlabeled entities. The results are in Figure 3. In
general, the precision keeps decreasing while the recall keeps increasing as we pick more O-chars.
As a result, we can only detect a portion of unlabeled entities correctly. The others are still confused
with the true O-chars after training, and we need to pay more to handle them.

(a) Precision (b) Recall

Figure 3: Precision and recall for detecting unlabeled entities.
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3 METHODOLOGY

In this section, we will introduce: (1) The proposed two-step learning approach, which encounters
both PU-learning and negative sampling; (2) The application of angle-based technique; (3) Implement
of CRF layer.

Figure 4: The architecture of our two-step method, in which the PU-learning and negative sampling
approaches are encountered. Where D is the original dataset and D̂ is the modified dataset.

3.1 ROBUST TWO STEP LEARNING

The main structure of our method is shown in Figure 4. In the first step, we aim to detect and then
remove some identified unlabeled entities, in preparation for the following negative sampling step.
Inspired by the empirical studies in Section 2.2, we propose our PU-learning algorithm. The details
are as follows.

Given a NER model and the training set D = {(x(i),y(i)), i = 1, . . . , N}, where y(i) =

(y
(i)
1 , . . . , y

(i)
si ) and si is the length of i-th sentence. We first train the model for n epochs and

get the corresponding model f and decision vectors f(x(i)) = h(i) = (h
(i)
1 , . . . ,h

(i)
si ) ∈ Rsi×k for

each sentence. Afterward, we summarize O-values for all O-chars in

{h(i)
j [o] | 1 ≤ i ≤ N, 1 ≤ j ≤ si, y(i)j = O}.

Then, we select the smallest dλ ∗me O-values and remove their corresponding O-chars in the training
set. Here, 0 < λ < 1 is a hyperparameter, m is the number of O-values, and de is the ceiling function.
The hyperparameter λ is significant since it determines the range of the deleted O-chars. In practise,
we recommend choosing a small λ to ensure accuracy.

Take the cross-entropy loss as example. After removing some potential unlabeled entities, the training
loss becomes:

(
∑
i

∑
j

− log q
(i)
j [yj ])− (

∑
i

∑
j∈Aj

− log q
(i)
j [yj ]), (1)

where q(i)
j = Softmax (h

(i)
j ) andAj denotes the set of index for the deleted O-chars in j-th sentence.

After removing some unlabeled entities in the first step, we next apply random sampling on the
remaining O-chars. We generate all the span candidates in x(i) as

Li = {(j, k)|∀j ≤ l ≤ k, y(i)l = O, l /∈ Ai}.

Then, we randomly sample dγ ∗ sie spans from Li and give these spans a special non-entity label.
Here, γ is a hyperparameter used to control the degree of sampling. The label of these spans are
replaced with the corresponding BMES or BI tags and the modified label sequences are defined as
ŷ(i). Ultimately, the dataset we used is D̂ = {(x(i), ŷ(i),Ai), i = 1, . . . , N}.
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As a remark, Li et al. (2020c) used negative sampling in a span level NER model, which treated a
span as the basic unit for labeling. Unlike Li et al. (2020c), we still treat the character as the basic
unit. Thus, our method can be easily applied to many existing NER models since we only modify the
training dataset and do no harm to the model. At the inference step, we treat the predicted non-entity
spans as negative instances.

3.2 ANGLE-BASED DECISION VECTOR

We note that the current decision vector used in our PU-learning algorithm is suboptimal. For instance,
the decision vector we have always used is undefinable since it does not satisfy the sum-to-zero
constraint, which will degrade the performance. Take h

(i)
j as an example. If we add a constant to

each value of h(i)
j , the classification results remain unchanged, but the accuracy of detecting small

O-values is significantly reduced. Thus, we would like to implement the proposed method using the
decision vector with sum-to-zero constraint. However, adding a sum-to-zero constrain directly in the
deep neural network would be challenging to optimize.

Note that a single decision vector can be used to separate two classes. Analogously, a (k − 1)-
dimensional decision vector should be sufficient for a k-category classification problem (Zhang &
Liu (2014)). As a result, using a k-dimensional decision vector to match a k-category classification
problem is redundant. To handle these difficulties, we will then introduce the angle-based technique.

In the previous study of machine learning, Zhang & Liu (2014) proposed an angle-based technique for
large margin classifiers, which uses (k − 1)-dimensional decision vector and implicitly transfers the
sum-to-zero constraint onto the newly defined functional margins. Thus, the angle-based classifiers
can automatically satisfy the sum-to-zero constraint with a few parameters.

Figure 5: How angle-based technique works.

To begin with, consider a centered simplex in Rk−1 with elements

Wj =

{
(k − 1)−1/21, j = 1

− 1+
√
k

(k−1)3/21+
√

k
k−1ej−1, 2 ≤ j ≤ k

where ej ∈ Rk−1 is a vector of 0’s except its j-th element is 1, and 1 ∈ Rk−1 is a vector of
1. We only require a (k − 1)-dimensional output to match the k-category classification in our
tasks by the angle-based setting. For illustration, we define the required output for one character
as h̃. Then we generate the k-dimensional angle-based decision vector by inner product, namely
(h̃TW1, h̃

TW2, . . . , h̃
TWk). One can verify that the sum-to-zero constraint,

∑
i h̃

TWi, is auto-
matically satisfied. Moreover, the needed hidden outputs are (k − 1)-dimensional, which can reduce
the parameter size to a certain extent. Figure 5 shows the details about how angle-based technique
works. See (Zhang et al., 2016; 2018; Yang et al., 2021; Fu et al., 2022) for more implements of
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angle-based technique in large-margin classifiers. To show effectiveness, we conduct a similar study
as in section 2.2. From Figure 6, we can find that the angle-based model has higher precision and
recall in detecting unlabeled entities than the original.

(a) Precision (b) Recall

Figure 6: Precision and recall for detecting unlabeled entities.

3.3 IMPLEMENT OF CRF.

Due to the successive structure of the CRF layer, we cannot directly remove the O-chars in the first
step. Thus, we will introduce how to implement our method in the CRF layer. Given the decision
vectors h1, . . . ,hn for sentence x with length n. For original CRF, the probability of a label sequence
y = {y1, . . . , yn} is

p(y | x) =
exp (

∑
i(hi,yi

+ Tyi−1,yi
))∑

ỹ exp (
∑

i(hi,ỹi
+ Tỹi−1,ỹi

))
,

where ỹ represents an arbitrary label sequence and Tyi−1,yi
is the transition score from yi−1 to yi.

Utilizing the CRF structure, we remove the O-chars by short circuiting and the modified probability is

p̂(y | x,A) =
exp (

∑
i/∈A(hi,yi

+ Tyi−1,yi
))∑

ỹ exp (
∑

i/∈A(hi,ỹi
+ Tỹi−1,ỹi

))
,

where A is the set of O-chars deleted in the first step.

For training set D̂ = {(x(i), ŷ(i),Ai), i = 1, . . . , N}, the sentence-level log-likelihood loss is:

L = −
∑
j

log(p̂(ŷ(j) | x(j),Aj)).

For decoding, we use the Viterbi algorithm to find the label sequence with highest score.

4 EXPERIMENTS

We conduct an extensive set of experiments on multiple classical Chinese NER models to investigate
the effectiveness of our method. Experiments on both real-world datasets and synthetic datasets
are available. We will demonstrate that our method can be robust against unlabeled entities in the
synthetic datasets. For the real-world dataset, we achieve state-of-the-art performances in several
datasets. Standard F1-score (F1) is used as evaluation metrics.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on six benchmark Chinese NER datasets, which are (1)
Weibo (Peng & Dredze (2015)) (2) Resume (Zhang & Yang (2018)) (3) Ontonotes 4.0 (Weischedel
et al. (2011)) (4) MSRA (Levow (2006)) (5) EC (Yang et al. (2018)) (6) NEWS (Yang et al. (2018)).
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The statistics of the datasets can be found in Appendix A.1. We construct the synthetic datasets by
contaminating two small datasets, Weibo and Resume. Specifically, we randomly select 10%,. . . ,70%
entities in training set and flip their labels to O tags.

Baselines. To test the effectiveness of our method, we chose four different classical Chinese NER
models, including

• Bi-LSTM A common Bi-LSTM+CRF (Huang et al., 2015) structure using the word2vec
(Mikolov et al. (2013)) embedding pretrained by (Zhang & Yang, 2018).

• FLAT The Flat Lattice Transformer (Li et al., 2020a) using the same embedding as Bi-
LSTM.

• BERT+Word A strong BERT base model proposed by Liu et al. (2021), which uses bilinear
attention weighted word vector as a supplement to the BERT input, and uses LSTM and
CRF as fusion layer and inference layer respectively.

• LEBERT The recommended model in Liu et al. (2021), which is a combination of Lexicon
Adapter and Transformer.

Overall, our choice of models is diverse, with two using BERT, two using Transformer, and one using
just Bi-LSTM. For synthetic datasets, we report the F1-scores of each model with and without using
our method. In addition, we carry out ablation studies to examine the contribution of the angle-based
technique in synthetic Weibo dataset. For real-world datasets, we test the performance of our method
using BERT+Word and LEBERT models.

Hyperparameters. Recall that the parameter n is the number of epochs for the first training, λ stands
for the proportion of removed O-chars and ratio γ represents the degree of negative sampling. We
have found that the difference between unlabeled entities and true O-chars is huge in the first few
epochs. Thus, the candidate set we used for n is {1, 2, 3}. Note that it is both inappropriate to set λ as
too small or too large values. Empirically speaking, we select λ in {0.1× 2−5, 0.1× 2−4, . . . , 0.1}.
We tend to use a large λ when the proportion of unlabeled entities increases. For real-world datasets,
we always use the minimum value, 0.1× 2−5. To select the best parameter γ, we use the grid search
in {0, 0.1, 0.2, 0.3}. Other hyperparameters are the same as the original method.

4.2 OVERALL RESULTS

Synthetic Datasets. Tables 1-4 summarize the results of synthetic datasets. For clarity reasons,
”/A” indicates that we do not employ the angle-based technique. In general, each baseline method
achieves better performance in handing unlabeled entities. For instance, when the proportion of
unlabeled entities in Resume increases from 0.1 to 0.7, the F1-score of the original LEBERT model
decreases by 90.67. After applying the proposed method, the F1-score only decreases by 3. This
demonstrates the effectiveness of our method, even with a very few labeled entities. Furthermore, the
ablation studies show that the angle-based decision vector is a beneficial addition for our method. By
comparing the results, one can find that our method is more effective on BERT+Word, LEBERT than
FLAT, Bi-LSTM. This is likely because a strong NER model can acquire more precise underlying
information during training, thus improving the performance of our method.

Prob.
BERT+Word

Weibo Resume
Original Our Our/A Original Our

0.1 64.85 67.03 66.67 94.96 95.66
0.2 60.95 66.36 65.39 94.56 95.36
0.3 56.24 65.39 64.87 94.18 95.18
0.4 53.08 65.09 63.82 92.88 95.09
0.5 49.10 63.88 62.73 64.78 94.45
0.6 43.29 63.63 61.31 13.24 94.13
0.7 31.75 63.38 59.68 1.63 85.10

Table 1: The experiment results (F1-score) for BERT+Word on synthetic datasets.
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Prob.
LEBERT

Weibo Resume
Original Our Our/A Original Our

0.1 65.80 69.34 68.28 94.50 95.16
0.2 65.31 68.75 67.45 94.16 94.91
0.3 62.31 68.17 67.04 93.17 94.95
0.4 56.76 67.71 66.59 91.11 94.46
0.5 54.37 65.73 65.07 70.07 94.02
0.6 43.87 64.32 63.92 43.54 93.27
0.7 29.34 62.88 61.19 3.82 92.40

Table 2: The experiment results (F1-score) for LEBERT on synthetic datasets.

Prob.
FLAT

Weibo Resume
Original Our Our/A Original Our

0.1 57.38 59.97 59.62 95.10 95.27
0.2 57.18 59.68 59.10 94.95 95.22
0.3 53.90 59.00 57.99 94.81 95.14
0.4 49.25 56.09 55.12 94.16 94.70
0.5 47.30 53.53 53.25 89.52 92.50
0.6 46.46 49.85 49.45 57.89 72.39
0.7 42.14 49.19 48.82 24.29 68.58

Table 3: The experiment results (F1-score) for FLAT on synthetic datasets.

Prob.
Bi-LSTM

Weibo Resume
Original Our Our/A Original Our

0.1 47.73 49.47 48.67 93.96 94.13
0.2 46.32 48.63 46.71 93.93 94.07
0.3 41.91 45.03 44.78 93.10 93.72
0.4 33.58 37.75 36.56 92.01 93.02
0.5 28.68 35.10 33.22 83.53 87.66
0.6 19.54 27.52 27.26 39.81 47.85
0.7 8.24 12.76 9.83 5.33 17.85

Table 4: The experiment results (F1-score) for Bi-LSTM on synthetic datasets.

Real-world Datasets. As shown in Tables 5 and 6, our method helps the BERT+Word model
outperforms its original procedure in each real-world dataset. For the LEBERT model, we achieve
better results in Weibo, Resume, Msra, EC and NEWS, which are the state-of-the-art results. However,
the F1-score on Ontonotes 4.0 is 0.12% worse than the original. These results indicate that our
method is not only robust on synthetic datasets, but are also competitive on the real-world datasets.
There are two possible reasons account for this. First, the real-world datasets may also have unlabeled
entities, which can also lead to misguidance. Second, some true O-chars may also misguide the NER
models. We will further discuss it in Appendix A.2.

In addition, we analyze the extra training time required after applying our method, which is also
available in Appendix A.3.

5 RELATED WORK

NER is an indispensable component in many downstream NLP tasks. In Chinese NER, leveraging
the word information can significantly improve the performance. A possible strategy is to perform
word segmentation first, followed by the NER task. Unfortunately, because the cross-domain
word segmentation is still an unsolved problem (Liu & Zhang, 2012; Jiang et al., 2013; Liu et al.,
2014; Qiu & Zhang, 2015; Chen et al., 2017; Huang et al., 2017), this strategy may result in error

8



Under review as a conference paper at ICLR 2023

Model Weibo Resume Ontonotes 4.0 Msra
Lattice LSTM(Zhang & Yang (2018)) 63.34 94.51 75.49 92.84
CAN (Zhu et al. (2019)) 59.31 94.94 73.64 92.97
WC-LSTM (Liu et al. (2019)) 65.30 94.49 75.79 93.50
SoftLexicon (Ma et al. (2019)) 69.11 95.35 81.34 95.54
FLAT 68.07 95.78 80.56 95.46
BERT+Word 68.32 95.46 81.03 95.32
LEBERT 70.75 96.08 82.08 95.70
Our /in Bert+Word 70.26 96.16 81.34 95.44
Our /in LEBERT 71.00 96.24 81.98 95.73

Table 5: The experiment results (F1-score) on Weibo, Resume, Ontonotes and Msra.

Model EC NEWS
Weighted Partial CRF (Jie et al. (2019)) 61.75 78.64
Bert-MRC (Li et al. (2020b)) 55.72 74.55
Negative Sampling (Li et al. (2020c)) 66.17 85.39
Negative Sampling (Li et al. (2022)) 67.03 86.15
BERT+Word 78.10 95.27
LEBERT 78.75 95.88
Our /in Bert+Word 79.95 96.08
Our /in LEBERT 80.12 96.24

Table 6: The experiment results (F1-score) on EC and NEWS.

propagation. Another line of work is enhancing lexicon information in character-based models which
has demonstrated a significant benefit in merging the word information and preventing the error
propagation, such as Lattice LSTM (Zhang & Yang (2018)), FLAT (Li et al. (2020a)), and LEBERT
(Liu et al. (2021)).

However, the NER models suffer from the unlabeled entity problem in many scenarios (Zhang et al.
(2020)). Recently, numerous works have been proposed to address this issue. Fuzzy CRF and
AutoNER (Shang et al. (2020)) handle the unlabeled entities by learning from high-quality phrases.
Another approach for solving this problem involves the use of PU-learning (Mayhew et al., 2019;
Peng et al., 2019), which build a distinct binary classifier to detect unlabeled entities. Partial CRF
(Yang et al., 2018; Jie et al., 2019) is an extension of common CRF which allows NER models
to learning from incomplete annotations. Li et al. (2020c) discovered that the primary cause of
performance degradation is misguidance of unlabeled entities and employed a span-level negative
sampling model to mitigate the misguidance. The current methods are either rely entirely on the
labeled data or do not encounter labeled data at all, which may be suboptimal to handle the unlabeled
entity problem.

6 CONCLUSION

In this work, we propose a two-step method to handle the unlabeled entity problem. Our first step is
based on the finding from empirical studies. We generate a novel PU-learning algorithm and it is
proven to be effective in detecting unlabeled entities. The second step borrows the negative sampling
method in the sequence labeling task, which is a helpful aid to the first step. Our method can be
easily generalized to many NER models and only requires a few additional computing resources.
Compared to the existing robust methods, our method is more effective and efficient. Furthermore, we
are the first to employ the angle-based technique in deep neural networks which certainly enhances
the effectiveness of our first step. Experiments on synthetic datasets have verified that our method is
robust to the unlabeled entities and can improve the performance of each baseline model significantly.
On multiple real-world NER datasets, we create new state-of-the-art results.
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A APPENDIX

A.1 STATISTICS OF DATASETS

Dataset Type Train Dev Test

Weibo Sentence 1.4k 0.27k 0.27k
Char 73.8k 14.5k 14.8k

Resume Sentence 3.8k 0.46k 0.48k
Char 124.1k 13.9k 15.1k

OntoNotes Sentence 15.7k 4.3k 4.3k
Char 491.9k 200.5k 208.1k

MSRA Sentence 46.4k − 4.4k
Char 2169.9k − 172.6k

EC Sentence 1.2k 0.4k 0.8k
Char 8.6k 3.1k 6.1k

NEWS Sentence 3.0k 3.33k 3.19k
Char 139.8k 149.0k 132.1k

Table 7: The statistics of the datasets.
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A.2 CASE STUDY

We have shown the validity of our method in real-world datasets. Note that the real-world datasets
may contain very few or even no unlabeled entities. One natural question is how our method improves
the performance of BERT+Word and LEBERT. This is demonstrated by analyzing some removed true
O-chars on Weibo. We show a portion of the removed true O-chars and the corresponding sentence
fragments in Table 8. These removed true O-chars may of three kinds. To begin with, they might
be entities from other categories, such as “þ°IS�Ð” and “¥)�”. Second, they may be
close to the existing entities, such as “ÛÌR” and “!��”. Note that if we substitute any other
person entity for these O-chars, the sentences will continue to flow smoothly. Third, they may be
fabricated or erroneous, such as “S�Ñ�”, “=��” and “Ç�”. To conclude, we speculate that
such O-chars may also misguide the NER model.

Sentence fragments Removed true O-chars

þ°IS�Ð
þ°IS�Ð

Shanghai International Auto Show

S�Ñ�ÀiÛ
S�Ñ�

Andalue Province

&��eÛÌR
ÛÌR

chairman He

¥)��@�
¥)�

health center

=��;«
=��

Baoyuan Tao

Ç�ú¬��Æ
Ç�

Xiao Wu

��!��
!��

Mrs. Shen

Table 8: Examples of removed true O-chars.

A.3 EFFICIENCY OF OUR METHOD

Table 9 reports the extra training time required after applying our method in LEBERT. Note that
parameter λ and γ has a negligible effect on computational speed. Hence we only report the results
when n is varied. According to the table, our method adds no more than 8% additional training time
when n = 1. If we use n = 3, the extra training time required can still be under 20%. Thus, the
computational cost of our method is significantly small.

n Weibo Resume Ontonotes 4.0 Msra EC NEWS
1 2.21% 5.15% 6.29% 7.31% 6.73% 8.32%
2 4.17% 11.97% 13.56% 14.47% 14.32% 15.88%
3 6.30% 15.73% 17.79% 19.72% 18.89% 20.75%

Table 9: The percentage of extra training time due to our method.
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