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ABSTRACT

Inverse crystalline materials design is a grand challenge in materials science. Most
crystals have atoms at high-symmetry subspaces of 3D Euclidean space (i.e., posi-
tions with nontrivial stabilizer groups); yet, most existing crystal generative mod-
els cannot place atoms in these positions with nonzero probability. In this pa-
per, we propose Wyckoff- and Asymmetric Unit-based Generative model (Wyck-
offAUGen), which sequentially builds crystals with explicit autoregressive-like
conditional likelihoods and hard space group constraints. While prior methods
parametrize distributions over unit cells with periodic translation symmetry, our
model learns distributions over asymmetric units, which tile R3 upon applying
the space group actions. This choice equips WyckoffAUGen with space group in-
variant model densities and reduces representations and generation trajectories to
that of only symmetrically inequivalent atoms. To model continuous distributions
over atom positions on facets of asymmetric units, WyckoffAUGen introduces a
differentiable bijection from the simplex to any 2D polygon. Since experimental
crystal synthesis can be hindered by unknown competing compounds in the same
composition space, we enable masked in-filling from composition spaces.

1 INTRODUCTION

Crystals comprise critical technologies like batteries (Nitta et al., 2015), topological materials (Tang
et al., 2019), electronic devices (Woods-Robinson et al., 2020), photovoltaics (Green et al., 2014),
and more. Materials scientists have catalogued O(105) crystals experimentally (Bergerhoff et al.,
1983) and O(106) in silico with density functional theory (DFT) simulation (Curtarolo et al., 2012;
Jain et al., 2013; Saal et al., 2013). In contrast, the number of stable crystalline materials with five
elements or less is estimated to exceed 1013, and even higher-order compositions are common in
real materials (Davies et al., 2016). Generative models offer a promising path to rapidly explore the
vast space of crystals (Xie et al., 2022; Jiao et al., 2023; Miller et al., 2024; Cao et al., 2024).

Unlike molecules, crystals span the periodic table and exhibit discrete spatial symmetries according
to one of 230 space groups (Aroyo et al., 2016). Specifically, crystals have invariances to discrete
translations, rotations, reflections, and sequences thereof that transform atoms into themselves or
into identical atoms. The list of space group actions which map a point into itself is called a stabilizer
group. When a set of points in R3 have conjugate stabilizer groups, the set is called a Wyckoff
position. Importantly, as shown in section A.1, Wyckoff positions can have zero volume, comprising
points, lines, or planes. These zero volume sets are referred to as special Wyckoff positions. We give
a more formal treatment of space groups and Wyckoff positions in section A.3.

Despite the fact that most existing crystal generative models ignore space groups and Wyckoff po-
sitions, they are critical for modeling real materials. Firstly, space groups and Wyckoff positions
correlate strongly with materials properties; Neumann’s principle states that all crystal properties
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Figure 1: Illustration of our crystal generation process.

share the same invariances as the crystal itself (Neumann, 1885). Thus even slightly perturbing
atoms out of special Wyckoff positions will reduce the crystal’s space group symmetry and can sub-
sequently cause significant (even discontinuous) changes to its macroscopic properties (Choi et al.,
2009; Caretta et al., 2023; Shwartz et al., 2006; Cano & Bradlyn, 2020). Secondly, we show empir-
ically in section A.1 that known materials usually occupy high symmetry space groups with atoms
in zero-volume Wyckoff positions. Yet, most existing crystal generative models learn continuous
distributions over all three spatial dimensions of atom positions, assigning zero probability measure
to placing atoms in special Wyckoff positions. One might argue that crystals from these models can
simply be relaxed into high symmetry positions with DFT or machine learned force fields. However,
besides the apparent difficulty of generating atoms sufficiently close to high symmetry positions for
relaxation (Zeni et al., 2025; Gruver et al., 2024), such a framework assigns different model proba-
bilities to crystals that relax into the same structure, obfuscating training and evaluation.

Our contributions. In this paper, we introduce the development of WyckoffAUGen, a genera-
tive model that builds crystals sequentially, respecting hard constraints from space groups, Wyckoff
positions, and composition spaces at every step. Our model (1) uses the symmetry-minimized repre-
sentation of the asymmetric unit (ASU) and (2) trains with explicit, SE(3) and space group invariant,
autoregressive conditional likelihoods. The model’s sequential nature allows for masked in-filling,
e.g., for hard-constrained sampling by space group for targeted search or by composition space for
finding crystal phases hampering synthesis (McDermott et al., 2023; Doherty et al., 2021). We also
introduce a method for learning explicit probability densities on arbitrary 2D polygons by leveraging
generalized barycentric coordinates (Floater, 2003). For discussion on prior works, see A.2.

2 METHODOLOGY

Using sympy (Meurer et al., 2017) and PyXtal (Fredericks et al., 2021), we removed redundancy
induced by space group symmetry from every Wyckoff position by intersecting each one with its ex-
act asymmetric unit (see A.3 for details). Each zero-dimensional Wyckoff position was reduced to a
single point, each one-dimensional position to a set of line segments, each two-dimensional position
to a set of convex polygonal ASU facets, and each three-dimensional position to the asymmetric unit
interior. The intersections for space group 192 are shown as an example in A.1.

We decomposed each crystal into M = (G,C, L,X,A,W ) ∈ (G,P(A),R3×3,Rn×3,Cn,W),
where G ∈ G is the space group, C ∈ P(A) is the composition space from the power set of elements
A (see A.3), L ∈ R3×3 is the conventional lattice basis, A ∈ Cn are elements, X ∈ Rn×3 are
fractional atom coordinates, W ∈ Wn are Wyckoff positions, and n is the number of atoms in
the asymmetric unit. Several variables in M impose hard constraints on each other. To handle
these dependencies, the model sequentially samples each constrained variable after its constraining
variable(s). We factorized the generation process as follows:

p(M) =
1

2

[
p(C|G)p(G) + p(G|C)p(C)

]
× p(L|G,C)×

n∏
i=1

[
p(wi|w<i, a<i, x<i, L,G,C)×

p(ai|w≤i, a<i, x<i, L,G,C)× p(xi|w≤i, a≤i, x<i, L,G,C)
]

(1)
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2.1 SPACE GROUP AND COMPOSITION SPACE SAMPLING

We trained our model to sample space groups and composition spaces in either order to enable
in-filling from either one at inference time. To model p(G|C), we represented C as a one-hot
vector of element occupancies and passed it through a multilayer perceptron (MLP) to produce
space group logits. For modeling p(G), we avoided the computational burden of marginalizing
over all possible composition spaces by learning it separately as a simple length-230 vector of un-
normalized logits. We factorized the discrete conditional distribution over composition spaces as

p(C|G) = p(stop|c|C|)
|C|∏
i=1

p(ai|c<i, G) where ci ∈ C, ai ∈ C \ c<i, and c|C| = C. To aid general-

ization across the 230 space groups, we formed one-hot features of G using the lattice centering type,
crystal family, point group symbol, chirality, presence of inversion symmetry, and extra dimensions
to differentiate collisions from screw and glide symmetries, yielding 62 features total. To predict
p(ai|c<i, G), we encoded c<i with a DeepSets model (Zaheer et al., 2017) on top of element em-
beddings eA introduced by Xie & Grossman (2018). Similarly to p(G), we separately learned p(C)
instead of marginalizing over the space groups, sharing parameters with p(C|G) by conditioning on
a vector of zeroes.

2.2 TELESCOPING DISCRETE LATTICE SAMPLING

We parameterized univariate conditionals to autoregressively sample the 3 lattice lengths (a, b, c)
and 3 angles between them (α, β, γ) for conventional unit cells, applying physical constraints to
each conditional. Denoting l = (a, b, c, α, β, γ), the model learned

p(l|G,C) =
6∏

i=1

p(li|l<i, G,C), (2)

where p(li|l<i, G,C) has support over positive values with finite range determined by the data.
Under the space group constraints, crystal lattices can be binned into 6 crystal families, each putting
unique constraints on the lattice parameters. Space groups 1 to 2 impose no constraints; 3 to 15
require α = γ = 90◦; 16 to 74 require α = β = γ = 90◦; 75 to 142 require α = β = γ = 90◦ and
a = b; 143 to 194 require a = b, α = β = 90◦, and γ = 120◦; and 195 to 230 require a = b = c and
α = β = γ = 90◦. Furthermore, the crystal lattice must have non-zero volume. To impose these
constraints, the model only learns univariate conditionals for the lattice parameters unconstrained by
the crystal families, leaving constrained terms in the product of Equation 2 equal to 1. We enforce
positive volume by dynamically setting the support of p(γ|a, b, c, α, β,G,C) to satisfy

Volume

abc
=
√
1 + 2 cosα cosβ cos γ − cos2 α− cos2 β − cos2 γ > 0.

Besides physical constraints, lattice generation requires the flexibility to learn highly peaked dis-
tributions since small perturbations to a crystal lattice can significantly alter materials properties.
In BaTiO3 for example, 0.03Å strain was found to increase the ferroelectric transition temperature
by 500◦C and the remnant polarization by 250% (Choi et al., 2004). In contrast, the range of con-
ventional lattice lengths in the MP20 dataset is over 100Å. To address this challenge, we chose to
discretize the lattice parameters to a resolution of 0.01Å. Naively, this resolution requires a softmax
over Nl = O(104) classes per lattice parameter to achieve a 100Å range. We overcame this poor
scaling by telescoping the categorical distribution. See Figure 1 for a visual explanation. At a high
level, the range of lattice parameters was first binned very coarsely, and a class b1 was sampled from
p(b1|l<i, G,C). Then, the selected class b1 was further coarsely binned and one of these higher
resolution bins was selected from p(b2|b1, l<i, G,C). This process was repeated T times to achieve
higher levels of resolution as

p(li|l<i, G,C) =
T∏

t=1

p(bt|bt−1, l<i, G,C)

where li = bT and b0 = ∅. Choosing p(bt|bt−1, l<i, G,C) to be a categorical distribution over a
small number of classes nl ≪ Nl achieves 1

(nl)T
= 1

Nl
resolution with O(nlT )≪ O(Nl) memory.

We used T = 2 and nl = 100 in our experiments. We represented conditioning on li and bt using
random Fourier features (Tancik et al., 2020) and produced the logits for p(bt|bt−1, l<i, G,C) with
an MLP.
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2.3 ATOM SAMPLING

Our model samples atoms in the asymmetric unit one at a time, conditioning on a graph neural net-
work (GNN)-predicted embedding hi of G, C, L, and all previously generated atoms. To sample
atom coordinates, the model first samples a convex set of points where the Wyckoff position inter-
sects the ASU (see A.3.3). We refer to each convex set as a Wyckoff shape. Finally, the model sam-
ples continuous coordinates from a probability density with support on the Wyckoff shape, which
may be zero-, one-, two-, or three-dimensional. After sampling atom i, the model may terminate
generation by sampling from a Bernoulli distribution p(stop|w≤i, a≤i, x≤i, L,G,C). Further de-
tails on the model architecture and training are in A.4.

Wyckoff positions and elements. To learn a categorical distribution p(wi|w<i, a<i, x<i, L,G,C)
over Wyckoff positions for atom i, we used the GNN to produce an embedding hi of the crystal so
far, concatenated embeddings ew of Wyckoff positions allowed to be sampled from the space group,
and predicted logits for each of these Wyckoff positions. For this purpose, unique 231-dimensional
feature vectors were created for the 1731 Wyckoff positions across all space groups using Wyck-
off multiplicities, Wyckoff dimensionalities, site symmetry symbols, the space group features from
Section 2.1, and average Fourier features of the coordinates at vertices and centers of masses of the
Wyckoff shapes. We set logits of zero-dimensional Wyckoff positions which are already occupied
to negative infinity to prevent sampling overlapping atoms at those locations. Similarly, we pa-
rameterized a categorical distribution p(ai|w≤i, a<i, x<i, L,G,C) over elements by taking element
embeddings ea ∈ eA and predicting logits as MLP(ea||hi||ewi

), where || denotes concatenation.
We masked logits of elements outside the composition space, i.e., A \ C, to negative infinity.

Wyckoff shapes. We found that the intersections of one- and two-dimensional Wyckoff positions
with the asymmetric unit may consist of multiple line segments or convex polygonal facets. We
placed categorical distributions over these shapes si ∈ S as p(si|w≤i, a≤i, x<i, L,G,C). Each
shape’s embedding esi was predicted with a DeepSets model on random Fourier features of the
shape vertices’ conventional cell fractional coordinates. The logit for each shape si′ was produced
as MLP(esi′ ||hi||ewi

||eai
).

Coordinates in 1D Wyckoff shapes. We placed a mixture of Beta distributions on each one-
dimensional “Wyckoff line segment” as p(xi|si, w≤i, a≤i, x<i, L,G,C), where the mixture model
parameters were predicted as MLP(hi||ewi

||eai
||esi).

Coordinates in 2D Wyckoff shapes. To model a probability density on a convex polygonal facet Pk

of an asymmetric unit, we parameterized Dirichlet mixture distributions pDirichlet(·) on the triangle
T3 ∈ R2. We leveraged generalized barycentric coordinates (see A.3) to bijectively map T3 to Pk

with vertices V Pk ∈ Rk×2. To create the map, we first pretended that the triangle T3 is a k-gon Tk

with vertices V Tk ∈ Rk×2 by appending (k− 3) ≥ 0 non-vertex points to the boundary ∂T3. Then,
given a point y ∈ T3 and denoting ϕTk(y) ∈ Rk as the generalized barycentric coordinates of y with
respect to Tk, we constructed the map f : T3 → Pk as f(y) = ϕTk(y)V Pk . The probability density
of a point x ∈ Pk is then given by the change of variables formula (Rezende & Mohamed, 2015).
We pre-computed Tk for every 2D Wyckoff shape by minimizing the distortion (Eq. 3) of f with
respect to V Tk evaluated at quadrature points from Basix (Scroggs et al., 2022). Dirichlet mixture
model parameters were predicted in the same manner as the 1D Beta mixture parameters.

Coordinates in 3D Wyckoff positions. We modeled probability densities in 3D Wyckoff po-
sitions by learning a probability density pΓ(x) in the conventional unit cell Γ and wrapping it
around the asymmetric unit Π. Specifically, for x ∈ Π and space group G, we parameterized
pΠ(x) =

∑
g∈G,gx∈Γ

pΓ(gx), where pΓ(·) was a mixture of von Mises distributions whose parameters

were predicted in the same manner as the 1D Beta mixture parameters.

2.4 OBJECTIVE FUNCTION

Since there are potentially many construction orderings σ leading to the same crystal, we reduced the
number of orderings by enforcing lexicographic partial orderings on both the data and model. Atoms
were ordered lexicographically by Wyckoff letter, then atomic number. Composition spaces were
ordered lexicographically by atomic number. The ordering of remaining variables were sampled
uniformly randomly at each training step. Similarly to Uria et al. (2014), we maximized a lower
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Table 1: Results on the MP20 dataset.
Sampling time ↓ Validity (%) ↑ U.N. rate (%) ↑ Distribution distance ↓ CMD ↓ Diversity ↑

(sec / batch) Structure Composition DMP20
train Wρ WNel

JSDG JSDdWyckoff
Structure Structure Composition

CDVAE 906 99.99 85.66 98.2 0.6590 1.423 0.6957 0.4590 0.4821 0.6539 13.70
DiffCSP 154 99.92 82.21 85.6 0.1454 0.4000 0.4638 0.2328 0.1766 0.9588 15.69

DiffCSP++ 484 99.92 85.94 84.7 0.1658 0.5002 0.1608* 0.0449* 0.1079 0.9329 15.23
SymmCD 139 88.24 86.76 87.7 0.1640 0.3213 0.1669* 0.0344 0.3233 0.9111 15.62

FlowMM (reported) - 96.85 83.19 - - - - - - - -

WyckoffAUGen 2 82.35 82.20 34.3 0.3367 0.0379 0.2752 0.1071 0.2225 0.9614 15.53
* Uses fixed templates from the training data.

bound on the likelihood as

log p(M) = logEσ∼Pr(σ)

[
p(Mσ)

]
≥ Eσ∼Pr(σ)

[
log p(Mσ)

]
.

3 RESULTS AND DISCUSSION

We evaluated WyckoffAUGen on MP20 (Xie et al., 2022), a benchmark dataset of real materials.
Evaluations were conducted on a budget of 10,000 generated crystals. We computed structural and
compositional validity percentages using heuristics about interatomic distances and charge, respec-
tively. We note that only ∼90% of real crystals in the MP20 dataset pass the compositional validity
checker based on SMACT Davies et al. (2016) and thus should be assessed with caution. Of the
10,000 generated crystals, we randomly sampled 1,000 which were determined to be both struc-
turally and compositionally valid. Of these 1,000 crystals, we determined how many were unique
and novel (U.N) with respect to the training dataset using pymatgen’s StructureMatcher
(Ong et al., 2013) with stol=0.3, angle tol=5, and ltol=0.2. U.N. crystals were used to
compute (1) distribution distances between ground truth test and generated materials properties, in-
cluding Wasserstein distances for atomic density ρ and number of unique elements Nel as well as
Jensen-Shannon divergences for space group G and occupied Wyckoff dimensionalities dWyckoff ;
(2) Central Moment Discrepancy (CMD) (Zellinger et al., 2017) up to 50 moments between ground
truth test and generated crystal CrystalNN structural fingerprints (Zimmermann & Jain, 2020); and
(3) structural and compositional diversity as measured by average pairwise L2-distances between
CrystalNN and Magpie (Ward et al., 2016) fingerprints, respectively. We also measured average
sampling times per batch of 500 crystals on a single NVIDIA A40 GPU.

Evaluation metrics are in Table 1. Unsurprisingly, WyckoffAUGen strongly outperformed CDVAE
and DiffCSP on space group and Wyckoff dimensionality metrics. WyckoffAUGen also generates
crystals ∼70x faster than DiffCSP and ∼220x faster than DiffCSP++. WyckoffAUGen performs
competitively on property distance and diversity metrics but underperforms on sampling structurally
valid crystals. The U.N. rate of WyckoffAUGen is lower than other models, but a more useful metric
also computes stability (Zeni et al., 2025) which we intend to pursue. We show non-cherry picked
random and U.N. crystals generated by WyckoffAUGen in Figures 4 and 5, respectively.

The mixture models used to generate atom coordinates in WyckoffAUGen enable rapid sampling and
scalable likelihood-based training with explicit probabilities. These may be useful, e.g., to estimate
thermodynamic ensemble properties with Boltzmann generators (Noé et al., 2019; Volokhova et al.,
2024), approximate Bayesian posteriors, or train GFlowNets (Bengio et al., 2021). However, the
mixture models only directly condition on previously generated atoms, in contrast to score-based
diffusion which also conditions on atom locations currently being denoised. We hypothesize that
this may explain WyckoffAUGen’s subpar performance on the structural validity metric.

4 CONCLUSION AND FUTURE WORK

We built an autoregressive model with explicit space group invariant likelihoods enabling hard con-
strained infilling from space groups, composition spaces, or otherwise incomplete crystals. Limita-
tions of the current approach include underperforming in generating structurally valid crystals; pro-
ducing 1- and 2-dimensional densities over atom coordinates discontinuously over periodic bound-
aries; and ignoring crystal classes like molecular, magnetic, and 2D crystals. We plan to explore
alternative approaches to sampling atom positions, conduct DFT-based evaluations, and pursue
property-guided generation. Leveraging emerging paradigms from large language models like test-
time compute scaling (Snell et al., 2024) may also be an interesting avenue for future work.
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Daniel Levy, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Qiang Zhu, Kin Long Kelvin Lee,
Mikhail Galkin, Santiago Miret, and Siamak Ravanbakhsh. SymmCD: Symmetry-preserving
crystal generation with diffusion models. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=xnssGv9rpW.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Matthew J McDermott, Brennan C McBride, Corlyn E Regier, Gia Thinh Tran, Yu Chen, Adam A
Corrao, Max C Gallant, Gabrielle E Kamm, Christopher J Bartel, Karena W Chapman, Peter G
Khalifah, Gerbrand Ceder, James R Neilson, and Kristin A Persson. Assessing Thermodynamic
Selectivity of Solid-State Reactions for the Predictive Synthesis of Inorganic Materials. ACS

8

//journals.iucr.org/paper?pz5088
//journals.iucr.org/paper?pz5088
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=vN9fpfqoP1
https://proceedings.neurips.cc/paper{_}files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper{_}files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://arxiv.org/abs/1909.00949
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://openreview.net/forum?id=jkvZ7v4OmP
https://openreview.net/forum?id=Jcy1bPOqrY
https://openreview.net/forum?id=Jcy1bPOqrY
http://arxiv.org/abs/2004.01396
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=xnssGv9rpW
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7


Published as a conference paper at ICLR 2025

Central Science, 9(10):1957–1975, 2023. ISSN 2374-7943. doi: 10.1021/acscentsci.3c01051.
URL https://doi.org/10.1021/acscentsci.3c01051.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev,
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gehalten an der Universität Königsberg. Leipzig, G. G., 1885.

Naoki Nitta, Feixiang Wu, Jung Tae Lee, and Gleb Yushin. Li-ion battery materials: present and
future. Materials Today, 18(5):252–264, 2015. ISSN 1369-7021. doi: 10.1016/J.MATTOD.2014.
10.040.
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A APPENDIX

A.1 MOTIVATING WYCKOFF POSITIONS AND ASYMMETRIC UNITS

a) b) c)

Figure 2: (a) The asymmetric unit (Π) and special Wyckoff positions labeled by letter in the conven-
tional unit cell of space group 10. (b-c) Histograms of occupied space groups and Wyckoff dimen-
sionalities by crystals in the MP20 (Xie et al., 2022; Jain et al., 2013; Bergerhoff et al., 1983) train-
ing dataset. Space groups and Wyckoff positions were determined by the SpaceGroupAnalyzer
module in pymatgen (Ong et al., 2013; Togo et al., 2024) using tolerances of 0.1 Å and 5◦. These
tolerances help account for the moderate convergence criteria of the Materials Project DFT relax-
ations.

Symmetry reduction

Space group orbiting

Figure 3: Special Wyckoff positions and the asymmetric unit in the conventional unit cell of hexag-
onal space group 192. Closed asymmetric unit boundary edges and facets (∂Π) are in orange.

A.2 RELATED WORK

Early crystal generative models represented crystals as voxelized images (Noh et al., 2019; Hoff-
mann et al., 2019) or padded tensors of 3D coordinates (Kim et al., 2020; Ren et al., 2022) to
train variational autoencoders (VAE) (Diederik P. Kingma, 2014) or generative adversarial networks
(Goodfellow et al., 2014). Recent works have enforced the SE(3) and periodic translational invari-
ance of crystals by leveraging graph neural networks. One popular approach is to use diffusion
models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) on crystal lattices, atom
types, and atom positions (Xie et al., 2022; Jiao et al., 2023; Zeni et al., 2025). These models have
also been extended with the flow matching framework (Lipman et al., 2023), accelerating sampling
(Miller et al., 2024). Other works have attempted to learn the SE(3) and periodic invariances through
data augmentations (Yang et al., 2024b; Gruver et al., 2024) or data canonicalization (Yan et al.,
2024) with image diffusion (Yang et al., 2024b) or large language models (LLMs) (Gruver et al.,
2024; Yan et al., 2024). Concurrent works have used LLMs to generate noisy crystals which are
then refined with graph-based diffusion or flow matching (Sriram et al., 2024; Yang et al., 2024a).

Two of the aforementioned works attempted to learn space group-conditioned generation without
hard constraints. The graph diffusion model MatterGen (Zeni et al., 2025) was fine-tuned on 14
space groups and used ground truth numbers of atoms per unit cell per space group to initialize
generation. However, they could only generate target space groups with 20% accuracy as assessed
by pymatgen’s SpaceGroupAnalyzer using unreported tolerance values (Ong et al., 2013;
Togo et al., 2024). Similarly, CrystalLLM (Gruver et al., 2024) only managed 24% accuracy despite
a generous SpaceGroupAnalyzer tolerance of 0.2Å.
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More relevant to our work, a few other models have considered hard space group constraints during
generation. WyCryst (Zhu et al., 2024) trained a VAE to generate atom types and Wyckoff position
occupations, but rely on post-hoc DFT calculations to relax atom positions from uniformly random
locations in the Wyckoff positions. Crystal-GFN (Mistal et al., 2023) considered space group con-
straints for the task of distribution matching under the GFlowNet framework (Bengio et al., 2021)
but did not address how to sample atom coordinates with space group constraints. DiffCSP++ (Jiao
et al., 2024) trained a graph-based diffusion model with masked diffusion of the unit cell lattice, con-
tinuous element diffusion with a post-hoc argmax, and projected diffusion of atom positions on the
Wyckoff subspaces. They achieved space group invariance by averaging the denoising term over all
atoms in a unit cell belonging to the same Wyckoff position. However, DiffCSP++ does not readily
emit likelihoods due to the post-hoc argmax; and they do not learn to sample space groups, num-
bers of atoms per unit cell, or Wyckoff position occupations, instead relying on templates from the
training data. CrystalFormer (Cao et al., 2024) trained a transformer-based autoregressive model,
canonicalizing crystals as a sequence of atoms ordered lexicographically by Wyckoff letter and
then fractional coordinates. The model was trained to learn these orderings and sample atom co-
ordinates in special Wyckoff positions by conditionally masking an amortized mixture of 3D von
Mises distributions. However, their von Mises distributions are not space group invariant, thus er-
roneously assigning different likelihoods to symmetrically equivalent atoms. Concurrently to our
work, SymmCD (Levy et al., 2025) and WyckoffTransformer (Kazeev et al., 2024) also consider
space group constrained generation. SymmCD is a diffusion model which leverages asymmetric
units to reduce memory footprints, but uses discrete diffusion of Wyckoff positions and elements
and then post-hoc projections of atomic coordinates to satisfy Wyckoff position constraints; thus
SymmCD cannot readily yield explicit likelihoods. WyckoffTransformer predicts atom types and
Wyckoff positions but relies on interatomic potentials (which do not preserve space group symmetry)
or DiffCSP++ to determine atom coordinates and thus also cannot readily yield explicit likelihoods.
Unlike these existing works, our model learns to generate crystals from scratch; produces explicit
space group invariant, AR-like conditional likelihoods; parametrizes distributions over Wyckoff po-
sitions in asymmetric units instead of unit cells; and learns distributions over composition spaces.

A.3 PRELIMINARIES

A.3.1 SPACE GROUPS

Formally, a space group G ∈ G is a group of isometries that tiles R3 with a convex polytope Π called
the asymmetric unit (ASU) (Adams & Orbanz, 2023; Grosse-Kunstleve et al., 2011). In particular,
G is generated by an infinite subgroup of discrete lattice translations T = {n1l1, n2l2, n3l3|ni ∈
Z, li ∈ R3} as well as a collection of other symmetry operations g(·) = {R(·) + v|R ∈ O(3), v ∈
R3} ∈ G, where R is a point group operation (rotation, reflection, or identity) and v is a translation.

A.3.2 WYCKOFF POSITIONS

Given a space group and a point x ∈ R3, the stabilizer group Gx := {g|gx = x} ⊂ G is the
finite subgroup of G that leaves x invariant. A Wyckoff position is then defined as the set of points
with conjugate stabilizer groups, i.e., {x′|∃ g ∈ G : Gx′ = gGxg

−1}. Conceptually, if g is a
point group operation, this means that all points in a Wyckoff position are invariant to the same
space group operations up to a change of basis. By convention, when x is described with respect to
the lattice basis {l1, l2, l3}, the size of the orbit of x in the unit cell, |{gx|g ∈ G, gx ∈ [0, 1)3}|,
is called the Wyckoff multiplicity. Wyckoff positions whose stabilizer groups are non-trivial, i.e.,
include more than the identity operation, are referred to as special Wyckoff positions as opposed to
the general Wyckoff position defined by the identity stabilizer group. Wyckoff positions are labeled
by multiplicity and Wyckoff letter, where the lexicographic ordering gives the Wyckoff positions in
order of increasing multiplicity.

A.3.3 REPRESENTING CRYSTALS WITH THE ASYMMETRIC UNIT

Previous crystal generative models represent the infinite translational periodicity of a crystal with a
parallelipiped Γ called the unit cell. The unit cell reduces infinite crystals by removing redundancy
induced by T , the group of discrete lattice translations. In this way, crystals are represented by
the tuple M = (A,X,L), where A = (a′1, ..., a

′
N ) ∈ AN are the atom types, A is the set of all
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chemical elements, and N is the number of atoms in the unit cell; X = {(x′
1, ..., x

′
N )|x′

i ∈ Γ} are
the Cartesian atom coordinates; and L = (L1, L2, L3) ∈ R3×3 are the unit cell basis vectors. Given
M , the infinite periodic structure can be reconstructed by applying the actions of T as {(a′i, x′

i +
n1L1 + n2L2 + n3L3)

N
i=1|nj ∈ Z}. Alternatively, the atom coordinates can be given in the lattice

basis instead of the Cartesian basis. In this case, the infinite crystal is reconstructed as {
(
a′i, x

′
i +

n1e1+n2e2+n3e3
)N
i=1
|nj ∈ Z}. For the rest of this paper, we assume atom coordinates are always

in the lattice basis. While the choice of unit cell is not unique, prior crystal generative models (Xie
et al., 2022; Jiao et al., 2023; Miller et al., 2024) either canonicalize it with a minimum-volume
primitive cell determined by the Niggli algorithm (Grosse-Kunstleve et al., 2004) or (Gruver et al.,
2024; Cao et al., 2024; Jiao et al., 2024) a conventional cell which contains all the symmetries of the
space group (Aroyo et al., 2016).

The pitfall of the unit cell representation is that, for 229 of the 230 space groups, it contains atoms
which are symmetrically equivalent. Thus unit cell-based generative models which independently
introduce even minute errors into atom positions will break any space group symmetry that is not a
lattice translation.

In our work, we represented crystals with a convex polytope Π ∈ R3, the ASU, which maximally
reduces infinite crystals by removing all redundancies induced by the space group G ⊇ T . Under
this formulation, we consider atoms in the ASU with fractional coordinates X = {(x1, ..., xn)|xi ∈
Π} ∈ Rn×3, atom types A = (a1, ..., an) ∈ An, and Wyckoff positions W = {(w1, ..., wn)|wi =
Gxi
} ∈ Wn where n ≤ N . The infinite periodic structure of a crystal can be reconstructed by

applying the actions of G to Π, i.e.,

{(ai, gijxi) | xi ∈ Π, gij ∈ G/wi, i ∈ (1, ..., n)}.
By only considering these symmetrically inequivalent atoms, we reduce our model’s memory foot-
print and minimize the dimensionality of the generative modeling task. Restricting our model prob-
ability distributions to the ASU also makes them automatically space group invariant. We canonical-
ize the non-unique choice of ASU using those listed in the International Tables for Crystallography
(Aroyo et al., 2016) with additional conditions on faces, edges, and vertices from Grosse-Kunstleve
et al. (2011) to ensure that the ASUs are exact, i.e., that Π tiles R3 without overlaps at the boundaries
∂Π.

A.3.4 COMPOSITION SPACE

A composition space contains all possible stoichiometries that can be formed using a subset of
elements from the periodic table. Constraining a generative model to a composition space with fewer
elements than the periodic table is practically relevant for informing materials synthesis experiments
wherein only certain elements are allowed to enter the reaction chamber (McDermott et al., 2023;
Doherty et al., 2021). We represent a composition space as an unordered set of elements C ∈
P(A) from the power set over all elements A in the periodic table. A given crystal resides in any
composition space that is a superset of the crystal’s elements, leading to a combinatorial explosion
of composition spaces that can be identified with a crystal. In practice, we restrict the maximum size
of our composition spaces to 7 elements, the maximum found in the MP20 dataset.

A.3.5 GENERALIZED BARYCENTRIC COORDINATES

Given an arbitrary polygon P ⊂ R2 with vertices V ∈ Rk×2 ordered counterclockwise and k ≥ 3,
generalized barycentric coordinates (Floater, 2003) are defined as the function ϕ : P → Rk, which,
for all x ∈ P , satisfies

ϕ(x)i ≥ 0, 1Tϕ(x) = 1, ϕ(x)V = x

where 1 ∈ Rk is the ones vector. When k = 3, the generalized barycentric coordinates are uniquely
determined as the usual barycentric coordinates of a triangle. For k > 3, the choice is no longer
unique. We chose the “mean value coordinates” (Floater, 2003) defined as the smooth functions,

ϕ(x)i =
wi(x)
k∑

j=1

wj(x)

, wi =
tan(αi−1/2) + tan(αi/2)

||vi − x||
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where αi = ∠VixVi+1 ∈ (0, π) and Vk+1 ≡ V0.

When mapping triangles to polygons with f : T3 → Pk, we calculated the distortion of the map as

Distortion =
1

Nquad

Nquad∑
i=1

(∣∣∣∂f−1(xi;V
Tk)

∂xi

∣∣∣− 1
)2

(3)

where xi is a quadrature point.

A.4 ARCHITECTURE AND TRAINING

Our code was written with PyTorch Paszke et al. (2017) and PyTorch Geometric (Fey & Lenssen,
2019). The model was trained with the AdamW optimizer (Kingma & Ba, 2015; Loshchilov &
Hutter, 2019) on a single NVIDIA A100 GPU. Our GNN was a modified version of FAENet (Du-
val et al., 2023), replacing sum pooling with variance-preserving aggregation (Schneckenreiter et al.,
2024) and removing frame averaging since we trivially achieve SE(3) and space group invariance by
canonicalizing crystals with the ASU representation. We constructed fully connected atom graphs G
wherein each atom in the primitive unit cell was connected to every other atom in the primitive unit
cell by their minimum-length distance and relative positions under periodic boundary conditions. If
ties existed, all corresponding edges were included. For improved memory, only node embeddings
of atoms in the asymmetric unit were computed. Rescaling by Wyckoff multiplicities was employed
at pooling operations to maintain consistency with unit cell representations. Seed nodes with spe-
cial learnable embeddings were placed at the origin to represent crystals without any atoms. The
architecture is summarized as follows:

u0
i ← MLP

(
ewi
||eai
||FourierEmbedding(xi)

)
(4)

eij ←
1

mi
MLP

(
r̂ij||RBF(dij)

)
(5)

fk
ij ← MLP

(
eij ||uk

i ||uk
j

)
(6)

uk+1
i ← uk

i + a ·MLP ◦GraphNorm

(
1√
|Ni|

∑
j∈Ni

ukj ⊙ fkij

)
(7)

ukmax
i ← MLP(u0

i ||...||u
kmax
i ) (8)

g ←
∑n

i mi · α(ukmax
i ) · ukmax

i√∑n
i

(
mi · α(ukmax

i )
)2 (9)

(10)

h← MLP
(
g||eG||eC||eρ||el

)
(11)

where uk
i is the node feature of the ith atom in the asymmetric unit after k rounds of message

passing; r̂ij =
r⃗ij

||r⃗ij || is the normalized Cartesian relative position between atoms i and j; dij is
the pairwise Cartesian distance; kmax is the number of message passing layers; mi is the Wyckoff
multiplicity of the ith atom; a is a learnable scalar initialized to zero; FourierEmbedding(xi) are
random Fourier features of atom i’s fractional coordinates under the conventional unit cell lattice
basis; n is the number of atoms in the asymmetric unit; α(·) are learnable attention weights; eai

is
the embedding of atom i’s element; ewi

is the embedding of atom i’s Wyckoff position; eG, eC, eρ,
and el are embeddings of the crystal’s space group, composition space, atomic density, and lattice
parameters, respectively; and h is the final crystal embedding.

A.4.1 STABILIZATION TECHNIQUES

• We prevented the variance of probability densities over atom coordinates from going to zero
by constraining maximum mixture component distribution parameters with a −softplus(·)
operation.

• To better align the distribution of partially complete crystals seen during training and infer-
ence, we employed noisy teacher forcing during training. Specifically, we maximized the
probability of ground truth atoms and lattice parameters conditioned on noisy ground truth
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atoms and lattice parameters. We applied isotropic Gaussian noise with a standard devia-
tion of 0.2Å to atom positions, restricting the noise to the subspace of the atom’s Wyckoff
position and applying the periodic boundary conditions of the ASU whenever noise moved
atoms outside the ASU. Lattice lengths and angles were augmented with noise from uni-
form distributions with 0.01Å and 1◦ ranges, respectively, and then discretized following
2.2.

• To ensure various component probability distributions converged at similar rates during
training, gradients were re-balanced with straight-through estimators as

log pi ← c log pi − stop grad(c log pi) + stop grad(log pi).

We set c = 0.3 for sampling lattice parameters, Wyckoff positions, elements, and termina-
tion and c = 1.0 otherwise.

• To prevent mixture models with K modes from collapsing to k ≪ K modes that dominate
the gradient signal, we did maximum a posteriori estimation by placing a Dirichlet prior
over mixture weights with αDirichlet = (1.0001)K .

• We adopted auxiliary z-loss regularization from Chowdhery et al. (2023) with λ = 10−4

to prevent the log normalizers of Wyckoff, element, and termination logits from getting too
large.

A.4.2 HYPERPARAMETERS

Hyperparameter Value

GNN learning rate 2× 10−4

Space group learning rate 1× 10−3

Composition space learning rate 2× 10−3

Lattice learning rate 1× 10−3

Atoms learning rate 5× 10−4

Weight decay 10−5

AdamW ϵ 10−5

Gradient clipping value 1.0
Batch size 512
Epochs 3000
Hidden dimension 256
Relative position filters 480
Relative distance embeddings 300
Message passing layers 7
Beta distribution max α, β 5000
Dirichlet distribution max α 2500
von Mises distribution max κ 500
Beta mixture components 10
Dirichlet mixture components 30
Von Mises mixture components 50
Lattice length Fourier scale 20.0
Lattice angle Fourier scale 1.0
Lattice parameter bin edges Fourier scale 10.0

Number of parameters 8,968,929

16



Published as a conference paper at ICLR 2025

Figure 4: Non-cherry picked random crystals generated by WyckoffAUGen.
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Figure 5: Non-cherry picked unique and novel (with respect to the MP20 training data) crystals
generated by WyckoffAUGen. The prominence of Heusler crystals exposes the bias of the MP20
training dataset.
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