
Unsupervised Morphological Tree Tokenizer

Anonymous ACL submission

Abstract

As a cornerstone in language modeling, tok-001
enization involves segmenting text inputs into002
pre-defined atomic units. Conventional statisti-003
cal tokenizers often disrupt constituent bound-004
aries within words, thereby corrupting semantic005
information. To address this drawback, we in-006
troduce morphological structure guidance to to-007
kenization and propose a deep model to induce008
character-level structures of words. Specifi-009
cally, the deep model jointly encodes internal010
structures and representations of words with a011
mechanism named MorphOverriding to ensure012
the indecomposability of morphemes. By train-013
ing the model with self-supervised objectives,014
our method is capable of inducing character-015
level structures that align with morphological016
rules without annotated training data. Based017
on the induced structures, our algorithm tok-018
enizes words through vocabulary matching in019
a top-down manner. Empirical results indicate020
that the proposed method effectively retains021
complete morphemes and outperforms widely022
adopted methods such as BPE and WordPiece023
on both morphological segmentation tasks and024
language modeling tasks. The code will be025
released later.026

1 Introduction027

Tokenization, the initial step of language model-028

ing, segments natural language into manageable029

units. While this process is crucial for represent-030

ing natural language, research on new tokenization031

methods has remained limited, particularly in con-032

trast to the rapid advancements in language model033

architectures and learning approaches. Currently,034

the de-facto tokenizers are BPE (Sennrich et al.,035

2016) and WordPiece (Schuster and Nakajima,036

2012), which have been widely adopted by state-037

of-the-art language models such as GPT (Radford038

et al., 2019) and BERT (Devlin et al., 2019). How-039

ever, numerous studies have challenged these meth-040

ods (Bostrom and Durrett, 2020; Church, 2020;041

Figure 1: BPE (top) tokenizes a word through a bottom-up
greedy merging approach given pre-learned merge operations,
while ours (bottom) tokenizes a word via a top-down vocabu-
lary matching while traversing a global parse tree.

Hofmann et al., 2021; Minixhofer et al., 2023), 042

arguing that they cannot adequately capture lin- 043

guistic information. They often disrupt constituent 044

boundaries within words, leading to unnatural and 045

fragmented token representations. Figure 1(top) 046

demonstrates an example where BPE fails to iden- 047

tify the appropriate boundaries in a word. 048

According to linguistic theories, both words 049

and sentences are believed to have internal struc- 050

tures (Selkirk, 1982; Marvin, 2002; Cotterell and 051

Schütze, 2015). While sentence-level grammar in- 052

duction methods based on deep neural networks 053

are highly effective, whether these methods can 054

be applied equally well to words remains under- 055

explored. In this work, we systematically evaluate 056

neural grammar induction methods at the word 057

level, propose a hypothesis explaining their subop- 058

timal performance, and empirically validate this hy- 059

pothesis. Building on these insights, we introduce 060

the first effective unsupervised neural grammar in- 061

duction model at the word level and present a more 062

morphologically aligned tokenizer that leverages 063

our model as shown in Figure 1(bottom). 064

Our approach draws inspiration from syntactic 065

composition models (Maillard et al., 2017), where 066

a sentence is encoded as a weighted sum over all 067

composed root representations of its underlying bi- 068

nary parse trees via dynamic programming. Instead 069

of composing a sentence from words, we apply 070
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composition models on characters in a word to in-071

duce its morphological parse tree. To train the com-072

position model, we propose two self-supervised073

objectives akin to next token prediction and span074

prediction that effectively leverage both contextual075

information at the sentence level and semantic in-076

formation at the subword level. Thus the model077

can learn to assign higher probabilities to morpho-078

logical constituents of a word and induce the un-079

derlying morphological parse tree.080

However, character sequences present a unique081

challenge to composition models because mor-082

phemes, the smallest meaning-bearing units in a083

language (Jurafsky and Martin, 2009), are indecom-084

posable. While we can represent a constituent by085

composing its sub-constituents in most cases, we086

cannot represent a subword by composing its com-087

ponents if the subword is a morpheme. For exam-088

ple, the meaning of windsurf can be decomposed089

to wind+surf, but wind is a morpheme whose090

meaning is not a function of its components. To091

address the challenge, we propose a mechanism092

named MorphOverriding. During the bottom-up093

composition process in our model, upon identifying094

a subword that matches an entry in a heuristically095

constructed morpheme vocabulary, we compute the096

subword representation from both its components097

and the corresponding morpheme embedding, i.e.,098

the model may learn to mix or override the com-099

position with the morpheme embedding. Our ex-100

periments show that such a mechanism is critical101

in morphological structure induction.102

Building upon the resolution of morphological103

structure induction, we introduce a novel tokeniza-104

tion algorithm named TreeTok, which includes both105

vocabulary construction and word segmentation.106

During vocabulary construction, TreeTok first uti-107

lizes a tree-based BPE variant to build an initial108

vocabulary and then applies a tree-based Unigram109

variant to prune the initial vocabulary to a speci-110

fied size. Because TreeTok operates in a top-down111

manner, it does not need to retain all intermedi-112

ate tokens produced by merge operations in the113

vocabulary as BPE does. By this means, we can114

build a more compact vocabulary by pruning less115

important subwords. During word segmentation,116

we employ a lightweight parser with compact pa-117

rameters distilled from the composition model to118

parse a word into a character-level binary tree and119

then apply top-down vocabulary matching to en-120

hance the tokenizer’s alignment to morphological 121

structure, as illustrated in Figure 1. 122

In our experiments, we train TreeTok and base- 123

lines on the Wikitext-103 corpus (McClosky et al., 124

2006) and assess their performance on morpho- 125

logical segmentation tasks and language modeling 126

tasks. Evaluation results indicate that TreeTok con- 127

sistently outperforms BPE and WordPiece across 128

all the tasks. 129

In conclusion, our contributions are three-fold: 130

• We conduct empirical study on character-level 131

neural parsing, identifying its limitations and 132

proposing a novel explanation—lack of Mor- 133

phOverriding—to account for its suboptimal per- 134

formance. 135

• Building on the MorphOverriding hypothesis, we 136

introduce the first effective unsupervised neural 137

model for character-level structure induction, ad- 138

dressing a critical gap in the field. 139

• We show that our character-level structure induc- 140

tion method can be integrated into mainstream 141

tokenizers to significantly enhance their perfor- 142

mance on morphological tasks. 143

2 Related Work 144

Subword Tokenizers. Subword tokenization, 145

with typical methods such as BPE (Sennrich et al., 146

2016) and WordPiece (Schuster and Nakajima, 147

2012), has become customary in most NLP fields. 148

BPE builds its vocabulary by repeatedly merging 149

the most frequent subword unit pairs, whereas 150

WordPiece selects pairs using the highest mutual 151

information. During tokenization, BPE applies 152

learned merge operations in the same order to new 153

text initialized with characters while WordPiece it- 154

eratively finds the longest match in the vocabulary. 155

Unigram (Kudo, 2018), another popular tokenizer, 156

builds its vocabulary in the opposite direction: it 157

starts with a large set of potential subwords and 158

prunes them based on delta entropy in a unigram 159

language model. 160

Our tokenizer aims to build upon the advantages 161

of these effective statistical tokenizers and augment 162

them with unsupervised induced tree structures. 163

Unsupervised Morphological Segmentation. In 164

the line of work on unsupervised morphological 165

segmentation, the most well-known model is Mor- 166

fessor (Creutz and Lagus, 2002), along with its mul- 167

tiple variants (Creutz and Lagus, 2005; Grönroos 168

et al., 2014, 2020). In Morfessor, an online search 169

algorithm is utilized to apply a hierarchical word 170
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splitting strategy with a Minimum Description171

Length (MDL) (Rissanen, 1989) cost function.172

However, its lack of explicit control over vocab-173

ulary size makes it unsuitable for use as a tokenizer.174

In addition, although some studies (Ataman and175

Federico, 2018; Hou et al., 2023) find morpholog-176

ically motivated segmentation can improve data-177

driven tokenizers, most other studies (Machácek178

et al., 2018; Domingo et al., 2019; Sälevä and Lig-179

nos, 2021) find no reliable improvement of such180

methods over BPE. According to Gallé (2019), the181

effectiveness of BPE lies in its superior compres-182

sion capability. A more detailed discussion can be183

found in Mielke et al. (2021).184

Some other studies try to model morphological185

structures using Bayesian PCFGs (Johnson et al.,186

2007) or a non-parametric Bayesian generalization187

of PCFGs (Johnson et al., 2006). However, they are188

pure statistical models and do not utilize modern189

neural methodologies.190

Our method differs from previous unsuper-191

vised morphological methods in our character-192

based structures, thereby possessing the superior193

compression capability of BPE. Meanwhile, our194

method leverages modern neural methodologies to195

better utilize contextual and intra-word semantic196

information.197

Composition Model. In this work, we utilize a198

composition model to induce morphological struc-199

tures. Composition models jointly learn represen-200

tations and structures of a symbol sequence by201

transforming text encoding into a combinatorial202

optimization problem. Maillard et al. (2017) pro-203

poses a CKY-like (Cocke, 1969; Kasami, 1966;204

Younger, 1967) encoder, in which each constituent205

is represented as a weighted average of the set of206

composed representations computed from different207

splits of the constituent. Drozdov et al. (2019) pro-208

poses a deep inside-outside encoder (Baker, 1979;209

Lari and Young, 1990), enabling the encoder to210

learn underlying structures via an auto-encoding211

objective. Recently, a series of studies (Hu et al.,212

2024a,b) have been conducted to reduce the deep213

inside-outside encoder complexity from cubic to214

linear, on which our work is based.215

3 Methodology216

Given a word x = {x1, x2, ..., xn} where xi is217

the i-th character, we aim to parse it into a binary218

tree and then tokenize it via top-down vocabulary219

matching. The parser is a deep composition model220

Figure 2: (a) The composition representation of asking (i1,6)
is a weighted sum over all subword pairs such as ask+ing
(̄i31,6) and as + king (̄i21,6). (b) The composition function.
Take ask (i1,3) as an example. s1,3 is EV[ask] if ask∈ V. Thus
the representation of ask depends not only on its components
but also on EV[ask]. However, if asking /∈ V, then s1,6 is
Eempty and the representation of asking (i1,6) only depends
on the composition representation of its components.

capable of jointly modeling the internal structures 221

and representations of words and is trained by opti- 222

mizing self-supervised objectives. In the following 223

sections, we sequentially introduce the composi- 224

tion model, training objectives, and the tree-based 225

tokenization algorithm. 226

3.1 Composition Model for Word 227

For a given word x, we denote ii,j as the represen- 228

tation of subword xi:j = {xi, ..., xj}. The inside 229

pass (Drozdov et al., 2019) of a composition model 230

computes a composition vector īki,j and a compat- 231

ibility score āki,j for each pair of sub-constituents 232

(i, k) and (k + 1, j). The compatibility score indi- 233

cates how likely these two sub-constituents are to 234

be merged. The constituent representation ii,j is 235

computed as a weighted average over composition 236

vectors of all possible pairs of sub-constituents as 237

follows: 238

āk
i,j , ī

k
i,j = fα(ii,k, ik+1,j) ,

ŵk
i,j =

exp(āk
i,j)∑j−1

k′=i exp(ā
k′
i,j)

, ii,j =

j−1∑
k=i

ŵk
i,j ī

k
i,j .

(1) 239

The inside pass starts with characters by initializ- 240

ing ii,i with character embeddings and recursively 241

computes constituent representations bottom up 242

following Equation 1. Representation i1,n of the 243

whole word x is regarded as the word embedding 244

EMB(x). fα is the composition function imple- 245

mented with a multi-layered Transformer. An ex- 246

ample of the bottom-up composition process is 247

depicted in Figure 2(a). In this work, we employ 248

a pruned version of deep inside encoder (Hu et al., 249

2024b) as our backbone, which is easy to scale up, 250

thanks to the logarithmic parallel time complexity 251

and the linear space complexity. 252

The limitation of this approach is that the repre- 253

sentation of any subword is always composed of 254
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its component pairs, which is incompatible with255

the linguistic constraint that morphemes are the256

smallest meaning-bearing units and should not be257

decomposed further. Hence, we introduce Mor-258

phOverriding to enable a subword representation259

to disentangle from its component pairs when the260

subword is a morpheme. Specifically, we construct261

a morpheme vocabulary V heuristically using a262

statistical method (BPE in this work), in which263

each entry is associated with a learnable vector in a264

morpheme embedding table E. When xi:j hits the265

vocabulary V, we insert its morpheme embedding266

si,j into the computation of ii,j , making it possi-267

ble to mix or override the composition vector with268

the morpheme embedding. Thus, the composition269

vector and the compatibility scores can then be270

reformulated as:271

āk
i,j , ī

k
i,j = fα(ii,k, ik+1,j , si,j) ,

si,j =

{
EV[xi:j ] if xi:j ∈ V
Eempty if xi:j /∈ V

,
272

Figure 2(b) illustrates the composition function273

equipped with MorphOverriding. Our experiments274

demonstrate that this mechanism is crucial for275

character-level structure induction.276

Tree induction. For a given span (i, j), the best277

split-point is k with the highest compatibility score278

āki,j . Thus, to derive a parse tree, we can recursively279

select the best split-points top-down starting from280

the root span (1, n). As the pruned inside-outside281

encoder produces a lightweight parser (Hu et al.,282

2022) with a compact parameter set as a byproduct,283

we use it for efficient inference during tokenization.284

3.2 Training Objectives285

The overall loss for training the composition model286

is the summation of an auto-encoding loss Lae and287

an auto-regression loss Lar. The auto-encoding288

loss is based on predicting each character or mor-289

pheme from the rest of a word, leveraging intra-290

word information. The auto-regression loss is291

based on next token prediction that leverages con-292

textual information to disambiguate the underlying293

structures of a word. Under these objectives, the294

composition model learns to assign proper scores295

to each split point of a subword.296

Auto-encoding Loss. Auto-encoding is a com-297

mon practice of training a composition model. For298

our character-level composition model, we try to299

predict each character xi based on its neighbor-300

ing context representations i1,i−1 and ii+1,n (Hu301

et al., 2021). However, the auto-encoding objective 302

turns out to be empirically ineffective when train- 303

ing our model probably because unlike word-level 304

auto-encoding that requires selecting from tens of 305

thousands of words in a vocabulary, here we only 306

need to select from tens of characters, which is 307

much less challenging. To enhance learning effi- 308

cacy, we propose predicting both individual char- 309

acters and morphemes in the vocabulary V. For 310

instance, given the word windsurf, we mask out 311

wind and let the model uncover the masked mor- 312

pheme based on the visible part surf. Analogous 313

to the inside pass, the outside pass computes each 314

outside representation oi,j in a top-down manner 315

based on context information outside span (i, j), 316

whose details are described in Appendix A.3. we 317

use oi,j to predict each subword xi:j that belongs 318

to V: 319

Lae = − 1

N
∑

xi:j∈V

log
exp(oT

i,jEV[xi:j ])∑|V|
k=1 exp(o

T
i,jEk)

, 320

where N is the total number of subwords belonging 321

to the vocabulary 1 322

Auto-regression Loss. Given a sentence S = 323

{x1, ...,xm}, whose word embedding is computed 324

by the composition model, we feed the composed 325

word embeddings into a causal language model and 326

let it pick the correct next word from candidates 327

built via in-batch sampling for each step. Let ht 328

denote the t-th hidden states of the causal language 329

model and W denote a deduplicated vocabulary 330

built on all input words in the same batch, we have 331

the auto-regression loss defined as: 332

Lar = − 1

m

m−1∑
t=1

log
exp(htEMB(xt+1))∑
x∈W exp(htEMB(x))

. 333

3.3 Tokenization 334

The proposed tree-based tokenization algorithm, 335

TreeTok, includes segmentation and vocabulary 336

construction procedures. As the latter depends on 337

the former, we first discuss the segmentation proce- 338

dure, followed by the vocabulary construction. 339

Segmentation Procedure. Given a constructed 340

vocabulary, whose details are described later, we 341

1Note that multiple subwords may be mutually exclusive,
such as “asking” with “ask” and “king”. Intuitively, it should
be more reasonable to predict a constituent than other span
candidates from the context. Therefore, we assign a con-
stituency weight to each subword in the objective, as detailed
in Appendix A.4.
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parse each word into a morphological tree and seg-342

ment it via a top-down matching approach, as il-343

lustrated in Figure 1(bottom). Specifically, during344

the top-down traversal of a parse tree, we retain345

a subword and backtrack if the subword matches346

an entry in the vocabulary. Note that unsupervised347

structural learning is often imperfect, causing er-348

roneous tokenization. For instance, an incorrect349

parse tree [[[book]e]d] may yield tokens book350

e d where e d should be merged. To address this351

issue, we propose a post-processing step to deal352

with mergeable pairs of segmented tokens. Specifi-353

cally, we define the empirical probability of token354

t as COUNT(t)
T , where COUNT(t) is the frequency of355

t in the entire corpus and T =
∑

t∈V COUNT(t).356

Therefore, the probability of a certain merge is357

the production of the probabilities of all tokens.358

We find the optimal merge by searching for the359

one with maximum probability among all poten-360

tial merges via dynamic programming. Detailed361

pseudo-code can be found in Appendix A.1.362

Vocabulary Construction. One drawback of363

BPE and WordPiece is that they have to keep all364

intermediate “junk” tokens produced during the365

iterations of merge operations, which results in366

limited vocabulary space occupied by these mean-367

ingless tokens. For instance, if the corpus contains368

many occurrences of low and lower, the mean-369

ingless token lo will be added to the vocabulary370

before low and will not be removed later. However,371

with the top-down matching framework, we don’t372

need bottom-up merge operations to restore tokens,373

allowing us to prune unnecessary tokens and create374

a more compact vocabulary. To build a compact375

vocabulary, we propose a vocabulary construction376

algorithm in which we employ a tree-based BPE-377

like algorithm to build a heuristic vocabulary and378

a tree-based Unigram algorithm to prune unnec-379

essary subword units. Specifically, we initialize380

the token vocabulary with the character vocabulary381

and repeat the following steps to build a heuristic382

vocabulary given character-level tree structures of383

words:384

1. Count adjacent token pairs that share the same385

parent in the tree structure, e.g., given [[b[o386

o]]k], only the pair (o, o) is counted.387

2. Merge adjacent symbol pairs whose counts ex-388

ceed a given threshold, e.g., [[b[o o]]k] →389

[[b oo]k].390

3. Repeat 1-2 until there are no new symbol pairs.391

In the pruning procedure, we start from the heuris- 392

tic symbol vocabulary and prune it as follows: 393

1. Tokenize the corpus via the top-down match- 394

ing according to the current vocabulary. The 395

total entropy of the whole corpus is defined 396

as HV = −
∑

t∈V
COUNT(t)

T log COUNT(t)
T where 397

T =
∑

t∈V COUNT(t). 398

2. For each token s, calculate the entropy gain 399

after removing that word from the vocabulary 400

denoted as ∆Hs = HV/{s} − HV. Intuitively, 401

the higher ∆Hs is, the more important s is. 402

3. Sort delta entropy of tokens and remove the 403

lowest k% from V. Repeat step 1-2 until |V| 404

reaches the target vocabulary size. 405

In practice, we design a tree-based Viterbi algo- 406

rithm (Viterbi, 1967) to implement the pruning pro- 407

cedure efficiently. The pseudo-code is presented in 408

Appendix A.2. 409

4 Experiments 410

We evaluate the performance of TreeTok against 411

the de-facto tokenizers such as BPE, WordPiece, 412

and Unigram as primary baselines. 413

Training setups. For a fair comparison, we train 414

all tokenizers from scratch on the lowercase ver- 415

sion of the WikiText-103 corpus (Merity et al., 416

2017) without any word boundary marker and set 417

the same vocabulary size of 30,000. For BPE, 418

WordPiece, and Unigram, we use the implementa- 419

tion and default training paradigm provided by the 420

HuggingFace library2. Regarding the composition 421

model, we train it with a context window of up to 422

512 characters. We use GPT2 implemented from 423

HuggingFace3 as our causal language model when 424

computing the auto-regression loss. We present 425

detailed configurations of our model and training 426

setup in Appendix A.5. 427

Evaluation datasets. We compare our tokenizer 428

with other tokenizers for morphological alignment 429

using two datasets with gold-standard morpholog- 430

ical segmentation. One is from the Morpho Chal- 431

lenge 2010 Workshop (Kurimo et al., 2010) (Mor- 432

pho), which contains 1,000 word forms with their 433

segmentations corresponding to the surface forms 434

of morpheme labels. The dataset contains instances 435

of all kinds of morphological transformations, in- 436

cluding inflection, derivation, and compounding. 437

The other dataset is from Minixhofer et al. (2023) 438

2https://github.com/huggingface/tokenizers
3https://github.com/huggingface/transformers
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Morpho (Acc.) ↑ Compound (Acc.) ↑ |V|
BPE 19.50 62.98 30,000
WordPiece 26.20 62.19 30,000
Unigram 27.10 53.10 30,000
TreeTok 37.9 68.07 30,000

Table 1: Results on two morphological segmentation datasets.
This table can be seen as a comparison between tree-enhanced
BPE(TreeTok) and vanilla BPE/WordPiece/Unigram.

(Compound), which contains 759 compound words439

specifically designed to test the models’ capabil-440

ities in decompounding. We also use these mor-441

phological segmentation datasets to evaluate the442

induced morphological parse trees.443

In addition, we evaluate the tokenizers using sta-444

tistical metrics that have been shown to strongly445

correlate with the performance on downstream446

tasks. These metrics are calculated on the vali-447

dation set of WikiText-103.448

4.1 Tokenization Quality449

Metrics. We measure the performance of mor-450

phological segmentation via accuracy, i.e., the ra-451

tio of examples that are correctly segmented. We452

also consider a few statistical metrics that can di-453

rectly assess the quality of tokenization, includ-454

ing Rényi Efficiency (Zouhar et al., 2023), aver-455

age sentence-level perplexity, and average num-456

ber of tokens per sentence. Rényi Efficiency is457

introduced by Zouhar et al. (2023) as a princi-458

pled intrinsic measure of tokenization quality and459

is claimed to yield a Pearson correlation of 0.78460

with BLEU (Papineni et al., 2002) on machine461

translation. Sentence-level perplexity is defined462

as − log p(s) = −
∑n

i=1 log p(si|s<i), where463

s = {s1, s2, ..., sn} is a sentence with si being464

the i-th token. Since different tokenizers generate465

distinct segmentations leading to different numbers466

of tokens of the same word, sentence-level perplex-467

ity provides fairer evaluation compared with the468

default token-level perplexity − 1
n log p(s).469

According to Table 1, TreeTok significantly sur-470

passes BPE, WordPiece, and Unigram on the two471

morphological segmentation datasets. The results472

demonstrate the efficacy of TreeTok in aligning473

with morphology.474

Rényi efficiency & Perplexity. Table 2 reports475

the evaluation results in terms of Rényi efficiency476

and perplexity (PPL). TreeTok outperforms BPE477

and WordPiece on both Rényi and PPL. The im-478

provements illustrate the benefits of TreeTok’s479

Rényi↑ PPL↓ BLEU↑ avg. #tokens
BPE 44.66 107.76 26.55 26.58
WordPiece 44.54 110.97 - 26.60
Unigram 45.07 106.91 - 31.68
TreeTok 44.82 107.26 26.68 25.99

Table 2: Results for different tokenization models on Wiki-
Text103 with 30,000 vocabulary size.

structural constraints and more compact vocabulary. 480

The tree structure constraints enable the segmen- 481

tation of words into more morphology-aligned to- 482

kens, while the compact vocabulary allows for the 483

inclusion of meaningful morphemes by removing 484

intermediate tokens in the pruning process during 485

vocabulary construction, under a top-down match- 486

ing framework. Unigram performs slightly bet- 487

ter than TreeTok, but produces 22% more tokens 488

on average. A possible explanation for the better 489

performance of Unigram is that Unigram tends to 490

produce inflectional suffixes such as “-ing” and 491

“-ly”, while other methods tend to retain entire 492

words. This difference makes it easier for Unigram 493

to share the same stems and affixes between dif- 494

ferent word forms, thus achieving better parameter 495

sharing. However, under the Transformer architec- 496

ture, an additional 22% number of tokens means 497

extra inference steps and nearly 1.4 times the cost 498

of self-attention. Such additional costs only bring 499

marginal improvements as can be seen in the table. 500

We also note that TreeTok achieves the short- 501

est average token length among all the tokenizers, 502

which is desirable as Gallé (2019) shows that given 503

a fixed vocabulary size budget, the fewer tokens a 504

tokenizer needs to cover the test set, the better the 505

translation. 506

Machine Translation. We conduct experiments 507

on machine translation as a complementary. We 508

use the fairseq framework 4 to train a Transformer 509

on WMT14 English to German from scratch and 510

measure the performance by calculating the BLEU 511

score on the official test split. 512

We compare the model’s performance when the 513

tokenizer is BPE and TreeTok, respectively. We 514

use the same model training setups. For the two 515

tokenizers, the vocabulary size and basic characters 516

are exactly the same. The results from Table 2 show 517

that TreeTok is slightly better than BPE. Based on 518

the results, TreeTok can improve alignment with 519

morphology on top of BPE, while the new seg- 520

4https://github.com/facebookresearch/fairseq/
blob/main/examples/translation/README.md#wmt14-
english-to-german-convolutional
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Morpho Compound Word Seg.
EN. EN. ZH.

Fast R2D2 67.69 48.96 —
Neural PCFG 39.87 58.33 74.26
TreeTok 90.10 86.20 —

w/o context 70.00 63.02 —
w/o MorphOverriding 75.99 46.35 99.24
w/o span weights 89.42 78.39 —
w/o span loss 86.79 73.70 —

Table 3: Performance evaluation of our model, baseline mod-
els, and ablation studies on morphological segmentation, mea-
sured by morpheme recall rate. EN:English, ZH: Chinese.

mentation does not compromise downstream task521

performance.522

4.2 Tree Structure Quality523

Since tree structures play an important role in both524

vocabulary construction and segmentation, we eval-525

uate the quality of trees induced by various compo-526

sition models.527

Metric. We use recall of morphemes (van den528

Bosch and Daelemans, 1999) in a tree to assess the529

quality of the tree structures against gold-standard530

segmentations, which is defined as the percentage531

of morphemes in the gold segmentation that can532

be found in the spans of the evaluated tree. We533

discard spans that are trivial for a tree (character-534

level and word-level spans) and report word-level535

recall (averaged over word samples).536

Baselines. For baseline composition models, we537

include Fast-R2D2 (Hu et al., 2022), which is a538

variant of DIORA (Drozdov et al., 2019), and an539

efficient variant of neural PCFG (Yang et al., 2022).540

We also include four variants of our composition541

model for an ablation study. In w/o context, we re-542

move the auto-regression loss from our architecture543

so that each representation only contains informa-544

tion from individual words. In w/o MorphOverrid-545

ing, we degenerate si,j to the default empty em-546

bedding regardless of whether span xi:j hits the547

external vocabulary or not. In w/o span loss, for548

our auto-encoding loss, we only count loss from549

predicting characters instead of every subword span550

that hits the external vocabulary.551

Results and Discussions. As shown in Table 3,552

our model outperforms all the other composition553

models. Compared with Fast-R2D2, our main554

differences lie in the training objectives and the555

MorphOverriding mechanism. This result fully556

validates the effectiveness of these improvements.557

Figure 3: The effect of changing the vocabulary size learned
by BPE. The initial results on both tasks show that the per-
formance curve is a concave function where the maximum
resides in the middle.

Our ablation experiments further analyze the con- 558

tribution of these improvements to performance 559

enhancement. Specifically, we have the following 560

findings from each ablation. 561

Removing the auto-regression loss to prevent 562

the model from getting feedback from contextual 563

information significantly impacts the performance 564

on both tasks, especially Morpho. We believe that 565

contextual information can help the model capture 566

the regularities of tenses and learn how to build 567

composition representations for compound words. 568

For example, consider how the context can help 569

determine whether we should build the represen- 570

tation of asking as ask+ing or as+king. While 571

either is a valid combination of morphemes, the 572

former is more likely to be learned by our model 573

since the context around asking often indicates the 574

continuous tense or the gerund form, thus matching 575

better with ing. 576

Removing MorphOverriding from the model re- 577

sults in a significant decrease of around 50% in per- 578

formance on the decompounding task. The results 579

consolidate our insight about conventional compo- 580

sition models violating the indecomposability of 581

morphemes. Creating a morpheme’s representation 582

using its components’ representation might make 583

representations of disparate morphemes (e.g., wind 584

and win) entangled together. 585

Removing the span loss also causes a perfor- 586

mance drop on the two morphology tasks. This 587

aligns well with the insight behind our design 588

of morpheme-level loss, which augments the 589

character-level loss by enhancing the learning of 590

intra-word representations for most morphemes 591

that are at an intermediate granularity. 592

In addition, we train both Neural-PCFG and our 593

composition model on Chinese wiki (Xu and Lap- 594
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original word bed commonly windsurfing tricycles uniquenesses
BPE bed commonly wind/sur/fing tric/y/cles uniqu/eness/es
Unigram b/e/d common/ly wind/surf/ing t/r/i/cycle/s unique/ness/e/s
WordPiece bed commonly winds/ur/fing tric/y/cles unique/ness/es
TreeTok bed commonly wind/surf/ing tri/cycles unique/ness/es

Table 4: Example tokenizations.

ata, 2019) and evaluate the recall of word bound-595

ary against Penn Chinese Treebank (XUE et al.,596

2005). Our model can achieve a word boundary597

recall of 99.24% without MorphOverriding. Chi-598

nese is a language system that can be considered599

simplistic in terms of its internal structure of words600

where most of the time, each Chinese character601

(referred to as a hàn zı̀) represents one morpheme,602

and there are always explicit boundaries between603

morphemes without orthographic changes during604

word formation from characters. These features605

make compositionality applicable in most cases,606

thus alleviating the difficulty of modelling intra-607

word structures. Hence, comparing with the poor608

performance of w/o MorphOverriding on the En-609

glish dataset (Compound), we can conclude that the610

difficulties of modelling the internal word structure611

vary greatly across languages, and MorphOverrid-612

ing is effective and necessary for languages with613

more challenging morphology structures.614

Influence of Heuristic Vocabulary Size Addi-615

tionally, we conduct experiments to investigate how616

the size of our heuristic morpheme vocabulary in-617

fluences the performance of structure induction.618

Figure 3 shows that the optimal size of an exter-619

nal vocabulary should be neither too large nor too620

small. According to our hypothesis that the compo-621

sitional representation of subcomponents of a mor-622

pheme should be overridden by a high-level repre-623

sentation, ideally, the external vocabulary should624

contain all morphemes and only morphemes, be-625

cause our model will trigger the soft morpheme626

overriding mechanism for every span that hits the627

external vocabulary. If BPE is used and the vo-628

cabulary is too small, many morphemes (especially629

longer standalone words) are excluded. Conversely,630

if it is too large, BPE merges across morphemes,631

creating spans larger than the smallest meaning-632

bearing units.633

4.3 Case Studies634

To further examine the difference between tokeniz-635

ers, we list their tokenizations in Table 4 and tree636

Figure 4: Example tree structures induced by our composition
model.

structures induced by our composition model in 637

Figure 4. 638

Tokens produced by Unigram often include 639

many characters. BPE and WordPiece often vio- 640

late morpheme boundaries and tokenize words into 641

some intermediate “junk” tokens introduced dur- 642

ing the bottom-up vocabulary construction, such as 643

fing, cles, and eness in Table 4. 644

TreeTok aligns significantly better with morphol- 645

ogy. By merging the best of BPE and Unigram 646

pruning, our vocabulary construction algorithm 647

eliminates “junk” tokens. Meanwhile, top-down 648

matching under linguistic constraints prevents ex- 649

cessive word fragmentation and morpheme bound- 650

ary breaks. 651

In Figure 4, our model’s high-level tree struc- 652

tures are generally accurate, although some low- 653

level structures appear random, since MorphOver- 654

riding prioritizes the most reasonable high-level 655

segmentations based on context, making lower- 656

level details less important. 657

5 Conclusion 658

Our work introduces the first effective unsuper- 659

vised neural model for character-level structure in- 660

duction. We discovered that recognizing the inde- 661

composability of morphemes is key, and to address 662

this, we developed a composition model with a 663

MorphOverriding mechanism alongside two self- 664

supervised objectives. TreeTok induces tree struc- 665

tures that closely match human-labeled morphol- 666

ogy and consistently outperforms baselines like 667

BPE and WordPiece across various tasks, offer- 668

ing new insights into unsupervised morphological 669

segmentation. 670
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6 Limitations671

Our main limitation is that we need additional train-672

ing and inference overheads. Considering that the673

composition model only needs to be trained once674

and the overall time consumption is acceptable5,675

we believe it is not a fatal flaw. Regarding inference676

cost, because a lightweight parser is produced as677

a byproduct, it can be afforded by even CPU envi-678

ronments. According to Table 5, Treetok’s average679

processing time per token is longer than other tok-680

enizers. However, if we allow Treetok to tokenize681

in batches on a GPU in advance, this gap can be682

easily compensated. Furthermore, we can maintain683

a cache of high-frequency words to avoid repeated684

tokenization. In wikitext-103, the hit rate for a685

cache that stores the top 100000 frequent words686

is 98.11%, which means only 2% tokens need to687

be parsed on the fly. e.g. for 1000 tokens, it only688

needs 0.16s to parse. Furthermore, these results are689

based on single-core computation, and there is still690

room for multi-core acceleration.

Tokenizer Avg Time/Token (s)

BPE 2.49e-05
WordPiece 2.33e-05
Unigram 2.54e-05
TreeTok(single processing) 1.98e-3

Table 5: Average processing time per token for different tok-
enizers with the same vocabulary size. The result is collected
when TreeTok tokenizes on a CPU and only tokenize one sam-
ple at a time.
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A Appendix975

A.1 Pseudo-codes of tokenization976

Algorithm 1 Tokenize
1: Input: string x, parse tree root r, vocabulary V
2: procedure TOKENIZE(x, r, V)
3: t← [] ▷ tokenized subword units list
4: stack ← [r]
5: while |stack| > 0 do
6: c← POP(stack)
7: i, j ← c.i, c.j
8: x̄← xi:j

9: if x̄ ∈ V then
10: APPEND(t, x̄)
11: else if i < j then ▷ Non-terminal nodes
12: PUSH(stack, c.right)
13: PUSH(stack, c.left)

14: t← POSTMERGE(t,V)
15: ▷ post processing if over-split
16: return t

Algorithm 2 Post-Merge Algorithm
1: Input: tokens t, vocab2entropy V
2: procedure POSTMERGE(t, V)
3: n← length of t
4: if n ≤ 1 then
5: tMERGE ← t
6: else
7: H[n][n] init with∞ ▷ Best entropy
8: s[n][n] init with [] ▷ Best segments
9: for i← 0 to n− 1 do ▷ Base case

10: Hi,i ← V[xi]
11: si,i ← [xi]

12: for h← 1 to n− 1 do ▷ Iterate tree height
13: for i← 0 to n− h− 1 do
14: j ← i+ h
15: kBEST ← −1
16: m← concatenate ti . . . tj
17: HBEST ← GET(V,m,∞)
18: for k ← i to j − 1 do
19: ifHi,k +Hk+1,j ≤ HBEST then
20: kBEST ← k
21: HBEST ← Hi,k +Hk+1,j

22: if kBEST ̸= −1 then
23: si,j ← si,kBEST + skBEST+1,j

24: else
25: si,j ← [m] ▷ Merge
26: Hi,j ← HBEST

27: tMERGE ← s0,n−1

28: return tMERGE

A.2 Pseudo-codes of vocab construction977

Please refer to Algorithm 3 for details.978

Algorithm 3 Vocabulary Construction
1: Input: tree-freq pair list T , vocab size k, pruning rate α
2: procedure VOCABULARY CONSTRUCTION(T, k, α)
3: procedure E-STEP(T,V)
4: V

′
← DICT( ) ▷ E-step: Update vocab freq

5: for {root, freq} ∈ T do
6: , seg ← TREEVITERBI(root,V, null)
7: for token ∈ seg do
8: V

′
[token]← V

′
[token] + freq

9: return V
′

10:
11: procedure M-STEP(T,V)
12: l← DICT( ) ▷ M-step: Update delta loss
13: for {root, freq} ∈ T do
14: lword ← DICT( ) ▷ word-level delta-loss
15: , seg ← TREEVITERBI(root,V, lword)
16: for token ∈ seg do
17: loss← lword[token]
18: l[token]← l[token] + loss ∗ freq
19: return V

′

20:
21: V← INITVOCAB(T ) ▷ Init with a BIG vocab
22: while |V| > k do
23: V← E-STEP(T,V) ▷ Estimate token count
24: L← M-STEP(T,V) ▷ Maximize delta losses
25: Remove min(|V| − k, ⌊α|V|⌋) of the
26: tokens t with lowest Lt from V
27: return V

Algorithm 4 TreeViterbi
1: Input: parse tree root r, vocabulary V, delta loss dict l
2: procedure TREEVITERBI(r,V, l)
3: w ← r.token
4: if r.i = r.j then
5: s← GET(V, w,∞) ▷ Infinity entropy if w /∈ V
6: return s, [w]
7: else
8: sL, wL ← TREEVITERBI(r.left,V, l)
9: sR, wR ← TREEVITERBI(r.right,V, l)

10: s← GET(V, w,∞)
11: if l then ▷ Enter in M-step
12: l[w]← l[w] + MAX(sL + sR − s, 0)
13: ▷ Record delta loss: Entropy increase
14: if sL + sR > s then
15: return s, [w]
16: else
17: return sL + sR, wL + wR

Algorithm 5 Vocabulary Initialization
1: Input: tree-freq pair list T , threshold k
2: procedure INITVOCAB(T, k)
3: V← All character freq
4: n← |V|
5: while True do
6: V

′
← COUNTBIGRAMS(T,V)

7: Prune all the entries in V
′

with freq less than k

8: V.MERGE(V
′
) ▷ Add new items in V

′
to V

9: if |V| = n then
10: break
11: n = |V|
12: return V
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Algorithm 6 Count Bigrams
1: Input: tree-freq pair list T , vocabulary V
2: procedure COUNTBIGRAMS(T,V)
3: V

′
← DICT( ) ▷ Store new merges

4: procedure RECURCOUNT(r, f )
5: if r.left & r.right then
6: hitL ← RECURCOUNT(r.left, f)
7: hitR ← RECURCOUNT(r.right, f)
8: if hitL and hitR then
9: if r.token ∈ V then

10: return True
11: else
12: V

′
[r.token]← f ▷ Merge: new entry

13: return False
14: else
15: return False
16: else
17: return True
18: for {root, freq} ∈ T do
19: RECURCOUNT(root, freq)
20: return V

′

A.3 The neural outside pass979

The outside computation is akin to the inside pass980

but in a top-down manner. we denote the outside981

representation and score of a given span as ōki,j and982

b̄ki,j respectively, whose parent span is (i, k) or (k,983

j) for k > j or k < i.984

ōk
i,j =

{
fβ(oi,k, ij+1,k) if k > j
fβ(ok,j , ik,i−1) if k < i

,

b̄ki,j =

{
ϕβ(oi,k, ij+1,k) if k > j
ϕβ(ok,j , ik,i−1) if k < i

,

w̌k
i,j =

exp(b̄ki,j)∑
k′>j,k′<i exp(b̄

k′
i,j)

,oi,j =
∑

k>j,k<i

w̌k
i,j ō

k
i,j .

985

A.4 Span weights986

An intuitive idea is that the larger the probability987

of a span’s existence, the greater its weight. A span988

exists if its parent span exists and the span is an im-989

mediate child of its parent span. Therefore, we can990

recursively estimate the existence probability of991

each span top-down (Hu et al., 2023) and formalize992

the auto-encoding loss as follows:993

pi,j =
∑
k<i

pk,jŵ
i
k,j +

∑
k>j

pi,kŵ
j
i,k , p1,n = 1 ,

Lae = − 1∑
pi,j

∑
xi:j∈V

pi,j log
exp(oT

i,jEV[xi:j ])∑|V|
k=1 exp(o

T
i,jEk)

.
994

A.5 Experimental Setup and995

Hyperparameters996

Our composition function uses 4 layers of Trans-997

former layers. For span representations, we998

use 128-dimensional embeddings with 4 attention999

heads, 512-dimensional hidden layer representa- 1000

tions, and a vocabulary size of 7835. This vocabu- 1001

lary is built from concatenating 1903 most frequent 1002

characters in the training set of wikitext-103 and 1003

a 10,000-entry BPE dictionary, excluding all char- 1004

acters. To guide the composition function, our 1005

lightweight parser is a 4-layer Transformer model 1006

that uses 64-dimensional embeddings with 4 at- 1007

tention heads and 128-dimensional hidden layer 1008

representations. For the causal language model, we 1009

use a 3-layer GPT2 equipped with 128-dimensional 1010

embeddings and 4 attention heads and follow the 1011

original configuration for the rest of the hyperpa- 1012

rameters. 1013

Our composition models are trained on 8 PPUs 1014

with a learning rate of 1e-2 for the light-weight 1015

parser and 5e-4 for the rest. The batch size is 8× 1016

128, and for each sample, we limit the context 1017

window to 512 characters (whitespace included). 1018

The total number of training steps is ten times the 1019

number of sentences in Wikitext-103. 1020
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