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ABSTRACT

Designing an effective reward function remains a significant challenge in numer-
ous reinforcement learning (RL) applications. Preference-based Reinforcement
Learning (PbRL) presents a novel framework that circumvents the need for reward
engineering by harnessing human preferences as the reward signal. However, cur-
rent PbRL algorithms primarily focus on feedback efficiency, which heavily de-
pends on high-quality feedback from domain experts. This over-reliance results
in a lack of robustness, leading to a severe performance degradation under noisy
feedback conditions, thereby limiting the broad applicability of PbRL. In this pa-
per, we present RIME, a robust PbRL algorithm for effective reward learning from
noisy human preferences. Our method incorporates a sample selection-based dis-
criminator to dynamically filter denoised preferences for robust training. To mit-
igate the accumulated error caused by incorrect selection, we propose to warm
start the reward model for a good initialization, which additionally bridges the
performance gap during transition from pre-training to online training in PbRL.
Our experiments on robotic manipulation and locomotion tasks demonstrate that
RIME significantly enhances the robustness of the current state-of-the-art PbRL
method. Ablation studies further demonstrate that the warm start is crucial for
both robustness and feedback-efficiency in limited-feedback cases.

1 INTRODUCTION

Reinforcement Learning (RL) has demonstrated remarkable performance in various domains, in-
cluding gameplay (Vinyals et al., 2019; Perolat et al., 2022; Kaufmann et al., 2023), robotics (Chen
et al., 2022), autonomous systems (Bellemare et al., 2020; Zhou et al., 2020), etc. However, the key
determinant of RL success often hinges on the careful design of reward functions, which can be both
labor-intensive and error-prone. In this context, Preference-Based RL (PbRL) (Akrour et al., 2011;
Christiano et al., 2017) emerges as a valuable alternative, negating the need for hand-crafted reward
functions. PbRL adopts a human-in-the-loop paradigm, where human teachers provide preferences
over distinct agent behaviors as the reward signal.

Nevertheless, existing works in PbRL have primarily focused on enhancing feedback efficiency,
aiming to maximize the expected return with few number of preference queries. This focus induces
a substantial reliance on high-quality human feedback, typically assuming expertise on the human
teacher (Liu et al., 2022; Kim et al., 2022). However, humans are prone to errors (Christiano et al.,
2017). In broader applications, feedback is often sourced from non-expert users or crowd-sourcing
platforms, where the quality can be inconsistent and noisy. Further complicating the matter, Lee
et al. (2021a) showed that even a mere 10% corruption rate in preference labels can dramatically
degrade the algorithmic performance. The lack of robustness to noisy preference labels hinders the
wide application of PbRL.

Meanwhile, learning from noisy labels, also known as robust training, is a rising concern in deep
learning, as such labels severely degrade the generalization performance of deep neural networks.
Song et al. (2022) classifies current methods for robust training into four key categories: robust
architecture (Cheng et al., 2020), robust regularization (Xia et al., 2020), robust loss design (Lyu &
Tsang, 2019), and sample selection (Li et al., 2020; Song et al., 2021). However, it poses challenges
to incorporate these advanced methods for robust training in PbRL. This complexity arises due to the
limited number of feedback, which is often restricted to only hundreds or thousands of feedback in
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Figure 1: Overview of RIME. In the pre-training phase, we warm start the reward model r̂ψ with
intrinsic rewards rint to facilitate a smooth transition to online training phase. Post pre-training, the
policy, Q-network, and reward model r̂ψ are all inherited as initial configurations for online training.
During online training, we utilize a denoising discriminator to screen denoised preferences for robust
reward learning. This discriminator employs a dynamic lower bound τlower on the KL divergence
between predicted preferences Pψ and annotated preference labels ỹ to filter trustworthy samples
Dt, and an upper bound τupper to flip highly unreliable labels Df .

some tasks for the sake of feedback-efficiency and cost reduction, as well as the potential distribution
shift issue during RL training.

Figure 2: Performance degradation dur-
ing transition on Walker-walk with 30%
noisy preferences. We pre-train a policy
and Q-network for 20000 steps.

In this work, we aim to improve the robustness of
preference-based RL algorithms on noisy and quantita-
tively limited human preferences. To this end, we present
RIME: Robust preference-based reInforcement learning
via warM-start dEnoising discriminator. RIME modi-
fies the training paradigm of the reward model in widely-
adopted two-phase (i.e., pre-training and online training
phases) pipeline of PbRL. Figure 1 shows an overview
of RIME. In particular, to empower robust learning from
noisy preferences, we introduce a denoising discrimina-
tor. This discriminator utilizes dynamic lower and prede-
fined upper bounds on the Kullback–Leibler (KL) diver-
gence between predicted and annotated preference labels
to filter denoised samples. Further, to mitigate the accu-
mulated error caused by incorrect filtration, we present
to warm start the reward model during the pre-training
phase for a good initialization. Moreover, we find that the
warm start also bridges the performance gap that occurs
during the transition from pre-training to online training
(Figure 2). This gap is clearly observed under noisy feedback settings and is fatal to robustness. The
issue arises because the biased reward model, trained on noisy preferences, biasedly optimize the
Q-network through minimizing Bellman residual. This, in turn, offers a poor learning signal for the
policy, erasing any gains made during pre-training. Our experiments demonstrate that RIME exceeds
existing baselines by a large margin in noisy conditions and considerably improves robustness.

Our contributions can be summarized as follows:
◦ We present RIME, a robust algorithm for PbRL, designed to effectively train reward models

from noisy feedback—an important and realistic topic that has not been studied extensively.
◦ We propose a warm start method to bridge the performance gap during the transition from

pre-training to online training in PbRL, which proves to be crucial for both robustness and
feedback-efficiency in limited-feedback cases.

◦ We demonstrate that RIME outperforms existing PbRL baselines under noisy feedback set-
tings, across a diverse set of robotic manipulation tasks from Meta-World (Yu et al., 2020) and
locomotion tasks from the DeepMind Control Suite (Tassa et al., 2018; 2020).
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2 RELATED WORK

Preference-based Reinforcement Learning. The paradigm that incorporates human feedback into
the training of reward models has proven effective in various domains, including natural language
processing (Ouyang et al., 2022), multi-modal (Lee et al., 2023), and reinforcement learning (Chris-
tiano et al., 2017; Ibarz et al., 2018; Hejna III & Sadigh, 2023). In the context of RL, Christiano et al.
(2017) proposed a comprehensive framework for PbRL. To improve feedback-efficiency, PEBBLE
(Lee et al., 2021b) used unsupervised exploration for policy pre-training. SURF (Park et al., 2021)
employed data augmentation and semi-supervised learning to enrich the preference dataset. RUNE
(Liang et al., 2021) encouraged exploration by modulating reward uncertainty. MRN (Liu et al.,
2022) introduced a bi-level optimization aimed at optimizing the Q-function’s performance, yield-
ing improvement in feedback efficiency. PT (Kim et al., 2022) utilized Transformer architecture to
model non-Markovian rewards, showing effectiveness in complex tasks.

Despite these advancements, the focus on feedback efficiency should not overshadow the equally
critical issue of robustness in PbRL. Lee et al. (2021a) indicated that a mere 10% rate of corrupted
preference labels can significantly impair algorithmic performance. Moreover, in broader applica-
tion scenarios, the gathering of non-expert preferences exacerbates the risk of introducing erroneous
labels. Therefore, enhancing the robustness in PbRL remains a vital research direction. In this work,
we introduce a denoising discriminator for filtering denoised preferences and a warm start method
which is beneficial for both robustness and feedback-efficiency.

Learning from Noisy Labels. Learning from noisy labels has gained more attention in supervised
learning, particularly due to the prevalence of noisy or imprecise labels in real-world applications.
A variety of approaches have been proposed for robust training (Song et al., 2022), including ar-
chitectural modifications (Goldberger & Ben-Reuven, 2016), regularization (Lukasik et al., 2020),
loss function designs (Zhang & Sabuncu, 2018), and sample selection methods (Yu et al., 2019;
Nguyen et al., 2019; Wang et al., 2021). In PbRL, Xue et al. (2023) proposed an encoder-decoder
architecture to model diverse human preferences, which required huge amount of preference labels
(approximate 100 times the amount used in our experiments). Our approach can be situated within
the sample selection category and improves robustness while preserving feedback-efficiency.

Policy-to-Value Reincarnating RL. Policy-to-value reincarnating RL (PVRL) means transferring
a suboptimal teacher policy to a value-based RL student agent (Agarwal et al., 2022). Uchendu et al.
(2023) found that a randomly initialized Q-network in PVRL leads to the teacher policy being for-
gotten quickly. Within the widely-adopted pipeline of PbRL, the challenge intrinsic to PVRL also
arise during the transition from pre-training to online training, but has been neglected in previous
research (Lee et al., 2021b; Park et al., 2021; Liang et al., 2021; Liu et al., 2022). The performance
degradation during transition becomes notably pronounced under noisy feedback conditions. Based
on this observation, we propose to warm start the reward model for a seamless transition. Our abla-
tion study demonstrates that the warm start is crucial for both robustness and feedback-efficiency.

3 PRELIMINARIES

Preference-based Reinforcement Learning. In standard RL, an agent interacts with an environ-
ment in discrete time steps (Sutton & Barto, 2018). At each time step t, the agent observes the
current state st and selects an action at according to its policy π(at|st). The environment responds
by emitting a reward r(st,at) and transitioning to the next state st+1. The agent’s objective is to
learn a policy that maximizes the expected return.

In Preference-based RL, there is no predefined reward function. Instead, a teacher offers pref-
erences between agent’s behaviors and an estimated reward function r̂ψ is trained to align with
collected preferences. Following previous works (Lee et al., 2021b; Liu et al., 2022; Kim et al.,
2022), we consider preferences over two trajectory segments of length H , where segment σ =
{(s1,a1), ..., (sH ,aH)}. Given a pair of segments (σ0, σ1), a teacher provides a preference label ỹ
from the set {(1, 0), (0, 1), (0.5, 0.5)}. The label ỹ = (1, 0) signifies σ0 ≻ σ1, ỹ = (0, 1) signifies
σ1 ≻ σ0, and ỹ = (0.5, 0.5) represents an equally preferable case, where σi ≻ σj denotes that
segment i is preferred over segment j. Each feedback is stored in a dataset D as a triple (σ0, σ1, ỹ).
Following the Bradley-Terry model (Bradley & Terry, 1952), the preference predicted by the esti-
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mated reward function r̂ψ is formulated as:
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The estimated reward function r̂ψ is updated by minimizing the cross-entropy loss between the
predicted preferences Pψ and the annotated labels ỹ:

LCE(ψ) = E
[
LReward

]
= − E

(σ0,σ1,ỹ)∼D

[
ỹ(0) lnPψ[σ

0 ≻ σ1] + ỹ(1) lnPψ[σ
1 ≻ σ0]

]
. (2)

The policy π can subsequently be updated using any RL algorithm to maximize the expected return
with respect to the estimated reward function r̂ψ .

Unsupervised Pre-training in PbRL. Pre-training agents is important in PbRL because the initial
random policy often results in uninstructive preference queries, requiring lots of queries for even
elementary learning progress. Recent study addressed this issue through unsupervised exploration
for policy pre-training (Lee et al., 2021b). Specifically, agents are encouraged to traverse a more
expansive state space by utilizing an intrinsic reward function derived from particle-based state
entropy (Singh et al., 2003). Formally, the intrinsic reward is defined as (Liu & Abbeel, 2021):

rint(st) = log(∥st − skt ∥) (3)

where skt is the k-th nearest neighbor of st. This reward motivates the agent to explore a broader
diversity of states. This exploration, in turn, leads to a varied set of agent’s behaviors, facilitating
more informative preference queries.

Noisy Human Preferences in PbRL. Let ỹ denote the annotated preference label and y the ground-
truth preference label that is typically sourced from expert human or scripted teachers. Lee et al.
(2021a) proposed several noisy labeling models. Among them, the mistake model was the most
detrimental to performance across all tested environments, while other noise models even improved
performance in most environments. Given these findings, our study specifically addresses robust
reward learning from noisy preferences under the mistake model settings. This noise model assumes
that the preference dataset is contaminated with corrupted preferences whose annotated labels are
ỹ = (0, 1) when y = (1, 0), or ỹ = (1, 0) when y = (0, 1).

4 METHOD

In this section, we formally introduce RIME: Robust preference-based reInforcement learning via
warM-start dEnoising discriminator. RIME consists two main components: 1) a denoising discrim-
inator designed to filter out corrupted preference data while accounting for training instability and
distribution shift issue, and 2) a warm start method to effectively initialize the reward model and
enable a seamless transition from pre-training to online training. See Figure 1 for the overview of
RIME. The full procedure of RIME is detailed in Appendix A.

4.1 DENOISING DISCRIMINATOR

In the presence of noisy labels, it is well motivated to distinguish between clean and corrupted sam-
ples for robust training. Existing research indicates that deep neural networks first learn generaliz-
able patterns before overfitting to the noise in the data. Therefore, prioritizing samples associated
with smaller losses as clean ones is a well-founded approach to improve robustness. Inspired by
this insight, we theoretically establish a lower bound on the KL divergence between the predicted
preference Pψ and the annotated preference ỹ for corrupted samples, in order to filter out large-loss
corrupted samples.
Theorem 1 (KL Divergence Lower Bound for Corrupted Samples). Consider a preference dataset
{(σ0

i , σ
1
i , ỹi)}ni=1, where ỹi is the annotated label for the segment pair (σ0

i , σ
1
i ) with the ground

truth label yi. Let xi denote the tuple (σ0
i , σ

1
i ). Assume the cross-entropy loss LCE for clean data

(whose ỹi = yi) is bounded by ρ. Then, the KL divergence between the predicted preference Pψ(x)
and the annotated label ỹ(x) for a corrupted sample x is lower-bounded as follows:

DKL (Pψ(x)∥ỹ(x)) ≥ − ln ρ+
ρ

2
+O(ρ2) (4)
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The proof of Theorem 1 is presented in Appendix B. Based on Theorem 1, we formulate the lower
bound on KL divergence threshold to filter out untrustworthy samples as τbase = − ln ρ + αρ in
practical, where ρ denotes the maximum cross-entropy loss on trustworthy samples observed during
the last update, and α serves as a tunable hyperparameter with a value range in (0, 0.5] in theoretical.

However, the shifting state distribution complicates the robust training problem in RL, compared to
deep learning contexts. To add tolerance for trustworthy samples in cases of distribution shift, we
introduce an auxiliary term characterizing the uncertainty for filtration, defined as τunc = βt · sKL,
where βt is a time-dependent parameter, and sKL is the standard deviation of the KL divergence. Our
intuition is that the inclusion of out-of-distribution data for training is likely to induce fluctuations
in the training loss. Therefore, the complete threshold equation is formulated as follows:

τlower = τbase + τunc = − ln ρ+ αρ+ βt · sKL (5)
We utilize a linear decay schedule for βt to initially allow greater tolerance for samples while be-
coming increasingly conservative over time, i.e., βt = max(βmin, βmax− kt). At each training step
for the reward model, we apply the threshold in Equation (5) to identify trustworthy sample dataset
Dt, as described below:

Dt = {(σ0, σ1, ỹ) |DKL(Pψ(σ
0, σ1)∥ỹ) < τlower} (6)

To ensure efficient usage of samples, we introduce a label-flipping method for the reintegration of
untrustworthy samples. Specifically, we pre-define an upper bound τupper and reverse the labels for
samples exceeding this threshold:

Df = {(σ0, σ1, 1− ỹ) |DKL(Pψ(σ
0, σ1)∥ỹ) > τupper} (7)

Beyond improving sample utilization, the label-flipping method also bolsters the model’s predictive
confidence and reduce output entropy (Grandvalet & Bengio, 2004). Following two filtering steps,
the reward model is trained on the unified datasets Dt ∪Df , using the loss function in Equation (8).

LCE = E
(σ0,σ1,ỹ)∼Dt

[
LReward(σ0, σ1, ỹ)

]
+ E

(σ0,σ1,1−ỹ)∼Df

[
LReward(σ0, σ1, 1− ỹ)

]
(8)

Our denoising discriminator belongs to the category of sample selection methods for robust train-
ing (Song et al., 2022). However, it is different in using a dynamically adjusted threshold, augmented
by a term that captures distributional shifts, making it more suitable for RL training process.

4.2 WARM START

Sample selection methods frequently suffer from accumulated error due to incorrect selection, which
underscores the need of good initialization for the denoising discriminator to effectively differenti-
ate between samples at initial. Meanwhile, we observe a marked degradation of performance during
transition from pre-training to online training (Figure 2). This issue is exacerbated when follow-
ing the most widely-adopted backbone algorithm, PEBBLE, which resets the Q-network and only
retains the pre-trained policy after the pre-training phase.

Inspired by these observations, we propose to warm start the reward model to facilitate a smoother
transition from pre-training to online training. Specifically, we pre-train the reward model to ap-
proximate intrinsic rewards during pre-training phase. Because the output layer of the reward model
typically uses the tanh activation function (Lee et al., 2021b), we firstly normalize the intrinsic re-
ward to the range (−1, 1) as follows:

rint
norm(st) = clip(

rint(st)− r̄
3σr

,−1 + δ, 1− δ) (9)

where 0 < δ ≪ 1. r̄ and σr represent the mean and standard deviation of the intrinsic rewards,
respectively. Then the agent receives the reward rint

norm and stores each tuple (st,at, r
int
norm, st+1) in a

replay buffer, denoted as Dpretrain. During the reward model update, we sample batches of (st,at)
along with all encountered states S = {s|s in Dpretrain} for nearest neighbor searches. The loss
function for updating the reward model r̂ψ is given by the mean squared error as:

LMSE = E
(st,at)∼Dpretrain

[1
2

(
r̂ψ(st,at)− rint

norm(st)
)2 ]

(10)

Attributed to warm start, both the Q-network and reward model are aligned with intrinsic rewards,
allowing for the retention of all knowledge gained during pre-training (i.e., policy, Q-network, and
reward model) for subsequent online training. Moreover, the warm-started reward model contains
more information than random initialization, enhancing the discriminator’s ability at initial.
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SAC with task reward (upper bound) RIME PEBBLE MRN SURF RUNESAC with task reward (upper bound) RIME PEBBLE MRN SURF RUNESAC with task reward (upper bound) RIME PEBBLE MRN SURF RUNE

(a) ϵ = 0.1 (b) ϵ = 0.15 (c) ϵ = 0.2 (d) ϵ = 0.25 (e) ϵ = 0.3

Figure 3: Learning curves for robotic manipulation tasks from Meta-world, where each row rep-
resents a specific task and each column corresponds to a different error rate ϵ. SAC serves as a
performance upper bound, using a ground-truth reward function unavailable in PbRL settings. The
corresponding number of feedback in total and per session are show in Table 8. The solid line and
shaded regions respectively denote mean and standard deviation of success rate, across ten runs.

5 EXPERIMENTS

We design our experiments to investigate the following:

◦ How does RIME improve the existing preference-based RL methods in terms of robustness?
◦ How does RIME perform on clean preferences compared with feedback-efficient baselines?
◦ What is the contribution of each of the proposed components in RIME?
◦ Is denoising discriminator better than existing sample selection methods in terms of robustness

for reward learning?

5.1 SETUPS

We evaluate RIME on a total of six complex tasks, including robotic manipulation tasks from Meta-
world (Yu et al., 2020) and locomotion tasks from DMControl (Tassa et al., 2018; 2020). The details
of experimental tasks are shown in Appendix C.1. Similar to prior works (Lee et al., 2021a;b; Park
et al., 2021), to ensure a systematic and fair evaluation, we consider a scripted teacher that provides
preferences between two trajectory segments based on the sum of ground-truth reward values for
each segment. To generate noisy preferences, we follow the procedure of the mistake model in Lee
et al. (2021a), which flips correct preferences with a probability of ϵ. We refer to ϵ as the error
rate. We choose PEBBLE (Lee et al., 2021b) as our backbone algorithm to implement RIME. In
our experiments, we compare RIME against ground-truth reward-based SAC and four state-of-the-
art PbRL algorithms: PEBBLE (Lee et al., 2021b), SURF (Park et al., 2021), RUNE (Liang et al.,
2021), and MRN (Liu et al., 2022). Here, SAC is considered as an upper bound for performance,
as it utilizes a ground-truth reward function not available in PbRL settings. We include SAC in our
comparisons because it is the backbone RL algorithm of PEBBLE.

Implementation Details. For all experiments, we use the same hyperparameters used by PEBBLE
algorithm, which are specified in Appendix C.2. For query selection strategy, we use the uniform
sampling scheme. For the implementation of baselines, we use their corresponding publicly released
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(a) ϵ = 0.1 (b) ϵ = 0.15 (c) ϵ = 0.2 (d) ϵ = 0.25 (e) ϵ = 0.3

Figure 4: Learning curves on locomotion tasks from DMControl, where each row represents a
specific task and each column corresponds to a different error rate ϵ setting. SAC serves as a per-
formance upper bound, using a ground-truth reward function unavailable in PbRL settings. The
corresponding number of feedback in total and per session are show in Table 8. The solid line and
shaded regions respectively denote mean and standard deviation of episode return, across ten runs.

repositories and keep the hyperparameters consistent with their original configurations (see Table 1
for source codes). For the hyperparameters of RIME, we fix α = 0.5, βmin = 1 and βmax = 3 in
the lower bound τlower, and fix the upper bound τupper = 3 ln(10) for all experiments. The decay rate
k is 1/30 for tasks from DMControl, and 1/300 for tasks from Meta-world, respectively. The total
feedback amount and feedback amount per session in each condition are detailed in Table 8.

For each task, we run all algorithms independently for ten times and report the average performance
along with the standard deviation. Tasks from Meta-world are measured on success rate, while tasks
from DMControl are measured on ground-truth episode return. More details on network architec-
tures and hyperparameters are provided in Appendix C.2.

5.2 RESULTS

Meta-world Tasks. For robotic manipulation tasks, we consider three tasks from Meta-world:
Button-press, Sweep-into, and Hammer, to investigate how RIME improves robustness of a PbRL
algorithm. The examples and details of tasks are available in Appendix C.1.

Figure 3 shows the learning curves of RIME and baselines on Meta-world tasks across five error
rates ϵ ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. In the same condition, defined by both the environment and
the error rate ϵ, algorithms use an identical number of preference queries for fair comparison. As
shown in Figure 3, RIME exceeds the PbRL baselines by a large margin for all evaluated conditions.
Specifically, RIME remains effective (approaching or exceeding 50% success rate) in conditions
where all baselines struggle, including Button-press with ϵ ≥ 0.2, Sweep-into with ϵ = 0.2 and
0.25, and Hammer with ϵ = 0.3. These results demonstrate that RIME significantly improves
robustness against noisy preferences. We also observe that baselines does not work in most noisy
conditions on Meta-world tasks. The reason is that both the difficulty of Meta-world tasks and the
pursuit of feedback efficiency of baselines lead to over-reliance on feedback quality.

DMControl Tasks. For locomotion tasks, we choose three complex environments from DMCon-
trol: Walker-walk, Cheetah-run, and Quadrupted-walk. Figure 4 shows the learning curves for all
considered algorithms on DMControl tasks across five distinct error rates. RIME still shows obvious
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Figure 5: Ablation study of components in RIME, including warm start (WS), lower bound τlower,
and upper bound τupper, on Walker-walk (a and b) and Button-press (c and d) with different error rate
ϵ ∈ {0.1, 0.3}, across five runs.
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Figure 6: Ablation study on 1: clean preference data (a and b), 2: comparison with other sample
selection methods for robust training with feedback error rate ϵ = 0.3 (c and d, where the symbol
△ means warm start + label flipping). FB means feedback. The results show the mean and standard
deviation averaged over ten runs.

advantages compared with baselines. We also observe that RIME is the only algorithm that success-
fully trains effective agents on Walker-walk using only 1000 feedback with an error rate of ϵ = 0.3.
Given that it takes only few human minutes to provide 1000 preference labels (Park et al., 2021),
RIME improves robustness while still maintaining feedback efficiency. These results again demon-
strate that RIME improves robustness of the PbRL method on a variety of complex tasks. Addi-
tionally, we find that baselines perform relatively better on DMControl than on Meta-world tasks
under noisy setttings, but still almost fail on the hard task, Quadruped, when the error rate ϵ ≥ 0.2.
This observation suggests that as task complexity increases, there is a commensurate rise in the
requirement for high-quality human feedback.

5.3 ABLATION STUDY

Component analysis. We perform ablation study to individually evaluate each technique in RIME:
warm start (WS), lower bound τlower, and upper bound τupper of KL divergence. We present results
in Figure 5 in which we compare the performance of removing each component from RIME. We
observe that warm start is crucial for robustness when the number of feedback is quite limited (Figure
5a and 5b). This is because the limited samples restrict the capability of the reward model, leading
to more rounds of queries to cross the transition gap. Moreover, it might be hard to distinguish for
discriminator at initial with limited samples, which urges for good initialized reward models.

The lower bound τlower for filtering trustworthy samples is important in high error rate (Figure 5b and
5d) and adequate feedback (Figure 5c and 5d) situations. The upper bound τupper for flipping labels
always brings some performance improvements in our ablation experiments. The full algorithm
outperforms every other combination in most tasks. Additionally, the results show that although the
contribution of warm start and denoising discriminator vary in different environments at lower error
rates, they are both effective and their combination proves essential for the overall success of our
method in environments with high error rates.
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Figure 7: Ablation study on the effects of feedback volume on Button-press, where error rate is fixed
at 0.3. The results show the mean and standard deviation averaged over five runs.

Performance on clean preferences. A robust algorithm should not perform poorly in non-noisy
environments. To investigate this, we perform ablation study using clean preference data on Walker-
walk and Button-press with 500 and 2000 feedback, respectively. Notably, we even do not remove
the denoising discriminator in RIME for this experiment, which results in that RIME uses fewer
correct samples and some corrupted samples from flipping for training. Despite this, as shown in
Figure 6a and 6b, we surprisingly find that RIME achieves competitive or even better performance
compared with other feedback-efficient baselines on Button-press and Walker-walk, respectively.
This result demonstrates that warm start for reward model is also important for feedback-efficiency.
This is because it bridges the performance gap during transition from pre-training to online training,
thereby saving rounds of queries for subsequent learning process.

Comparison with other sample selection methods for robust training. To demonstrate that our
denoising discriminator can induce significant improvements on robustness for reward learning, we
compare our method with other sample selection methods for robust training. We consider using
a fixed threshold and adaptive denoising training (ADT) proposed in Wang et al. (2021) as our
baselines. The former method select samples whose cross-entropy loss is less than the threshold
as training samples. We set the fixed threshold to the final average values of τlower in RIME. ADT
drops a-τ(t) proportion of samples with the largest cross-entropy loss at each training iteration,
where τ(t) = min(γt, τmax). We choose parameters for ADT as τmax = 0.3, γ = 0.003 and
0.0003 for tasks from DMControl and Meta-world, respectively. For fair comparision, we add warm
start and label flipping for all algorithms in this experiment. As show in Figure 6c and 6d, we
observe that both fixed threshold and ADT improves the performance of PEBBLE under high-level
noisy conditions, but RIME still outperforms these two methods. This might be because RIME takes
consideration of training instability and distribution shift issue into the threshold.

Effects of feedback volume. To investigate effects of the number of noisy feedback on the perfor-
mance of preference-based RL algorithms, we conduct evaluations comparing RIME with existing
baselines across a range of query sizes at a fixed error rate of ϵ = 0.3, on Button-press. As illustrated
in Figure 7, RIME demonstrates a consistent enhancement in performance with increasing volumes
of noisy feedback, while baselines’ performance does not change obviously.

6 CONCLUSION

In this paper, we present RIME, a robust algorithm for preference-based reinforcement learning
(PbRL) designed for effective reward learning from noisy preferences. Unlike previous research
which primarily aims to enhance feedback efficiency, RIME focuses on improving robustness by
employing a sample selection-based discriminator to dynamically denoise preferences. To reduce
accumulated error due to incorrect selection, we utilize a warm-start method for the reward model,
enhancing the initial capability of the denoising discriminator. The warm-start approach also serves
to bridge the performance gap during transition, facilitating a seamless transition from pre-training
to online training. Our experiments show that RIME substantially boosts the robustness of the
state-of-the-art PbRL method across a range of complex robotic manipulation and locomotion tasks.
Ablation studies further demonstrate that the warm-start approach is crucial for both robustness and
feedback efficiency. We believe that RIME has the potential to broaden the applicability of PbRL
by leveraging preferences from non-expert users or crowd-sourcing platforms.
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Reproducibility statement. We describe the implementation details of RIME in Appendix A, and
also provide our source code in the supplementary material.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Reincarnating reinforcement learning: Reusing prior computation to accelerate progress.
Advances in Neural Information Processing Systems, 35:28955–28971, 2022.

Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pp. 12–27. Springer, 2011.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric bal-
loons using reinforcement learning. Nature, 588(7836):77–82, 2020.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen
McAleer, Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level bimanual dex-
terous manipulation with reinforcement learning. Advances in Neural Information Processing
Systems, 35:5150–5163, 2022.

Lele Cheng, Xiangzeng Zhou, Liming Zhao, Dangwei Li, Hong Shang, Yun Zheng, Pan Pan, and
Yinghui Xu. Weakly supervised learning with side information for noisy labeled images. In
European Conference on Computer Vision, pp. 306–321, 2020.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. In International Conference on Learning Representations, 2016.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. Advances
in Neural Information Processing Systems, 17, 2004.

Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop rl.
In Conference on Robot Learning, pp. 2014–2025. PMLR, 2023.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in Neural Information
Processing Systems, 31, 2018.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Pref-
erence transformer: Modeling human preferences using transformers for rl. In International
Conference on Learning Representations, 2022.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021a.

Kimin Lee, Laura M Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. In International Conference on
Machine Learning, pp. 6152–6163. PMLR, 2021b.

10



Under review as a conference paper at ICLR 2024

Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
feedback. arXiv preprint arXiv:2302.12192, 2023.

Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In International Conference
on Artificial Intelligence and Statistics, pp. 4313–4324. PMLR, 2020.

Xinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward uncertainty for explo-
ration in preference-based reinforcement learning. In International Conference on Learning
Representations, 2021.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

Runze Liu, Fengshuo Bai, Yali Du, and Yaodong Yang. Meta-reward-net: Implicitly differentiable
reward learning for preference-based reinforcement learning. Advances in Neural Information
Processing Systems, 35:22270–22284, 2022.

Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does label smoothing
mitigate label noise? In International Conference on Machine Learning, pp. 6448–6458. PMLR,
2020.

Yueming Lyu and Ivor W Tsang. Curriculum loss: Robust learning and generalization against label
corruption. In International Conference on Learning Representations, 2019.

Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi Phuong Nhung Ngo, Thi Hoai Phuong
Nguyen, Laura Beggel, and Thomas Brox. Self: Learning to filter noisy labels with self-
ensembling. In International Conference on Learning Representations, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Surf:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. In International Conference on Learning Representations, 2021.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk. Near-
est neighbor estimates of entropy. American journal of mathematical and management sciences,
23(3-4):301–321, 2003.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Robust learning by
self-transition for handling noisy labels. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pp. 1490–1500, 2021.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Piotr Trochim, Siqi Liu,
Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, et al. dm control: Software and tasks
for continuous control. arXiv preprint arXiv:2006.12983, 2020.

11



Under review as a conference paper at ICLR 2024

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
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Appendix

A RIME ALGORITHM DETAILS

In this section, we provide the full procedure for RIME based on the backbone PbRL algorithm,
PEBBLE (Lee et al., 2021b), in Algorithm 1.

Algorithm 1 RIME

1: Initialize policy πϕ, Q-network Qθ and reward model r̂ψ
2: Initialize replay buffer B ← ∅
3: // UNSUPERVISED PRE-TRAINING
4: for each pre-training step t do
5: Collect st+1 by taking at ∼ πϕ(at|st)
6: Compute normalized intrinsic reward rint

norm,t ← rint
norm(st) as in Equation (9)

7: Store transitions B ← B ∪
{
(st,at, st+1, r

int
norm,t)

}
8: for each gradient step do
9: Sample minibatch

{
(sj ,aj , sj+1, r

int
norm,j)

}B
j=1
∼ B

10: Optimize policy and Q-network with respect to ϕ and θ using SAC
11: // WARM START
12: Update reward model r̂ψ according to Equation (10)
13: end for
14: end for
15: // ONLINE TRAINING
16: Initialize the maximum KL divergence value ρ =∞
17: Initialize a dataset of noisy preferences Dnoisy ← ∅
18: for each training step t do
19: // ROBUST REWARD LEARNING
20: if t%K == 0 then
21: Generate queries from replay buffer {(σ0

i , σ
1
i )}

Nquery
i=1 ∼ B and corresponding human

feedback {ỹi}
Nquery
i=1

22: Store preferences Dnoisy ← Dnoisy ∪ {(σ0
i , σ

1
i , ỹi)}

Nquery
i=1

23: Compute lower bound τlower according to Equation (5)
24: Filter trustworthy samples Dt using lower bound τlower as in Equation (6)
25: Flip labels using upper bound τupper to obtain dataset Df as in Equation (7)
26: Update reward model r̂ψ with samples from Dt ∪ Df according to Equation (8)
27: Relabel entire replay buffer B using r̂ψ
28: Update parameter ρ with the maximum KL divergence between predicted and annotated

labels in dataset Dt ∪ Df
29: end if
30: for each timestep t do
31: Collect st+1 by taking at ∼ πϕ(at|st)
32: Store transitions B ← B ∪ {(st,at, st+1, r̂ψ(st,at))}
33: end for
34: for each gradient step do
35: Sample minibatch from replay buffer {(sj ,aj , sj+1, r̂ψ(sj ,aj)}Bj=1 ∼ B
36: Optimize policy and Q-network with respect to ϕ and θ using SAC
37: end for
38: end for

B PROOFS FOR THEOREM 1

Theorem 1. Consider a preference dataset {(σ0
i , σ

1
i , ỹi)}ni=1, where ỹi is the annotated label for

the segment pair (σ0
i , σ

1
i ) with the ground truth label yi. Let xi denote the tuple (σ0

i , σ
1
i ). Assume

the cross-entropy loss LCE for clean data (whose ỹi = yi) within this distribution is bounded by ρ.
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Then, the KL divergence between the predicted preference Pψ(x) and the annotated label ỹ(x) for
a corrupted sample x is lower-bounded as follows:

DKL (Pψ(x)∥ỹ(x)) ≥ − ln ρ+
ρ

2
+O(ρ2) (11)

Proof. For a clean sample (σ0, σ1) with annotated label ỹ and ground-truth label y, we have ỹ = y.
Denote the predicted label as Pψ . In PbRL, the value of y(0) can take one of three forms: y(0) ∈
{0, 0.5, 1}. We categorize and discuss these situations as follows:

1. For y(0) = 0:

Because the cross-entropy loss LCE for clean data is bounded by ρ, we can express:

LCE(Pψ, ỹ) = − ln(1− Pψ(0)) ≤ ρ (12)

From the above, we have:

Pψ(0) ≤ 1− exp (−ρ) (13)

Then if the label is corrupted, denoted by ỹc (i.e., ỹc = (1, 0) in this case), the KL divergence
between predicted label and corrupted label is formulated as follows:

DKL(Pψ∥ỹc) = − lnPψ(0) ≥ − ln(1− exp(−ρ)) (14)

2. For y(0) = 1:

The discussion parallels the y(0) = 0 case. Hence, the KL divergence between the predicted
label and the corrupted label also maintains a lower bound:

DKL(Pψ∥ỹc) ≥ − ln(1− exp(−ρ)) (15)

3. For y(0) = 0.5:

Although this case is not under the mistake model settings (Lee et al., 2021a), the lower bound
still holds in this case. Due to the bounded cross-entropy loss LCE for clean data, we have:

LCE(Pψ, ỹ) = −
1

2
lnPψ(0)−

1

2
ln(1− Pψ(0)) ≤ ρ (16)

Solving the inequality (16), we can get:

Pψ(0)
2 − Pψ(0) + exp(−2ρ) ≤ 0 (17)

When ρ ≥ ln 2, the inequality (17) has a solution:

1− p ≤ Pψ(0) ≤ p (18)

where p = 1+
√

1−4 exp(−2ρ)

2 .

Then if the label is corrupted, i.e., ỹc ∈ {(0, 1), (1, 0)}, the KL divergence between predicted
label and corrupted label is formulated as follows:

DKL(Pψ∥ỹc) ≥min(− lnPψ(0),− ln(1− Pψ(0))) = − ln p (19)

Construct an equation about ρ:

f(ρ) = p− 1 + exp(−ρ) =
1 +

√
1− 4 exp(−2ρ)

2
− 1 + exp(−ρ) (20)

where ρ ≥ ln 2.

Denote z = exp(−ρ), Equation (20) can be simplified as follows:

f(z) = z +

√
1− 4z2

2
− 1

2
(21)
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where 0 < z ≤ 1
2 .

Derivative of function f with respect to z, we have:

f
′
(z) = 1− 2

√
1

1
z2 − 4

(22)

Function f
′
(z) decreases monotonically when z ∈ (0, 0.5], is greater than 0 on the interval

(0,
√
2
4 ), and is less than 0 on the interval (

√
2
4 , 0.5]. Therefore, we have:

f(z) ≤ max(f(0), f(
1

2
)) = 0 (23)

Thus, p ≤ 1− exp(−ρ) when ρ ≥ ln 2. In turn, we have:

DKL(Pψ∥ỹc) = − ln p ≥ − ln(1− exp(−ρ)) (24)

To sum up, inequality (25) holds for the corrupted samples:

DKL(Pψ∥ỹc) ≥ − ln(1− exp(−ρ)) (25)

Perform Taylor expansion of the lower bound at ρ = 0, we can get:

DKL(Pψ∥ỹc) ≥ − ln(1− exp(−ρ)) = − ln ρ+
ρ

2
+O(ρ2) (26)

C EXPERIMENTAL DETAILS

C.1 TASKS

The robotic manipulation tasks from Meta-world (Yu et al., 2020) and locomotion tasks from DM-
Control (Tassa et al., 2018; 2020) used in our experiments are shown in Figure 8.

(a) Button Press (b) Sweep Into (c) Hammer

(d) Walker (e) Cheetah (f) Quadruped

Figure 8: Six tasks from Meta-world (a-c) and DMControl (d-f).

Meta-world Tasks:

◦ Button Press: An agent controls a robotic arm to press a button. The button’s initial position
is randomized.
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◦ Sweep Into: An agent controls a robotic arm to sweep a ball into a hole. The ball’s starting
position is randomized.

◦ Hammer: An agent controls a robotic arm to hammer a screw into a wall. The initial positions
of both the hammer and the screw are randomized.

DMControl Tasks:

◦ Walker: A planar walker is trained to control its body and walk on the ground.
◦ Cheetah: A planar biped is trained to control its body and run on the ground.
◦ Quadruped: A four-legged ant is trained to control its body and limbs, enabling it to crawl on

the ground.

C.2 IMPLEMENTATION DETAILS

For the implementation of baselines, we use their corresponding publicly released repositories that
are shown in Table 1. SAC serves as a performance upper bound, because it uses a ground-truth
reward function which is unavailable in PbRL settings for training. The detailed hyperparameters of
SAC are shown in Table 2. PEBBLE’s settings remain consistent with its original implementation,
and the specifics are detailed in Table 3. For SURF, RUNE, MRN, and RIME, most hyperparameters
are the same as those of PEBBLE and other hyperparameters are detailed in Table 4, 5, 6, and 7,
respectively. The total amount of feedback and feedback amount per session in each experimental
condition are detailed in Table 8. The reward model comprises an ensemble of three MLPs. Each
MLP consists of three layers with 256 hidden units, and the output of the reward model is constrained
using the tanh activation function.

Table 1: Source codes of baselines.

Algorithm Url
SAC, PEBBLE https://github.com/rll-research/BPref
SURF https://github.com/alinlab/SURF
RUNE https://github.com/rll-research/rune
MRN https://github.com/RyanLiu112/MRN

Table 2: Hyperparameters of SAC.

Hyperparameter Value Hyperparameter Value
Number of layers 2 (DMControl), 3 (Meta-world) Initial temperature 0.1
Hidden units per each layer 1024 (DMControl), 256 (Meta-world) Optimizer Adam
Learning rate 0.0005 (Walker), 0.001 (Cheetah) Critic target update freq 2

0.0001 (Quadruped), 0.0003 (Meta-world) Critic EMA τ 0.005
Batch Size 1024 (DMControl), 512 (Meta-world) (β1, β2) (0.9, 0.999)
Steps of unsupervised pre-training 9000 Discount γ 0.99

Table 3: Hyperparameters of PEBBLE.

Hyperparameter Value
Segment Length 50
Learning rate 0.0005 (Walker, Cheetah), 0.0001 (Quadruped), 0.0003 (Meta-world)
Frequency of feedback 20000 (Walker, Cheetah), 30000 (Quadruped), 5000 (Meta-world)
Number of reward functions 3

D ADDITIONAL EXPERIMENT RESULTS

Effects of feedback volume on DMControl tasks. We additionally investigate how the number
of noisy feedback influences performance on tasks from DMControl. We conduct experiments on
Walker-walk with a fixed error rate ϵ = 0.3 and a varied range of total feedback amount N ∈
{500, 1000, 5000, 10000}. As shown in Figure 9, the performance of RIME improves slightly as the
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Table 4: Hyperparameters of SURF.

Hyperparameter Value
Unlabeled batch ratio µ 4
Threshold τ 0.999 (Cheetah, Sweep Into), 0.99 (others)
Loss weight λ 1
Min/Max length of cropped segment 45/55
Segment length before cropping 60

Table 5: Hyperparameters of RUNE.

Hyperparameter Value
Initial weight of intrinsic reward β0 0.05
Decay rate ρ* 0.001 (Walker), 0.0001 (Cheetah, Quadruped, Button Press)

0.00001 (Sweep Into, Hammer)

*: Following the instruction of Liang et al. (2021), we carefully tune the hyperparameter ρ
in a range of ρ ∈ {0.001, 0.0001, 0.00001} and report the best value for each environment.

Table 6: Hyperparameters of MRN.

Hyperparameter Value
Bi-level updating frequency N 5000 (Cheetah, Hammer, Button Press), 1000 (Walker)

3000 (Quadruped), 10000 (Sweep Into)

Table 7: Hyperparameters of RIME.

Hyperparameter Value
Coefficient α in the lower bound τlower 0.5
Minimum weight βmin 1
Maximum weight βmax 3
Decay rate k 1/30 (DMControl), 1/300 (Meta-world)
Upper bound τupper 3 ln(10)
δ in Equation (9) 1 ×10−8

Steps of unsupervised pre-training 2000 (Cheetah), 9000 (others)

Table 8: Feedback amount in each condition.

Condition Value∗ Condition Value∗

Walker, ϵ = 0.1, 0.15 500/50 Button Press, ϵ = 0.1, 0.15 10000/50
Walker, ϵ = 0.2, 0.25, 0.3 1000/100 Button Press, ϵ = 0.2, 0.25, 0.3 20000/100
Cheetah, ϵ = 0.1, 0.15 500/50 Sweep Into, ϵ = 0.1, 0.15 10000/50
Cheetah, ϵ = 0.2, 0.25, 0.3 1000/100 Sweep Into, ϵ = 0.2, 0.25, 0.3 20000/100
Quadruped, ϵ = 0.1, 0.15 2000/200 Hammer, ϵ = 0.1, 0.15 20000/100
Quadruped, ϵ = 0.2, 0.25, 0.3 4000/400 Hammer, ϵ = 0.2, 0.25 40000/200

Hammer, ϵ = 0.3 80000/400

1. *: Value refers to total amount of feedback / feedback amount per session.
2. ϵ is the error rate defined in Section 5.1.

number of feedback increases. PEBBLE and RUNE gain marked improvements when the number of
feedback is augmented ten to twentyfold, but their performance still lags noticeably behind RIME.

Effects of hyperparameters of RIME. We investigate how the hyperparameters of RIME affect the
performance under noisy feedback settings. In Figure 10 we plot the learning curves of RIME with
different set of hyperparameters: (a) coefficient α in the lower bound τlower: α ∈ {0.3, 0.4, 0.5, 0.6},
(b) maximum value of βt: βmax ∈ {1, 3, 5, 10}, (c) decay rate k ∈ {0.01, 1/30, 0.06, 0.1}, and (d)
upper bound of KL divergence τupper ∈ {2 ln(10), 3 ln(10), 4 ln(10)}.
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(a) feedback=500 (b) feedback=1000 (c) feedback=5000 (d) feedback=10000

Figure 9: Ablation study on the effects of feedback volume on Walker-walk, where error rate is fixed
at 0.3. The results show the mean and standard deviation averaged over five runs.

For the coefficient α in the lower bound τlower, we find the theoretical value α = 0.5 performs the
best. The maximum weight βmax and decay rate k control the weight of uncertainty term in the
lower bound τlower: βt = max(βmin, βmax − kt). The combination of βmax = 3 and k = 1/30 also
performs optimally. Due to the quite limited feedback amount (1000 feedback) and training epochs
for the reward model (around 150 ∼ 200 epochs on Walker-walk), RIME is sensitive to the weight
of uncertainty term. If ones try to increase βmax to add more tolerance for trustworthy samples in
early-stage, we recommend to increase the decay rate k simultaneously so that the value of βt decays
to its minimum within about 1/3 to 1/2 of the total epochs. For the upper bound τupper, although
we use 3 ln(10) for balanced performance on DMControl tasks, individually fine-tuning τupper can
further improve the performance of RIME on the corresponding task, such as using τupper = 4 ln(10)
for Walker-walk.
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Figure 10: Hyperparameter analysis on Walker-walk using 1000 feedback with ϵ = 0.3. The results
show the mean and standard deviation averaged over five runs.
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Figure 11: Uncertainty term analysis on Walker-
walk using 1000 feedback with ϵ = 0.3, across
ten runs.

Effects of different uncertainty terms in the
lower bound. In RIME, we use an auxil-
iary uncertainty term τunc in the lower bound
τlower to accommodate tolerance during the
early training stages and in cases of distribu-
tion shifts. The standard deviation of the KL
divergence, denoted as the KL metric in this
section, is employed to discern these cases.
Here, we compare this with two other metrics:
the disagreement metric and a combination of
both, termed as KL + disagreement. The dis-
agreement metric uses the standard deviation of
Pψ[σ

0 ≻ σ1] across the ensemble of reward
models (denoted as sP ) to discern cases of dis-
tribution shifts: τunc = γt · sP . Our intuition is
that the predictions of the model for OOD data
typically vary greatly. Notably, this metric in-
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duces sample-level, rather than buffer-level, thresholds, potentially offering more nuanced threshold
control. The combined metric, KL + disagreement, integrates both as τunc = βt · sKL + γt · sP .

For reference, we also include a group devoid of any uncertainty term, termed the ”None” group.
As shown in Figure 11, the KL metric outperforms the other approaches on Walker-walk with an
error rate of ϵ = 0.3. This might be because the disagreement metric fluctuates violently at every
query times, often leading to excessive trust in new data, which hinders the stabilization of the lower
bound.

Performance of RIME with non-expert human teachers. Improved robustness should make
PbRL more suitable for humans. To investigate this, following Christiano et al. (2017); Lee et al.
(2021b); Kim et al. (2022), we conduct a group of experiments with actual non-expert human teach-
ers on Hopper to do backflip. In this experiments, we invite five students in unrelated majors, who
are blank to the robotic tasks, to perform online annotation. We only tell them the objective of
the task (i.e., teach the agent to do backflip) with nothing else and no further guidance. We utilize
their annotations to train RIME and PEBBLE. The feedback amount in total and per session are
set to 500 and 100, respectively. Other hyperparameters are kept the same with those of RIME on
Walker-walk.

We employ a hand-crafted reward function designed by experts (Christiano et al., 2017) as the
ground-truth scripted teacher. We found that compared to ground-truth preferences, our non-expert
annotation error rate reached nearly 40%. Therefore, we additionally investigate the performance of
both algorithms with scripted teacher at error rate ϵ = 0.4. The results are shown in Fig. 12. We
find that RIME significantly outperforms PEBBLE when learning from actual non-expert human
teachers and successfully performs consecutive backflips using 500 non-expert feedback, as shown
in Figure 13. Furthermore, both algorithms performed worse with script-prone teachers than human
teachers at the same error rate, suggesting that the ”Mistake” model in (Lee et al., 2021a) may be
more difficult than real noise.
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Figure 12: Performance on Hopper with non-expert human teachers. The results show the mean and
standard deviation averaged over five runs.
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Figure 13: Novel behaviours trained using feedback from non-expert human teachers. RIME suc-
cessfully executes continuous backflips using 500 non-expert feedback.
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