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Abstract

In this paper, we investigate the feature encoding process in a prototypical energy-
based generative model, the Restricted Boltzmann Machine (RBM). We start with
an analytical investigation using simplified architectures and data structures, and
end with numerical analysis of real trainings on real datasets. Our study tracks the
evolution of the model’s weight matrix through its singular value decomposition,
revealing a series of phase transitions associated to a progressive learning of the
principal modes of the empirical probability distribution. The model first learns
the center of mass of the modes and then progressively resolve all modes through
a cascade of phase transitions. We first describe this process analytically in a
controlled setup that allows us to study analytically the training dynamics. We
then validate our theoretical results by training the Bernoulli-Bernoulli RBM on
real data sets. By using data sets of increasing dimension, we show that learning
indeed leads to sharp phase transitions in the high-dimensional limit. Moreover, we
propose and test a mean-field finite-size scaling hypothesis. This shows that the first
phase transition is in the same universality class of the one we studied analytically,
and which is reminiscent of the mean-field paramagnetic-to-ferromagnetic phase
transition.

1 Introduction

In recent years, we have witnessed impressive improvements of unsupervised models capable of
generating more and more convincing artificial samples [1} 2| [3]]. Although energy-based models [4]
and variational approaches [5]] have been in use for decades, the emergence of generative adversarial
networks [6], followed by diffusion models [7]], has significantly improved the quality of outputs.
Generative models are designed to learn the empirical distribution of datasets in a high-dimensional
space, where the dataset is represented as a Dirac-delta pointwise distribution. While different types
of difficulties are encounter when training these models, there is a general lack of understanding of
how the learning mechanism is driven by the considered dataset. This article explores the dynamics
of learning in neural networks, focusing on pattern formation. Understanding how this process
shapes the learned probability distribution is complex. Previous studies [8} 9] on the Restricted
Boltzmann Machine (RBM) [10] showed that the singular vectors of the weight matrix initially
evolve to align with the principal directions of the dataset, with similar results in a 3-layer Deep
Boltzmann Machine [[11]. Additionally, an analysis using data from the 1D Ising model explained
weight formation in an RBM with a single hidden node as a reaction-diffusion process [[12]. The
main contribution of this work is to demonstrate that the RBM undergoes a series of second-order
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phase transitions during learning, each corresponding to the acquisition of new data features. This is
shown theoretically with a simplified model and on correlated patterns; and confirmed numerically
with real datasets, revealing a progressive segmentation of the learned probability distribution into
distinct parts and exhibiting second order phase transitions.

2 Related work

The learning behavior of neural networks has been explored in various settings. Early work on
deep linear neural networks demonstrated that even simple models exhibit complex behaviors
during training, such as exponential growth in model parameters [13| [14]. Using singular value
decomposition (SVD) of the weight matrix, researchers revealed a hierarchical learning structure
with rapid transitions to lower error solutions. Linear regression dynamics later showed a connection
between the SVD of the dataset and the double-descent phenomenon [15]]. Similar dynamics were
found in Gaussian-Gaussian RBMs [9], where learning mechanisms led to rapid transitions for
the modes of the model’s weight matrix. In this context, the variance of the overall distribution is
adjusted to that of the principal direction of the dataset, while the singular vectors of the weight
matrix are aligned to that of the dataset. Unlike linear models, non-linear neural-networks, supervised
or unsupervised ones, can not exhibit partition of the input’s space. Yet, linear model in general can
not provide a multimodal partition of the input space, should it be in supervised or unsupervised
context, at difference with non-linear ones.

It was then shown that the most common binary-binary RBMs exhibit very similar patterns at
the beginning of learning, transitioning from a paramagnetic to a condensation phase in which
the learned distribution splits into a multimodal distribution whose modes are linked to the SVD
of the weight matrix [8]. The description of this process motivated the use of RBMs to perform
unsupervised hierarchical clustering of data [16}[17]. The succession of phase transitions had been
previously observed in the process of training a Gaussian mixture [[18| 19} 20]], and in the analysis of
teacher-student models using statistical mechanics [21},[22]]. The latter cases are easier to understand
analytically due to the simplicity of the Gaussian mixture. Nevertheless, the learned features are
somewhat simpler, as they are mainly represented by the means and variances of the individual
clusters. Recently, sequences of phase transitions have been used to explain the mechanism with
which diffusion model are hierarchically shaping the mode of the reverse diffusion process [23} 24} 25]]
and due to a spontaneous broken symmetry [26] after a linear phase converging toward a central
fixed-point. The common observation is that the learning of a distribution is, in many cases, obtained
by a succession of creation of modes performed through a second order process where the variance
in one direction first grow before splitting into two parts, and then the mechanism is repeated. This
procedure in particular demonstrate a hierarchical splitting, where the system refined at finer and
finer scale of features as it adjust its parameters on a given dataset.

3 Definition of the model

An RBM is a Markov random field with pairwise interactions on a bipartite graph consisting of two
layers of variables: visible nodes (v = {v;,4 = 1,..., Ny }) representing the data, and hidden nodes
(h = {h;,j = 1,..., Nu}) representing latent features that create dependencies between visible
units. Typically, both visible and hidden nodes are binary ({0, 1}), though they can also be Gaussian
or other real-valued distributions, such as truncated Gaussian hidden units [27]. For our analytical
computations, we use a symmetric representation ({£1}) for both visible and hidden nodes to avoid
handling biases. However, in numerical simulations, we revert to the standard ({0, 1}) representation.
The energy function is defined as follows:
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with W the weight matrix and b, c the visible and hidden biases, respectively. The Boltzmann distri-
bution is then given by p[v, h|W b, c] = Z~ ! exp(—E[v, h; W, b, c]) with Z = Z{v h} e Elv.h]
being the partition function of the system. RBMs are usually trained using gradient ascent of the log



likelihood (LL) function of the training dataset D = {v(!), ... v} the LL is then defined as
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The computation of the gradient is straightforward and made two terms: the first accounting for the
interaction between the RBM’s response and the training set, also called postive term, and same
for the second, but using the samples drawn by the machine itself, also called negative term. The
expression of the LL gradient w.r.t. all the parameters is given by
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where (f(v,h))p =M1 2(ny f(@™) h)p(h|v(™) denotes an average over the dataset, and
(f (v, h))3, the average over the Boltzmann distribution p[v, h; W, a, c]. Most of the challenges
in training RBMs stem from the intractable negative term, which has a computational complexity
of ~ O(Zmin(N h’Nv)) and lacks efficient approximations. Typically, Monte Carlo Markov Chain
(MCMC) methods are used to estimate this term, but their mixing time is uncontrollable during
practical learning, leading to potentially out-of-equilibrium training [28]].
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This work focuses on the initial phase of learning and the emergence of modes in the learned
distribution from the gradient dynamics given by Eq. (2). In the following section, we first analytically
characterize the early dynamics in a simple setting, showing how it undergoes multiple second-order
phase transitions. We then numerically investigate these effects on real datasets.

4 Theory of learning dynamics for simplified high-dimensional models of data

We develop the theoretical analysis by focusing on simplified high-dimensional probability distribu-
tions that concentrate around different regions, or lumps, in the space of visible variables. Our aim is
to analyze how the RBM learns the positions of these lumps, which represent, in a simplified setting,
the features present in the data.

4.1 Learning two features through a phase transition

We consider the following simplified setting: we will be using v; = £1 visible nodes, Gaussian
hidden nodes and put the biases to zero b = 0 and ¢ = 0. As a model of data, we consider a
Curie-Weiss (CW) model with a prefer direction £ for the ground state, following the distribution
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where 5 = 1/T is the inverse temperature and §; = +1 represents a pattern encoded in the model
as a Mattis’s state [[29} [30]. The CW model presents a high-temperature phase with a single mode
centred over zero magnetization m = N; 1> ;&isi = 0 for B < B, while in the low-temperature
regime, 5 > (., the model exhibits a phase transition between two symmetric modes m = +mq(3)
(8. = 1). Henceforth, we shall focus on the regime 5 > (3. where the data distribution is concentrated
on two lumps. From the analytical point of view, we can compute all interesting quantities in the
thermodynamics limit N, — oco. In order to keep the computation simple, we will characterize here
the dynamics of the system when performing the learning using a binary-Gaussian RBM (BG-RBM)
with one single hidden node. The distribution is then given by

1 h2N 1 -V Wy 2
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Using this model for the learning, the time evolution of the weights is given by the gradient. With BG-
RBM we have that (v;h) = N; 15 ; wj{vivj)y where the last average is taken over a distribution
ppc(v). We can now easily compute the positive and negative term of the gradient w.r.t. the weight
matrix. For the positive term we obtain that (v;v;)p = &&;m? where m = tanh (8m). The negative
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Figure 1: Learning behavior of the BG-RBM with one hidden node, using data from the CW
model at different inverse temperatures, system size and learning rate 3, IV, e. The argument of the
exponential curves is set to m?eN, where € is the learning rate. Inset: Behavior of  along with the
magnetization h* of the learning RBM. The vertical line marks where the susceptibility diverges,
indicating the onset of spontaneous magnetization.Right: Learning curves for RBMs learning two
correlated patterns. The dashed curves represent the weights of the two hidden nodes projected onto
&' + €2, while the dashed-dot curves are projected onto £! — £€2. Inset: Exponential growth during
the two phases: top shows growth towards &€ + £¢2 at a rate r2(1 + k) /2, and bottom shows growth
towards £ — ¢2 at arate p?(1 — )/2. The arguments of the exponentials are not adjusted.

term can also be computed in the thermodynamic limit (v;v;)rpm = tanh(h*w;) tanh(h*w;) with
h* = % 3, wi, tanh(h*wy,).
We can now express the gradient as

dwl = fz kawkm — Z wih* tanh(h*w;) 3)

k

We can analyze two distinct regimes for the dynamics. First, assuming that the weights are small
at the beginning of the learning, we get that 2* = 0. We can then solve the Eq. (3) in this regime
obtaining the evolution of the weights toward the direction £ by projecting the differential equation

on this preferred direction. Defining Ug = N~Y/2 3", &w;, we obtain
e
dt

This show that the weights are growing in the direction of £ while the projection on any orthogonal
direction stays constant. As the weights grow larger, the solution for h* will depart from zero. The
correlation of the learned RBM then starts to grow

= m?Ug thus Ug = UZe™ ",

1 Nh? h2w? 1
sy~ 7 [ A exo (‘2 2 ) = TS Wt V)
and x = >, ; §;&i(sis;)rpum therefore diverges when N ~1%", w; ~ 1, exhibiting a second order
phase transition during the learning. Finally, we can study the regime where the weights are not small.
In that case, we can first observe that the evolution of the directions orthogonal to £ cancel when the
weights W aligns totally with the £ at the end of the training. Finally, taking w; = &w, the gradient
projected along & at stationarity imposes

wm? = h* tanh? (h*w) and thus w = /B and h* = \/Bm

We confirm the main results of this section numerically in Fig.|l} showing they hold accurately even
for moderate values of V,. The sum of the weights grows exponentially, following the magnetization
squared (considering the learning rate), and the weights align with the direction &, while the norm of
the weight vector converges towards /3. Additional analysis details and extended computations for
the binary-binary RBM case, which is slightly more involved, are provided in the appendix.



4.2 Learning multiple features though a cascade of phase transitions

We consider now the case in which the data are characterized by more than two features. For
concreteness, we focus on the case in which the data is drawn from the probability distribu-
tion of the Hopfield model [30] with two patterns &' and &2, using the Hamiltonian H g [v] =

2
—% Zizl (Zi\f:vl fl‘-‘vi) . The generalization to a larger number of patterns is straightforward.

Following [31]] we consider the case in which the patterns are correlated and defined as: §' = n 4+ 7

and £2 = 1 — 1); n is a vector whose first N, HT” components are equal to =1 with equal probability,

and the remaining ones are zero (0 < k < 1). Whereas 7 is a vector whose last NvlT components
are equal to =1 with equal probability, and the remaining ones are zero. When 7' < 1 — & this
model is in a symmetry broken phase in which the measure is supported by four different lumps
centred in ££* and ££2. Analogously to what was done previously, we now consider a BG-RBM
with a number of hidden nodes equal to the number of patterns. The Hamiltonian is then given
by H[v,h] = =32, vihuwi, + 32, h? N /2, which corresponds to a Hopfield model [30] with
patterns w' and w?. The analysis presented in the previous section can be generalized to this case
(see SI for more details) and one finds the dynamical equations for the evolution of the patterns:

dw!! 1 1 u
it = N— Z<Ui”j>9wj — F Z(vivj)RBij (4)
v _] v
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As shown in the SI (vvj)p = 7"2&5]- +p2771-77j where 7, p are a functionof S (and 37! =T < 1—~,

r > p). At the beginning of the training dynamics the RBM is in its high-temperature disordered

phase, hence the second term of the RHS of Eq. (4) is zero. The weights w! and w? have therefore

an exponential growth in the directions 7 and 77, whereas the other components do not evolve. If the

initial condition for the weights is very small, as we assume for simplicity, one can then write:
wh(t) = 27“67'2(13”% + Ziuepz’(lf)tﬁ p=12,

1+k n 1—k
N, (H£5) Ny (435)

where we have neglected the small remaining components; z* and z# are the projections of the initial
condition along the directions 7 and 7). Since 7 > p, on the timescale (log Ny)/ (r*(1 + )) the
component of the w" s along 1) becomes of order one whereas the one over 7 is still negligible. In
this regime, the RBM is just like the one we consider in the previous section with a single pattern 7,
and it has a phase transition at the time ¢;:

eQTQ(#)t]
Ny

which is analogous to the one studied in the previous section. At t;, the RBM learns that the data
can be splitted in two groups centred in =£1, but it does not have yet learned that each one of these
two groups consist in two lumps centred in £' and £2 (and respectively —&' and —£2). The training
dynamics after ¢; can also be analyzed: the components of the weight vectors along 1 evolve and
settle on timescales of order one to a value which is dependent on the initial condition (see the eq. in
the SI). In the meanwhile, the components along 7} keep growing; at a timescale (log Ny )/(p?(1—k))
(quite larger than ¢ in the limit N, — oo) they become of order one. In order to analyze easily this
regime, let’s consider first the simple case in which the initial condition on the weights is such that
w!(0)-7 = —w?(0)-7and w'(0)-n = w?(0)-n. In this case, one can write w! = A(t)n+ B(t)7
and w? = A(t)n — B(t)7n. The corresponding RBM is a Hopfield model with log likelihood:

() + (D)%) =1,

(2, viwf)? 2 (0 vimi)® 2 (3, vimi)?
%: aN, = AW T 2B
At t7, when (13%) A(t;)? = 1, one has the first transition in which the RBM measure breaks
in two lumps pointing in the direction +17), as we explained above. In this regime B(t) is still
negligible but keeps increasing with an exponential rate. Using the results of [31], one finds that
when %B (tr7)? = 1, a second phase transition takes place. This defines a time ;; at which the
probability measure of the RBM breaks from two lumps to four lumps, each one centred around one
of the four directions ££', +£2. We have considered a special initial condition, but the phenomenon



we found is general. In fact, for any initial condition one can show that the dynamical equations
have an instability on the timescale ¢;7, which generically induces the second symmetry breaking
transition. On Fig.[I] right panel, we illustrate the exponential growth as described by the theory,
toward the two directions. In the SI[4.2] we show how these phase transitions are in very good
agreement with previous work [9, 8] and how the phase space is split during training time. At the end
of the training, the patterns are given by w' = ¢! and w? = £2? modulo a rotation in the subspace
spanned by £%+2, since the likelihood is invariant by rotations in this subspace. In fact, we often
found that the patterns are not perfectly aligned because we are not forcing the weights to be binary.
This analysis can naturally extend to more than two patterns, typically resulting in a cascade of
phase transitions. In this process, the RBM progressively learns the data features, starting from a
coarse-grained version (just the center of mass) and gradually refining until all patterns are learned.

5 Numerical Analysis

In the previous sections, we examined the learning process in simplified setups, in order to be able to
develop an analytical treatment. We now show that the insights gained from this simplified analysis
are also applicable to understanding the learning process of a Bernoulli-Bernoulli RBM (BB-RBM)
trained with real data sets. For this purpose, we will consider 3 real data sets: (i) The Human
Genome Dataset (HGD), (ii) MNIST and (iii) CelebA, see details in the appendix [E| To show the
occurrence of bonafide phase transitions, it is important to show the effect of increasing the system
size (which transforms cross-overs in sharp transitions). We will therefore resize these data sets in
different dimensions by adjusting their resolution, i.e. by changing IV, while maintaining comparable
statistical properties. Detailed information about the scaling process can be found in the SI.

In real training processes, the machine is expected to incrementally learn various patterns, £, from
the data as discussed in previous sections. However, the identification of these patterns and their
relationship to the statistical properties of the dataset remain unclear. Prior research [9} 8], [32]] has
demonstrated that RBM training initiates with the stepwise encoding of the most significant principal
components of the dataset, {up., }, which are the eigenvectors of the sample covariance matrix with
the highest eigenvalues, on the SVD decomposition of its weight matrix W;, = Y wqufag, where
u® € R and u® € R™ denote the left and right singular vectors corresponding to the singular
value w,. These vectors form orthonormal bases in R~ and R™» respectively, where the index «
ranges from 1 to min(N,, Ny,) and the singular values w,, are arranged in descending order. At the
beginning of the learning process, the left singular vectors, u®, gradually alignes a-by-o to upe,.
This is in agreement with previous results and our theoretical analysis. In the analogy with mean-field
magnetic models developed in the previous section, the role of decreasing temperature is played by
the increasing magnitude of the singular value w?2 and should lead to a series of phase transitions
in which the RBM measure splits in progressively larger components. We show in Fig. 2] that these
phenomena are at play by focusing on the evolution of the SVD of the RBM weight matrix when
training with the HGD dataset. In panel A we show the first two directions of the principal component
analysis (PCA) of the dataset, which highlights its strong mode structure, as several distant clusters
appear (they are related to the continental origin of the individuals at hand). In Fig. 2}-B we show
the strong increase of the singular values w,,, indeed expected from our theoretical analysis, and
in Fig. C the evolution of the scalar product between u,, and ul“* as a function of the number
of training epochs. Different colors indicate different values of a. As expected, the modes are
progressively expressed during training, and the first two singular vectors match the two principal
directions of the dataset for a while. This last figure also shows us that the agreement with the PCA is
only temporary (a limitation of current theoretical approaches), as the machine finds better patterns
to encode the data as training progresses. The progressive splitting of the RBM measure during
the training dynamics is shown in Fig. 2}-D, for which we use Ny = 1000 independent samples
generated with the model trained up to a different number of epochs (the colors refer to the same
epochs highlighted with vertical lines in Figs.[2}-B and C). For visualization, we show the samples
projected onto the right singular vectors of W, the magnetizations m,, = v -u®/y/Ny with o = 1, 2.
At the beginning of training, the data points are essentially Gaussian distributed, and the growth of
wy over 4 is related to the splitting of the data into two different clusters on the m; axis, and the
emergence of wy is related to a second splitting on the my axis. The projections along all subsequent
directions are Gaussian at this stage of training. This progressive splitting is crucial to express the
diversity of the dataset shown in Fig.[2l-A, and can be successfully used to extract relational trees
from data points, as recently shown in Ref. [16]. At the beginning of training, when only one singular
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Figure 2: Human genome dataset. Progressive coding of the main directions of the dataset when
training an RBM with the human genome dataset [33]]. In A, we show the dataset projected along the
first two principal components of the dataset u?“* with o = 1,2, and mFA = uLCA . (@ / /N,
with (@) referring to the different entries in the dataset, i.e. an human individual. Points are colored
according to the individual continental origin. In B, we show the evolution of the singular values w,,
of the RBM weight matrix W as a function of the number of training epochs, and in C, we show
the scalar product of the corresponding singular vectors u,, with the corresponding PCA component
uL®, In D, we show the magnetization of the samples generated by the model at different epochs,
projected along the first two eigenvectors of W, which shows that the specialization of the model
occurs through the progressive encoding of the main modes of the data in W.

value has been expressed, the transition of feature encoding is analogous to the transition from the
paramagnetic to the ferromagnetic phase in the aforementioned CW model. To justify this statement,
we show in the SI|D|how, by considering the condensation of the variables onto the SVD of W':
m = u - 8, the model can be expressed as a Mattis model where the pattern is defined by . Our
analysis allows us to define a temperature, linked to the eigenmode of W as 3 = w?/16. Now,
since the critical temperature of the Mattis model is 5. = 1, we can show that the BB-RBM will
condensate when the first eigenmode of the model reaches w. = 4, see SI In a real training, we
also have visible b and hidden bias ¢ which could easily change the model towards a random field
CW model, which leads us to expect a slightly higher critical point but a very similar ferromagnetic
phase transition, and in particular, it should not change the transition’s mean-field universality class.

In order to show the existence of a cascade of transitions, and that what found for the HGD also holds
for other datasets, we now train the RBM on the MNIST dataset. In Fig.[3|-A we present the evolution
of the singular values w,, along the training which neatly show the progressive encoding of patterns.
The progressive splitting of the RBM measure in clusters and the existence of a phase transition
can be monitored by measuring the variance of the distribution of the visible magnetizations m,,
along the a-th mode, or the analogous hidden magnetizations m,, = h - 4®/1/N}, obtained using
the hidden units. The variance of the magnetization multiplied by the number of variables used to
compute it and f3, is related with the magnetic susceptibility via the fluctuation dissipation theorem,
which means that

Yom = Ny (<m2> - (m>2) — &\ (5)
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Figure 3: Traning with the MNIST dataset. In A we show the evolution of the singular values
of the RBM’s coupling matrix W as a function of the training time. In B we show the evolution
of the susceptibilities associated with the magnetizations along the right singular vectors of W,
Mea = (Uq - ) /Ny. In both figures, we consider the standard N, = 282 MNIST dataset, different
colors refer to different modes. In C we show the susceptibility associated with the overlaps ¢ and ¢
between visible and hidden variables. In D we show the susceptibility of the first mode as a function
of the first singular value w; obtained with trainings on MNIST data scaled to different system
sizes above and below L = 28. The numerical curves are compared with the theoretical expectation
using the CW model in Eq. (6) using w; . = 4.45. The same data are shown in E, scaled using the
mean-field finite-size scaling ansatz of Eq. (7). In F, we show the first 10 modes’ susceptibilities y,,,
as a function of their corresponding singular value w,, and compare them with the theoretical curve
in D. In G, we show the MCMC relaxation time of the machines trained with different IV, datasets as
a function of wy, together with the theoretical expectation for local moves in dashed lines.



here (-) refers to the equilibrium measure with respect to RBM’s Gibbs measure p(v, h), in practice
estimated as the average over Vg independent MCMC runs. It is well known that the magnetic
susceptibility should diverge in the vicinity of a second order phase transition and that such growth
in only limited by the overall system size N = /N, Ny in finite systems. These phenomena
indeed takes place also in the RBM. We show in Fig.[3}-B the evolution of the x,s obtained using
the magnetizations obtained along the different modes o« of W. As anticipated, the first mode’s
susceptibility sharply grows as wy approaches 4, but it is more remarkable that this behavior is not
only restricted to the first mode, but it is also reproduced by the subsequent modes in a step-wise
process. According to the mapping between the low-rank RBM and the CW model, we should expect
that our Y, at least for the first mode o« = 1 should behave as

4 4

Xm ™~ B T a2 (6)
when approaching the critical point, which is equivalent to stating that v = 1. Here, the factor 4 in
the numerator is related to the fact that the susceptibility obtained with {0, 1} variables is 4 times
the standard one obtained with Ising spins, and the fact that 3 = w?/16. In Fig. D, we show the
first susceptibility as a function of w; using RBMs trained with MNIST data rescaled to different
dimensions. As mentioned before, the growth of the susceptibility is limited by the system size N, .
But, as we look into larger and larger sizes, we are able to observe the growth over more decades
showing that at the transition we observe the CW expected behavior of Eq. [6] as shown in black
dashed line, where the only adjustable parameter was the critical point wq . = 4.4 (i.e. there is no
adjustable prefactor).

One of the crucial tests to ensure that a finite-size transition is a bona fide phase transition is to study
its behavior by changing the number of degrees of freedom. One of the standard tools to do this this
is to make use of the so-called finite-size scaling (FSS) ansatz, motivated by renormalization group
arguments [34, 35, 136]. Mean-field models follow a standard FSS ansatz which has been first studied
in [37]]. In particular, the FSS ansatz for the susceptibility is

X (8) = N7t ¢ (N7 |8 = B ) )

with ¢(+) a size-independent scaling function, N = /N, N}, is the effective size of our model and
v=1,v=1/2and d, = 4 as expected in the mean-field universality class. We test this ansatz in
Fig. B}-E showing that it does succeed to scale the finite-size data in the critical region, especially in
the largest system sizes, which confirms both the mean-field universality class and the prevalence of
the transition in the thermodynamic limit. In Fig. 4} A and B, and Fig.[4-C and D, we show that the
indicators of a phase transitions—growth of the susceptibility and its mean-field finite size scaling—also
holds for CelebA and HGD datasets. Finally, a final piece of evidence of the existence of a phase
transition is presented in Fig. [d}E, where we show that after the continous transition has taken place,
one can induce a discontinuous transition and hysteresis by applying a field in the direction of the
learned pattern, in full agreement with what observed for standard phase transitions.

All this previous discussion concerned mostly the first phase transition when the RBM learns the first
mode. But we discussed in Fig. 3B that an entire sequence of step-wise phase transitions occurred in
the rest of the W -matrix modes. In Fig. 3}-F, we show each of these mode susceptibilities x.n,, as a
function of their corresponding singular value, showing an extremely similar diverging behavior with
respect to mode o = 1, with an apparent slight variation of the critical point for each mode though
all seem to remain nearby the predicted w, ~ 4, suggesting that the subsequent transitions might
be of similar mean-field nature. The crossing of second order phase transitions have very strong
consequences in the overall quality of the training, in particular, with the quality of the log-likelihood
gradient estimated via MCMC dynamics. Indeed, second order transitions are associated with a well
known arrest effect known as critical slowing-down behavior, by which the thermalization times
diverge with the correlation length £# o |8 — .| ~"#, with z the dynamical critical exponent which
for local and non-conserved order parameter moves is 2 in mean-field, thus making large systems
extremely challenging to thermalize in practice. We show that our exponential relaxation times
diverges exactly as predicted in Fig.[3}-G.

6 Conclusions

In this work, we first characterized the learning mechanism of RBMs using a simplified context with
a dataset provided by a simple teacher model. We used two examples: one with two symmetric
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Figure 4: Traning with the CELEBA and HGD datasets. In A, for the CELEBA dataset, we plot
the hidden susceptibility for different system sizes. In dashed lines we show the expected divergence
for w1, = 4. In B, the mean-field FFS associated with the first transition using the mean-field
exponents. In C and D, we repeat show the visible susceptibility associated to the first phase transition
in the HGD. In this case, we use wq . = 5.25 for the scalings. In E, we illustrate the typical hysteresis
behavior in low-temperature phase, similar to what is observed in mean-field Ising model in fields.

clusters and another with four correlated clusters. Our results show that the learning dynamics
identify modes by exponential growth in the directions of the clusters, dominated by the variances
of these clusters. The theory predicts the timing of the first phase transitions, aligning well with [8].
Numerically, we confirmed the existence of a cascade of phase transitions linked to the growing
modes w,, and associated with diverging susceptibility. Finite-size scaling indicates these transitions
are critical and in the mean-field universality class. This series of phase transitions likely extends
beyond RBMs, offering insights into learning mechanisms, especially for generative models. These
transitions have significant implications for both training and understanding learned features. During
training, each transition is linked to a diverging MCMC relaxation time, requiring careful handling to
train the model properly. Additionally, the hysteresis phenomenon ensures that the learning trajectory
involves second-order phase transitions, which are beneficial for tracking the creation of modes in
the learned distribution. However, altering parameters (such as local bias) could lead to first-order
transitions, which are detrimental for sampling and may explain the inefficacy of parallel tempering
with temperature changes. Practically, our analysis shows that the principal directions of the weight
matrix contain valuable information for understanding the learned model.
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A Binary-Gauss RBM

We add some technical details to the derivation of the dynamical process. Recall that we consider the
CW model, biased toward a pattern £ for generating the dataset

1 8 (& ’
pew(v) = Z——exp | o (Z &w)
vV o\i=1

Zcw

where [ is the inverse temperature 5 = 1/7 and &;s = %1 represents a potential pattern direction.
The CW model presents a high-temperature phase with a single model centred over zero magnetization
m=N ]Qvl >, si = 0for § < f. while in the low-temperature regime, 3 > f3., the model exhibits a
phase transition between two symmetric modes m = +mg(5). From the analytical point of view, we
can compute all interesting quantities in the thermodynamics limit N, — oo. The RBM’s distribution

is given by
h2N
exp ( g vihw; — )

(22?\1{%) )

Using this model for the learning, the time evolution of the weights is given by the gradient. With
binary-Gaussian RBM we have that

Z/dhvlhp (v, h) Z/dhvzhp hlv)p(v) (8)

{1’} {v}
=% Z v Z vip(v)w; = N Z w; (v;vj)p 9)
o} J J

where the last average is taken over a distribution p(v). We can now easily compute the positive and
negative term of the gradient w.r.t. the weight matrix. For the positive term, assuming that § > 1, we
obtain that

<Uﬂ]j>’[) = ZCW /dmzvlvj exp< BNy —— +BZ&U®>

{v}

preMm(h,v) = ZRBM

PrBM(V) = Z exp (

7/dmtanh B&;m) tanh(BE;m )exp< BN +Zlog2cosh BEm ))

Evaluating the saddle point of the argument of the exponential (which is the same as the one for the
partition function) we have that

(v;v;)p = &&ym? where m = tanh (Bm)
The negative term can also be computed in the thermodynamic limit

. 2N
(vivj)rem = — /dh;”ﬂ}j exp (Z vshw; — 2)

RBM -
%

1
dh
/ ZRBM

= tanh(h*w;) tanh(h*w;) with h* = i ; wy, tanh(h*wy,)

2
tanh(hw;) tanh(hw;) exp <Z log [2 cosh(hw;)] — h 2N>

where the last line is obtain by taking the saddle point of the integral over h, (h* corresponding to the
extremum). We can now express the gradient as

= *& Z Erwpm? — Z wyh* tanh(h*w;) (10)

dw;

dt
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Assuming first that the weights are small we get that A* = 0. We can solve the gradient’s equations
in this regime. In such case, the only solution for the saddle point equation of the RBM is given by
h* = 0 and we can see that the solution of the evolution of the weight is global toward the direction
& by projecting the differential equation on the preferred direction. Defining Uz = N —1/2 > Gws,
we obtain

dU¢

7l mQUg thus Ug = Ugem2t.

This show that the weights are growing in the direction of £ while the projection on any orthogonal
direction ¢® stays constant:

d 2
¢ T = (97 )(w - ) = Osince ¢ - £ = 0
When the weights grow larger, the solution for h* will depart from zero. The correlation of the
learning RBM then starts to grow

1 9 ; 1
s = 7 [ b exo (‘ 2 Tl ) = TS, Wt V)

K2

Nh? h2w?

2
1
X = ;§j5i<813j>RBM ~ (Z:&w) N(=S, w?/N)

and diverges when N ! > w; ~ 1, therefore exhibiting a second order phase transition during the
learning. Finally, we can study the regime where the weights are not small. In that case, we can first
observe that the evolution of the directions orthogonal to &, ¢ are given by

, 2
Z 1o d;: = % Z d8E; Z Epwy — Z ¢&h* tanh(h*w;) = — Z @S h* tanh(h*w;)
i i k i i

which will cancel if the weight W aligns totally with the £. Finally, taking w; = & w, the gradient
projected along £ at stationarity imposes

wm? = h* tanhQ(h*w) and thus w = \/E and h* = /fm

B Binary-Binary RBM

The RBM sharing both discrete binary variables on the visible and hidden nodes is by far the mostly
commonly used. In particular, using binary nodes in the hidden layer instead of the Gaussian
distribution allow the model to potentially fit any order correlations of the dataset. In this section, we
review how the learning dynamics translate to this case, using for simplicity binary {+1} variables.
In order to obtain an interesting behavior in this phase of the learning, it is important to consider a
particular parametrization of the RBM. We consider that all hidden nodes share the same weight.
This is important to be able to have a recall phase transition in the model. We therefore have the
following Hamiltonian

1
”HZ—Mgsiwi;Ta (11)

where Ny, = aN is the number of hidden nodes 7, of the system and the vector W correspond to
the weight shared across all the hidden nodes. In this model, we can now compute the positive and
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negative of the gradient. The first one is given by

2
]\17h<5iza:ha>D: ! Zsz/dmsiexp —BmQN—i-mﬁzjjfjsj ]\lfhga:tanh Nh_lzj:szj

Zow

1 Bm2N .
= ZCWXS: dmdrs;exp | — B +mﬂzj:£jsj 5(t— Ny, zj:ijj)tanh(T)

1 _ Bm*N ITF—iN TR Y wjs;
= Zow Z/deTdei exp | — 5 + mﬁijsj tanh(7)e h W3S
s J

1 _
= Z / dmdrdrePm*N/2tirT tanh(¢&;mpB — iN, 'Fw;) tanh(7)
Zow 4

X exp Zlog cosh [fjﬁm — iN{lfwj]
J

finding the saddle point of the argument in the exponential, we obtain

1 m m
Fh<5i za: ha)p = & tanh(BSm) tanh N zj: §jwj | = &mtanh N z]: §jw;
The same type of computation can be done for the negative term, we found that

1
Fh<51 ; ha)rBM = &7 tanh (w;T)

1
7 = tanh N, Z w; tanh (w;7)
J
Again, in the small coupling regime (or at the beginning of the learning), when V| ! > j wj2 < 1, we
have that 7 = 0. In such case, the gradient over the weight matrix is given by

dw,-
dt

= {;mtanh Nﬂh Zgjwj
J

following the same approach as in the main text, we project the weights on the unit vector u; =
&/VN,Ug = u1 W, which gives

dU, mv N
Tf = v/ Nmtanh ( N Ug)

h

We can integrate this equation, obtaining the solution

sinh (\/T%aUs(t)) = sinh (\/%Ug(O)) exp (nit)
Ug(t) = Ug(0) exp (Tt)

where the second line is obtained in the very large N limit. Again we have an exponential growth in
the first steps of the learning. At the end of the learning, the weights again align in the direction of &.
This can be checked by the fact that the positive term of always orthogonal to any vector orthogonal
to &, and thus the simplest option for the gradient projected in those direction is to be orthogonal to &.
Taking W = ujw, we obtain

mtanh (mw/a) = 7 tanh(wr)
7 = tanh(w tanh(wt) /)

15



/’ ..oﬁ‘l‘l'.'/"" — Wg=1
I ) rees 1.754 Ug=1-§
10° /0 LC e — T
r s Lo
i 4 /. 1.50
¢ 7
4 7 s 1.25
. / s
s
We 51 7 ,‘/ 4 1.00
75 10 [
y < 0.75
s o) .
o o7
o/ /-./;,’ 0.50
o
/ K
°® J'. .o?'._/ 5 B
102] o%.388 i —-- Exponential xexp(m2t/a) 0.25
o. L] / .//' I
°3 / 0.00

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Number of epochs training time

Figure 5: Left: learning behavior of the Binary-Binary RBM, using data from the CW model. The
different curves correspond to systems of size N = 900 at inverse temperature 5 = 1.4 with learning
rate n = 0.03,0.04, 0.05 and N}, = 400, 700, 1000 respectively. The argument of the exponential
curves are not adjusted but set to m?n/a. Right: we illustrate the RBM’s dynamics in the binary-
binary case with 3 = 1.4 and N, = 900, N}, = 400. First the eigenvector u~="! aligns itself with
the pattern &. Then, the eigenvalue w,—; grows exponentially until reaching saturation and when it
crosses the value 1, the system develops a spontaneous magnetization.

The solution can be found numerically by solving the fixed point equation on 7, and measuring the
magnetization of the dataset. In Fig[5|we illustrate our results in the same dataset as in the section 4.1}
taking the CW model with N = 900, S = 1.4, varying the learning rate and the number of hidden
nodes.

C Learning with correlated patterns

In this part we detail how the learning goes when considering a pair of correlated patterns. As
described in[d.2] the pairs of patterns are defined as

g =n+nad€ =n—17q

where 1) is a vector whose first N, 1£% components are equal to &1 with equal probability and the

2
remaining ones are zero. The other vector 7 has its last N, 1;"’ components equal to £1 with equal
;12 are equal,

probability and the rest are 0; we also have that x € [0, 1]. When x = 1, both patterns <
while otherwise different but correlated. In particular E,, 5[£ 1¢2] = Nk. Following the results
of [31], it is possible to compute the saddle point equations for the magnetization. The general form
is given by

m = D& tanh (Bmag] + Bmag?)

Mo = Ni Zf? tanh (ﬁm1§i1 + 5m2§¢2)

This system has been solved in [31] and exhibits the following properties. When T" > 1 + k, the
system is in the paramagnetic regime and m; = mo = 0. When the temperature is lowered and lies
in1— k< T <1+ &, the solution is given by the pair retrieval my = my = m = 1= tanh(28m).
Finally, when T < 1 — &, the system condensate on the following solution

1+ &k 11—k
my = 5 tanh (8(mq +m2)) +

1+ &k 11—k
me = 5 tanh (8(my +mz2)) —

tanh (8(my1 — m2))

tanh (8(my1 — ms2))

where basically the system either condensate toward one of the pattern £'+2, while the other magneti-
zation has some non-zero value due to the correlation.
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We can use the thermodynamics properties of this model to study how the learning of the RBM
should behave in the regime T' < 1 — «. In order to use this model as generating the dataset, we need
to compute the correlations (s;s;). The model present four fixed point, all equally probable:

+ +

,m™ ) and its symmetric case (m1, ma) = (—m
)

(ml’m2)2< 7_m_)

(my,m2) = (m~,m") and its symmetric case (m,ms) = (—m ™, —m™)

where m* > m™ > 0. Therefore, write = tanh(8(m™ +m ™)) and p = tanh(S(m™ —m™)) we
have that

(siSj)data = i > [+ 0) tanh(B(ma + m2))] [(n; + 1) tanh(B(my + my))]

(m1,mz2)
_ 2 = =2
= min;rT + nin;p
because the cross terms 7;7j; are canceled between when changing (m; = m*™,ms = m™) to

(m1 = m~,my = m™). At this point, it is possible to write the gradient at the linear order and
project it toward both direction 1 and 7. Denoting U}y = n - w* and U,ﬁ; =1n-wh, we get

aut 1+ &
n _ .2
a2 EJ:U#

du¥k 1—k
n o_ 2 g
at T2 ZJ: Un
Using this form, we end up with the following solution of the weight matrix
n:UR(0) 14k 1n:U5 (0) l1—k
1% 1) = Iz 0 n 2 t] —1 _ntemiT 2 t] —1 12
w;' (t) wz()+7(1+n)/2 exp {1 —5 syl e G (12)

We therefore understand the following. At the beginning of the learning, since r > p, what is learned
first is the mode toward the direction 17 o €' + £2, in a timescale that is given by time t ~ 1/72.
At a different timescale, the part that is aligned with 17 will grow as well as discussed in the main
text. Following the dynamics of the weights, as in eq.[I2] we can infer the moment where the phase
transition occurs. When considering an Hopfield like model, we know that the transition happens

when ) )
b (Z Uifi) ~ L (Z U7‘€1‘>
2N, - 2N, - o

that is, the critical temperature is 3. = 1. Following the dynamics of the weights of eq. and
neglecting the terms that are not aligned with 17 we can write

e (2] (80 oo 520 - s (5]

Pt = ((1U—ff£0))/2>2 {exp (7"2 ! —; Kt) - 1}2

where we can identify a sort of dynamical temperature associated to the pattern 7. Now, we need
to be careful since by definition, the pattern 77 is made of random +1 components on its (1 + k) /2
elements and zero elsewhere. This rescales the critical temperature by a factor (1 + ) /2. Therefore
we need to look when

1+k
() ~ 1

and the same kind of argument can be used for the second transition with this time

= (39 o 52) ]

L " Baltrr) ~ 1

2
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Figure 6: Left: the empirical dynamics of the eigenvalues of the weight matrix, here denotes w,, in
blue. In green, the predicted dynamics as in eq. adjusting only the initial conditions U}y (0) and
U,‘{ (0). We see that the curves cross the line y = 1 at the same moments ¢7 and ¢;;. Right: the free
energy in the plane (h1, hs), the order parameters of the model. For different value of the weights
during learning, we reconstruct the free energy of the system. We clearly see how the RBM first
creates two minima, in the direction of 7, and then, split again to obtain the four fixed points.

We show in Fig.[6] left panel how the times ¢; and ¢;; compare with the moment where the eigenvalues
w,, of the weight matrix cross the value one, which correspond to the phase transition following a
statistical mechanics approach [8]. We observe that both indicators are crossing the line y = 1 at the
same moment. In Fig. |§|, right panel, we plot the behavior of the free energy (in the plane (hy, h2)).
We see that at the moment of the transition, the free energy opens in the direction corresponding to
the transition. Projecting the dataset (black dots) in the same direction as h1 (resp. h2), we can see
how the system correctly positioned the minima once fully trained.

D Link between the low-rank RBM and Mattis model

Let us consider a low-rank Ising-Ising RBM in which the WV matrix has a single non-zero singular
value w, with left and right singular vectors w and u, and visible and hidden Ising variables (let’s call
these variables WV, s and 7 to distinguish them from the binary 0, 1 version, which would be W and
v and h). In this case, the energy function of the RBM (if we ignore the biases for now) is

E(v,h) = —w(u-v)(u- h),

which leads to a marginal energy on the visible
1
E(s) =— Z log cosh [s/vaﬂzm} R~ —§No.)2m2 +O(m%), (13)
a

where we have defined m = u - s/v/N, as the magnetization of the spins along the direction
u and have exploited the fact that ) @2 = 1 because it is a unit vector. One can obtain an
analogous expression for the marginal energy on the hidden units, formulated in terms of the hidden
magnetization m = 4 - 7/y/Ny,. These energy functions, for small m or 7, are formally equal
to those of the CW model for 8 = w?, which means that our RBM should suffer a critical phase
transition at 8. = T, ! = w? = 1, with mean-field critical exponents. Standard RBMs are not
formulated as Ising +1 variables, but in the form of binary {0, 1} variables where we have the
equivalence 4V = W between the couplings matrices. This results in a critical point at w. = 4 and
an effective inverse temperature 3 = w?/16.

E The datasets and the rescaling

In this work, we illustrated our results on three datasets:

1. The Human Genome Dataset (HGD) [33]] containing binary vectors, each representing a
selection of 805 genes from a human individual, where 1s or Os indicate the presence or
absence of gene mutations relative to a reference sequence.
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2. The MNIST dataset [38], containing 28 x 28 pixel black and white images of digitized
handwritten digits.

3. The CelebA [39] dataset, in black-and-white, with 128 x 128 pixel images of celebrities
faces.

The datasets MNIST and CELEBA, were either downscaled or upscaled in order to create dataset
of various sizes. In practice, the function resize from the python library skimage was used either to
increase or decrease the image size. The dataset HGD is geometrically a one-dimensional structure.
In order to reduce its size, we took the convolution of each sample with a kernel of size s = 3. The
output is one if the sum of the three input values (that are discrete variables in {0, 1}) of the kernel
is above the threshold 2 and zero otherwise. A stride of 2 has been chosen such that the resulting
samples has its size reduced by a factor two.
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