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ABSTRACT: Functionalization of C−H bonds is a key challenge in medicinal
chemistry, particularly for fragment-based drug discovery (FBDD) where such
transformations require execution in the presence of polar functionality necessary
for protein binding. Recent work has shown the effectiveness of Bayesian
optimization (BO) for the self-optimization of chemical reactions; however, in all
previous cases these algorithmic procedures have started with no prior information
about the reaction of interest. In this work, we explore the use of multitask
Bayesian optimization (MTBO) in several in silico case studies by leveraging
reaction data collected from historical optimization campaigns to accelerate the
optimization of new reactions. This methodology was then translated to real-
world, medicinal chemistry applications in the yield optimization of several
pharmaceutical intermediates using an autonomous flow-based reactor platform.
The use of the MTBO algorithm was shown to be successful in determining
optimal conditions of unseen experimental C−H activation reactions with differing substrates, demonstrating an efficient
optimization strategy with large potential cost reductions when compared to industry-standard process optimization techniques. Our
findings highlight the effectiveness of the methodology as an enabling tool in medicinal chemistry workflows, representing a step-
change in the utilization of data and machine learning with the goal of accelerated reaction optimization.

■ INTRODUCTION
In recent years, there has been an increased interest in the use
of automated, self-optimizing continuous flow platforms for the
optimization of chemical processes.1−5 These platforms use
automated reactors and machine-learning algorithms to learn
from previous experiments, and thereby choose future
experiments that ultimately maximize yield and/or other
process objectives. The use of self-optimizing platforms has
arisen from the desire for faster reaction optimization,
improved process sustainability, and cheaper overall process
development.6−9 The use of these platforms aims to enhance
the capabilities of the researcher by removing the need for
repetitive and labor-intensive experimentation, allowing them
to focus on more challenging tasks. By leveraging algorithms,
the platforms utilize only minimal reaction material but gain
the most process information possible, making their deploy-
ment in fine chemical and pharmaceutical industries very
attractive.10,11

Recent work has shown that Bayesian optimization is a
particularly powerful tool for self-optimization applica-
tions.12−14 However, in all previous studies, each optimization
begins with no a priori information about the chemical
landscape for the reaction of interest. This protocol therefore
requires initial experimental iterations whereby the algorithm is
learning about the experimental design space, without any

prior information on where the optimal reaction conditions
may be. This initial exploration can be expensive in terms of
both cost and time, particularly when there may already be
data on the broad chemical transformation of interest from
previous optimization campaigns. This also opens the
methodology to some uncertainty over which initial design
strategy to use, such as forms of factorial design or Latin
Hypercube sampling (LHS), which will affect the overall
experimental budget. General well-performing reaction con-
ditions can also be identified for particular reaction classes, as
highlighted in recent work by Angello et al.,15 but do not give
optimal conditions for specific transformations and cannot
account for important parameters such as specific reactor
differences, solubility, reaction selectivity, differences in
substrate functionality, or further adjacent objectives (E-factor,
purification, downstream processing, etc.). The use of
optimization strategies for specific substrates in specific
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instances is therefore still important for determining optimal
yields (or other process outputs).
For many medicinal chemistry applications, such as in

developing chemistries for the synthesis of potential drug
candidates, the use of efficient optimization techniques is
paramount due to the minimal quantity and increased
preciousness of intermediate reaction materials.16,17 This is a
particular problem in fragment-based drug discovery
(FBDD),18,19 as challenging transformations are often required
on highly functionalized molecules�including difficult C−C
forming reactions utilizing precise C−H activations which
ideally must be executable in the presence of polar groups that
are required for binding to the target protein.20 The excessive
material consumption when utilizing existing algorithms may
also be a reason that medicinal chemists are less attracted to
these cutting-edge optimization techniques than process
chemists. Our hypothesis is that optimization strategies that
can utilize pre-existing chemical knowledge could mitigate
unnecessary material use, accelerate process development, and
present the potential for broader applicability in new synthetic
chemistry methods.
This work shows the first real-world examples of leveraging

previous reaction optimization data for unseen chemical
transformations using multitask Bayesian optimization
(MTBO), with our prior work on MTBO for chemistry only
showcasing its use in a simulated setting.21 The framework of

MTBO, first introduced by Swerksy et al.,22 replaces the
standard probabilistic model in Bayesian optimization with a
multitask model. As these multitask models can be trained on
data from related tasks, we can therefore utilize data from
previously conducted similar reactions�both from the
laboratory and from the literature. In this work, we first
explore and benchmark the use of MTBO in simulated studies,
then exploit the methodology to optimize several pharmaceuti-
cally relevant C−H activation reactions using an autonomous
flow reactor platform. These experimental case studies were
chosen to highlight the effectiveness of MTBO in a medicinal
chemistry, particularly FBDD, context through efficient
material usage. There are many reports of similar automated
workflows in the recent literature where a self-optimization
protocol is utilized.23,24 Our reactor platform is equipped with
a liquid handling robot and can optimize both continuous
variables (residence time, temperature, etc.) and categorical
variables (solvent, ligand, etc.). This ability is seldom reported
in the literature (with some notable examples from several
research groups1,25−27), likely due to engineering and equip-
ment challenges, but is very important in determining all
relevant parameters that influence reaction outcomes. The
MTBO algorithm utilized is integrated into the open-source
reaction optimization package Summit28 and represents a
powerful data-driven optimization technique that can utilize

Figure 1. Schematic description of multitask Bayesian optimization to the context of reaction optimization. (a) Bayesian optimization consists of a
probabilistic model (typically a Gaussian process) that predicts experiment outputs (e.g., yield) given experiment conditions; an acquisition
function (AF) that predicts the value of potential new experiments; and an optimization algorithm (opt). (b) Multitask Bayesian optimization
replaces the Gaussian process with a multitask Gaussian process trained simultaneously on an auxiliary task. In our case, this auxiliary task is a
similar reaction to the one being optimized, utilizing previous experimental results. (c) When the auxiliary task for a multitask Gaussian process is
similar to the main optimization task, predictions on the main task are improved significantly. (d) When the auxiliary task for a multitask Gaussian
process is divergent to the main optimization task, predictions on the main task are similar to what is observed for the baseline single-task Gaussian
process.
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known reaction data and ultimately lead to savings in material,
time, and overall cost.

■ RESULTS AND DISCUSSION
Bayesian Optimization to Multi-Task Bayesian Opti-

mization. As shown in Figure 1a, Bayesian optimization (BO)
relies on three key components: a probabilistic model, an
acquisition function, and an optimization algorithm.29 The
probabilistic model is trained using experimental data and acts
as a surrogate or “simulation” of the real chemical reaction.
Given this probabilistic model, the acquisition function
estimates the values of different potential experimental reaction
conditions. The optimization algorithm is then used to find the

set of experimental conditions that maximizes the acquisition
function, and these experimental conditions are hence
suggested as the next real experiment to run. The combination
of the probabilistic model and the acquisition function enables
exploitation of known high performance areas and exploration
of new chemical space. By iteratively executing the suggested
experimental conditions, retraining the model and optimizing
the acquisition function, the BO protocol progressively
identifies the best reaction conditions for the output of interest.
As shown in Figure 1b, MTBO changes the probabilistic

model in BO. Typically, a Gaussian process (GP) is used as the
probabilistic model in BO due to the general applicability and
efficiency of GPs in the small data regime.30 MTBO replaces a
GP with a multitask GP that can learn the correlations between

Scheme 1. Reactions of Interest for the Suzuki−Miyaura Coupling In Silico Case Studiesa

aThe datasets for training the model Suzuki B1 was taken from Baumgartner et al.31 and for Suzuki R1-R4 from Reizman et al.32 In each of these
studies, the continuous and categorical variables (with the bounds shown) were optimized for reaction yield.
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different tasks to enable better predictions. In our case, the
tasks are chemical transformations from the same reaction class
with varying substrates. A formal definition of GPs and
multitask GPs is in the Methods section.
As a simple illustration of the benefits of multitask GPs, we

created example functions with one input and one output, then
trained both a GP and multitask GP on only three data points.
In the multitask GP case, we also generated 25 data points
from an auxiliary task. As shown in Figure 1c, when the main
and the auxiliary tasks are similar, the predictions from the
multitask GP (shown as samples from the posterior of the GP)
more accurately represent the underlying function than the
predictions from the single-task GP. The multitask GP
leverages covariance between the data in the two tasks to
improve predictions on the main task, even with limited data
for the main task�this is shown formally in the Methods
section. As shown in Figure 1d, when the main and the
auxiliary tasks are divergent, predictions from the single-task
and multitask GP are highly variable. However, this variability
in the multitask GP is still useful because the BO algorithm will
explore to better capture the underlying distribution of the
main task.
In Silico Case Studies: Suzuki−Miyaura Couplings.

We first executed in silicoMTBO studies using model chemical
reactions as benchmarks. These models were generated using
neural networks trained on literature experimental data that
predict reaction yield;28 more detail on these models can be
found in the Methods section. The model “Suzuki B1” was

trained using Suzuki cross-coupling data from Baumgartner et
al.,31 while the models “Suzuki R1−4” were trained using data
from Reizman et al.32�these specific transformations and the
variables that affect these models are shown in Scheme 1.
Four specific case studies are highlighted in Figure 2, each

where the main task is Suzuki B1 and the auxiliary training task
is one data set from each of Suzuki R1−4. In each case study, a
conventional single-task Bayesian optimization (STBO)
benchmark for the Suzuki B1 reaction serves as a comparison.
For each MTBO study, 96 data points from the auxiliary task
were utilized. The average best yield for each algorithm is
shown with a 95% confidence interval over 20 repeated runs.
When leveraging Suzuki R1 as an auxiliary training task,

MTBO initially suggests optimal conditions from the training
task with P1-L4 (XantPhos). However, these give very low
yields (<25%), which leads to further exploration of the
chemical space, resulting in optimal conditions with P1-L1
(XPhos) and a higher yield than STBO. The additional
strength shown by MTBO in this case study is the greater
speed in obtaining optimal results.
In the second case study, when the auxiliary task is Suzuki

R2, MTBO appears to perform poorly�this is likely due to the
low reactivity observed in Suzuki R2 and a noisy simulation
benchmark (see Figure S8). In this case, the best conditions
from the training task also do not perform well on the main
task, but the yield is moderate enough that it makes further
exploration of the chemical space initially difficult in obtaining
a better response. This suggests that MTBO may bias the

Figure 2. Comparison of the performance of single-task Bayesian optimization (STBO) and multitask Bayesian optimization (MTBO) of Suzuki
B1 with Suzuki R1-R4 as auxiliary tasks. The average best yield with a 95% confidence interval over 20 repeats is shown. The label above each plot
refers to the auxiliary (Aux.) task based on the names in Scheme 1, where Suzuki is abbreviated to S.

Figure 3. Comparison of the performance of single-task Bayesian Optimization (STBO) and multitask Bayesian Optimization (MTBO) of Suzuki
B1 and all of Suzuki R1-R4 as auxiliary tasks. (a) The average best yield with a 95% confidence interval over 20 repeats is shown. (b) Frequency of
selection of each catalyst in Scheme 1 by STBO and MTBO.
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training data in these circumstances when higher yields are
possible but not expected, when given very low-yielding
auxiliary tasks.
In the case studies where the auxiliary tasks were Suzuki

R3−4, the reactivity of the substrates was much more similar in
both the main and the training tasks, leading to similar optimal
conditions being found. This means that MTBO achieved
better, and much faster, results than STBO in these cases.
Performance of MTBO can be greatly improved using

multiple auxiliary tasks. As shown in Figure 3a, when Suzuki
B1 is optimized with Suzuki R1-R4 as auxiliary tasks, the
optimal conditions are always found by MTBO in fewer than
five experiments. Both P1-L1 and P2-L1 are considered
optimal for this reaction,31 and MTBO selects these two
catalysts in over 80% of experiments during 20 repeats, when
compared to <50% frequency for STBO�this is highlighted in
Figure 3b. As MTBO utilizes optimal regions of chemical space
that have been identified in previous tasks with similar
reactivity, this allows the algorithm to identify new (and
better performing) optimal reaction conditions faster.
These simulated case studies suggest that the use of MTBO

is often beneficial, particularly when not mapping the predicted
reactivity differences of the main and auxiliary substrates a
priori. Initial guesses (optimization starting points) are
typically better than random initialization because of previous
reaction information, and the rate of “best yield” improvement
is also greater. In the best-case scenario, the reactivity of the
new substrate is similar to those of previous data sets and
results in a greater yield much faster than standard STBO. In
the worst-case scenario, MTBO can fail with one noisy
auxiliary case, but we found that using multiple auxiliary tasks
helps to mitigate these issues. With these findings, we were
confident that MTBO would be effective in real-world case
studies where we have experimental data sets from previous
optimization campaigns. Further in silico case studies for other
reaction types, namely, Buchwald−Hartwig cross couplings,
were also conducted and showed similarly promising results;
these studies can be found in the Supporting Information.
Experimental Case Studies: C−H Activation. The

reaction class that we targeted for our experimental MTBO
study was the palladium-catalyzed C−H activation reaction,
reported by Hennessy and Buchwald,33 yielding pharmaceuti-
cally relevant oxindoles (16) from their corresponding
chloroacetanilides (15), as shown in Scheme 2. Each case
study is shown in Table 1 and is highlighted if it is forming a
potential bioactive fragment or active pharmaceutical ingre-
dient (API) intermediate. The rationale behind these studies is
2-fold: first, these oxindoles are closely related to many known
bioactive molecules and hence medicinal chemistry projects,

and second, when considering optimal growth vectors for
bioactive molecular fragments to grow into more potent drug
candidates (such as in FBDD),18 the most beneficial
transformations are often exploiting C−H bonds on the
fragment to form new C−C bonds.20 Therefore, using MTBO,
we aimed to rapidly optimize several transformations using
different starting materials with unique functionalities to yield
structurally diverse oxindole products by forming valuable sp2-
sp3 C−C bonds. Then, for future optimization campaigns
requiring oxindole syntheses, this model can be employed to
expediate reaction optimization and process development for
new substrates.
For all experimental work conducted during this study, a

self-optimizing flow reactor platform was utilized with a
control interface previously disclosed by our group.34 This
platform employs an autonomous optimization workflow,
where all experiments are conducted and analyzed without
human intervention. All initial training experiments are
planned using LHS; then the results from these automated
experiments (the yield of the product) are exported using
online HPLC sampling. This LHS step is only present when
there is no previous experimental information for MTBO to
learn from. Based on these reaction data, and any previously
conducted auxiliary tasks, the MTBO algorithm then
determines the most beneficial reaction conditions to execute
in order to maximize product yield. The actual product yield
obtained from this reaction is then communicated back to the
algorithm, where the experimental feedback loop is closed, as
the algorithm suggests conditions for the next optimization
iteration (as shown in in Figure 4). Furthermore, only minimal
amounts of reaction material are consumed in each experiment
by using reaction slugs;35 this is an important miniaturization
consideration relevant to medicinal chemistry settings, but
could potentially be miniaturized further. The minimum slug
length is determined on the basis of dispersion in laminar flow
such that sampling from a slug is consistent between slugs in
repeated tests�the volume of the slugs used in these studies is
4−6 mL. This slug volume is determined by the Vaportec Flow
Commander software and varies depending on the necessary
solvent dilution. The aim of this experimental methodology is
to accelerate the optimization timeline by requiring fewer
experiments and less reaction material consumption. More
information on the reactor setup can be found in the Methods
section.
For each case study, we optimized the continuous

parameters: residence time (5−60 min), reaction temperature
(50−150 °C), and catalyst concentration (1−10 mol %), and
the categorical parameters, solvent (toluene, DMA, acetoni-
trile, DMSO, NMP) and ligand (JohnPhos, SPhos, XPhos,
DPEPhos), for the maximum product yield output. While it is
possible to represent these categorical variables in numerous
ways, the simplest representation (one-hot encoding) proved
sufficient to learn from.36,37 The first case study, as shown in
Scheme 3, utilizes only single-task Bayesian optimization
(STBO) as there is no previous data to leverage model
understanding for MTBO. The starting material, 17, reacts to
form the molecular fragment (with potential growth vectors for
further functionalization), 18. The optimization was initialized
using 16 (24) training experiments before the algorithm began
to suggest experimental conditions.
After the initial training experiments, the feedback loop (as

described in the Methods section) was implemented and 7
further experiments were conducted, finding the optimal

Scheme 2. Reaction Class of Interest for the MTBO Study,
Where the Substituted Chloroacetanilide, 15, Reacts to
Form the Corresponding Oxindole, 16a

aPd(OAc)2 and NEt3 remain constant in each experiment, but the
ligand, solvent, catalyst concentration, residence time, and reaction
temperature are optimized for each case study.
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reaction parameters of: NMP, XPhos, 53 min residence time,
89 °C reactor temperature with 9 mol % catalyst, yielding the
product, 18, in 74.6% yield. These results are interesting,

because with many reported optimization campaigns the
optimal conditions are often the most forcing (highest
temperature, highest residence time, highest catalyst concen-
tration).3,5,38 However, in this case, the algorithm determines
that a moderate reactor temperature is important for a higher
yield. This is because the starting material reacts to form other
products, leading to a decrease in the desired product yield
under more forcing conditions. Furthermore, the optimized
conditions reported in the original publication describing these
types of reactions feature toluene and JohnPhos,33 which are
different from our optimized parameters for this reaction.
However, these reported conditions require reaction times of
2.5−6 h which are difficult to replicate in flow, which could be
the reason the same categorical parameters were not

Table 1. Each Experimental Case Study Explored in This Work, Including the Starting Material Used, The Product Formed
and the API Structure That the Product Is Linked toa

aThese reactions, and references to their known API structure, are highlighted in Schemes 3−6.

Figure 4. Schematic diagram of the experimental setup and protocol we used for the MTBO self-optimization studies.

Scheme 3. First Case Study Explored Using STBO, Where
the Substituted Chloroacetanilide, 17, Reacts to Form the
Oxindole, 18a

aThis product is previously unreported via this C−H activation
methodology.
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determined to be optimal in our 5−60 min residence time
optimization space. A plot of the experimental data, both
training and optimization experiments, and the yields achieved
are shown in Figure 5. These 23 experiments required to

achieve optimal conditions are also significantly fewer in
number than what would be required for current industrial-
standard optimization procedures, such as design of experi-
ments (DoE), which would require >750 experiments of
efficient design space exploring data points. All reaction data
for each case study is reported in full in the Supporting
Information, as well as efficiency comparisons with industrial-
standard optimization procedures.
Utilizing the experimental data set from this optimization

campaign, a different substrate was then explored in the second
case study. The starting material, 19, reacts to form a key
intermediate for a serine palmitoyl transferase (SPT) inhibitor,
20, as shown in Scheme 4.39 As this is a similar transformation,

the use of MTBO should hasten optimization and produce
optimal reaction conditions much more quickly. The
optimization is initiated, and the first suggested experiment
deviates only slightly from the previously obtained best
parameters, while still utilizing NMP and XPhos as the
categorical variables but produces a poor yield of the product
(14.8%). As this yield is much lower than what the underlying
multitask model had predicted, the corresponding weightings
to select this area of parameter space for this case study are
greatly reduced and thereby the likelihood of exploring this
area again during this campaign is reduced. The model then
balances the exploration of new parameter space with the
exploitation of known favorable conditions, particularly from

the previous case study, to iterate through further experiments.
The optimal reaction conditions were found in 11 experi-
ments: acetonitrile, JohnPhos, 28 min residence time, 127 °C
reactor temperature with 5 mol % catalyst, yielding the
product, 20, in 84.9% yield. It is important to note that this
area of parameter space is far from the identified optimum in
the previous case study, showing the adaptability of MTBO to
similar optimization tasks without simply exploiting near the
previously obtained optimal conditions. To identify these
process parameters, this entire workflow consumed only 980
mg of the starting material, 19, and has a much greater
throughput (requiring less catalyst loading, cheaper materials,
and noncomplex solvent mixtures) than other reports of this
chemistry that yield only 76% of the desired product.40 This
experimental data is displayed at the end of this section in
Figure 5 (red dotted line).
With two completed optimization campaigns, these data sets

could then be leveraged for the optimization of process
parameters for a third case study. This case study features the
transformation of 21 into the antibacterial intermediate, 22,
necessary for the synthesis of the oxazolidinone antibiotic
Linezolid,41 as shown in Scheme 4.

The initial experiment in MTBO used similar conditions to
the optimal conditions from the second case study, with
acetonitrile and JohnPhos as categorical variables with 18 min
residence time with 5 mol % catalyst at 139 °C. This produced
a good yield of 71% but was subsequently improved by using
NMP and XPhos, as the MTBO algorithm discovered from the
first case study is also a parameter space region of high interest,
immediately improving the yield to 83%. Upon further
adjustment of the continuous variables, a yield of 98% was
achieved in only five total experiments. This is the first
optimization campaign where one ortho site was blocked for
cyclization, but this variation is seemingly not enough to divert
chemical reactivity from what the MTBO algorithm expects,
thereby proving the task’s applicability to these divergent
structures. The entire workflow for optimizing this process
used only 250 mg of the starting material, 21, which also
resulted in a greater yield, throughput, and greener process
than other reports in the literature (86% yield in batch,
overnight using fluorinated solvents).42 This experimental data
is displayed at the end of this section in Figure 5 (orange solid
line).
The next experimental case study features the trans-

formation of the starting material, 23, into the NK1 receptor
antagonist intermediate, 24, as shown in Scheme 6.43 In this
optimization campaign, the MTBO algorithm leveraged data
from the previous three case studies; yet this is the first
substrate that forms a 6-membered cyclized ring instead of the

Figure 5. Plot of yield of product, 18, against experimental number in
the STBO campaign, where purple ■ = training experiments and
green ● = optimization experiments.

Scheme 4. Second Case Study Explored Using MTBO,
Where the Substituted Chloroacetanilide, 19, Reacts to
Form the Key Intermediate En Route to a Serine Palmitoyl
Transferase (SPT) Inhibitor, 20a

aThis product is previously unreported via this C−H activation
methodology.

Scheme 5. Third Case Study Explored Using MTBO, Where
the Substituted Chloroacetanilide, 21, Reacts to Form the
Key Intermediate, 22, for the Antibiotic Linezolida

aThis case study utilized data from the previous two optimization
campaigns. This product is previously unreported via this C−H
activation methodology.
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typical 5-membered ring in the previous oxindoles. Initial
experiments in previously identified well-performing parameter
space produced low yields, but the algorithm could thereby
determine that further exploration of the parameter space was
important as the substrate showed more variability from the
previous tasks.
Through further iterations, the categorical variables were

exploited: DMSO and DPEPhos, with the most forcing
continuous parameters: 60 min residence time with 10 mol
% catalyst loading at 150 °C. These were determined to be the
optimal conditions as found by the self-optimization workflow,
giving the product in 82% yield in 10 experiments using only
450 mg of the starting material, 23. Despite this functional
change, the algorithm was still able to determine the optimal
conditions utilizing previous data and quickly found that
although a similar reaction task was present, further exploration
of the parameter space was necessary. This further shows the
adaptability of the MTBO approach to wider substrate scopes
with different functionalities. This experimental data is
displayed at the end of this section in Figure 5 (green dashed
line).
A final case study was then attempted using this workflow,

which is the same oxindole-forming C−H activation reaction
conducted in every other reaction, but this time featured an
electron-rich aromatic ring rather than an electron-deficient
ring. The substrate of interest, N-methyl-2-methylchloroaceta-
nilide, also had one ortho position blocked for cyclization. This
study was conducted to further test the limits and the
adaptability of the MTBO algorithm, but even with the most
forcing conditions possible using our workflow we could only
achieve a 29% product yield. This was also true when using the
reported categorical conditions for this substrate in the initial
publication33�however, the differences between the reactor
systems may have negatively affected the yield outcome, i.e., 6
hour reaction times cannot be achieved easily in flow. Given
these observations, we concluded that the reactivity of this
species is sufficiently different to previous case studies and
therefore cannot be considered as a similar task to the other
optimization campaigns. Therefore, for the optimization of
these substrates (or any substrates sufficiently different to the
tasks of interest) further MTBO campaigns must be conducted
for the models to encapsulate these differences to efficiently
optimize any case study of interest. With the addition of
computational characterization of each substrate (for example,
using DFT or reaction similarity scoring), all substrates of
interest can be categorized a priori into their respective task
bins, avoiding the necessity for additional experimentation. It

may also be appropriate in such cases that promising upper
bounds leading to full conversion of starting materials are
identified, potentially avoiding wasteful experiments in
inaccurately defined parameter spaces. Further experimental
information on this case study can be found in the Supporting
Information.
For each of these consecutive C−H activation case studies,

iteratively fewer experiments were (generally) necessary to
achieve an optimal set of reaction conditions for the highest
process yields�this is illustrated in Figure 6. This is because

there was an increasing data density that detailed optimal areas
of parameter space for similar tasks (reactions of similar
substrates), allowing for a progressively more efficient
optimization workflow. In each case study, only minimal
amounts (for our specific reaction system) of starting materials
were consumed to find optimal reaction conditions, which is
very important in early stage medicinal chemistry development
applications when preservation of precious starting materials
and speed of optimization are paramount. Other common
optimization strategies, such as traditional one-factor at a time
(OFAT) approaches, may provide modest process improve-
ments in these scenarios but have been shown repeatedly to
underperform when compared with statistically based
techniques.1,44,45 This methodology has therefore proven to
be effective in real-world pharmaceutical applications for
material and cost efficiency, with the bonus of full automation
that allows scientists to use their human resources to focus on
other areas of chemical development. Although these
experimental studies focused on C−C bond formation by
targeting C−H activation, these techniques can be utilized for
other transformations to ultimately accelerate optimization.

■ CONCLUSIONS
The studies performed in this work, both in silico and in real-
world chemical applications, represent the first use of data sets
from similar reactions to expediate current optimization
campaigns with multitask Bayesian optimization. This method-
ology drastically shortens optimization timelines for pharma-
ceutically relevant transformations, whereas other traditional
process optimization techniques (i.e., design of experiments,
kinetics studies) would require a significantly higher invest-

Scheme 6. Another Case Study Explored Using MTBO,
Where the Substituted Chloroacetanilide, 23, Reacts to
Form the Pharmaceutical Intermediate, 24, for the
Synthesis of an NK1 Receptor Antagonist. This case study
utilized data from each of the previous optimization
campaigns. This product is Previously Unreported via This
C−H Activation Methodology

Figure 6. Plot of best yield of the products in each case study against
the optimization experimental number in each campaign. The initial
training experiments for case study 1 are not plotted. The color and
dash type of the graph correspond to each product molecule: case
study 1 (blue dash-dot), case study 2 (red dot), case study 3 (orange
solid), and case study 4 (green dash).
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ment in starting materials, time, and cost�principally because
of the large, nonlinear design space introduced alongside a high
number of categorical variables. This would likely make their
optimization infeasible in medicinal fragment-to-lead/FBDD
workflows and early stage process development, unless using
intuition-based optimization techniques (such as OFAT) that
are unlikely to obtain optimal results.1 By introducing more
miniaturization technology, including smaller reactors/slugs
and plate-based screening, there is the added opportunity to
reduce material consumption even further using these
automated platforms.
With the increasing density of chemical reaction data, both

in the literature and in private data storage, there is a wealth of
information that can be leveraged for building task-specific
models to further increase the efficiency of future reaction
optimizations. When using these multitask learning ap-
proaches, it is possible to generate sets of models for specific
reaction classes (e.g., Buchwald−Hartwig, Suzuki, etc.) and
subsets of those models (electron-rich, sterically hindered. etc.)
to rapidly optimize any transformation likely to be
encountered. This is a particularly powerful technique in
cases where starting materials are sparse and the reaction is
poorly understood, yet suitable quantities of product are
required for further molecular design, functionalization, and
biological testing. Similarly, this importance is echoed in early
process development when scale-up of a novel synthetic
intermediate is required from the milligram scale to multigram
or kilogram scale. The primary challenge when using multitask
Bayesian optimization is its tendency to bias toward the best
conditions found in a single auxiliary task, as shown in our in
silico studies. However, our results demonstrate that additional
useful auxiliary tasks can reduce the impact of a noisy, low-
yielding auxiliary task. Future work could use a more
exploratory acquisition function in combination with the
multitask model to strike the right balance between biasing
toward the auxiliary task data and exploring untested
conditions.
The multitask Bayesian optimization algorithm used in this

study is open-source and is released as a package within the
Summit framework previously reported by our group.28 This
step toward utilizing machine learning and previous reaction
data for future optimization campaigns will ultimately result in
faster and more efficient optimizations, thereby serving as a
broadly applicable enabling tool with relevance to medicinal
chemistry and FBDD settings, where industry-standard process
optimization techniques are impractical or even impossible to
implement.

■ METHODS
Flow Reactor Platform. The reactor platform consists of

two Vaportec R2 modules for controlling flow rates, a Vaportec
R4 reactor module for controlling reactor temperature, a
Gilson GX-271 liquid handler for dispensing and collecting
reaction material, and LC-MS analytical equipment (Shimad-
zu/Waters) for reaction outcome determination. The Vaportec
R2 modules are connected using 30 cm sections of 1 mm ID
stainless steel tubing and T-pieces, entering a Vaportec
stainless steel reactor (10 mL volume), and exiting via a 50-
bar back pressure regulator and a 80 cm section of 1 mm ID
stainless steel tubing to a switching valve. For each reaction,
with the experimental conditions determined through LHS or
algorithmically, the liquid handler dispenses 2 mL slugs of the
starting material (in this case, the chloroacetanilide 15)

predissolved in the selected solvent into the sample loop for
pump A�this solution also contains biphenyl as an internal
standard. The selected catalyst/ligand combination in the same
solvent is then loaded into the sample loop for pump B, and
the solvent of interest is loaded into pump C for dilution. The
reaction is conducted with a constant 0.09 M reactor
concentration, yielding the corresponding product (in this
case, the oxindole 16), which is thereby analyzed utilizing a 4-
way switching valve46 for online LC-MS. Using this method-
ology, experiments can be run using only minimal amounts of
reaction material for each experiment as we are utilizing
reaction slugs. This experimental workflow is illustrated in
Figure 4.
Gaussian Processes. For single-task Bayesian optimiza-

tion, we leverage a Gaussian process (GP) as the probabilistic
model in BO due to its excellent performance in the limit of
small of data.30 A GP is a stochastic process characterized by a
mean μθ(x) and covariance function kθ (x,x′). The covariance
function is often called a kernel, which is the term we will use
henceforth.

=f x x k x x( ) ( ( ), ( , ))

where θ are referred to as hyperparameters of the kernel. Given
a finite set of N inputs = { ··· | }X x x x x, , , N i

m
1 2 that

correspond with outputs = { ··· | }y y y y y, , , N i1 2 the GP is
a multivariate Gaussian distribution:

X X X Xf k( ) ( ( ), ( , ))

The mean function and kernel act as a prior on the GP.
μθ(x) is usually set to zero because the kernel kθ (x,x′) fully
expresses any arbitrary function. In this work, we use the
Mateŕn 5/2 kernel, with hyperparameters θ = {σ, L}. is
the scaling hyperparameter, and L m is a length scale that
indicates the significance of each input feature.
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where d is the Euclidean distance weighted by the length scale:
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Inference on the GP is done by calculating the posterior of
the GP. The posterior of the GP is also a Gaussian
distribution:

X X Xf ( ) ( ( ), ( ))

= X X X yx k x k( ) ( , ) ( , ) 1

= X X X Xk x x k x x k x k k x( , ) ( , ) ( , ) ( , ) ( , )1

where σ̃(x) are the diagonals of the covariance matrix
calculated using k̃θ(x,x′). To train the GP, the log likelihood
is maximized, which is the probability that the model predicts
the training outputs given the inputs and hyperparameters. The
log likelihood avoids overfitting by trading off accuracy of fit to
the training data and complexity of the model. The optimal
hyperparameters θ* are found by maximizing the log likelihood
of the outputs y given the inputs X and the hyperparameters
θ47 (where Σθ = k̃θ (X,X′)):
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Multitask Gaussian Processes. Multitask GPs can be
used on multioutput functions f:χ → RT, where each of the T
outputs can be seen as solutions to unique regression tasks.
The key idea is to use a kernel that can extend to multiple
tasks. As detailed in the work by Bonilla et al.,48 we use the
intrinsic model of coregionalization, which transforms a latent
function to yield the outputs:

=k x x k k x x( , ) ( , )tICM

The task kernel kθ
t is a T × T matrix of trainable parameters

where T is the number of tasks. These parameters represent
the intertask correlation.
Bayesian Optimization. Bayesian optimization aims to

solve the optimization problem:

y xmax ( )x

where y(x) is the underlying function that we observe via
experiments. We use the expected improvement (EI)
acquisition function for in silico experiments49 or q-noisy
expected improvement (qNEI) acquisition function for flow
chemistry experiments.50

In BO with EI as an acquisition function, the aim is to
choose the point that is expected to improve the most upon
the existing best observed point y* ≥ y (xi)∀i ∈ (1, ···, t) where
t is the number of observations thus far. Therefore, we create
an improvement function I(x) describing the improvement of
the posterior of the GP over the best observed point. If there is
no improvement, I(x) = 0.

= *XI x f y( ) max( ( ) , 0)

After several manipulations, a closed form of EI can be
found:
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where * =
*

Z
y

x

(x)

( )
.

EI suffers from issues with noisy experiments due to its
reliance on the best observed point y*, which is a biased
estimate, especially in the low data regime. qNEI aims to
overcome this issue by using the maximum of posterior of the
GP over the observed inputs:50

= [ ]+xqNEI( ) (max max )obs

where ξobs ∼ f(̃x) and ξobs ∼ f(̃X) are samples from the
posterior of the GP. We use BOtorch for implementations of
GPs and Bayesian optimization.50 For the experimental C−H
activation case studies shown in Schemes 4−6, the qNEI
acquisition function was used, while EI was used in the
simulation case studies due to computational limitations.
Benchmarks. Prior to real experimentation, we wanted to

understand the performance of MTBO in simulated studies.
We examined two literature reports that contain experimental
results from Suzuki−Miyaura coupling reactions31,32 and one
report with results from a Buchwald−Hartwig cross-coupling51

(demonstrated in the Supporting Information), building a
predictive model for the reaction yield to behave as the
ground-truth for simulated optimization studies. Buchwald−
Hartwig and Suzuki−Miyaura couplings are ubiquitous in the
pharmaceutical and fine chemicals industries as they allow
rapid construction of aromatic scaffolds through reactions with
few impurities.52 We therefore chose these reaction classes
because of their high value and applicability to real-world
scenarios. More details on benchmark training can be found in
the Supporting Information.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acscentsci.3c00050.

Benchmarking of algorithmic procedures using literature
data, all experimental data from the optimization
campaigns, and a safety statement (PDF)
Video 1: Experimental setup (MP4)

Accession Codes
The code for this project can be found at https://github.com/
sustainable-processes/multitask.
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