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Summary
Learning-based decision-making has the potential to enable generalizable Autonomous

Driving (AD) policies, reducing the engineering overhead of rule-based approaches. Imitation
Learning (IL) remains the dominant paradigm, benefiting from large-scale human demonstration
datasets, but it suffers from inherent limitations such as distribution shift and imitation gaps.
Reinforcement Learning (RL) presents a promising alternative, yet its adoption in AD remains
limited due to the lack of standardized and efficient research frameworks. To this end, we
introduce V-Max, an open research framework providing all the necessary tools to make RL
practical for AD. V-Max is built on Waymax (Gulino et al., 2023), a hardware-accelerated AD
simulator designed for large-scale experimentation. We extend it using ScenarioNet’s (Li et al.,
2023b) approach, enabling the fast simulation of diverse AD datasets.

Contribution(s)
1. We introduce V-Max, an open research framework to make RL practical for mid-to-end

autonomous driving.
Context: Waymax (Gulino et al., 2023) is an accelerated, data-driven simulator. Hardware-
acceleration makes it a compelling simulator to train RL policies, however it requires
re-implementing all the elements of the RL pipeline. V-Max does this work, and provides
a modular pipeline, including observation functions, encoders, rewards, and algorithms.
MetaDrive (Li et al., 2023a) also propose tools to apply RL to the mid-to-end task, but it
does not support hardware-acceleration.

2. V-Max enables the simulation of diverse datasets, it also implements various evaluation
metrics and enable adversarial evaluation.
Context: Besides the RL training pipeline, these features aim to make V-Max a standard
benchmark for mid-to-end AD. ScenarioNet (Li et al., 2023b) proposes a unified data format
for AD, we adapt this approach to make datasets compatible with Waymax, enabling notably
for the first time the accelerated simulation of nuPlan (Caesar et al., 2021). We complete the
evaluation metrics proposed in Waymax with the ones of the nuPlan benchmark, to provide
an unified evaluation score. We include ReGentS (Yin et al., 2024), a gradient-based method
that generates adversarial agents, to test the robustness of driving policies.

3. Using V-Max, we conduct an experimental study of design choices in RL for AD. We end up
producing highly performing RL agents. We also implement IL and rule-based baselines to
show V-Max’s versatility.
Context: We believe to be the first to perform a study of this kind, and that our findings
can accelerate RL research on V-Max. We produce a Soft Actor-Critic (SAC, Haarnoja et
al. (2018)) agent that solves 97% of the scenarios in the non-reactive evaluation setting,
demonstrating that RL can achieve strong performance in this task. However, since there
is still no unified evaluation system for the task, we do not claim to be SOTA. In our final
benchmark, RL dominates the other approaches, but we did not tune them as much, and did
not implement the SOTA of IL. The aim of the benchmark is to show that V-Max can be
used with all kind of approaches.

4. We publicly release V-Max and all the components to reproduce our experiments. We detail
in the supplementary materials all the hyperparameters needed to reproduce our results.
Context: None



V-Max: Making RL Practical for Autonomous Driving

V-Max: Making RL Practical for Autonomous Driving

Anonymous authors
Paper under double-blind review

Abstract

Learning-based decision-making has the potential to enable generalizable Autonomous1
Driving (AD) policies, reducing the engineering overhead of rule-based approaches.2
Imitation Learning (IL) remains the dominant paradigm, benefiting from large-scale3
human demonstration datasets, but it suffers from inherent limitations such as distribution4
shift and imitation gaps. Reinforcement Learning (RL) presents a promising alternative,5
yet its adoption in AD remains limited due to the lack of standardized and efficient6
research frameworks. To this end, we introduce V-Max, an open research framework7
providing all the necessary tools to make RL practical for AD. V-Max is built on8
Waymax (Gulino et al., 2023), a hardware-accelerated AD simulator designed for large-9
scale experimentation. We extend it using ScenarioNet’s (Li et al., 2023b) approach,10
enabling the fast simulation of diverse AD datasets. V-Max integrates a set of observation11
and reward functions, transformer-based encoders, and training pipelines. Additionally,12
it includes adversarial evaluation settings and an extensive set of evaluation metrics.13
Through a large-scale benchmark, we analyze how network architectures, observation14
functions, training data, and reward shaping impact RL performance.15
Code is available at: ... 116

1 Introduction17

Reinforcement Learning (RL, Sutton & Barto (2018)) has proven to be a powerful approach for18
controlling real-world systems, with milestones in dexterous robotic manipulation and industrial19
process control (Rajeswaran et al., 2018; Degrave et al., 2022). RL’s ability to learn adaptive policies20
through closed-loop interaction makes it an appealing framework for Autonomous Driving (AD,21
Kiran et al. (2022)), where decision-making agents must continuously respond to unseen scenarios22
and distribution shifts while maintaining high levels of robustness.23

However, applying RL to real-world tasks such as AD introduces significant challenges, particularly24
regarding sample efficiency and training environments. As a result, RL remains underused in25
AD research due to practical constraints. Imitation Learning (IL, Bansal et al. (2019)) is often26
favored instead, as it capitalizes on vast driving datasets collected by vehicle fleets and reduces27
decision-making to a supervised learning task. The absence of RL-compatible environments made RL28
unusable in the only public challenge for AD (Karnchanachari et al., 2024), which led the organizers29
to conclude that learning-based methods could not compete with simple rule-based baselines (Dauner30
et al., 2023).31

This gap has motivated recent efforts to improve the accessibility of RL research for AD. Notably,32
ScenarioNet provides an open-source framework for standardizing and replaying AD datasets in33
MetaDrive, an RL-compatible simulator that facilitates research on RL generalization in driving34
(Li et al., 2023a;b). In parallel, Gulino et al. (2023) released Waymax, a hardware-accelerated35
driving simulator capable of running large-scale simulations at unprecedented speeds, making RL’s36
sample inefficiency less of a limiting factor for experimentation. Waymax was developed as a37

1Code will be published on GitHub after the double-blind reviewing process, a zipped folder is joined to the submission.
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Figure 1: Overview of the V-Max framework. ScenarioMax standardizes multiple datasets into a
Waymax-compatible format. The simulation runs in Waymax (Gulino et al., 2023), which provides
the simulator state st. An observation ot is extracted and processed using a JAX-based neural encoder
(Bradbury et al., 2018) before being fed into an RL agent implemented with Brax (Freeman et al.,
2021). The RL agent selects an action at (acceleration, steering), which is executed in the simulator,
receiving a reward rt based on evaluation metrics. JAX enables to run multiple instances of this
process in parallel, on the same device.

high-speed simulation tool, but it lacks essential benchmarking capabilities for RL research, requiring38
practitioners to build full training pipelines from scratch.39

In this work, we introduce V-Max, a framework that extends Waymax with all the necessary tools40
for RL research in autonomous driving. V-Max provides a set of observation and reward functions,41
multiple transformer-based encoders, and a complete training pipeline for standard RL algorithms. All42
these elements are implemented using the JAX framework(Bradbury et al., 2018), enabling training43
and simulation to be performed within the same computation graph. Additionally, V-Max leverages44
ScenarioNet’s approach to enable the accelerated simulation of diverse driving datasets, whereas45
Waymax was originally limited to the Waymo Open Motion Dataset (WOMD, Ettinger et al. (2021)).46
With these features, V-Max aims to standardize RL experimentation for AD, making algorithm47
comparisons more reproducible and accelerating progress in learning-based decision-making.48

We enhance Waymax’s evaluation metrics by reimplementing nuPlan’s metrics (Karnchanachari et al.,49
2024) and introducing additional metrics, such as traffic light violations, for a more comprehensive50
assessment of policy performance. To further evaluate robustness, we integrate ReGentS (Yin et al.,51
2024), enabling evaluation against adversarial agents. We conduct a large-scale benchmark with these52
tools, systematically analyzing how observation functions, reward shaping, training data selection,53
network architectures, and learning algorithms impact performance and sample efficiency. These54
experiments demonstrate V-Max’s versatility, facilitating research and development on decision-55
making for AD.56

Our contributions are as follows:57

1. V-Max provides a fully integrated, JAX-based, RL training pipeline, including observation and58
reward functions, and transformer-based encoders inspired by motion forecasting.59

2. V-Max supports multi-dataset accelerated simulation by extending Waymax with ScenarioNet’s60
approach.61

3. V-Max integrates comprehensive evaluation tools, including the reimplementation of nuPlan’s62
driving quality metrics, and integration of ReGentS for adversarial evaluation.63

4. We perform a benchmark on the impact of network architectures, observation choices, reward64
shaping, and training data on RL performance in AD, resulting in a policy that succesfully65
completes 97.4% of the scenarios in WOMD.66
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2 Related Work67

2.1 Reinforcement Learning for Autonomous Driving68

There are two main formulations of the Autonomous Driving (AD) task in the literature. The first69
category consists of end-to-end approaches (Chen et al., 2024), which aim to learn vehicle controls70
directly from raw sensor data. Kendall et al. (2019) successfully applied End-to-End RL to lane-71
following in real-world settings, while Toromanoff et al. (2020) won the first CARLA (Dosovitskiy72
et al., 2017) challenge using Reinforcement Learning (RL) with a supervised pretraining. These73
works demonstrated RL’s potential in AD, particularly as a way to overcome the limitations of74
Imitation Learning (IL), such as distribution shift, causal confusion and imitation gap (Walsman75
et al., 2022). However, methods based solely on RL still fail to perform in the end-to-end setting,76
the main reason being that RL gradients are insufficient to train the large neural networks needed77
for perception (Chen et al., 2024). This issue is further compounded by the difficulty of creating78
realistic and fast simulators for the closed-loop training required for RL. Most works rely on the79
CARLA simulator, which allows procedurally generated scenarios to be played in the Unreal Engine80
(Dosovitskiy et al., 2017). While generative world models such as GAIA-1 (Hu et al., 2023) offer81
photorealistic closed-loop simulation, their computational cost remains a barrier to large-scale RL82
training.83

The parallel approach is to work at mid-level and decouple the decision-making problem from the84
real-world perception task. In this mid-to-end paradigm, agents process post-perception data, i.e.85
a structured high-level representation of the scene, and output vehicle controls. The release of86
large post-perception datasets like WOMD, nuScenes and Argoverse 2 (Caesar et al., 2020; Ettinger87
et al., 2021; Wilson et al., 2021) accelerated mid-to-end research, with a focus on the trajectory88
prediction sub-task. Closed-loop evaluation and training of mid-level agents was made possible with89
the appearance of data-driven simulators, that can replay scenarios from real-world driving while90
taking into account the agent’s actions. Research on mid-level decision-making mainly revolves91
around IL and methods to improve its robustness, such as data augmentation (Bansal et al., 2019),92
model-based generative adversarial IL (MGAIL) (Bronstein et al., 2022), policy gradients (Scheel93
et al., 2022), and curriculum learning (Bronstein et al., 2023). Notably, the nuPlan Challenge 202394
(Karnchanachari et al., 2024) remains the only public competition for the mid-to-end AD task, and its95
closed-loop challenge was won by PDM (Dauner et al., 2023), a rule-based approach that significantly96
outperformed all the other learning-based approaches, which were all variants of imitation learning.97

Lu et al. (2023) demonstrated that combining IL and RL with a simple reward signal can improve98
policy robustness in corner cases underrepresented in the training dataset. Similarly, Grislain et al.99
(2024) showed that incorporating an RL objective is needed to mitigate the imitation gap, which100
arises from the discrepancy between the observations of human experts and those of mid-to-end AD101
agents (e.g. sound, turn signals). Cusumano-Towner et al. (2025) showed that self-play can generate102
highly robust policies, surpassing all prior approaches on CARLA, nuPlan, and Waymax. Their work103
heavily relies on a proprietary high-speed simulator, highlighting how accelerated simulation can104
enable large-scale RL training and significantly impact learning-based decision-making for AD.105

2.2 Frameworks for mid-to-end Autonomous Driving106

V-Max is a framework built on Waymax (Gulino et al., 2023) which is a data-driven, accelerated,107
mid-to-end AD simulator. Besides Waymax, other frameworks related to V-Max include nuPlan108
(Caesar et al., 2021), Nocturne (Vinitsky et al., 2023), MetaDrive (Li et al., 2023a), and GPUDrive109
(Kazemkhani et al., 2024). Below, we compare them to V-Max.110

Datasets. All the aforementioned frameworks enable data-driven simulation, where driving scenes111
are instantiated by replaying real-world data. MetaDrive also integrates procedural generation, allow-112
ing to artificially instantiate driving maps and specific situations (e.g. lane merging, roundabouts).113
Nocturne, GPUDrive and Waymax are limited to the WOMD dataset (Ettinger et al., 2021), while114
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nuPlan uses its own dataset. MetaDrive and V-Max are compatible support both nuPlan and WOMD,115
as well as other datasets like Argoverse 2 (Wilson et al., 2021), thanks to the use of ScenarioNet’s116
standardization (Li et al., 2023b).117

Hardware-Acceleration. Waymax supports both acceleration on GPUs and TPUs enabling high118
speed simulation. If additionally the training pipeline is written using the JAX library (Bradbury119
et al., 2018), which is the case in V-Max, then simulation and training can be performed within the120
same computation graph, eliminating communication bottlenecks with the host machine. GPUDrive121
achieves GPU-acceleration through the Madrona game engine (Shacklett et al., 2023). Hardware-122
acceleration makes V-Max, Waymax and GPUDrive two to three orders of magnitude faster than123
CPU-based simulators like nuPlan, MetaDrive, and Nocturne.124

Multi-Agent Environments. Waymax supports environments with multiple controllable agents,125
a feature that V-Max uses to perform adversarial evaluation. While multi-agent RL (MARL) can126
technically be implemented in Waymax, V-Max is designed for traditional single-agent RL and127
does not include MARL-specific functionalities. In contrast, GPUDrive is explicitly designed and128
optimized for multi-agent learning, making it the better choice for MARL and self-play applications.129

Observation. In the mid-to-end setting, simulators provide perfect perception of the scene, making130
the first design choice the selection of what the driving agent observes. There are two approaches to131
this decision. The first approach models partial observability to reduce the sim-to-real gap. Nocturne132
and GPUDrive use sensor-based observations that replicate camera or LiDAR properties, where133
vehicles can occlude one another. V-Max also implements these sensor-based observations, along134
with the noisy observations from IGDrivSim (Grislain et al., 2024), which were designed to highlight135
the limitations of IL. The second approach, observation shaping, focuses on selecting an observation136
that maximizes policy performance while minimizing memory usage. V-Max provides tools for137
observation shaping and includes a comparison of different observation choices in Table 2, a topic138
not addressed in other frameworks.139

Evaluation. MetaDrive, Nocturne, Waymax, and GPUDrive evaluate driving agents using a goal-140
reaching metric, which measures the percentage of scenarios where an agent successfully reaches its141
destination without collisions or off-road violations. nuPlan introduces a more sophisticated scoring142
system that also considers driving quality. V-Max integrates both the goal-reaching metric from143
Waymax and nuPlan’s scoring system, enabling more comprehensive evaluations and facilitating144
direct comparisons between agents.145

3 The V-Max Framework146

Figure 1 provides an overview of the V-Max framework, which formulates mid-to-end AD as a147
partially observable Markov Decision Process (POMDP, Spaan (2012)). In this section, we present148
the core components of V-Max and how they extend Waymax to make RL practical for AD.149

3.1 Rules of the Game150

Simulation. The simulation process leverages a simulator_state that encapsulates data151
from a bird’s-eye view (BEV) representation, under the assumption that the perception problem is152
fully resolved. This simulator_state includes comprehensive records of real-world scenarios,153
encompassing logged trajectories and high-definition (HD) maps. The primary objective of the ego154
vehicle is to predict control outputs, specifically acceleration and steering, to govern the vehicle’s155
motion from time t to t+ 1. Vehicle dynamics are modeled using a continuous bicycle model, which156
forms the basis for motion planning and control. The simulation operates over a 9-second scenario157
duration, running at a frequency of 10 Hz. The initial second of each scenario is typically simulated158
using log-replay to establish a historical context for scene perception.159
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Figure 2: Illustration of potential limitations when utilizing expert trajectories as learning
targets. The pink rectangle represents the ego, and the blue rectangles are the other vehicules. The
blue path is one SDC path and the red cross is the last waypoint of the expert’s ground truth. Left: The
trajectory terminates before a traffic signal, inadvertently encoding the implicit knowledge that the
expert stopped at a red light. Center: The trajectory ends in the middle of the intersection, showing
that the expert stopped to let other vehicles pass, which unintentionally teaches the policy when to
yield. Right: The trajectory ends immediately prior to an intersection, which may result in the policy
incidentally avoiding collisions by terminating at this location. In each scenario, we overlay the
self-driving vehicle (SDC) path in blue, which provides a topologically consistent road representation
without encoding such implicit behavioral biases, thus constituting a more appropriate supervisory
signal for policy optimization.

The scenario concludes when the ego vehicle violates critical safety constraints. Critical failures160
considered include collisions with other objects, deviations from the road, and crossing intersections161
under a red light. Notably, the latter constraint is not originally present in the Waymax framework162
and has been introduced within the V-Max framework.163

Goal. V-Max does not prescribe a universal goal for the policy; instead, it allows practitioners to164
define the desired behavior of the ego vehicle thanks to SDC (Self-Driving Car) paths. Waymax165
defines SDC path as the routes given to an agent by combining the logged future trajectory of the166
agent with all possible future routes after the logged trajectories. At the time of writing, these paths167
are not publicly available in WOMD. An alternative is to rely on expert-logged trajectories only as168
reference paths. However, this approach is problematic because expert trajectories represent privileged169
information that consistently demonstrates safe behavior, as shown in Figure 2. To overcome this170
limitation, V-Max enhances the simulation environment by incorporating reconstructed SDC paths.171
This addition enables researchers to define various practical tasks such as navigating to specific172
destinations or following predetermined routes.173

3.2 Training RL Agents174

ScenarioMax. One of V-Max’s key contributions is ScenarioMax, an extension of ScenarioNet (Li175
et al., 2023b) that converts multiple open-source driving datasets into a single, compatible TfRecord176
format. This integration process requires several preprocessing steps to ensure data consistency and177
quality across different sources.178

Our approach includes SDC paths reconstruction by creating drivable area definitions for the ego179
vehicle using road lane data. Since the original SDC paths are not publicly available, we derive them180
from the simulator state information. We construct paths by starting at the lane closest to the SDC’s181
initial position, then following exit lanes. When multiple lane options exist, we create separate paths.182
Our method generates 10 distinct paths, selected based on their proximity to the SDC’s final position.183
This approach captures important route options while maintaining diverse targets. Improvements184
could be made by adding adjacent lanes, allowing for more complex maneuvers such as safe lane185
changing.186
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While ScenarioNet proposed a scenario description format, Waymax simulator requires specific data187
fields to construct the simulator_state. To address this gap, we augment the HD map data by188
adding directional vectors to each map point and defining proper roadgraph types. We also apply189
proper labeling to match the tf.Example format used by the Waymo Open Motion Dataset (WOMD).190

Training pipeline. V-Max uses a flexible wrapper system to encapsulate environments, drawing191
inspiration from the Brax (Freeman et al., 2021) framework’s approach to parallel simulation while192
extending it for autonomous driving.193

Notable wrappers include the AutoResetWrapper that restarts scenarios automatically when completed194
and the VmapWrapper that handles batched scenarios during training to accelerate policy development.195
We significantly modified the BraxWrapper to better integrate with our learning processes. We also196
added a wrapper to reconstruct one SDC path on the fly in a simulator state to support the original197
WOMD dataset. This wrapper is not fully recommended as it can contains errors due to the difficulty198
to reconstruct dynamic data in JAX jitted functions.199

To support diverse learning paradigms, V-Max provides a standardized training pipeline that creates200
consistent agent-simulator interactions across different learning approaches (imitation learning, off-201
policy, and on-policy methods). Observation and feature extraction wrappers provide a flexible202
mechanism for processing BEV data and state representations. The reward function module is203
designed for customization, allowing practitioners to define task-specific objectives and shape agent204
behavior through tailored incentives.205

In addition to these foundational components, V-Max includes popular decision-making algorithms206
implementations, facilitating rapid experimentation with different policy-learning techniques. A dedi-207
cated encoder catalog further enhances the system by offering a range of neural network architectures208
optimized for extracting high-level representations from input features.209

Observation function. Selecting the right input features is essential for the performance of learning-210
based methods in autonomous driving. While Waymax provides a function to transform the simulator211
state to the self-driving car (SDC) view, it doesn’t offer complete tools to build input features for neural212
networks. To solve this problem, we developed feature extractors that organize data into input features213
such as: (1) trajectory features showing how object motion; (2) roadgraph features describing roads214
and lanes; (3) traffic light features showing signal states; and (4) path target features indicating where215
the vehicle should go. Figure 3 shows how the data is processed from the simulator_state to216
adequate features for a neural network.217

The entire feature extraction system can be customized through yaml configurations, giving practi-218
tioners flexibility in designing observations.219

Network architectures. To process mid-level observations, we leverage architectures developed220
for motion forecasting challenges (Ettinger et al., 2021; Wilson et al., 2021). These challenges focus221
on predicting the future trajectories of all agents in a driving scene and use the same structured scene222
representations as our task. Since most motion forecasting models are built on encoder-decoder223
architectures, their encoders can be repurposed to extract meaningful features from a mid-level224
driving scene, making them suitable as value and policy networks in RL algorithms.225

The motion forecasting competitions are dominated by transformer-based architectures (Vaswani226
et al., 2017). The attention mechanism is particularly useful for encoding temporal dependencies in227
the SDC’s past trajectory, modeling interactions between the SDC and other road users, and capturing228
relationships between the SDC and road features. These properties make transformers a compelling229
architecture for our task. While Waymax reports training results with the Wayformer architecture230
(Nayakanti et al., 2023), no official public implementation is available. We reimplement Wayformer231
along with other state-of-the-art encoders from the motion forecasting literature using JAX, enabling232
in-graph training.233
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Figure 3: Visualization of the observation process. Left: Scene-centered view of a scenario. SDC
paths are displayed, in blue paths containing the expert trajectory, and in green showing alternative
route options. Center: Ego-centric transformation with HD map filtering within a rectangular
bounding box (70 meters front, 5 meters back, 20 meters on both sides of the SDC). Optionally, noise
and masking can be applied to the perception of the scene. Right: Neural network input representation.
Road boundaries are highlighted after roadgraph filtering. Only the eight closest objects to the SDC
are retained, and the SDC path containing the ground truth is selected and interpolated into 10 points
spaced 5 meters apart, providing a compact representation of the environment for decision making.

Reward function. In Waymax, the reward is defined as a weighted sum of multiple components.234
We follow this approach and extend it by adding more reward functions based on the metrics defined235
in subsection 3.3.236

3.3 Evaluation and Benchmarking237

Metrics. Waymax proposes the following metrics: collision rate, offroad rate, route progress ratio,238
and average displacement error (ADE, ℓ2-distance between the agent’s position and the expert’s239
position at each timestep, averaged over the trajectory). We re-implemented the metrics used in the240
nuPlan challenge (Karnchanachari et al., 2024), which provide a more fine-grained assessment of241
driving quality. Notably, nuPlan distinguishes between the collisions imputable to the agent’s action,242
and unavoidable incidents, such as rear-end collisions. Additionally, we integrate a red-light violation243
check, a feature absent from both Waymax and nuPlan.244

The WOMD dataset does not provide speed limits, so to compute nuPlan’s speed-limit compliance245
metric, we inferred the speed limit from the expert trajectory using the following methodology. The246
dataset’s roads are located in San Francisco or Phoenix, where speed limits are one of {25, 35, 45, 70}247
mph. Additionally, road metadata indicates whether the agent is on a highway or in an urban scenario.248
We estimate the speed limit as 70 mph if and only if the agent is on a highway; otherwise, we assign249
the lowest speed limit such that the expert does not exceed it.250

For the comfort metric, which is based on jerk and acceleration values, we initially adopted the251
same bounds as nuPlan. However, we observed that the ground truth trajectories had unexpectedly252
poor comfort scores, with only 40% of trajectories classified as comfortable. We identified that the253
computation of jerk magnitude (||d3v⃗/dt3||) produced unrealistic values, leading us to remove it from254
the metric. With this modification, the expert is classified as comfortable in 82% of WOMD scenarios.255
Ideally, this percentage should be closer to 100%, indicating that the comfort metric still requires256
further investigation.257

Episode score. To aggregate multiple metrics into a single score, we adopt the methodology from258
the nuPlan challenge (Karnchanachari et al., 2024). Each episode is assigned a score based on a259
hybrid weighted average of all metric scores:260

episode score =
∏

i∈multiplier metrics

scorei ×
∑

j∈average metrics

weightj × scorej
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The complete list of metrics and their corresponding weights are provided in the supplementary261
material.262

Evaluations setups. The main evaluation setup used in V-Max is closed-loop non-reactive, where263
other agents replay their logged trajectories. The advantage of this setup is that all non-controlled264
agents exhibit human-like behavior, as they follow real-world recorded data. However, a key limitation265
arises when the agent’s actions deviate from those originally taken by the expert, leading to unrealistic266
interactions. A common example is when an agent drives slower than the expert, causing other267
vehicles to collide with it from behind. This issue is partly mitigated by the short duration of scenarios268
(8s) and nuPlan’s distinction between at-fault and unavoidable collisions.269

Waymax includes a closed-loop reactive evaluation setup, where agents follow their logged trajectories270
but adjust their speed using an IDM policy (Treiber et al., 2000).By default, all agents continue driving271
straight once they reach the end of their logged trajectory, regardless of road geometry. Additionally,272
stationary vehicles (e.g., those stopped at traffic lights or parked for the entire scenario) are initialized273
at the end of their logged trajectory. This causes them to start moving in a straight line, leading to274
unrealistic behaviors. These limitations make Waymax’s reactive evaluation setup unrealistic, so we275
chose not to include it in our experiments. nuPlan’s reactive agents also use an IDM policy, but use276
the roadgraph to generate their trajectories, resulting in more realistic behavior. We plan to integrate277
this feature in a future release.278

Another evaluation setup available in V-Max applies Gaussian perturbations to the first 10 timesteps279
of the agent’s trajectory, following the methodology of Bansal et al. (2019). This setup assesses280
the policy’s ability to recover from distribution shifts, as agents in the training data are most often281
initialized at the center of their lane.282

V-Max also integrates ReGentS (Yin et al., 2024), a methodology for generating adversarial scenarios283
by modifying real-world driving data. In ReGentS, surrounding objects (e.g., vehicles, cyclists, and284
pedestrians) are optimized to create challenging situations for the agent while maintaining realistic285
and physically plausible interactions. The method prevents unrealistic swinging turns and unavoidable286
rear-end collisions, ensuring that the generated scenarios provide meaningful robustness evaluations.287

4 Case Study: RL Design Choice for Autonomous Driving288

We evaluated V-Max through extensive experiments that demonstrate its ability to replicate and289
benchmark methodologies. Our experiments include studies examining observation functions, reward290
formulations, and neural architectures, showing how V-Max enables both reproduction of existing291
methods and development of new approaches.292

All experiments2 were executed across 3 random seeds, with results presented as means and standard293
deviations. Accuracy denotes the percentage of episodes completed without failure conditions294
(collisions, off-road, or traffic signal violations). Additional metrics include collision rate, off-road295
rate, and route progress ratio—analogous to Waymax’s metric. The V-Max Score is an extension of296
the nuPlan score by adding the cross red light metric . All evaluations were performed on the WOMD297
validation dataset comprising 44,096 distinct scenarios, with a maximum of 64 objects.298

We present a control configuration for that serves all of our experiments:299

Table 1: Control configuration

Algorithm Observation Encoder Reward Dataset Training Dataset Evaluation

SAC Road LQ Navigation WOMD Training WOMD Valid

2Runs are executed on one single NVIDIA L4 GPU for 12-24 hours per run.
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Observation experiments. We implemented four distinct observation functions to explore how300
different input representations affect driving performance: (1) Base: incorporates all available data301
types for comprehensive scene representation; (2) Segment: focuses on road segments with the traffic302
light present on the target path; (3) Lane: includes only lane centers for trajectory guidance; and (4)303
Road: specifically emphasizes road boundaries to define the drivable area. All observation functions304
maintain consistent representation of key elements: they include the n closest objects, n closest traffic305
lights, and the same path target definition. This path target consists of a SDC path interpolated to 10306
points spaced at 5-meter intervals.307

Table 2: Observation study, with control configuration 1.

Observation Accuracy ↑ Collision ↓ Off-road ↓ Progress ↑ V-Max Score ↑

Base 96.92±0.20 1.94±0.18 0.91±0.09 173.32±4.21 0.85±0.00
Segment 96.15±0.35 1.80±0.29 1.83±0.22 152.85±15.12 0.84±0.01
Lane 95.99±0.42 2.18±0.41 1.60±0.06 136.67±10.79 0.84±0.00
Road 97.26±0.28 1.76±0.18 0.83±0.07 165.46±3.21 0.86±0.01

Network encoders. We provide to the users of V-Max a catalog of several encoder architectures,308
implemented with the Flax library (Heek et al., 2024): (1) Latent-query (LQ): inspired from (Jaegle309
et al., 2021), (2) Latent-query hierarchical (LQH) (Bronstein et al., 2022); (3) Motion Transformer310
(MTR) (Shi et al., 2024), (4) Wayformer (Nayakanti et al., 2023). For comparison, we also take311
an architecture that uses one multi-layer percepetron to encode each feature (road, trajectories...)312
separately: MLP. And an architecture that don’t use seperate encodings: None.313

The results of Table 3 clearly demonstrate the substantial impact of encoder selection on overall314
performance. The Latent-query (LQ) encoder achieves the best results across all metrics, while other315
transformer-based architectures (LQH, MTR, and Wayformer) perform similarly. The MLP encoder316
shows considerably worse results, and the baseline "None" condition performs extremely poorly.317
These findings highlight the critical importance of transformer-based encoders for effective scene318
understanding in autonomous driving.319

Table 3: Encoder architectures study, with control configuration 1.

Encoder Accuracy ↑ Collision ↓ Off-road ↓ Progress ↑ V-Max Score ↑

None 69.95±1.72 25.13±1.40 4.51±0.23 87.26±3.43 0.53±0.01
MLP 87.54±0.48 9.24±0.31 2.92±0.24 104.03±2.93 0.68±0.01
LQ 97.26±0.28 1.76±0.18 0.83±0.07 165.46±3.21 0.86±0.01
LQH 96.28±0.35 2.52±0.12 1.02±0.20 162.23±12.26 0.84±0.01
MTR 95.94±0.24 2.42±0.24 1.42±0.38 154.88±2.53 0.84±0.01
Wayformer 96.08±0.42 2.70±0.41 0.99±0.11 161.94±7.20 0.84±0.00

Reward shaping. Tuning the weights of the various reward components to achieve the best possible320
policy remains a challenging task. To address this, we conducted a comprehensive benchmark of321
different reward functions by calibrating these parameters: the choice of metrics included in the322
reward and the weights assigned to each metric.323

rsafety(st, at) = −I[Collided]− I[Off-road]− I[Red light crossed] (Safety)
324

rnavigation(st, at) = rsafety(st, at)− 0.6 · I[Offroute] + 0.2 · I[Progressed] (Navigation)
325

rbehavior(st, at) = rnavigation(st, at)− 0.3 · I[Speed]− 0.3 · I[TTC] + 0.5 · I[Comfort] (Behavior)

Findings in Table 4 indicate that the Navigation reward function provides the optimal balance326
between safety and route completion, suggesting that more complex reward structures may introduce327
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competing objectives. This highlights the critical role of reward design in developing autonomous328
driving policies that effectively balance safety and driving efficiency.329

Table 4: Reward shaping study, with control configuration 1

.

Reward Accuracy ↑ Collision ↓ Off-road ↓ Progress ↑ V-Max Score ↑

Safety 96.73±0.57 2.21±0.29 0.90±0.34 78.66±3.18 0.67±0.04
Navigation 97.26±0.28 1.76±0.18 0.83±0.07 165.46±3.21 0.86±0.01
Behavior 96.17±0.29 2.47±0.20 1.12±0.06 199.84±4.03 0.83±0.02

Cross-dataset experiments. To evaluate the effectiveness of ScenarioMax, we tested three training330
approaches: using WOMD alone, using nuPlan alone, and combining both datasets. Table 5 shows the331
performance results across all validation datasets. While we initially expected the combined training332
to consistently outperform single-dataset training in all scenarios, the results show that performance333
levels are actually quite similar. Nevertheless, the mixed-data policy shows a key advantage: it334
maintains good performance across different validation sets, demonstrating better generalization,335
while policies trained on individual datasets perform worse when tested on other data distributions.336

Table 5: Cross-datasets study, with control configuration 1.

Dataset Accuracy ↑ Collision ↓ Off-road ↓ Progress ↑ V-Max Score ↑

Evaluated on WOMD dataset

WOMD 97.26±0.28 1.76±0.18 0.83±0.07 165.46±3.21 0.86±0.01
nuPlan 76.81±1.53 7.30±1.25 1.30±0.28 163.77±8.15 0.67±0.01
MIX 96.24±0.68 2.49±0.57 0.98±0.10 172.29±10.28 0.85±0.02

Evaluated on nuPlan dataset

WOMD 87.73±0.64 1.89±0.20 2.66±0.15 308.64±4.04 0.76±0.01
nuPlan 95.33±0.42 2.27±0.23 1.86±0.17 319.84±14.02 0.82±0.00
MIX 95.38±0.71 2.04±0.40 1.98±0.21 315.95±15.77 0.82±0.01

Evaluated on MIX dataset

WOMD 94.21±0.05 1.80±0.13 1.42±0.07 211.43±3.18 0.83±0.01
nuPlan 82.76±1.16 5.69±0.92 1.47±0.22 213.79±9.95 0.72±0.01
MIX 95.97±0.68 2.35±0.51 1.29±0.13 218.33±11.96 0.84±0.01

5 Benchmark337

Building on the insights from Section 4, where we explored the versatility of the V-Max framework338
in terms of observation functions, reward functions, network encoders, and multi-dataset training,339
we now shift our focus to evaluating the performance and robustness of reinforcement learning340
algorithms. In this section, we examine populars planning algorithms and assess their effectiveness341
under various evaluation scenarios. In this section, the result of the best performing model is reported.342

5.1 Planning algorithms343

The first methodology is evaluating planning methods on standard non-reactive (NR) evaluation. The344
standard policies included expert, random, and constant, while the rule-based policies consisted of345
IDM and PDM (Dauner et al., 2023). For the learning-based policies, we tested four algorithms from346
both IL and RL: BC, PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), and BC_SAC (Lu347
et al., 2023). It is important to note that we did not fine-tune the training hyper-parameters for the348
learning-based methods. The reported results reflect their performance under default or standard349
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settings, rather than an optimized configuration. Table 6 displays the best results obtained from350
methods available in V-Max.351

Table 6: Benchmarking planning algorithms, with control configuration 1.

Planning Policies Accuracy ↑ Collision ↓ Off-road ↓ Progress ↑ V-Max Score ↑

Expert 98.06 0.56 0.76 97.30 0.93
Constant 55.26 27.56 11.34 87.67 0.51
Random 12.60 34.40 38.40 82.40 0.10
IDM 88.20 7.50 3.80 151.00 0.81
PDM† 93.40 4.70 1.40 158.00 0.82

BC (discrete) 79.42 13.14 6.92 86.87 0.72
PPO 90.75 7.81 1.14 189.52 0.78
SAC 97.44 1.74 0.74 169.01 0.88
BC_SAC 96.61 2.16 1.04 159.61 0.86

5.2 Robustness analysis352

To thoroughly assess the robustness of our best-performing planning method, we designed and353
executed two distinct experimental setups: initialization perturbation and adversarial attacks.354

Initialization perturbation As described in Section 3, we compare our top-performing RL model,355
BC model and the rule-based PDM method with initialization perturbation. These evaluations356
were performed on a smaller validation dataset consisting of 294 scenarios. The results in Table 7357
demonstrates that RL can adapt to initial noise and dynamically re-center itself to the correct lane,358
whereas imitation method struggle since they rigidly mimic demonstrations without the ability to359
recover from disturbances.

Table 7: Benchmarking evaluations methods, results on the first 294 scenarios of WOMD valid, with
control configuration 1.

Algorithm Evaluation Accuracy ↑ Collision ↓ Offroad ↓ Progress ↑ V-Max score ↑

SAC
Non-reactive 97.40 1.70 0.74 169.01 0.88
Noise Init 94.50 3.00 1.70 162.29 0.83

BC
Non-reactive 84.64 8.87 5.8 90.18 0.75
Noise Init 35.15 32.76 27.64 52.65 0.25

PDM† Non-reactive 93.50 4.40 1.70 152.17 0.82
Noise Init 91.5 5.5 2.4 158 0.79

360

Adversarial attack We also investigated how our best RL agent performs under adversarial attacks.361
However, evaluating this process is challenging, as the methodology is not universally applicable to362
all scenarios (red light stop, no close surrounding objects) and requires extensive tuning to ensure a363
rigorous and scientifically robust assessment. To explore this further, we applied the ReGentS process364
to a selected set of scenarios. The results of this evaluation are presented in the Figure 4 displaying365
the adversarial process on one episode.366

6 Conclusion367

In this work, we introduced V-Max, a framework designed to make Reinforcement Learning (RL)368
practical for mid-to-end Autonomous Driving (AD). Built on Waymax, V-Max extends its capabilities369
with a JAX-based RL training pipeline, multi-dataset accelerated simulation, and comprehensive370
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(a) Scene-centered view of the initial scenario without applying adversarial attack.

(b) Scene-centered view after applying ReGentS. The adversarial agent’s (in red) trajectory to collide with SDC
agent. We can observe RL agent’s adaptation with the path deviation to avoid collision and re-centering itself on
the lane to follow after adversarial objects passes.

Figure 4: Visualization of the ReGentS process. Comparison between a standard and an adversarial
scenario.

evaluation tools. Using these tools, we trained high-performing SAC agents, showing how V-Max371
can help advance RL research for AD. To further support progress in this area, we ensure full372
reproducibility by publishing our framework and benchmarks.373

While V-Max provides a foundation for AD research, rigorously evaluating driving policies remains374
an open challenge. Current evaluation protocols (in V-Max and the frameworks discussed in section 2)375
average scenario metrics across the entire validation dataset. However, driving difficulty follows a376
long-tail distribution (Makansi et al., 2021; Bronstein et al., 2023), where most scenarios are easily377
solvable while a small subset presents significant challenges. Developing benchmarks that explicitly378
account for this distribution would enable a more rigorous assessment of policy robustness.379

Additionally, further research on adversarial scenario generation, could enable deeper robustness380
assessment of driving policies. ReGentS is a good starting point, diffuser-based methods could be an381
alternative approach (Pronovost et al., 2023). Similarly, the development of more realistic simulation382
agents, as explored in the Waymo Open Sim Agents Challenge (WOSAC, (Montali et al., 2023)) could383
improve realism of closed-loop simulators, reducing the reliance on non-reactive evaluation.384

References385

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. ChauffeurNet: Learning to Drive by Imitating386
the Best and Synthesizing the Worst. In Proceedings of Robotics: Science and Systems, volume 15,387
June 2019. ISBN 978-0-9923747-5-4. URL https://www.roboticsproceedings.org/388
rss15/p31.html.389

12

https://www.roboticsproceedings.org/rss15/p31.html
https://www.roboticsproceedings.org/rss15/p31.html
https://www.roboticsproceedings.org/rss15/p31.html


V-Max: Making RL Practical for Autonomous Driving

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal390
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and391
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL392
http://github.com/jax-ml/jax.393

Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn White, Alex Kuefler, Yiren Lu, Supratik394
Paul, Payam Nikdel, Paul Mougin, Hongge Chen, Justin Fu, Austin Abrams, Punit Shah, Evan395
Racah, Benjamin Frenkel, Shimon Whiteson, and Dragomir Anguelov. Hierarchical Model-396
Based Imitation Learning for Planning in Autonomous Driving. In 2022 IEEE/RSJ International397
Conference on Intelligent Robots and Systems (IROS), pp. 8652–8659, October 2022. DOI:398
10.1109/IROS47612.2022.9981695. URL https://ieeexplore.ieee.org/document/399
9981695. ISSN: 2153-0866.400

Eli Bronstein, Sirish Srinivasan, Supratik Paul, Aman Sinha, Matthew O’Kelly, Payam Nikdel, and401
Shimon Whiteson. Embedding Synthetic Off-Policy Experience for Autonomous Driving via Zero-402
Shot Curricula. In Proceedings of The 6th Conference on Robot Learning, pp. 188–198. PMLR,403
March 2023. URL https://proceedings.mlr.press/v205/bronstein23a.html.404
ISSN: 2640-3498.405

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush406
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A Multimodal Dataset for407
Autonomous Driving. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition408
(CVPR), pp. 11618–11628, Seattle, WA, USA, June 2020. IEEE. ISBN 978-1-72817-168-5. DOI:409
10.1109/CVPR42600.2020.01164. URL https://ieeexplore.ieee.org/document/410
9156412/.411

Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric Wolff, Alex Lang, Luke412
Fletcher, Oscar Beijbom, and Sammy Omari. NuPlan: A closed-loop ML-based planning bench-413
mark for autonomous vehicles, June 2021. URL http://arxiv.org/abs/2106.11810.414
arXiv:2106.11810 [cs].415

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang416
Li. End-to-end Autonomous Driving: Challenges and Frontiers. IEEE Transactions on417
Pattern Analysis and Machine Intelligence, pp. 1–20, 2024. ISSN 1939-3539. DOI:418
10.1109/TPAMI.2024.3435937. URL https://ieeexplore.ieee.org/document/419
10614862/?arnumber=10614862. Conference Name: IEEE Transactions on Pattern Anal-420
ysis and Machine Intelligence.421

Marco Cusumano-Towner, David Hafner, Alex Hertzberg, Brody Huval, Aleksei Petrenko, Eugene422
Vinitsky, Erik Wijmans, Taylor Killian, Stuart Bowers, Ozan Sener, Philipp Krähenbühl, and423
Vladlen Koltun. Robust Autonomy Emerges from Self-Play, February 2025. URL http://424
arxiv.org/abs/2502.03349. arXiv:2502.03349 [cs].425

Daniel Dauner, Marcel Hallgarten, Andreas Geiger, and Kashyap Chitta. Parting with Misconceptions426
about Learning-based Vehicle Motion Planning. In Proceedings of The 7th Conference on Robot427
Learning, pp. 1268–1281. PMLR, December 2023. URL https://proceedings.mlr.428
press/v229/dauner23a.html. ISSN: 2640-3498.429

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,430
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie431
Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, An-432
toine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter,433
Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray434
Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of tokamak plasmas435
through deep reinforcement learning. Nature, 602(7897):414–419, February 2022. ISSN 1476-436
4687. DOI: 10.1038/s41586-021-04301-9. URL https://www.nature.com/articles/437
s41586-021-04301-9. Publisher: Nature Publishing Group.438

13

http://github.com/jax-ml/jax
https://ieeexplore.ieee.org/document/9981695
https://ieeexplore.ieee.org/document/9981695
https://ieeexplore.ieee.org/document/9981695
https://proceedings.mlr.press/v205/bronstein23a.html
https://ieeexplore.ieee.org/document/9156412/
https://ieeexplore.ieee.org/document/9156412/
https://ieeexplore.ieee.org/document/9156412/
http://arxiv.org/abs/2106.11810
https://ieeexplore.ieee.org/document/10614862/?arnumber=10614862
https://ieeexplore.ieee.org/document/10614862/?arnumber=10614862
https://ieeexplore.ieee.org/document/10614862/?arnumber=10614862
http://arxiv.org/abs/2502.03349
http://arxiv.org/abs/2502.03349
http://arxiv.org/abs/2502.03349
https://proceedings.mlr.press/v229/dauner23a.html
https://proceedings.mlr.press/v229/dauner23a.html
https://proceedings.mlr.press/v229/dauner23a.html
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9


Under review for RLC 2025, to be published in RLJ 2025

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:439
An Open Urban Driving Simulator. In Proceedings of the 1st Annual Conference on Robot440
Learning, pp. 1–16. PMLR, October 2017. URL https://proceedings.mlr.press/441
v78/dosovitskiy17a.html. ISSN: 2640-3498.442

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning443
Chai, Ben Sapp, Charles R. Qi, Yin Zhou, Zoey Yang, Aurélien Chouard, Pei Sun, Jiquan444
Ngiam, Vijay Vasudevan, Alexander McCauley, Jonathon Shlens, and Dragomir Anguelov.445
Large Scale Interactive Motion Forecasting for Autonomous Driving: The Waymo Open Motion446
Dataset. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.447
9710–9719, 2021. URL https://openaccess.thecvf.com/content/ICCV2021/448
html/Ettinger_Large_Scale_Interactive_Motion_Forecasting_for_449
Autonomous_Driving_The_Waymo_ICCV_2021_paper.html.450

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.451
Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation, 2021. URL452
http://github.com/google/brax.453

Clémence Grislain, Risto Vuorio, Cong Lu, and Shimon Whiteson. IGDrivSim: A Benchmark for454
the Imitation Gap in Autonomous Driving, November 2024. URL http://arxiv.org/abs/455
2411.04653. arXiv:2411.04653 [cs].456

Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein, Yiren Lu, Jean Harb,457
Xinlei Pan, Yan Wang, Xiangyu Chen, John Co-Reyes, Rishabh Agarwal, Rebecca458
Roelofs, Yao Lu, Nico Montali, Paul Mougin, Zoey Yang, Brandyn White, Aleksan-459
dra Faust, Rowan McAllister, Dragomir Anguelov, and Benjamin Sapp. Waymax:460
An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Re-461
search. Advances in Neural Information Processing Systems, 36:7730–7742, December462
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/463
hash/1838feeb71c4b4ea524d0df2f7074245-Abstract-Datasets_and_464
Benchmarks.html.465

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy466
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the467
35th International Conference on Machine Learning, pp. 1861–1870. PMLR, July 2018. URL468
https://proceedings.mlr.press/v80/haarnoja18b.html. ISSN: 2640-3498.469

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas470
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL471
http://github.com/google/flax.472

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,473
and Gianluca Corrado. GAIA-1: A Generative World Model for Autonomous Driving, September474
2023. URL http://arxiv.org/abs/2309.17080. arXiv:2309.17080 [cs].475

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Car-476
reira. Perceiver: General Perception with Iterative Attention. In Proceedings of the 38th477
International Conference on Machine Learning, pp. 4651–4664. PMLR, July 2021. URL478
https://proceedings.mlr.press/v139/jaegle21a.html. ISSN: 2640-3498.479

Napat Karnchanachari, Dimitris Geromichalos, Kok Seang Tan, Nanxiang Li, Christopher Erik-480
sen, Shakiba Yaghoubi, Noushin Mehdipour, Gianmarco Bernasconi, Whye Kit Fong, Yiluan481
Guo, and Holger Caesar. Towards learning-based planning: The nuPlan benchmark for real-482
world autonomous driving. In 2024 IEEE International Conference on Robotics and Au-483
tomation (ICRA), pp. 629–636, May 2024. DOI: 10.1109/ICRA57147.2024.10610077. URL484
https://ieeexplore.ieee.org/document/10610077/?arnumber=10610077.485

14

https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://openaccess.thecvf.com/content/ICCV2021/html/Ettinger_Large_Scale_Interactive_Motion_Forecasting_for_Autonomous_Driving_The_Waymo_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Ettinger_Large_Scale_Interactive_Motion_Forecasting_for_Autonomous_Driving_The_Waymo_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Ettinger_Large_Scale_Interactive_Motion_Forecasting_for_Autonomous_Driving_The_Waymo_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Ettinger_Large_Scale_Interactive_Motion_Forecasting_for_Autonomous_Driving_The_Waymo_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Ettinger_Large_Scale_Interactive_Motion_Forecasting_for_Autonomous_Driving_The_Waymo_ICCV_2021_paper.html
http://github.com/google/brax
http://arxiv.org/abs/2411.04653
http://arxiv.org/abs/2411.04653
http://arxiv.org/abs/2411.04653
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1838feeb71c4b4ea524d0df2f7074245-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1838feeb71c4b4ea524d0df2f7074245-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1838feeb71c4b4ea524d0df2f7074245-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1838feeb71c4b4ea524d0df2f7074245-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1838feeb71c4b4ea524d0df2f7074245-Abstract-Datasets_and_Benchmarks.html
https://proceedings.mlr.press/v80/haarnoja18b.html
http://github.com/google/flax
http://arxiv.org/abs/2309.17080
https://proceedings.mlr.press/v139/jaegle21a.html
https://ieeexplore.ieee.org/document/10610077/?arnumber=10610077


V-Max: Making RL Practical for Autonomous Driving

Saman Kazemkhani, Aarav Pandya, Daphne Cornelisse, Brennan Shacklett, and Eugene Vinit-486
sky. GPUDrive: Data-driven, multi-agent driving simulation at 1 million FPS. In The Thir-487
teenth International Conference on Learning Representations, October 2024. URL https:488
//openreview.net/forum?id=ERv8ptegFi.489

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,490
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to Drive in a Day. In 2019 International491
Conference on Robotics and Automation (ICRA), pp. 8248–8254, Montreal, QC, Canada, May492
2019. IEEE. ISBN 978-1-5386-6027-0. DOI: 10.1109/ICRA.2019.8793742. URL https:493
//ieeexplore.ieee.org/document/8793742/.494

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Yoga-495
mani, and Patrick Pérez. Deep Reinforcement Learning for Autonomous Driving: A Survey. IEEE496
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, June 2022. ISSN 1558-0016.497
DOI: 10.1109/TITS.2021.3054625. URL https://ieeexplore.ieee.org/abstract/498
document/9351818. Conference Name: IEEE Transactions on Intelligent Transportation499
Systems.500

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. MetaDrive:501
Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning. IEEE Trans-502
actions on Pattern Analysis and Machine Intelligence, 45(3):3461–3475, March 2023a. ISSN503
1939-3539. DOI: 10.1109/TPAMI.2022.3190471. URL https://ieeexplore.ieee.org/504
document/9829243. Conference Name: IEEE Transactions on Pattern Analysis and Machine505
Intelligence.506

Quanyi Li, Zhenghao (Mark) Peng, Lan Feng, Zhizheng Liu, Chenda Duan, Wenjie Mo, and507
Bolei Zhou. ScenarioNet: Open-Source Platform for Large-Scale Traffic Scenario Simulation508
and Modeling. Advances in Neural Information Processing Systems, 36:3894–3920, De-509
cember 2023b. URL https://proceedings.neurips.cc/paper_files/paper/510
2023/hash/0c26a501df8fb919a0350e2df06b5d39-Abstract-Datasets_511
and_Benchmarks.html.512

Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Rebecca Roelofs, Benjamin Sapp,513
Brandyn White, Aleksandra Faust, Shimon Whiteson, Dragomir Anguelov, and Sergey Levine.514
Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging515
Driving Scenarios. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems516
(IROS), pp. 7553–7560, October 2023. DOI: 10.1109/IROS55552.2023.10342038. ISSN: 2153-517
0866.518

Osama Makansi, Özgün Çiçek, Yassine Marrakchi, and Thomas Brox. On Exposing the519
Challenging Long Tail in Future Prediction of Traffic Actors. In Proceedings of the520
IEEE/CVF International Conference on Computer Vision, pp. 13147–13157, 2021. URL521
https://openaccess.thecvf.com/content/ICCV2021/html/Makansi_On_522
Exposing_the_Challenging_Long_Tail_in_Future_Prediction_of_ICCV_523
2021_paper.html.524

Nico Montali, John Lambert, Paul Mougin, Alex Kuefler, Nicholas Rhinehart, Michelle Li, Cole525
Gulino, Tristan Emrich, Zoey Zeyu Yang, Shimon Whiteson, Brandyn White, and Dragomir526
Anguelov. The Waymo Open Sim Agents Challenge. In Thirty-seventh Conference on Neu-527
ral Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:528
//openreview.net/forum?id=5FnttJZQFn.529

Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S. Refaat, and Benjamin530
Sapp. Wayformer: Motion Forecasting via Simple & Efficient Attention Networks. In 2023 IEEE531
International Conference on Robotics and Automation (ICRA), pp. 2980–2987, London, United532
Kingdom, May 2023. IEEE. ISBN 9798350323658. DOI: 10.1109/ICRA48891.2023.10160609.533
URL https://ieeexplore.ieee.org/document/10160609/.534

15

https://openreview.net/forum?id=ERv8ptegFi
https://openreview.net/forum?id=ERv8ptegFi
https://openreview.net/forum?id=ERv8ptegFi
https://ieeexplore.ieee.org/document/8793742/
https://ieeexplore.ieee.org/document/8793742/
https://ieeexplore.ieee.org/document/8793742/
https://ieeexplore.ieee.org/abstract/document/9351818
https://ieeexplore.ieee.org/abstract/document/9351818
https://ieeexplore.ieee.org/abstract/document/9351818
https://ieeexplore.ieee.org/document/9829243
https://ieeexplore.ieee.org/document/9829243
https://ieeexplore.ieee.org/document/9829243
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0c26a501df8fb919a0350e2df06b5d39-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0c26a501df8fb919a0350e2df06b5d39-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0c26a501df8fb919a0350e2df06b5d39-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0c26a501df8fb919a0350e2df06b5d39-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0c26a501df8fb919a0350e2df06b5d39-Abstract-Datasets_and_Benchmarks.html
https://openaccess.thecvf.com/content/ICCV2021/html/Makansi_On_Exposing_the_Challenging_Long_Tail_in_Future_Prediction_of_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Makansi_On_Exposing_the_Challenging_Long_Tail_in_Future_Prediction_of_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Makansi_On_Exposing_the_Challenging_Long_Tail_in_Future_Prediction_of_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Makansi_On_Exposing_the_Challenging_Long_Tail_in_Future_Prediction_of_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Makansi_On_Exposing_the_Challenging_Long_Tail_in_Future_Prediction_of_ICCV_2021_paper.html
https://openreview.net/forum?id=5FnttJZQFn
https://openreview.net/forum?id=5FnttJZQFn
https://openreview.net/forum?id=5FnttJZQFn
https://ieeexplore.ieee.org/document/10160609/


Under review for RLC 2025, to be published in RLJ 2025

Ethan Pronovost, Meghana Reddy Ganesina, Noureldin Hendy, Zeyu Wang, Andres Morales, Kai535
Wang, and Nick Roy. Scenario Diffusion: Controllable Driving Scenario Generation With Dif-536
fusion. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),537
Advances in Neural Information Processing Systems, volume 36, pp. 68873–68894. Curran Asso-538
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/539
2023/file/d95cb79a3421e6d9b6c9a9008c4d07c5-Paper-Conference.pdf.540

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel541
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement542
Learning and Demonstrations. In Robotics: Science and Systems XIV, June 2018. URL https:543
//www.roboticsproceedings.org/rss14/p49.html.544

Oliver Scheel, Luca Bergamini, Maciej Wolczyk, Błażej Osiński, and Peter Ondruska. Urban Driver:545
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603

A Metrics catalog604

A.1 Waymax Metrics605

• Offroad: Binary flag indicating whether the SDC left the drivable area at any point in the scenario.606

• Collision (overlap): Binary flag indicating whether the SDC collided with another object at any607
point in the scenario.608

• Wrongway: Waymax-specific metric based on SDC paths, indicating whether the SDC is more609
than 3.5 meters away from the closest SDC path.610

• Offroute: Similar to wrongway but with respect to on-route paths, which are the SDC paths that611
contain the expert’s logged trajectory.612

• sdc_progress: computes how much the SDC progressed along on-route paths, and divides it613
by the distance the expert did cover on those paths. Can be greater than 1.614

For example, if the SDC takes a right turn at an intersection while the expert proceeded straight, the615
SDC will be considered offroute but not wrongway.616

A.2 nuPlan Metrics617

• Progress along route: same definition as Waymax, but capped to 1.618

• Making progress: binary flag indicating if progress along route is superior to 20%.619

• At-fault collision: Binary flag following nuPlan’s criteria for assigning collision responsibility:620

– Collisions with stopped vehicles are always at-fault.621

– If the SDC is stopped, it is never at-fault.622

– If the SDC is occupying multiple lanes, it is at-fault.623

– Rear-bumper collisions are not at-fault, while front-bumper collisions are at-fault.624

• TTC within bound: indicates if the time-to-colllision (ttc) with ahead vehicles remain superior to625
0.95s.626

• Speed limit compliance: defined by nuPlan as:627

nuplan_speed_compliance = max

(
0.0, 1.0−

∑
t speed_violationt ·∆t

max(threshold, 1e− 3) · T

)
, (1)

where speed_violationt is the magnitude of overspeeding at timestep t, ∆t is the time step duration,628
and T is the total scenario duration.629

• Driving direction compliance: Based on distance traveled into oncoming traffic. We check if the630
vehicle is effectively driving into oncoming traffic lanes using the road information, rather than631
SDC paths.632

– Score = 1.0 if wrong-way distance ≤ 2.0m.633

– Score = 0.5 if wrong-way distance is between 2.0m and 6.0m.634

– Score = 0 if wrong-way distance > 6.0m.635

• Comfort: binary indicating if the trajectory is comfortable based on jerk, acceleration and yaw636
rates.637
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A.3 V-Max Metrics638

• Red-light violation: Binary flag indicating whether the SDC crossed an intersection while the traffic639
light was red.640

• Time spent on multiple lanes: Evaluated based on roadgraph information rather than SDC paths.641
We added this metric to encourage agent to remain on one lane, to set the thresholds, we looked at642
the expert trajectories.643

– Score = 1.0 if time spent on multiple lanes ≤ 3.4s.644

– Score = 0.5 if time spent on multiple lanes is between 3.4s and 5.7s.645

– Score = 0 if time spent on multiple lanes > 5.7s.646

Table 8: Metrics and their weights in nuPlan aggregate score and V-Max aggregate score. † indicates
metrics that appear only in the V-Max aggregate score.

Metric name Multiplier weight Average weight
No at-fault collisions {0, 1} -
Offroad {0, 1} -
Red-light violation † {0, 1} -
Making progress {0, 1} -
Driving direction compliance {0, 0.5, 1} -
TTC within bound - 5
Progress along route ratio - 5
Speed limit compliance - 4
Multiple lanes score† - 3
Comfort - 2

B Observation functions647

Figure 5: Observation functions illustrated

(a) Simulator state (b) Base observation (c) Segment observation

(d) Lane observation (e) Road observation
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C Observation Configurations648

Table 9: Observation configurations used in experiments for the Base function.

Parameter Value Description

obs_past_num_steps 5 Number of past steps included in observation

Object Features
features waypoints, velocity, Object features included

yaw, size, valid in observation
num_closest_objects 8 Number of closest objects to consider

Roadgraph Features
features waypoints, direction, types, valid Roadgraph features included
interval 2 Sampling interval for waypoints
max_meters 50 Maximum distance of roadgraph features
roadgraph_top_k 200 Top K roadgraph elements
meters_box front: 50, back: 5, Observation bounding box

left: 20, right: 20 dimensions in meters

Traffic Light Features
features waypoints, state, valid Traffic light features included
num_closest_traffic_lights 5 Number of closest traffic lights

Path Target Features
features waypoints Target path features included
num_points 10 Number of target path points
points_gap 5 Gap between target path points

D Training hyperparameters649
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Table 10: Observation configurations used in experiments for the Road function.

Parameter Value Description

obs_past_num_steps 5 Number of past steps included in observation

Object Features
features waypoints, velocity, Object features included

yaw, size, valid in observation
num_closest_objects 8 Number of closest objects to consider

Roadgraph Features
features waypoints, direction, valid Roadgraph features included
interval 2 Sampling interval for waypoints
max_meters 70 Maximum distance of roadgraph features
roadgraph_top_k 200 Top K roadgraph elements
meters_box front: 70, back: 5, Observation bounding box

left: 20, right: 20 dimensions in meters

Traffic Light Features
features waypoints, state, valid Traffic light features included
num_closest_traffic_lights 5 Number of closest traffic lights

Path Target Features
features waypoints Target path features included
num_points 10 Number of target path points
points_gap 5 Gap between target path points

Table 11: Observation configurations used in experiments for the Lane function.

Parameter Value Description

obs_past_num_steps 5 Number of past steps included in observation

Object Features
features waypoints, velocity, Object features included

yaw, size, valid in observation
num_closest_objects 8 Number of closest objects to consider

Roadgraph Features
features waypoints, direction, valid Roadgraph features included
interval 2 Sampling interval for waypoints
max_meters 70 Maximum distance of roadgraph features
roadgraph_top_k 300 Top K roadgraph elements
meters_box front: 70, back: 5, Observation bounding box

left: 20, right: 20 dimensions in meters

Traffic Light Features
features waypoints, state, valid Traffic light features included
num_closest_traffic_lights 5 Number of closest traffic lights

Path Target Features
features waypoints Target path features included
num_points 10 Number of target path points
points_gap 5 Gap between target path points
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Table 12: Observation configurations used in experiments for the Segment function.

Parameter Value Description

obs_past_num_steps 5 Number of past steps included in observation

Object Features
features waypoints, velocity, Object features included

yaw, size, valid in observation
num_closest_objects 8 Number of closest objects to consider

Roadgraph Features
features waypoints, direction, Roadgraph features included

types, valid in observation
max_meters 50 Maximum distance of roadgraph features
meters_box front: 50, back: 5, Observation bounding box

left: 20, right: 20 dimensions in meters
max_num_lanes 10 Maximum number of lanes
max_num_points_per_lane 20 Maximum points per lane

Traffic Light Features
features waypoints, state, valid Traffic light features included

Path Target Features
features waypoints Target path features included
num_points 10 Number of target path points
points_gap 5 Gap between target path points
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Table 13: Algorithms hyperparameters used in experiments

Behavioral Cloning (BC)

Hyperparameter Value Description

Total Timesteps 200M Total environment steps done during training
Learning Rate 1e-4 The step size for optimization
Batch Size 64 Number of samples per gradient update
Grad updates per steps 32 Number of gradients backprop per steps
Loss function Log_prob Cross entropy loss

SAC

Total Timesteps 25M Total environment steps done during training
Learning Rate 1e-4 The step size for optimization
Batch Size 64 Number of samples per gradient update
Discount Factor 0.99 Discount factor for future rewards
Entropy rate α 0.2 Entropy factor for exploration
Grad updates per steps 8 Number of gradients backprop per steps
Buffer size 1_000_000 Size of the replay buffer
Learning start 50_000 Number of random actions to prefill the replay buffer

BC SAC

Total Timesteps 25M Total environment steps done during training
Imitation frequency 8 Frequency where we apply imitation loss instead of RL loss
RL Learning Rate 1e-4 The RL learning rate
Imitation Learning Rate 5e-5 The IL learning rate
Batch Size 64 Number of samples per gradient update
Discount Factor 0.99 Discount factor for future rewards
Entropy rate α 0.2 Entropy factor for exploration
Grad updates per steps 8 Number of gradients backprop per steps
Buffer size 1_000_000 Size of the replay buffer
Learning start 50_000 Number of random actions to prefill the replay buffer

PPO

Total Timesteps 200M Total environment steps done during training
Learning Rate 1e-4 The step size for optimization
Batch Size 512 Number of samples per gradient update
Num minibatches 16 Number of sub samples per gradient update
Discount Factor 0.99 Discount factor for future rewards
Entropy rate α 0.2 Entropy factor for exploration
Grad updates per steps 4 Number of gradients backprop per steps
GAE factor 0.95 GAE factor for loss computation
Clip factor ϵ 0.2 Clipping factor
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Table 14: Encoders and decoders hyperparameters used in experiments

MLP policy decoder

Hyperparameter Value Description

Layer sizes [256, 64, 32] Number and size of layers
SAC activation fn relu non-linear activation function
PPO activation fn tanh non-linear activation function
Parametric action distribution RL NormalTanh Action distribution for RL
Parametric action distribution BC Softmax Action distribution for IL
IL activation fn continuous tanh non-linear activation function

MLP value decoder

Layer sizes [256, 64, 32] Number and size of layers
SAC activation fn relu non-linear activation function
PPO activation fn tanh non-linear activation function

MGAIL encoder

Embedding sizes [256,256] Number and size of embedding layers
dk 64 dimensionality features of dense encoders
num latents 16 size of the learnable latent entry
cross num heads 2 number of attention heads
cross head features 16 number of features for each attention head
ff mult 2 features multiplicator for the feedforward layer size

Perceiver encoder

Embedding sizes [256,256] Number and size of embedding layers
depth 4 Number of attention layers in the loop
num latents 16 size of the learnable latent entry
num self heads 2 number of self attention heads
self head features 16 number of features for each self attention head
cross num heads 2 number of cross attention heads
cross head features 16 number of features for each cross attention head
ff mult 2 features multiplicator for the feedforward layer size

MTR encoder

Embedding sizes [256,256] Number and size of embedding layers
dk 64 dimensionality features of dense encoders
num latents 16 size of the learnable latent entry
num self heads 2 number of self attention heads
self head features 16 number of features for each self attention head
ff mult 2 features multiplicator for the feedforward layer size
k 8 number of nearest objects in attention mechanism

Wayformer encoder

Embedding sizes [256,256] Number and size of embedding layers
dk 64 dimensionality features of dense encoders
num latents 16 size of the learnable latent entry
num self heads 2 number of self attention heads
self head features 16 number of features for each self attention head
depth 2 Number of attention layers in the loop
ff mult 2 features multiplicator for the feedforward layer size
fusion type late late, early or hierarchical fusion attention mechanism

24


	Introduction
	Related Work
	Reinforcement Learning for Autonomous Driving
	Frameworks for mid-to-end Autonomous Driving

	The V-Max Framework
	Rules of the Game
	Training RL Agents
	Evaluation and Benchmarking

	Case Study: RL Design Choice for Autonomous Driving
	Benchmark
	Planning algorithms
	Robustness analysis

	Conclusion
	Metrics catalog
	Waymax Metrics
	nuPlan Metrics
	V-Max Metrics

	Observation functions
	Observation Configurations
	Training hyperparameters

