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ABSTRACT

The field of Language Reasoning Models (LRMs) has been very active over the
past few years with advances in training and inference techniques enabling LRMs
to reason longer, deeper, and more accurately. However, a growing body of
studies show that LRMs are still inefficient, over-generating verification and self-
reflection steps. To address this challenge, we introduce the Step-Tagging frame-
work, a lightweight sentence-classifier enabling real-time annotation of the type
of reasoning steps that an LRM is generating. To cover the wide space of reason-
ing behaviors, we introduced ReasonType: a novel taxonomy of reasoning steps.
Building on this framework, we demonstrated that careful online monitoring of
the count of specific steps can produce effective interpretable early stopping cri-
teria of LRM inferences. We evaluate the Step-tagging framework on three open-
source reasoning models across two standard benchmark datasets, MATH500 and
GSM8K, and achieve 30 to 40% token reduction while maintaining comparable
accuracy to standard generation. This work offers a novel way to increase control
over the generation of LRMs, and a new tool to study behaviors of LRMs.

1 INTRODUCTION

For the past few years, the field of Language Reasoning Models (LRMs) has experienced significant
growth in terms of capabilities. Initiated by the pioneering work on model prompting such as Chain-
of-Thought (Wei et al., 2023) and Self-Consistency (Wang et al., 2023), Inference Time Scaling has
emerged as a popular field with the goal of making models more accurate at reasoning. At the same
time, fundamental work on Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT) as part
of Training Time Scaling has led to the release of strong reasoning models.

However, recent surveys have shown that LRMs need to generate a very large number of tokens—
several thousands—in order to generate an accurate answer on challenging questions (Qu et al.,
2025; Chen et al., 2025b; Sui et al., 2025a). This behavior makes reasoning models extremely ineffi-
cient - scaling in both compute resources and inference time. Although recent works have suggested
solutions to this problem, most of them overlook the possibility of monitoring the output generated
by a model in order to dynamically manage the reasoning of the model, leaving a significant gap in
the literature. To address this challenge, this paper aims to offer a new perspective on the efficiency
of LRMs by focusing on online monitoring of models. Our contributions are as follows:

• Formalization of the Reasoning step concept: From the literature, we have observed numerous
definitions of reasoning steps. We first present a comprehensive review and formalize a more gen-
eralized definition of what constitutes a reasoning step for LRMs. We then propose ReasonType,
the first taxonomy of reasoning steps, enabling a structured identification of reasoning behaviors.

• Step-Tagging module: We introduce the Step-Tagging module (see Figure 1), an online
lightweight sentence classifier capable of identifying the nature of each step that the LRMs are
generating. This novel framework offers a tool to systematically monitor the generation of LRMs.

• Early-Stopping Framework: We observed that LRMs often generate the correct answer early in
the output sequence. Leveraging the Step-Tagging module, we found that the type of reasoning
steps plays a role in determining the early-stopping condition. Based on these observations, we
built an interpretable early-stopping framework that dynamically stops token generation based on
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Standard LRM inference

user

LRM

What is the result when the greatest common 
factor of 6432 and 132 is increased by 11?

Okay, so I need to find the greatest common factor (GCF) of 6432 and 132, and then increase that GCF by 11. 
Hmm, let me remember how to find the GCF of two numbers. 

[700 tokens]
I think that's solid. I don't see any mistakes in my calculations, and both methods gave me the same GCF. So, 

increasing it by 11 is straightforward. 12 + 11 is 23.
Final Answer: The result is \\boxed{23}. <\/think> [...] 

Monolithic answer from the model | Contains thousand of tokens

Step-Tagging Framework 

user
What is the result when the greatest common 
factor of 6432 and 132 is increased by 11?

LRM

Lightweight

Tagging 

module

Okay, so I need to find the greatest common factor (GCF) of 6432 and 132, and then increase that GCF by 11. 
Hmm, let me remember how to find the GCF of two numbers. I think the best way is to use the Euclidean 
algorithm because it's systematic and works well for larger numbers.

First, let me write down the two numbers: 6432 and 132. Since 6432 is much larger than 132, I'll start by 
dividing 6432 by 132 and find the remainder. Then, I'll repeat the process with 132 and that remainder until the 
remainder is zero. The last non-zero remainder will be the GCF.

So, let's divide 6432 by 132. Hmm, I need to figure out how many times 132 goes into 6432. Maybe I can 
simplify this division. Let me see, 132 times 50 is 6600, which is more than 6432. So, it must be a little less 
than 50. Let me try 48 times 132. 48 times 100 is 4800, 48 times 32 is 1536, so adding those together, 4800 + 
1536 is 6336. Hmm, 6336 is less than 6432. So, 132 times 48 is 6336. Subtracting that from 6432: 6432 - 6336 
is 96. So, the remainder is 96.

Now, to find the GCF, we take the lowest power of the common prime factors. The common primes between 
6432 and 132 are 2 and 3. In 132, 2 is squared, and in 6432, 2 is to the fifth power. So, we take the lower one, 
which is 2^2. For 3, both have 3^1. So, GCF is 2^2 * 3^1 = 4 * 3 = 12. Yep, that matches my earlier result.

Step 1
Definition Recall

Step 2
Problem Re-statement

Step 3
Intuition

[Intermediate tags] [Intermediate steps] 

Step 13
Verification

Ta
g 

Tr
ac

ke
r

 

Tagged steps - monitor the generation process by annotating the reasoning steps 

Figure 1: Step-Tagging: a framework for monitoring the generation of LRMs - example on sample 39 from
MATH500 test with DS-Qwen14B, using the ReasonType taxonomy - seed 42

reasoning steps types and counts, calibrated on both models and problem complexity. Tested on
three open-source LRMs across two reasoning datasets, our framework reduced token generation
by 30-40% while maintaining a comparable accuracy.

The paper is organized as follows. We first review research on LRM efficiency. We then propose a
definition of a reasoning step and a taxonomy of reasoning step types. Building on this, we present
our Step-Tagging module that can segment and label the reasoning steps within the output of an
LRM. We also propose an early stopping mechanism, based on frequency constraints defined on
reasoning step types. Finally, we present a set of experiments that validate our framework.

2 RELATED WORK

To render models less verbose and more efficient, Train and Test Time Scaling approaches have
been explored (Qu et al., 2025; Li et al., 2025; Chen et al., 2025a). Also, recent work has explored
monitoring the generation of LRMs. The Related-Work section in the Appendix C complements this
section, defining the inefficiency problem of reasoning models and its origins.

Efficient Reasoning through Training. Using SFT approaches, work such as Xia et al. (2025)
explored fine-tuning models on compressed reasoning traces to limit the verbosity of LRM genera-
tion. Other papers have suggested various RL algorithms designed to make models more efficient.
For instance, Luo et al. (2025); Team et al. (2025); Yu et al. (2025) showed that including a length
component in the reward function leads to more efficient training and inference.

Efficient Reasoning during Inference. Researchers have also explored Inference Time Scaling
technique to increase the efficiency of models (Qu et al., 2025). Model Switch uses a router mod-
ule to select small or large models for inference depending on the complexity of the problem (Ong
et al., 2025). Similarly, System Switch looked at dynamically selecting inference settings based on
the problem (Aytes et al., 2025). Length Budgeting aims to reduce the budget allocated to the gen-
eration of answers. Works such as Lee et al. (2025); Han et al. (2025); Xu et al. (2025) showed that
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careful prompt engineering can lead to more efficient generation compared to standard inference. In
addition, Pu et al. (2025) demonstrated that calibration experiments can be performed to estimate
the optimal number of tokens to solve particular problems. However, these techniques are hardly
interpretable since they rely on either prompt engineering or black box techniques.

Monitoring LRM generation. We observe an emerging theme of research on monitoring LRM
generation at a step level. Specifically, Lee & Hockenmaier (2025) proposes a taxonomy of reason-
ing traces evaluators. However, the authors acknowledged that existing monitoring approaches are
not adapted to complex reasoning traces. Moreover, Zeng et al. (2025) showed that monitoring the
generation of LRMs can enhance their performance by balancing both Exploration and Exploitation.
But their technique does not monitor the reasoning traces at a step-level, and requires many infer-
ence trials. As a result, existing works often overlook the question of how to dynamically monitor
LRMs reasoning during single inferences. To better understand how the generation reflects on the
model’s reasoning, we must begin by precisely defining what constitutes a reasoning step.

3 HOW TO DEFINE A REASONING STEP?

The concept of a reasoning step is central in evaluating and improving the generation of LRMs.
However, defining a reasoning step remains a non-trivial problem. As highlighted by Yao et al.
(2023); Lee & Hockenmaier (2025); Cao et al. (2025), the step segmentation depends on the models,
the problem, and different research goals lead to various definitions. In this section, we survey
existing approaches and select the one that leads to the most robust definition.

Token-per-token generation. From Schuurmans et al. (2024), we can formalize the auto-regressive
generation of text of LLMs, and thereby LRMs. We assume x1:s is an (1, s) dimensional vector
containing the tokens of the input sequence, where each token xi ∈ V = {v1, ..., vV }, |V | being the
size of the vocabulary. We can approximate the next-token generation as following:

Pπθ
(y|x1:s) ≈

n∏
i=1

Pπθ
(yi|x1:s+i−1) (1)

where Pπθ
(y|x1:s) is the probability of generating the output sequence y = y1:n = xs+1:n+s in an

auto-regressive manner, and πθ is the model parametrized by θ.

3.1 WHAT IS A REASONING STEP?

Rather than viewing the model’s output as a monolithic text sequence, recent work has shifted toward
decomposing generation of LRMs into discrete steps. This decomposition enables finer-grained
analysis of model behavior and facilitates targeted interventions. From the literature, we identified
four principal methods to segment the output from a model into distinct thoughts (Appendix E):

• Token or sentence level: Näively, thoughts can be decomposed into token (Yao et al., 2023) or
sentence level (Fu et al., 2023). However, for complex reasoning problems, these definitions are
not ideal since reasoning steps are composed of multiple sentences in mathematical reasoning.

• Paragraph level: LLMs and LRMs such as Deepseek-R1, QwQ, or GPT are natively generating
back-to-line symbols between two thoughts (e.g. .\n\n). Since this observation is model ag-
nostic, it has been adopted by several works (Cao et al., 2025; Park et al., 2024; Lightman et al.,
2023). However, Cao et al. (2025) emphasized that this approach on its own is not enough to cor-
rectly distinguish each steps. Models tend to output these symbols frequently, and so using them
as delimiters for reasoning can result in over-estimating the real number of steps. Figure 8 in the
Appendix E supports this observation, where more than 10 back-to-line symbols are generated for
the same type of step.

• Dynamic steps using special token: Another common approach is to prompt the model to force
the generation of special tokens to split the thoughts (e.g. <next step>). While some works
have used this strategy (Zelikman et al., 2024; Sui et al., 2025b; Paul et al., 2024), it suffers from
low reliability and efficiency. Indeed, this approach artificially generates more tokens, and prompt
engineering could cause mistakes since models are not pre-trained to perform this sub-task.

To clearly identify and monitor reasoning steps, most approaches are insufficient to split the reason-
ing traces of models. This motivated us to find an alternative approach to segmenting the traces.

3
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3.2 MODEL AGNOSTIC REASONING STEP DEFINITION

Since most models separate paragraphs and thoughts using back-to-line symbols, using this token
is a useful starting point to segment reasoning steps. However, to mitigate the over-segmentation
problem caused when back-to-line symbols are generated too frequently, Cao et al. (2025) set a
minimal number of tokens k per reasoning step and merge reasoning steps shorter than k together.
We adopt a similar definition of a reasoning step: a step is delimited by “.\n\n”, and we set a
minimal number of tokens k on the size of each step to avoid considering many small steps.

Step Generation. As introduced in the previous section, we decompose the output sequence of
LRMs into discrete reasoning steps. Building upon Cao et al. (2025) and the definition in Equation
1, we first formalize the notion of stepwise generation. Let y = y1:n ∈ V n be the output token
sequence generated by the model over the vocabulary V . We define a reasoning delimiter token
α ∈ V , such as α = “.\n\n”. Let R = {r0 = 1, . . . , ri, . . . , rT ′ = n} denote the indices in y
corresponding to the occurrence of α in y. r0 and rT ′ correspond to the first and last indexes of y1:n.
Based on these indices, we define a sequence - of length T ′ - of reasoning steps formed by y1:n with
the delimiter α:

S∗ = {s∗1, . . . , s∗i , . . . , s∗T ′}, such as s∗i = yri−1:ri (2)
where each step s∗i corresponds to a sub-part of the full output y. However, we observe that models
tends to generate back-to-line symbols frequently. To reduce redundancy and noise from short or
fragmented steps - highlighted by Cao et al. (2025) - we introduce a minimum token threshold k ∈ N
such as:

S = {s1, . . . , sT }, with |sj | ≥ k for all j ∈ [1, T ]. (3)
For any original step s∗i ∈ S∗ such as |s∗i | < k, we continue the generation until the merged span
reaches another delimiter and its length exceeds the threshold k. In this formulation, each new
reasoning step is initiated by the generation of α, offering a more consistent definition between
models. Algorithm 1 in Appendix F.1 formalizes our definition.

4 STEP-TAGGING MODULE

In the previous section, we formalized the method we selected to segment reasoning steps of LRMs.
Building on this, we introduce Step-Tagging, a lightweight module capable of identifying, discrimi-
nating, and tagging reasoning steps in real-time during inference.

Objective. Our definition of a reasoning step enables users to segment reasoning steps within model
outputs. However, this definition alone does not allow the user to annotate the segmented steps
with reasoning types. This annotation would enable users to track logical transitions within model
outputs. To do this, we must first define a tag dictionary Ttags (i.e., a label space of reasoning step
tags) that covers the types of reasoning steps generated by models. Essentially, given a sequence of
reasoning steps S = {s1, s2, . . . , sT }, we wish to label each step si with a tag τi ∈ Ttags. Formally,
we are looking to construct a step-tagging function ϕ such as:

∀ i ∈ [1, T ], ϕ(si) = τi (4)

where si ∈ S is a reasoning step from the full output sequence y, where |si| ≥ k, ϕ is the step-
tagging function, and τi ∈ Ttags is the reasoning tag associated to the step si.

Taxonomy of the type of steps. To enable fine-grained monitoring of reasoning behavior, we need
to know the different types of reasoning steps that are typically generated by LRMs (i.e., we need to
define Ttags). To do so, we created a taxonomy based on the outputs of both DeepSeek-R1-Distill-
Llama-8B (DeepSeek-AI et al., 2025) and QwQ-32B (Team, 2025) models.

Inspired by prior work on model behavior analysis (Galichin et al., 2025; Kuznetsov et al., 2025),
we first created a prompt to identify distinct types of reasoning steps in the traces (see Appendix I.1).
We then sampled 40 reasoning traces from the MATH500 train dataset (covering two samples per
difficulty level for each model) and using our prompt submitted the traces to GPT-4o-mini (Ope-
nAI et al., 2024). The prompt resulted in a series of different step-types. We merged overlapping
categories, to construct a taxonomy that reflects the temporal and reasoning progression of model’s
traces. We refer to this taxonomy as ReasonType (Figure 2) encompassing 13 categories, includ-
ing early-stage behaviors such as Problem Re-statement, later reasoning stages like Verification and
Exploration. To validate our taxonomy, we conducted ablation studies (see Appendix H).
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ReasonType: a Taxonomy of Reasoning Steps

1. Problem Re-statement

4. Formula Substitution

8. Verification 10. Alternative Approach / Exploration9. Heuristic / Intuition 11. Interpretation 12. Self-Talk

13. Final Conclusion 14. Other

6. Edge Case 7. Pattern Recognition

2. Context Repetition 3. Definition Recall

5. Symbolic Transformation

Early reasoning (Setup)

Mid-reasoning (Calculus and problem solving)

Late-reasoning (Analysis and Reflexion)

End-reasoning (Conclusion)

Figure 2: ReasonType - A taxonomy of reasoning step types as per gpt-4o-mini

Early-stopping criteria. In the following section, we see that LRMs tend to generate the answer
early in the output sequence, with step-types following an ordered pattern. Based on this observation,
the central challenge that we address is to determine when to stop the generation of LRMs based on
step tags, creating an interpretable stopping criterion. Assuming that our Step-Tagging framework
can effectively monitor the steps (Equation 4), we can define a constraint on the frequency of a given
step type. Each constraint operates online, over a running sequence of reasoning steps Srunning =
{s1, . . . , sj}, where each step si is associated with a tag τi ∈ T . We define the constraint cτ∗ as:

cτ∗(Srunning, δ) = 1[ffreq(Srunning, τ
∗) ≤ δ] with ffreq(Srunning, τ

∗) =

j∑
i=1

1[τi = τ∗] (5)

where cτ∗(Srunning, δ) is the constraint on the tag type τ∗ over the step-sequence Srunning being gen-
erated, given the threshold δ. ffreq(Srunning, τ

∗) is the occurrence of the type-step τ∗ over the running
sequence Srunning. While the constraint cτ∗ is satisfied, the generation continues. If the constraint is
violated, the generation stops (see Appendix F.2 for more implementation details).

To facilitate the evaluation of early-exit answers, we prompted the models right after the last step
being generated, and allowed an additional budget of 100 tokens. We used the following prompt:
“\n\n I am confident in my answer. Here is the final answer.\n\n **Final Answer**”. We bor-
rowed this approach from Muennighoff et al. (2025), who showed that this intervention helped the
model to provide explicitly its current best answer - thereby facilitating evaluation.

5 EXPERIMENTAL SETTING

Our paper contains two objectives. First, our goal is to prove that lightweight classifiers can effec-
tively monitor the generation of LRMs. Furthermore, we show that the Step-Tagging framework
can be used to implement an interpretable early-stopping criterion to make the generation of LRMs
more efficient. We will first motivate our choices of datasets and inference settings followed by the
step-tagging pipeline and the choice of metrics to measure the performance of this pipeline.

Datasets. To assess our approach, we selected two state-of-the-art reasoning datasets:

• MATH500 (Hendrycks et al., 2021): This dataset includes 12, 500 mathematical questions span-
ning 5 different levels of complexity, allowing diversity in analysis of efficiency of reasoning be-
haviors. We selected the curated version from Lightman et al. (2023), containing 500 test samples
and selected 1, 000 training samples to form an equivalent distribution of complexity level.

• GSM8K (Cobbe et al., 2021): This dataset contains 8, 792 mathematical questions. We selected
3, 000 train instances, and the original 1, 318 test samples. Overall, this dataset is more homo-
geneous where questions involve logical mathematical reasoning, and include a larger number of
questions - which is good for benchmarking models.

Model selection. To apply our framework a user must have access to the fine-grained reasoning
traces of LRMs. However, many high-performing closed-source models (such as, o3 and Claude
3.7) do not expose raw reasoning traces. Instead, these models output summaries of thinking tokens
generated, which can bias the estimation of their efficiency compared to open-source models. In
contrast, open-source models like DeepSeek-R1 and QwQ consistently provide reasoning traces.
For this reason, we focus our analysis exclusively on DeepSeek-R1-Distill-Llama-8B, DeepSeek-
R1-Distill-Qwen-14B and QwQ-32B, which offer the granularity needed to monitor the reasoning
process. This choice is motivated by their variety in term of size and performance, full open-source
availability, and diversity in providers.
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Inference setting. To monitor the steps and intervene in the generation process, we suggest a new
definition of the generation process of LRMs. We assume that each model generates one token at a
time, and we split the steps dynamically. However, for the purposes of our experiments instead of
re-designing the generation process, we performed standard inference and applied our Step-Tagging
and Early-Stopping algorithms offline. To ensure the robustness and reproducibility of our approach,
we generated five outputs per test sample using fixed random seeds (namely 40, 41, 42, 43, and 44),
with deterministic decoding.

Metrics. To assess the model’s performance on challenging reasoning tasks, the Avg@k, Pass@k,
and Cons@k are common metrics (Chen et al., 2021; 2025a; Yu et al., 2025). The Pass@k measures
the proportion of the samples where at least one of k attempts leads to the correct answer, while the
Cons@k consider a sample correct if all k attempts are correct. Since we are interested about
both performance and robustness of our approach, we selected the Avg@5, the Pass@5 and the
Cons@5 as the quantitative metrics. Assessing the performance of LRMs on mathematical questions
is challenging. This is due to the open nature of the question. For our experiments, we selected
the Math-Verify1 library which is a common metric to assess mathematical problems. It uses text
extraction and formal verification. This metric also reported strong correctness compared to other
evaluation methods such as Harness (Zhibin Gou, 2024) or Qwen-Math Verifier (Huang et al., 2025).

Baselines. To assess the effectiveness of our early-stopping approach, we define two baselines:

• Ideal Early stopping - IES: We observe a growing understanding that, up to a token-budget,
thinking longer may be leading to worse results. Muennighoff et al. (2025) observes that certain
models achieved correct answers at the beginning, but sometimes backtracked to a wrong answer.
Inspired by this work, we define the Ideal Early Stopping, which prunes the remaining steps after
the first occurrence of the correct answer based on our metric - if any. In this case, this baseline is
theoretical since the ground truth label is needed for each inference (see Appendix J).

• Prompt-guided efficiency - Pguided: We also observe that LRMs are sensitive to the input prompt
(Lee et al., 2025). In this case, we compare our framework with user-prompt and system-prompt
variants, with Zero-Shot and Few-Shot prompts that aim to reduce the reasoning computation
while retaining accuracy. We explicitly instructed the models to not generate verbose output, or
over-verification steps. We selected 4 variants, namely: zero-shot user and system prompt, and
few-shot system prompt with 1 and 3 examples: P(0)

user, P(0)
system, P(1)

system, P(3)
system, respectively. The

prompts used to establish these baselines are listed in Appendix J.

5.1 IMPLEMENTATION OF THE STEP-TAGGER MODULE

Training data generation. Given that our reasoning step taxonomy was created using GPT-4o-
mini OpenAI et al. (2024) the most direct way to label a reasoning trace would be to use GPT-
4o-mini. However, this GPT-4o-mini annotation is costly, each step requiring more than a second
to be annotated (see Table 6 in Appendix I.2). Consequently, instead, we used GPT-4o-mini to
label a dataset of reasoning traces with the labels from the taxonomy that we use to train lighter
weight reasoning step classifiers. We constructed training datasets by running each LRMs on 1, 000
samples from MATH500 train and 3, 000 samples from GSM8K train datasets (with a seed of 42).
For each step si in generated outputs, we prompted GPT-4o-mini to assign a tag τi (Appendix I.1).

Sentence classifiers. We selected the bert-base-uncased sentence classifier (Devlin et al.,
2019) to construct our Step-Tagging framework, including a single hidden layer. Given the large
and fine-grained nature of our taxonomy (13 distinct step types), training a multi-class classifier is
challenging due to significant class imbalance. To address this, we trained separate binary classifiers
for each step-type. This approach notably improved detection accuracy across low-frequency cate-
gories, and fits our definition of early-stopping constraint: one step-type per early-stopping criteria.
We used a balanced cross-entropy to enhance the performance of the models on low-represented
classes. We implemented an early-stopping criteria, and a maximum of 5 epochs. The batch size is
16 and we used an AdamW optimizer with a learning rate of 2.10−5. To evaluate the performance of
our classifiers, we computed the Macro-F1 and Micro-F1 on the test datasets. While the Macro-F1
helps to identify the classifier’s ability to detect rare classes, the Micro-F1 offers a more global view
on the step detector’s performance across all steps.

1https://github.com/huggingface/Math-Verify
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5.2 STEP-SPLIT SETTINGS

Minimal step size k. To apply our definition of reasoning steps, users first need to set the value of k.
From the literature, this task is not straightforward since Cao et al. (2025) uses different values of k
based on the problems and models (e.g. k ≈100s). The value of k directly affects the granularity of
the monitoring. A small value would imply very small steps, sometimes splitting the same thoughts
between many steps, leading to extremely frequent monitoring. Conversely, a large value of k would
imply significantly large steps, including multiple thoughts and hence leading to biased monitoring.

Selecting the optimal k value. To balance fine-grained monitoring and reasoning efficiency, we
rely on two proxies to determine the value of k. First, the IES accuracy provide us a way to assess
if individual steps contains more than one thought. Second, the Step-Tagger performance informs
us about the semantic meaning of steps under a given a value of k. Based on three ablation studies
that we conducted in Appendix G, we set k to 60, 30 and 100 for DS-Llama8B, DS-Qwen14B and
QwQ-32B, respectively.

5.3 EARLY-STOPPING CONSTRAINTS

Early-Stopping calibration using a Pareto curve. To select the correct constraints (tag-type τ
and threshold δ) we rely on the training datasets, and on the synthetic generated tags. Figure 3
presents the number of tokens vs. accuracy of every tag-type with values of threshold ranging from
0 to 20, for the DS-Llama8B model on our train MATH500 per complexity level. We first observe
that LRMs tend to generate an increasing number of tokens when the complexity of the prompt
increases. Figure 3 also shows that early-stopping constraints are dependent on the complexity. For
this reason, we selected one constraint per complexity level for the MATH500 dataset, while for
the GSM8K dataset, we chose a unique constraint since we assume problems to carry equivalent
complexity. Furthermore, we observe that constraints form a Pareto curve (Lee et al., 2025), and
each step-types results in different trade-off between accuracy and token-count (see Appendix H.3).
On the strength of this observation, we set three Early-Stopping criteria that target specific trade-
offs between accuracy and efficiency: ST-ES 95%, ST-ES 90% and ST-ES 85%. For each setting,
we select the tag-type and threshold that lies closest to the Pareto frontier. Selected constraints and
calibrations for the other models and datasets are shown in the Appendix K.

Figure 3: Early-Stopping selection using Pareto - DS-Llama8B on MATH500 train - seed 42

LRM Router: dynamic inference. The MATH500 dataset involves various complexity levels.
For efficient inference, dynamic routing is needed. However, in real-world settings, the complexity
level of a question is sometimes unknown. To address this challenge, we grouped levels {1, 2} and
{3, 4, 5} into two complexity levels, and identified common constraints for both clusters. To route
the inference settings, we trained a BERT classifier on the input problem, using the full MATH500
train dataset. Performance of this classifier is reported in Table 8, Appendix L. For the MATH500
dataset, we included a fourth Early-Stopping criteria, namely ST-ES Router.

6 MONITORING LRMS USING STEP-TAGGER

To validate our taxonomy, we analyse the distribution and sequence of the step-tag labels generated
by GPT-4o-mini, then we evaluate the performance of our sentence classifiers.

Reasoning patterns. First, we observe that our Step-Tagging framework allows us to clearly follow
the reasoning progression of the model. Figures 34 and 35 in the Appendix I.2 present an analysis
(and validation) of reasoning patterns exhibited by models based on the step-types identified in the
reasoning traces generated by the models.
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Step frequency. Figure 4 presents
the frequency of each step-type in the
GPT-4o-mini labels. The plot shows
a high frequency of Verification, con-
firming our observations from the lit-
erature. We also note that the fre-
quency seems to depend on the prob-
lem complexity and models. For DS-
Llama8B and DS-Qwen14B, Formula
Substitution steps are very occurrent
for GSM8K (≈60%), while Exploration
and Self-Talk steps are more frequent for
QwQ-32B on both datasets.

Figure 4: Step-type distribution from GPT-4o-mini

Performance of step monitoring. Figure 5 presents the performance of the binary step-classifiers
on the selected step-types constraints for the DS-Llama8B model. We observe that the Micro-F1
is generally high across most steps for all models across all datasets - ranging from 0.89 to 0.97,
which demonstrates that the classifiers are good at detecting step-tags. Moreover, we also reported
the macro-F1 score since the distribution of step-types is highly imbalanced (see Figure 4).

We observe lower scores, notably for Context
Repetition with 0.65 (Context Repetition is a rare
step type, representing 1.7% of the labels, and so
we attribute this relatively low score to label im-
balance). However, the scores remain relatively
high, particularly for Verification and Exploration. Figure 5: Step-Tagger performance - DS-Llama8B

We interpret the strong performance of the classifiers as validating our reasoning step taxonomy
in the sense that it indicates that the step types are distinct (i.e., they reflect types with separable
properties). Figures 42 and 43 in the Appendix M present similar results for DS-Qwen14B and
QwQ-32B, respectively.

7 STEP-TAGGING EARLY-STOPPING (ST-ES) CRITERIA

Next, we show in this section that Step-Tagging modules can effectively be used as an early-stopping
criteria. Figure 6 presents the average token count against the Avg@5 for the three LRMs on the
MATH500 and GSM8K datasets. Each plot compares the performance trade-offs between the base-
lines and the ST-ES criteria. Table 9 in the Appendix O reports the quantitative metrics of the
baselines and our approach on the three models, for the 5 seeds that we selected.

Pguided baselines. We first notice that simple instruction on the models results in strong token-
reduction, achieving 20% to 60% saved tokens across configurations. Specifically, it seems that the
baselines are giving much better results on QwQ-32B, and the system-prompt variants generally
lead to more token-reduction for the Deepseek models.

Strong performance of the ST-ES. Next, we observe that our ST-ES criteria effectively leads to
more efficient generation, with all ES-ST settings lying on the left side of the Efficiency line com-
pared to the Standard inference for all models. Furthemore, the ST-ES criteria appear to outperform
most Pguided baselines for both Deepseek models.

Indeed, we observe that our ST-ES criteria is performing well on the DS-Llama8B model on
both datasets since almost all ST-ES configurations lies on the Pareto front. On MATH500 (Figure
6(a)), ST-ES Router and ST-ES 85% achieved approximately the same token reduction as P (0)

system and
P (3)

system (27% and 34%, respectively), while achieving higher accuracy. On GSM8K (Figure 6(d)),
ST-ES 90% achieves the same token reduction as P (1)

system (around 41%) while maintaining higher
Avg@5 (0.799 vs. 0.754, respectively). Furthermore, results on the DS-Qwen14B model also show
good performance of criteria leading to significant token-reduction (10 to 32%), with some config-
urations lying on the Pareto front. However, the Pguided settings appears to lead to more efficient
inference, notably for MATH500. In addition, the criteria suffers from more accuracy loss, as the
ST-ES Line are more vertical than for DS-Llama8B.
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(a) DS-Llama8B on MATH500 (b) DS-Qwen14B on MATH500 (c) QwQ-32B on MATH500

(d) DS-Llama8B on GSM8K (e) DS-Qwen14B on GSM8K (f) QwQ-32B on GSM8K

Figure 6: Number of Tokens vs. Avg@5 - Pguided Baselines vs. ST-ES criteria - The efficiency lines
in red highlight the configurations that improve the efficiency relative to the standard inference,
while the Pareto frontiers in yellow show the most efficient approaches. The Step-Tagging Early-
Stopping framework achieved up to 30 to 40% of token-count saving, with minimal accuracy loss.

ST-ES faces challenges on the QwQ model. In contrast, the ST-ES criteria shows nuanced results
on the QwQ-32B model. Baselines are stronger, and for the same token gains as the Deepseek mod-
els, the accuracy loss seems higher. We suspect that this observation can be attributed to two factors.

First, Figure 7 presents the average per percentage of the full output sequence for the three models.
DS-Llama8B and DS-Qwen14B appear to generate correct answers earlier in their output sequences,
but sometimes continue reasoning, leading to the destruction of the correct current answer. In par-
ticular, this is the case on easier problems (Level 1-3 MATH500) and GSM8K, where a drop in the
accuracy can be observed at around 40-50% stopping. By contrast, QwQ-32B exhibits more stable
accuracy gains as the token count increases, which suggests that the model is more conservative of
its current solution in the way it constructs its response.

(a) DS-Llama8B (b) DS-Qwen14B (c) QwQ-32B

Figure 7: Early-Stopping Avg@5 per percentage of the full output sequence

Second, we suspect that larger models are better at controlling the length of their generation using
specific prompts. We observe that the baselines from QwQ-32B are much more efficient than the
ones from both DS-Llama8B and DS-Qwen14B, which are smaller models. We note that Lee et al.
(2025) report similar findings with larger models achieving higher Upper Bound of Token Reduction
when prompted to compress their reasoning.

8 CONCLUSION

This work offers a novel view on both monitoring and efficiency of LRMs. We propose ReasonType,
a novel taxonomy of reasoning steps, and demonstrated that users can effectively track the reasoning
flow of the generation. We validated our taxonomy using the performance of sentence classifiers,
paving the way for more work on the monitoring of reasoning steps.

Furthermore, we show that the frequency of step-type in the reasoning traces can be used as a
reliable and interpretable early-stopping criterion. Through careful monitoring of certain step-types,
our framework can enhance the control of the generation of RLMs enabling a significant reduction
in token generation (up to 40%) while preserving performance.

9
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REPRODUCIBILITY STATEMENT

We took several measures to ensure the reproducibility of our experiments, namely:

• Code availability: The source code that we developed to conduct our experiments is available in
the submission ZIP folder.

• Experimental Settings: We listed in Section 5 the experimental settings. This includes the
datasets used, the models (open-source available on HuggingFace), the parameters of the algo-
rithms, the prompts of the models, the evaluation functions, and the environment setups (seeds
and deterministic decoding). We also included scripts to reproduce the experiments we lead. We
used one or two A100-80GB GPUs to run our experiments.
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A LLM USAGE

We acknowledge the use of Large Language Models for the purpose of our experimentation in our
paper. Specifically, as stated in Section 4, we relied on GPT-4o-mini to set our ReasonType
taxonomy. This approach is borrowed from work on behavior analysis of LLMs, such as Galichin
et al. (2025); Kuznetsov et al. (2025).

B LIMITATIONS AND FUTURE WORK

Our definition of reasoning step is taken from previous work, and relies on empirical evaluation.
We believe that our step taxonomy can enhance the step definition. Future work should look at
leveraging the performance of step-classification to better define reasoning steps.

To train accurate Step-Tagger modules, we suspect that significantly increasing the number of traces
could lead to better results. Also, down-sampling could render our training more effective, and
increase the Macro-F1. In addition, a better definition of a step could lead to more effective moni-
toring. For instance, it would be interesting to explore dynamic values of minimal number of tokens
k, making our approach even more agnostic.

Further, our ST-ES criteria is näive, since it is simply based on frequency monitoring. Some works
have started to explore confidence-based methods on the uncertainty of the logits. We believe that
integrating this knowledge to our criteria could further enhance our early-stopping criteria.

C RELATED-WORK

C.1 LANGUAGE REASONING MODELS (LRMS)

The field of reasoning models has been very active over the recent years. The literature tends to
divide existing models into two distinct categories, namely System-1 and System-2 (Li et al., 2025;
Qu et al., 2025). System-1 models refer to intuitive and fast LLMs. These correspond to standard
instructed LLMs. In contrast, System-2 models are slower and deeper thinking, designed to perform
explicit multi-step thought, and are referred to as LRMs.

Building System-2 models. Driven by substantial research efforts, LLMs now excel at standard
capabilities such as Natural Language Processing (NLP) (Touvron et al., 2023; OpenAI et al., 2024),
code generation (Mishra et al., 2024; Rozière et al., 2024) and Function-calling (Abdelaziz et al.,
2024; Patil et al., 2023). However, traditional LLMs perform poorly on reasoning task as shown
by work such as Williams & Huckle (2024); Seßler et al. (2024); Hosseini et al. (2024). Research
on enhancing LLM reasoning capabilities can be decomposed into two categories: Training, and
Inference Time Scaling (Raschka, 2025).

Training Time Scaling. To enhance the performance of LLMs on reasoning tasks, a substantial
body of work has explored different training techniques. A promising path has been to fine-tune
LLMs on reasoning traces using RL and SFT techniques. For example, Deepseek (Shao et al.,
2024) introduced the Group Relative Policy Optimization (GRPO). Unlike the classic Proximal
Policy Optimization (PPO) (Schulman et al., 2017), GRPO estimates the reward using group scores,
which naturally enhances model’s capability to generate reasoning traces. Nevertheless, this process
renders the models to be much more verbose.

Inference Time Scaling. By contrast, Inference Time Scaling aims to enhance model performance
on reasoning tasks after training. To do so, researchers looked for reasoning instances at sampling
(Wang et al., 2023; Snell et al., 2024), or prompt engineering techniques (Wei et al., 2023; Muen-
nighoff et al., 2025). Since the generation of LLMs is often highly variable, multiple inferences
could lead to a wide diversity of answers. These techniques help the reliability and correctness of
models. However, they comes at the cost of both compute resources and runtime.

C.2 LRMS ARE INEFFICIENT

From the literature, we can observe a strong push for more efficient LRMs. This section will aim to
define the efficiency problem of LRMs, and the underlying gaps in the literature.
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Patterns of inefficiency. It is only recently that a few papers highlighted that LRMs tend to generate
thousands of tokens to solve reasoning problems. Chen et al. (2025b) was the first to formalize this
issue, known as model overthinking, where LRMs tend to generate a disproportionate number of
tokens for fairly simple problems. In this emerging field, work such as Qu et al. (2025) began to look
for evidence of inefficiency and showcased examples where reasoning models exhibit patterns of
inefficiency mainly due to redundancy such as verbose problem reformulation, or over-verification.
Munkhbat et al. (2025) also support this claim and gives a general overview of findings in the field.
Su et al. (2025) claims that majority of tokens generated by LRMs ensure textual coherence rather
than core reasoning. Experimentation presented by Luo et al. (2025) supports the argument that
longer answers from models does not necessarily lead to more accurate answers, and in some cases
can even lead to worse answers. However, to the best of our knowledge, the literature lacks tools to
systematically identify patterns of inefficiency such as redundant generation.

Origins of inefficiency. First, Sui et al. (2025a) observed from the Deepseek paper DeepSeek-
AI et al. (2025) that GRPO training leads to a positive correlation between the accuracy of the
model and the average number of tokens generated. Furthermore, Galichin et al. (2025) highlighted
that LRMs such as Deepseek-R1 tend to generate tokens that are responsible for the generation
of certain types of reasoning steps. Referred to as reasoning tokens (e.g. Wait, Hum, Let me
verify, ...), the authors demonstrated that these tokens are responsible for guiding the generation
of intermediate stages of reasoning, such as pausing the thought, re-evaluating the current answer,
or exploring novel solutions. However, their empirical evaluation on activation steering showed that
the over-reliance on such tokens tends to increase the verbosity of model output. Muennighoff et al.
(2025) also supports this claim. Indeed, they demonstrated that prompting reasoning tokens during
the generation forces the model to reason more.

C.3 OPEN-SOURCE REASONING PATH

Table 1 shows the difference between close-source and open-source models. Close-source models
tends to hide the raw reasoning traces generated by models.

LRMs Open Weights Reasoning Traces

DeepSeek-R1 Yes Yes
QwQ Yes Yes
o3 / o4 No Partial
Claude 3.7 No Partial
Gemini 2.5 Pro No Partial

Table 1: Comparison of LRMs and reasoning traces - Partial stands for models that do give access
to full reasoning traces

D MATHEMATICAL REASONING DATASETS

Table 2 presents the selected reasoning datasets, including their references, and the number of sam-
ples per training and testing folds. Due to computational resources constraints, we limit the size
of the training datasets to smaller subsets of their full versions - specifically, 1,000 samples for
MATH500 Lightman et al. (2023) and 3,000 samples for GSM8K Cobbe et al. (2021). These values
were selected to have approximately twice the size of the test datasets of training samples. We used
a seed of 42 to infer training datasets.

Dataset # Train # Train used # Test

MATH500 12,000 1,000 500

GSM8K 7,474 3,000 1,318

Table 2: Description of selected mathematical dataset
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E DEFINITION OF REASONING STEPS

Table 3 gives an overview of the different definitions of reasoning steps in the literature. Notably, we
can define 4 categories, namely: token, sentence, paragraph, and dynamic step delimitation levels.

Step Type Ref. Method M.A.

Token Light et al. (2025) – x
Yao et al. (2023) – x

Sentence Fu et al. (2023) [. , ;] x
Yao et al. (2023) – x

Paragraph

Cao et al. (2025) .\n\n x
Lightman et al. (2023) \n

Fu et al. (2023) \n x
Park et al. (2024) \n\n\n, ###, *** x
Yao et al. (2023) i

Dynamic

Light et al. (2025) Sampling x
Zelikman et al. (2024) < |startofthought| >

Sui et al. (2025b) <next step>
Fu et al. (2023) “step i”

Paul et al. (2024) <equation>
Welleck et al. (2022) special tokens

Table 3: Overview of types of step-delimiters - M.A. for Model Agnostic

Figure 8 presents an example of reasoning step from the Deepseek-R1-Distill-Llama8B model. We
observe that the delimiter .\n\n is very often being generated, specifically when the model executes
a series of operations.

Example of Reasoning step

[...] \n\n Wait, let me double-check my calculations to make sure I didn’t make any mistakes.\n\n
First, f(-2): \n\n 3*(-2) is -6, minus 2 is -8. Denominator: -2 -2 is -4. -8 divided by -4 is 2.
Correct.\n\n f(-1): \n\n 3*(-1) is -3, minus 2 is -5. Denominator: -1 -2 is -3. -5 divided by -3 is
53. Correct.\n\n f(0): \n\n 3*0 is 0, minus 2 is -2. Denominator: 0 -2 is -2. -2 divided by -2 is 1.
Correct.\n\n Adding them up: 2 + 53 + 1.\n\n Converting to thirds: 2 is 63, 1 is 33, so 63 + 53 +
33 = 143. Yep, that seems right.\n\n So, I think I did everything correctly. I don’t see any mistakes
in my calculations or reasoning.

Figure 8: Extract of the reasoning traces of DS-Llama8B - from inference of question 2 of MATH500
test dataset. The extract of the reasoning trace showcases a verification step of the model. Back to
line symbols are highlighted in bold.
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F ALGORITHMS

F.1 STEP-WISE GENERATION

To generate the reasoning traces of models step-by-step, we need to modify the model.generate
function from Hugging Face. However, this process comes at the cost of latency in model genera-
tion since we need to interrupt the generation process at each step. The algorithm is presented in
Algorithm 1.

Algorithm 1 Step-wise Generation
Require: Prompt x; reasoning delimiter α ∈ V ; minimal step size k ∈ N; max steps Tmax; language model
M; tokenizer T ; EOS token

1: y ← T (x) ▷ Tokenized input
2: S ← [ ]; β ← ∅ ▷ Initialize output and buffer
3: s← 0
4: while s < Tmax do
5: t←M(y) ▷ Generate next token
6: y ← y + t
7: β ← β + T −1(t) ▷ Add decoded token to buffer
8: if EOS in y then ▷ Stop inference if EOS generated
9: Append β to S

10: break
11: end if
12: if β ends with α then
13: if β > k then ▷ Complete and valid step
14: Append β to S
15: β ←′′ ▷ Empty the buffer
16: s← s+ 1 ▷ Increase S by one step
17: else
18: Continue ▷ Continue until next α or EOS is generated
19: end if
20: else
21: Continue
22: end if
23: end while
24: return S
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F.2 EARLY STOPPING ALGORITHM

Algorithm 2 lists the Step-Tagging Early-Stopping criteria. The user needs to define a constraint
{τ∗, δ}, and input a Binary Step-Tagger ϕτ∗ , which returns 1 if the step tag is τ∗ and 0 otherwise.
If the constraint breaks, the algorithm stops the generation, and prompts the model with Pexit to give
the current best answer.

Algorithm 2 Step-Tagger Early-Stopping
Require: Prompt x; reasoning delimiter α ∈ V ; minimal step size k ∈ N; max steps Tmax; Reasoning

Language ModelM; tokenizer T ; EOS token γ; Constraint {τ∗, δ}; Binary Step-Tagger ϕτ∗ ; Early-Exit
Prompt Pexit

1: y ← T (x) ▷ Tokenize the input
2: Srunning ← [ ]; ▷ Initialize output
3: t← 0
4: fτ∗ ← 0 ▷ Initialize frequency track of τ∗

5: while cτ∗(Srunning, δ) do ▷ Generate until constraint breaks
6: Generate step si usingM, α, where |si| > k
7: y ← si
8: if ϕτ∗(si) then fτ∗ ← fτ∗ + 1 ▷ Increase the counter
9: else

10: Continue the generation
11: end if
12: t← t+ 1
13: end while
14: y ←M(y + Pexit) ▷ InferM with the early exit prompt
15: return y

Figure 9: Illustration of early-stopping based on Step-Tagging
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G SELECTING THE MINIMAL NUMBER OF TOKEN k

G.1 IDEAL EARLY-STOPPING AS A PROXY FOR THE STEP-SIZE

Grounding our approach in the literature. One crucial component of our work is the formaliza-
tion of the reasoning step. From the literature, we selected the definition that seems to be the most
agnostic to the model, and use-cases Cao et al. (2025) (see Section 3.2). Prior research in social
sciences, which we believe can be compared to mathematical reasoning, further support that a rea-
soning step should be self-contained: “each reasoning step ei represents a single piece of evidence
contributing toward the social inference to select an answer Aa from A” (Mathur et al., 2025)[p.3].

Objective and Motivations. To support this claim, we are looking to produce a segmentation such
that each unit clearly reflect a contribution toward the final answer. In addition, we note that this
claim supports our problem setting: monitoring becomes more informative when the segmentation
of the reasoning is well conducted. In our step definition, the step segmentation is controlled by a
minimal number of token per step k. To apply this claim, we should first find a way to see if steps
contain one or multiple thoughts given a value of k. This selection of k is important since we base
the rest of our analysis and work on this step definition.

Methodology. To select optimal values of k for the three models studied, we rely on the Ideal Early-
Stopping (IES) baseline as a signal for the quality of the step segmentation (see Section 5). First,
we consider the accuracy of IES , which reflects the point at which a correct answer first appears in
the reasoning trace. When k is set too large, reasoning steps are likely to contain multiple distinct
thoughts. In such cases, correct intermediate answers may be overwritten by later steps, which can
potentially reduce IES accuracy, and thereby contradicting our claim (more than one thought per
step). Second, we analyze the mean number of tokens per sample given by the IES baseline. If k is
too large, we expect the average step length to increase, potentially erasing all efficiency gained that
the IES baseline is designed to provide. We applied our methodology on reasoning traces obtained
on the MATH500 train dataset, for its diversity in problem complexity.

Evaluation. Figure 10 showcases the accuracy of the IES baseline (red), and its average number of
tokens per sample (blue), for the three LRMs on the MATH500 train dataset, using values of k rang-
ing from 1 to 1, 000. As expected, we observe that the accuracy generally drops when k increases.
In the meantime, the minimal number of tokens of the ideal early-stopping criteria increases when
k increases.

(a) DS-Llama8B (b) DS-Qwen14B (c) QwQ-32B

Figure 10: Selecting optimal k - Efficiency of IES

We interpret the accuracy drops when k increases as a signal that some steps are including multiple
thoughts. Indeed, our metric is by definition taking the latest solution contained in each step (if any,
e.g. located at the last sentence of the step). If the steps are really small, the steps are containing a
minimal number of thought (as per the model’s step segmentation when generating .\n\n). This
explains why k = 1 obtained the highest accuracy for every models. However, k needs to be
set higher than 1 to avoid over-segmentation (see Appendix E). Now, if a step contained a correct
answer with a lower value of k, increasing k results in adding additional reasoning text - potentially
incomplete or erroneous. Then our metric would assign the outcome to the latest solution within the
same step, potentially overriding the correct sub-conclusion. Figures 11 and 12 illustrate this.

Takeaway. On the strength of these observations, we identified sweet-spots for each models, aiming
to balance monitoring efficiency and supports our claims on our step-definitions. We set k = 60,
k = 30, and k = 100 for DS-Llama8B, DS-Qwen14B, and QwQ-32B, respectively.
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Example. Figures 11 and 12 show an example of IES traces for the sample 658 from MATH500
train using the DS-Qwen14B with a reasoning step-split parameter k of 30 and 300, respectively.
We selected this example because the model initially drafted a correct answer, but overwrote it
with a wrong reasoning. While the IES algorithm returned the correct answer parsed at step 8 for
the parameter k = 30, the same algorithm applied for a parameter k = 300 return an incorrect
answer, and failed to early-stop. Indeed, with k = 300, the same step correspond now to the step
5, and include an additional self-corrected sentence leading to a different answer. This observation
confirms that the model sometimes over-write/overthink its correct initial reasoning, and suggests
that lower values of k tends to lead to better segmentation of the reasoning traces. Overall, this
observation comforts our observation from the previous section and our selection of k.

Step 1 - Okay, so I’ve got this geometry problem here. It says that line AB is parallel to line CD, and the measure of angle AXF is 118 degrees.
I need to find the measure of angle FYD. Hmm, let me try to visualize this. There’s an Asymptote diagram provided, but since I can’t actually
see the image, I’ll have to go off the description \n\n
Step 2 - First, I know that when two lines are parallel, certain properties hold, like corresponding angles being equal, alternate interior angles
being equal, and so on. Maybe I can use those properties here \n\n
Step 3 - Looking at the Asymptote code, it defines points A, B, C, D, E, F, X, and Y. A, B, C, D are the main points, with AB and CD being the
parallel lines. E is another point below AB, and F is above CD. Lines are drawn from E to F, which intersects AB at point X and CD at point
Y. So, essentially, line EF is a transversal cutting through the two parallel lines AB and CD \n\n
Step 4 - Given that, angle AXF is 118 degrees. Let me try to identify where that angle is located. Point A is on AB, point X is the intersection of
EF and AB, and point F is on EF. So angle AXF is at point X, formed by lines AX and FX. Since AB is parallel to CD, and EF is a transversal,
there might be some corresponding angles or alternate interior angles that I can use \n\n
Step 5 - I need to find angle FYD. Point F is on EF, point Y is the intersection of EF and CD, and point D is on CD. So angle FYD is at point
Y, formed by lines FY and DY. That angle is also on the transversal EF, but on the other side of the parallel lines \n\n
Step 6 - Since AB is parallel to CD, and EF is a transversal, the corresponding angles at X and Y should be equal. So, if angle AXF is 118
degrees, then the corresponding angle at Y should also be 118 degrees. But wait, angle AXF is on the same side as angle FYD? Or is it on
the opposite side? \n\n Wait, angle AXF is above AB, and angle FYD is above CD. Since AB and CD are parallel, the angles formed by the
transversal EF should be corresponding. So, angle AXF and angle FYD are corresponding angles. Therefore, they should be equal. So, angle
FYD should also be 118 degrees \n\n
Step 7 - But hold on, let me double-check. When you have two parallel lines and a transversal, corresponding angles are equal. So, angle AXF
is at the intersection above AB, and the corresponding angle above CD would be angle FYD. So yes, they should be equal \n\n
Step 8 - Alternatively, I can think about the consecutive interior angles. If I consider angle AXF and the angle adjacent to it on the same side,
they should add up to 180 degrees because they are consecutive interior angles. So, if angle AXF is 118 degrees, the adjacent angle on the
same side would be 180 - 118 = 62 degrees \n\n
[...]
Step 37 - **Final Answer** 118 < \think > \n\n [...]

Figure 11: Sample 658 from MATH500 train —— Solution: 62◦ —— k = 30 with DS-Qwen14B

Step 1 - Okay, so I’ve got this geometry problem here. It says that line AB is parallel to line CD, and the measure of angle AXF is 118
degrees. I need to find the measure of angle FYD. Hmm, let me try to visualize this. There’s an Asymptote diagram provided, but since I can’t
actually see the image, I’ll have to go off the description. \n\n First, I know that when two lines are parallel, certain properties hold, like
corresponding angles being equal, alternate interior angles being equal, and so on. Maybe I can use those properties here \n\n
Step 2 - Looking at the Asymptote code, it defines points A, B, C, D, E, F, X, and Y. A, B, C, D are the main points, with AB and CD being the
parallel lines. E is another point below AB, and F is above CD. Lines are drawn from E to F, which intersects AB at point X and CD at point
Y. So, essentially, line EF is a transversal cutting through the two parallel lines AB and CD. \n\n Given that, angle AXF is 118 degrees. Let
me try to identify where that angle is located. Point A is on AB, point X is the intersection of EF and AB, and point F is on EF. So angle AXF
is at point X, formed by lines AX and FX. Since AB is parallel to CD, and EF is a transversal, there might be some corresponding angles or
alternate interior angles that I can use \n\n
Step 3 - I need to find angle FYD. Point F is on EF, point Y is the intersection of EF and CD, and point D is on CD. So angle FYD is at point
Y, formed by lines FY and DY. That angle is also on the transversal EF, but on the other side of the parallel lines \n\n
Step 4 - Since AB is parallel to CD, and EF is a transversal, the corresponding angles at X and Y should be equal. So, if angle AXF is 118
degrees, then the corresponding angle at Y should also be 118 degrees. But wait, angle AXF is on the same side as angle FYD? Or is it on
the opposite side? \n\n Wait, angle AXF is above AB, and angle FYD is above CD. Since AB and CD are parallel, the angles formed by the
transversal EF should be corresponding. So, angle AXF and angle FYD are corresponding angles. Therefore, they should be equal. So, angle
FYD should also be 118 degrees \n\n
Step 5 - ”But hold on, let me double-check. When you have two parallel lines and a transversal, corresponding angles are equal. So, angle AXF
is at the intersection above AB, and the corresponding angle above CD would be angle FYD. So yes, they should be equal.\n\n Alternatively,
I can think about the consecutive interior angles. If I consider angle AXF and the angle adjacent to it on the same side, they should add up to
180 degrees because they are consecutive interior angles. So, if angle AXF is 118 degrees, the adjacent angle on the same side would be 180
- 118 = 62 degrees.\n\n But angle FYD is on the other side, so maybe it’s another corresponding angle. Wait, no, actually, angle FYD is the
corresponding angle to angle AXF, so it should be equal, 118 degrees \n\n
[...]
Step 12 - Wait, but just to make sure, let me think about the transversal EF. At point X, we have angle AXF = 118 degrees. Since AB is parallel
to CD, the corresponding angle at Y should be the same. So, angle FYD is 118 degrees. \n\n Yes, that makes sense. \n\n Alternatively, if I
consider triangle FXD, but I don’t think that’s necessary here because we can solve it using just the properties of parallel lines and transversals.
\n\n So, I think I’m confident that angle FYD is 118 degrees. \n\n **Final Answer** 118 < \think > \n\n
[...]

Figure 12: Sample 658 from MATH500 train —— Solution: 62◦ —— k = 300 with DS-Qwen14B
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G.2 SEMANTIC PROPERTIES IMPLIED BY THE PARAMETER k

Objective. To complete the previous section, we adopted a complementary approach to reinforce
our selection. We examine the semantic properties of reasoning steps. We show that the choice
of the segmentation parameter k also affects the meaningfulness and coherence of each step. This
ablation study has two objectives:

1. We demonstrate that certain values of k enhance the semantic meaning of individual steps, mak-
ing them more self-contained and interpretable,

2. An appropriate value of k improves the accuracy of our step-tagger, since the semantic coherence
impact the detection performance of step types using text classifiers.

Methodology. To address these objectives, we selected different values of k, namely:
1, 30, 100, 150, 200, 300. We then constructed their corresponding datasets by segmenting the same
reasoning traces according to the different parameters k that we selected (Section 3.2). We selected
the MATH500 train dataset using the seed 42, obtained from the DS-Qwen14B model. To access
the ground-truth, we re-labeled each datasets using the same method defined in Section 5.1.

Impact of k on the tag distribution. Figure 13 shows that the parameter k affects both number of
steps obtained and the distribution of ground-truth labels step-types. To control this distributional
effects, we considered two dataset variants by pre-processing the datasets as follows: (a) Balanced:
sampling the data to achieve a 50/50 distribution of positive and negative classes, (b) Downsam-
pling: down-sampling the datasets to obtain the same number of samples (as per the smallest dataset
- i.e. k = 300).

Figure 13: Step-tags distribution as per GPT-4o-mini for each values of k - ReasonType taxonomy

For each dataset, we trained binary BERT classifiers with identical hyperparameters (same as in
Section 5.1). Similarly to our Step-Taggers, the classification task is step-type detection, where the
model predicts whether a given step corresponds to a certain step type τ∗. We conducted experi-
mentation on 2 step-types: (a) Validation, (b) Exploration. While Validation is the one of the most
occurrent step-type, Exploration has some interesting sematic properties, and is less frequent.

Figure 14 and 15 shows the label distribution of the three variants on the Verification and Exploration
step-type, respectively. While Downsampling enable clear comparison of performance for different
values of k - same dataset size, Balancing labels of datasets investigates the performance of the
models with ideal distribution for step-type detection. In contrast, switching off the pre-processing
steps preserve the natural distribution of labels, providing insights under more realistic conditions.

Figure 14: Distribution of dataset variants - Verification step-type
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Figure 15: Distribution of dataset variants - Exploration step-type

Evaluation. Figure 16(a) and 16(b) present the Micro-F1 and Macro-F1 of the binary BERT clas-
sifiers trained on the different dataset types for different values of k and for the Verification and
Exploration step-types, respectively. We first note that the training performed on the Exploration
steps lead to higher accuracy than the one achieved on the Verification step (Macro-F1 0.8 − 0.97
vs. 0.8− 0.87). It could be explain by the nature of the steps. The Verification steps might be more
diverse, while the Exploration steps might carry more semantic meaning, making them easier to de-
tect (specifically for the balanced dataset). For imbalanced datasets (Original and Down-sampled), it
is worth noting that reporting the Macro-F1 was also important in order to access to the performance
of the minority class (positive).

(a) Verification step-type (b) Exploration step-type

Figure 16: Step-Tagger performance per dataset distribution and step segmentation parameter k

Importantly, we observe a general trend of performance for the different configuration. The param-
eter k seems to impact the performance of the classifiers. Specifically, the performance seems to
decrease when k is increase from values ranging from 30 to 300. For the Original Validation, the
Micro-F1 drops from 0.9 for k = 30 to 0.84 for k = 300, similarly for the Macro-F1 (from 0.85 for
k = 30 to 0.81 for k = 300). Surprisingly, the value k = 1 lead to lower performance compared to
k = 30. We suspect that very small value of k (such as k = 1) imply noisy steps. Indeed, Figure 8
in Appendix E confirms this observation. When k is very small, a lot of noisy steps are created, and
this could perturb the training.

In addition, for both labels, the Balanced dataset allows for higher performance in term of Macro-
F1. It means that classifiers are better at detecting positive classes, at the cost of the performance on
the negative class (lower Micro-F1 with respect to the two other datasets). However, same effects
on the values of k can be noticed. Moreover, down-sampling the dataset seems to harm slightly
the performance, especially for the Verification step-type. It indicates that limiting the dataset size
reduces the diversity of training samples for lower values of k.

Takeaway. This ablation study supports our selection of k. Based on the semantic properties of
the steps, we found that higher values of k lead to a loss of semantic meaning of the steps. Simi-
larly, small values of k implies noise in the step segmentation - which could perturb the monitoring
analysis of the reasoning.
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G.3 INFLUENCE OF THE PARAMETER k ON THE STEP-TAGGING EARLY-STOPPING CRITERIA

Objectives. In the two previous ablation studies, we have seen that the step segmentation parameter
k influenced the amount of information contained in each reasoning step. The following ablation
study focus on assessing the impact of the parameter k on the performance of our step-tagging early-
stopping criteria. It is composed of two sections: We first evaluate the impact of the parameter k
on the constraint threshold δ of our criteria (Section G.3.1), and then assess the impact of k on the
performance of the criteria (Section G.3.2).

G.3.1 ST-ES THRESHOLDS δ

We have seen that the step segmentation parameter k influences both size and amount of information
contained in each steps. To further validate our values of k, we are looking at its influence on
the threshold δ of our Step-Tagging Early-Stopping constraint (τ , δ), for each step-types τ of our
taxonomy.

Impact on the constraint values. To assess the influence of k on the constraint values δ, we
adopt a different point of view. For each value of k, we re-used the datasets obtained from the
reasoning traces of the DS-Qwen14B model on the MATH500 of the training datasets labeled by
GPT-4o-mini (see Appendix G.2). For each values of k ∈ {1, 30, 100, 150, 200, 300}, Figures 18
and 18 compare the Accuracy and the Average number of tokens per sample for each constraints δ ∈
[1, 10] for each step-types of the taxonomy, respectively. The positions and speed of convergence
will allow us to assess the impact of the k on the constraints values δ.

Evaluation. First, we observe that lower values of k (e.g. k ∈ {1, 30}) reveal smoother trade-off
for both accuracy and token count. Indeed, the curves converge less quickly to the original traces
(plateau when δ → ∞, tending to no-constraints i.e. the standard inference).

In comparison, when k grows, the curves are sharper and tends to converge faster, which offers
less trade-off between accuracy and token-count. Furthermore, the curves of the different step-types
becomes less distinguishable and overlaps much more than for lower values of k. In the context of
our Early-Stopping framework, these observations confirm the importance of keeping lower values
of k to enable efficient and interpretable inference through the constraints {τ, δ}.

Takeaway. This ablation study shows that higher values of k tends to decrease the controllability of
the inference using our framework.

Figure 17: Constraint values δ vs. Accuracy for each value of k ∈ {1, 30, 100, 150, 200, 300} -
Qwen14B on MATH500 train (1,000 samples) - Seed 42, δ ∈ [1, 10]
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Figure 18: Constraint values δ vs. Average Number of Tokens per sample for each value of k ∈
{1, 30, 100, 150, 200, 300} - Qwen14B on MATH500 train (1,000 samples) - Seed 42, δ ∈ [1, 10]

G.3.2 INFLUENCE OF THE PARAMETER k ON THE ST-ES PERFORMANCE

We complete this analysis with an ablation study on the influence of the step segmentation parameter
k on the calibration of the Step-Tagging Early-Stopping. We are assessing if the parameter k affects
the performance of our early-stopping framework (i.e. selecting optimal constraints).

Methodology. To address our objective, we performed the calibration experiment presented in
Section 5.3, using the datasets obtained on our previous experiment, i.e. for the values of k ∈
[1, 30, 100, 150, 200, 300] (see Section G.2). For each value of k, the experiment resulted in one
Pareto Curve, corresponding to the most efficient constraint parameters among the set of thresholds
δ and step-types τ . For each value of k, we re-used the datasets obtained from the reasoning traces
of the DS-Qwen14B model on the MATH500 of the training datasets labeled by GPT-4o-mini.

Evaluation. Figure 19 presents the Pareto Curves of the Step-Tagging Early Stopping applied to DS-
Qwen14B on MATH500 train, for different segmentation parameters k. To enhance the analysis,
Table 4 showcases the AUC of the Pareto curves (restricted to overlapping token ranges between
curves). We can observe that the lower values of k (i.e. 1 and 30) lead to higher efficiency (higher
accuracy and lower token-count) since their associated Pareto curves are above others for almost
every levels of complexity. Table 4 confirms this observation, with k ∈ {1, 30} presenting the
higher AUC values.

It is worth noting that the disparities between curves are greater when the complexity is lower. We
have seen that the complexity increases the verbosity of models. Therefore, more complexity also
increases the number of steps, regardless of the value k. For this reason, more complexity increases
the opportunity of early-stop, minimizing the impact of k.

Figure 19: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each value of k ∈ {1, 30, 100, 150, 200, 300} - Qwen14B on MATH500 train (1,000 samples),
δ ∈ [1, 100]
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k value Levels Average across Levels
1 2 3 4 5

1 456.15 832.90 1053.85 1376.53 1829.24 1109.74
30 455.42 833.33 1053.79 1376.66 1811.43 1106.13

100 450.06 801.29 1017.66 1327.18 1790.32 1077.30
150 440.02 774.62 1004.62 1304.16 1775.65 1059.81
200 436.50 774.68 993.03 1277.69 1789.72 1054.32
300 421.18 742.81 949.12 1192.54 1726.99 1006.53

Table 4: Area Under the Curve (AUC) of the Pareto Curves - Restricted to overlapping token range
between curves

Takeaway. The parameter k influences the performance of the Step-Tagging Early-Stopping. Lower
values of k seems to increase the performance since these values lead to finer-grained segmentation
(and therefore more flexible early-stopping). However, the divergence in performance seems to
reduce when the complexity of question (i.e. verbosity of the model) increases.

G.4 SUMMARY OF TAKEAWAYS

Our ablation studies contributed to find and validate the parameter k, minimal number of token per
step, of our definition of reasoning step. From the Sections of this Appendix, we can formulate three
main takeaways:

1. The Ideal-Early Stopping (IES) criteria seems to be a good signal for selecting the segmentation
parameter k. We applied this method and compared early-stopped traces from different values of
k. For the three LRMs that we selected, we observe that the IES accuracy drops when values
of k increase. Lower values of k seems to result in steps being more self-contained, including a
minimal number of thoughts/conclusion, allowing better early-stopping performances.

2. Based on the performance of sentence classifier trained on datasets with different values of k, we
found that higher values of k lead to a loss of semantic meaning of the steps. Similarly, small
values of k implies noise in the step segmentation - which could perturb the monitoring analysis
of the reasoning.

3. An ablation study on the calibration process - to find the most efficient constraints per dataset
and models - shows that higher values of k tends to decrease the performance and controllability
of the inference using our framework.

For our reasoning step definition, these takeaways confirms that users needs to carefully select op-
timal value of k, since this parameter has direct implication on both information contained and
semantic properties of the steps.
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H VALIDATION OF THE REASONTYPE TAXONOMY

H.1 REASON-TYPE TAXONOMY FOR IDENTIFYING REASONING BEHAVIORS

Objective. This ablation study is looking at further validating our ReasonType taxonomy. In other
words, we are investigating whether our proposed taxonomy captures meaningful distinctions in
reasoning steps. We are looking to demonstrate that:

1. The ReasonType taxonomy enable semantic distinction of the type of reasoning.
2. Our annotation method with the GPT-4o-mini model, coupled with the ReasonType taxon-

omy, is a robust method to access to the ground-truth labels of the reasoning steps.

Methodology. To address our objective, we compare the performance of BERT classifiers across
Original labels (OG - from GPT-4o-mini annotation using the ReasonType taxonomy), and shuf-
fled labels for three step-types, namely: Verification, Exploration and Self-Talk. For the shuffled
labels version, we took the exact same proportion of positive labels as in Original datasets, and used
random shuffle with a seed of 42. Each experiment is run on the same training and testing dataset,
i.e. the steps obtained with a segmentation parameter k = 30, from the MATH500 training dataset
on the DS-Qwen14B model. We trained BERT classifiers following the exact same training config-
uration (see Section 5.1). To compare performances, we report both training loss, and classification
metrics (precision and recall on both classes, along with macro and micro average.)

Evaluation. Figure 20 shows the train-
ing loss of the Original and Shuffled
versions, for the three labels. We ob-
serve that models trained on the Orig-
inal labels presents significant lower
losses, and are smoothly decreasing. It
demonstrate that the Original datasets
contains meaningful patterns between
reasoning steps and their labels. In com-
parison, the models trained on shuffled
labels present almost constant loss, rela-
tively higher than the one from the Orig-
inal labels. Figure 20: Training losses - ReasonType vs. Shuffled labels

Furthermore, Figures 21(a) and 21(b) show the Precision and Recall classification metrics on the
testing dataset, respectively. For Original runs, both classes (0 and 1) achieve good performance
despite dataset imbalancity, with Macro average Precision and Recall lying between 0.76 and 0.90
across labels. In comparison, shuffled runs presents poor results, with models failing in predicting
positive classes - Precision and Recall of class 1 between 0.00 and 0.06. Along with the training loss,
theses metrics highlight that the models trained on shuffles labels cannot learn meaningful relations
between steps and labels. In comparison, Original labels (from the ReasonType taxonomy) resulted
in satisfying model performance, and smooth training.

(a) Precision (b) Recall

Figure 21: Precision and Recall - ReasonType vs. Shuffled labels

Takeaway. Overall, these results comforts our finding that the ReasonType taxonomy labels enable
annotation methods to results in reasoning steps carrying semantic meaning.
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H.2 TRACKING STEP-TYPES TO DESIGN INTERPRETABLE EARLY-STOPPING CRITERIA

Objective. This ablation study is looking at motivating our Step-Tagging Early-Stopping (ST-ES)
framework, as well as our taxonomy. We have seen that the ST-ES approach is an interpretable early-
stopping criteria since the user can select which type of reasoning step to limit to make inference
more efficient. However, we are wondering if simpler approaches such as a simple step-count is
more effective. Despite having less requirements - since no step-tagging is required - only stopping
the reasoning based on the number of steps generated could potentially yield to better results.

Methodology. To assess this alternative approach is more effective, we lead the same calibration
study as in Section 5.3 on the MATH500 training dataset, using the 3 selected LRMs. For clarity,
we applied a common threshold across every levels of complexity of the dataset, and reported their
average accuracy and token-count. To compare our taxonomy with the simple step-count approach,
we present two types of runs:

• ReasonType taxonomy: We performed the same experimentation for each single labels of the
ReasonType taxonomy. For each tags τi ∈ T , we combined a threshold value δ ∈ [1, 20].

• Simple Step-count: The same experiment is done without the labels. To do so, we only applied
simple step-count for thresholds δ ∈ [1, 100].

Evaluation. Figures 22, 23, and 24 present the experiment on the DS-Llama8B, DS-Qwen14B,
and QwQ-32B models, respectively. For both types of runs, each combination of threshold and
step-type results in a point (Average Number of Tokens, Accuracy). For the ReasonType taxonomy,
each step-types forms a blue curve, with color gradient and different markers to differentiate the
tags of the taxonomy. The same experiment with a unique label (equivalent to a simple step-count
early-stopping) resulted in a unique curve, print in red.

We observe over the three models that the red curve is almost constantly under the blue curves,
in particular for the DS-Qwen14B model. Specifically, for token-count from 1, 500, the red curve
is bellow the curves of the Problem-Restatement, Exploration, and Intuition, for the DS-Llama8B,
DS-Qwen14B, and QwQ-32B models, respectively. Furthermore, for lower token-counts, the red
curve is still under the blue curves of the Problem-Restatement for both DS-Llama8B, DS-Qwen14B
models. Overall, it means that for a given number of tokens, implementing a stopping criteria based
on the type of the steps seems to yield to higher accuracy than simply stopping the generation based
on the number of steps.

Takeaways. Beyond interpretability, this experiment shows that tracking the types of steps yields to
better performance than an early-stopping criterion based on the step-count.

Figure 22: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types (in blue) and simple step-count (in red) - DS-Llama8B on MATH500 train
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Figure 23: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types (in blue) and simple step-count (in red) - DS-Qwen14B on MATH500 train

Figure 24: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types (in blue) and simple step-count (in red) - QwQ32B on MATH500 train
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H.3 CERTAIN STEP-TYPE ARE BETTER EARLY-STOPPING CRITERIA

Objective. In section 5.3, we observed that selecting the step-tagging early-stopping constraint
(both threshold and step-types) was not trivial since it depends on models, and complexity of a
given problem. This ablation study is looking at showing that certain step-types are better to apply
our constraint. Specifically, we are looking to demonstrate that our taxonomy allows us to state that
different step-types are leading to different efficiency trade-off.

Methodology. Similarly to the sub-section H.2, we are showing the same experiment, but we focus
on the curves resulting from the ReasonType taxonomy (in blue). We plot the same Figures, but
with one distinct color and marker for each step-type to better differenciate the curves.

Evaluation. Figure 25 present the different curves obtained applying our early-stopping framework
on the labels of the ReasonType taxonomy, for the DS-Qwen14B on the train MATH500 dataset. We
observe that each step-type results in curves with different lengths (token-count range), and widths
(accuracy range).

First, the Exploration curve seems to be the most efficient for moderate to high token-count range
(from approximately 1, 400 to 3, 000). Indeed, the curve stands above all other curves, meaning that
for constraints with the Exploration tags results in highest accuracy with equivalent token-budget.

In contrast, other step-types such as Problem Re-statement, Verification or Definition Recall cover
larger token-count range (from 500 − 750 to 3, 000). They introduce more flexibility for limited
token-budget, but appears less efficient when the token-count grows.

Figures 26 and 27 present similar findings for the DS-Llama8B and QwQ-32B models, respectively.

Takeaway. Overall, we can conclude that our taxonomy coupled to our methodology allows us to
demonstrate that all reasoning step types are not equally contributing to the reasoning progression.

Figure 25: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types - one color per step-type - DS-Qwen14B on MATH500 train
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Figure 26: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types - one color per step-type - DS-Llama8B on MATH500 train

Figure 27: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types - one color per step-type - QwQ-32B on MATH500 train
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H.4 COMPARISON TO ALTERNATIVE TAXONOMY

Objective. In this ablation study, we assess how robust our taxonomy is for the Step-Tagging Early-
Stopping criteria. To do so, we run the calibration experiment that we conducted on different alter-
native versions of our original taxonomy.

Alternative Taxonomies. Our original taxonomy is wide and fine-grained, containing 13 categories
of labels (excluding the placeholder label “Other”). Therefore, we reduce the number of labels in the
taxonomy, and grouped similar labels at different levels of abstraction. Table 5 shows resulting the
taxonomies, considering from 13, 6, 4, 2, and 1 labels. A unique label represent the simplest form
of constraint, where we obtain only a constraint on the number of steps.

Original Taxonomy 6-labels 4-labels 2-labels 1-label

Problem Re-Statement
Setup Early Reasoning

Early Reasoning

Reasoning

Context Repetition
Definition Re-call

Formula Substitution Manipulation
Mid ReasoningSymbolic Transformation

Edge Case AnalysisPattern Recognition

Verification Checking

Late Reasoning Late Reasoning

Heuristic / Intuition

Exploration
Meta ReasoningInterpretation

Self-Talk

Final Conclusion End Reasoning End Reasoning

Table 5: Alternative taxonomies - we regrouped labels at different levels of abstraction to observe
the impact of the taxonomy on the Step-Tagging Early-Stopping criteria

Methodology. To address our objective, we performed the calibration experiment presented in
Section 5.3, using the different taxonomies (i.e. vocabulary of tags T ). For each taxonomies, the ex-
periment resulted in Pareto Curve, corresponding to the most efficient constraint parameters given
a threshold δ and a type-step τ (lying in the taxonomy tested). For each models, we re-used the
MATH500 and GSM8K training datasets labeled by GPT-4o-mini using our methodology expli-
cated in Section 5.1. We then merged labels as in Table 5.

The process of merging labels artificially increases the number of labels per datasets. Therefore, to
encompass a wider range of early-stopping values, we performed the calibration for threshold values
δ ∈ [1, 100]. To evaluate the impact of downsizing the original taxonomy, we look at the position of
the Pareto Curves compared to each other. The taxonomy giving the most efficient constraints is the
one located at the top left (maximizing the accuracy while minimizing the number of tokens).

Evaluation. We can note that downsized tag vocabularies outperformed our Original taxonomy for
low complexity queries (e.g. 1 and 2), specifically for 1 and 2-labels taxonomies. It can be justified
by the nature of the low-label taxonomies. For the purple curve, it acts like a simple step count
constraint. For low-level complexity, the reasoning traces are less verbose (less tokens), meaning
that it is easier to find a simple form of constraint.

However, the Original and Label-6 taxonomy seem to perform well on higher level of complexity.
For higher level of complexity, it seems that the semantic meaning of the steps plays a role in the
determination of the final constraint. Nevertheless, it is worth noting that the differences observed
are relatively small. Pareto Curves of Original and Label-6 are sensibly close, meaning that our
approach seems to be robust to the granularity of the taxonomy.

Takeaway. Our framework seems to be robust with regards to the taxonomy selected. Nevertheless,
fine-grained taxonomies seems to lead to better performance for higher degree of complexity of
questions, while simpler taxonomies might be more adapted to simpler problems (i.e. less verbose).
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Figure 28: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each taxonomies - Llama8B on MATH500 train (1,000 samples)

Figure 29: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each taxonomies - Qwen14B on MATH500 train (1,000 samples)

Figure 30: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each taxonomies - QwQ-32B on MATH500 train (1,000 samples)

H.5 SUMMARY OF TAKEAWAYS

Overall, our ablation studies validate our taxonomy. Key takeaways are the followings:

1. The ReasonType taxonomy labels enable annotation methods to results in reasoning steps
carrying semantic meaning.

2. Beyond interpretability, tracking the types of steps using the ReasonType taxonomy yields
to better performance than an early-stopping criterion based on simple step-count.

3. The ReasonType taxonomy coupled to our methodology allows us to demonstrate that all
reasoning step types are not equally contributing to the reasoning progression.

4. Our framework seems to be robust with regards to the taxonomy selected. Nevertheless,
fine-grained taxonomies - such as ReasonType - seems to lead to better performance for
higher degree of complexity of questions, while simpler taxonomies might be more adapted
to simpler problems (i.e. less verbose inferences).
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I ANALYSIS OF REASONING STEP TYPES

I.1 PROMPTS

Figures 31 and 32 show the two prompts used on GPT-4o-mini to build the taxonomy and gener-
ate the step tags on the traces of the LRMs, respectively.

Prompt Taxonomy

Below is a reasoning trace of a reasoning language model, split by steps. In these examples, can you
please identify the different type of steps? Suggest some reasoning-type labels for each of them.
- Step 1: {step 1}
- [...]
- Step t: {step t}

Figure 31: Prompt used to generate the Taxonomy

Prompt Taxonomy

input=[ ”role”: ”system”, ”content”: ”Classify the following reasoning step into one of the categories
defined. Classes = {taxonomy}”, ”role”: ”user”, ”content”: step ],

Figure 32: Prompt used to monitor the steps

Section I contains an additional analysis of the reasoning steps and tags issues to complete our work.

I.2 STATISTICS ON THE REASONING STEPS COUNT AND TYPES

Table 6 presents statistics on the number of steps and GPT-4o-mini annotation for each models
on both datasets we selected. Results are averaged for the seed 42 on test datasets.

Dataset Model # Tok. / Steps # Steps Runtime

MATH500
DS-Llama8B 85.29 44.25 42.18
DS-Qwen14B 71.13 46.92 46.32

QwQ-32B 216.70 21.15 19.55

GSM8K
DS-Llama8B 78.69 6.83 5.80
DS-Qwen14B 74.52 7.16 7.48

QwQ-32B 150.29 13.33 17.63

Table 6: Avg. # of steps and annotation runtime per sample

Step occurrence. Figure 33 presents the average number of consecutive steps of the same category.
Notably, several high-frequent step types (such as Formula Substitution, Verification and Formula
Substitution) tend to appear multiple times consecutively. Conversely, some steps tends to appear
only once, where their average consecutive step is close to 1.

These observations support our design selection. Firstly, the sequence of repeated labels increases
the robustness of the step classification and detection using our Step-Tagging module. Indeed, if a
label appears multiple times in a row, local misclassifications are less likely to impact the overall
framework. Secondly, the fact that certain steps tend to appear only one at a time (such as Final
Conclusion, Interpretation, or Context Repetition) justifies our use of a token threshold k for step
delimitation. In fact, some categories often appear as single instances, suggesting that the step
encapsulates a single type of thought.
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Figure 33: Avg. # of consecutive steps of same category

Reasoning patterns. We observe that our Step-Tagging framework allows the monitoring process
to clearly follow the reasoning progression of the model. Figure 34 presents the step-types of the
reasoning traces of the LRMs for a single sample of the MATH500 dataset. We selected samples that
resulted in approximately the same number of steps across the models to allow a fair comparison
between the models.

Figure 34: Reasoning patterns - Sample 109 of MATH500

Figure 35: Reasoning patterns - Sample 97 of GSM8K

We observe a pattern in the reasoning traces. For both datasets, LRMs exhibit the same type of steps
at the beginning of their generated output (e.g., Definition Recall or Problem Re-statement). Then we
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notice a heavy use of Verification and Formula Substitution, helping the model to find and refine its
current answer. Later, we observe the appearance of transition steps such as Self-Talk or Alternative
Approach Exploration, which seems to lead to different answers and increases the diversity of the
model’s answers. We also observe that Final Conclusion steps appear in the middle of the reasoning
traces, meaning that the model tends to draw intermediate conclusions but still pursues its reasoning,
presumably because it is uncertain of the validity of the current solution.

Visualization of reasoning step types. To further assess the quality of the annotation, we computed
the t-SNE projection of BERT-encoded reasoning steps from 500 DS-Llama8B traces (see Figure
36). For clarity, we excluded the most frequent step-types, Verification and Formula Substitution, as
well as Other (since it does not contain any semantic meaning). Some step types (e.g., Definition
Recall, Problem Re-Statement) are dispersed, which is likely due to question-specific semantics.
However, we can observe distinct semantic clusters, particularly for Interpretation, Self-Talk and
Exploration. Notably, the Self-Talk cluster lies semantically close to Exploration, reflecting their
conceptual overlap: internal dialogue that often prompts the model to question its assumptions,
encouraging alternative approaches.

Figure 36: t-SNE visualization of 500 Deepseek-R1 reasoning steps encoded with bert-base-nli-
mean-tokens (PPL = 80).
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Example of Step-Tagging reasoning step annotation by GPT-4o-mini. Figure 37 present an
example of reasoning trace annotated by GPT-4o-mini using our step-tags taxonomy. Figure 1 in
the introduction is based on this example. This example is extracted from the DS-Qwen14B model
on the sample 39 of the MATH500 dataset, using a seed of 42.

Step 1 - Okay, so I need to find the greatest common factor (GCF) of 6432 and 132, and then increase
that GCF by 11. Hmm, let me remember how to find the GCF of two numbers. I think the best way is to
use the Euclidean algorithm because it’s systematic and works well for larger numbers.\n\n
Step 2 - First, let me write down the two numbers: 6432 and 132. Since 6432 is much larger than 132,
I’ll start by dividing 6432 by 132 and find the remainder. Then, I’ll repeat the process with 132 and that
remainder until the remainder is zero. The last non-zero remainder will be the GCF.\n\n
Step 3 - So, let’s divide 6432 by 132. Hmm, I need to figure out how many times 132 goes into 6432.
Maybe I can simplify this division. Let me see, 132 times 50 is 6600, which is more than 6432. So, it
must be a little less than 50. Let me try 48 times 132. 48 times 100 is 4800, 48 times 32 is 1536, so adding
those together, 4800 + 1536 is 6336. Hmm, 6336 is less than 6432. So, 132 times 48 is 6336. Subtracting
that from 6432: 6432 - 6336 is 96. So, the remainder is 96.\n\n
Step 4 - Alright, now I need to find the GCF of 132 and 96. Let’s apply the same method. Divide 132 by
96. 96 goes into 132 once, which is 96. Subtracting, 132 - 96 is 36. So, the remainder is 36.\n\n
Step 5 - Next step, find the GCF of 96 and 36. Dividing 96 by 36. 36 times 2 is 72, which is less than 96.
Subtracting 72 from 96 gives 24. So, the remainder is 24.\n\n
Step 6 - Now, find the GCF of 36 and 24. Dividing 36 by 24, it goes once with a remainder. 36 - 24 is 12.
So, remainder is 12.\n\n
Step 7 - Continuing, find the GCF of 24 and 12. Dividing 24 by 12, it goes exactly 2 times with no
remainder. Since the remainder is zero, the last non-zero remainder is 12. Therefore, the GCF of 6432
and 132 is 12.\n\n
Step 8 - Wait, let me double-check that to make sure I didn’t make a mistake. Starting from the top: 6432
divided by 132 is 48 with a remainder of 96. Then, 132 divided by 96 is 1 with a remainder of 36. Then,
96 divided by 36 is 2 with a remainder of 24. Then, 36 divided by 24 is 1 with a remainder of 12. Then,
24 divided by 12 is 2 with no remainder. Yep, that seems right. So, the GCF is indeed 12.\n\n
Step 9 - Now, the problem says to increase this GCF by 11. So, 12 plus 11 is... 23. Is that right? 12 + 11
is 23. Hmm, okay, that seems straightforward.\n\n
Step 10 - Just to be thorough, let me verify the GCF another way. Maybe by prime factorization. Let’s
factor both numbers into primes.\n\n
Step 11 - Starting with 132. 132 is even, so divide by 2: 132 / 2 = 66. 66 is also even, so divide by 2: 66 /
2 = 33. 33 is divisible by 3: 33 / 3 = 11. 11 is a prime. So, the prime factors of 132 are 22 ∗31 ∗111.\n\n
Step 12 - Now, factorizing 6432. Let’s see, 6432 is even, so divide by 2: 6432 / 2 = 3216. 3216 is even,
divide by 2: 3216 / 2 = 1608. 1608 is even, divide by 2: 1608 / 2 = 804. 804 is even, divide by 2: 804 / 2
= 402. 402 is even, divide by 2: 402 / 2 = 201. Now, 201 is odd. Let’s check divisibility by 3: 2 + 0 + 1
= 3, which is divisible by 3. So, 201 / 3 = 67. 67 is a prime number. So, putting it all together, the prime
factors of 6432 are 25 ∗ 31 ∗ 671.\n\n
Step 13 - Now, to find the GCF, we take the lowest power of the common prime factors. The common
primes between 6432 and 132 are 2 and 3. In 132, 2 is squared, and in 6432, 2 is to the fifth power. So,
we take the lower one, which is 22. For 3, both have 31. So, GCF is 22 ∗ 31 = 4 ∗ 3 = 12. Yep, that
matches my earlier result.\n\n
Step 14 - ’Therefore, the GCF is definitely 12. Adding 11 to that gives 23. So, the result is 23.\n\n”
Step 15 - I think that’s solid. I don’t see any mistakes in my calculations, and both methods gave me the
same GCF. So, increasing it by 11 is straightforward. 12 + 11 is 23.\n\n
Step 16 - ’**Final Answer** The result is boxed{23}. ¡/think¿ To find the greatest common factor (GCF)
of 6432 and 132, we use the Euclidean algorithm: 1. Divide 6432 by 132, which gives a quotient of 48
and a remainder of 96. 2. Divide 132 by 96, which gives a quotient of 1 and a remainder of 36. 3. Divide
96 by 36, which gives a quotient of 2 and a remainder of 24. 4. Divide 36 by 24, which gives a quotient
of 1 and a remainder of 12. 5. Divide 24 by 12, which gives a quotient of 2 and a remainder of 0.\n\n
Step 17 - The last non-zero remainder is 12, so the GCF of 6432 and 132 is 12.\n\n
Step 18 - Next, we increase this GCF by 11: 12 + 11 = 23. Thus, the result is boxed{23}.

Legend:
Definition Recall, Problem Re-statement, Heuristics / Intuition, Formula Substitution, Verification, Final
Conclusion

Figure 37: Step annotation as per GPT-4o-mini using our step-tags taxonomy - Deepseek-R1-
Qwen14b-Distil on MATH500 sample 39.
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J BASELINES

Ideal Early-Stopping IES Algorithm. Algorithm 3 presents the Ideal Early-Stopping IES base-
line algorithm.

Algorithm 3 Ideal Early-Stopping IES
Require: Prompt x; reasoning delimiter α ∈ V ; minimal step size k ∈ N; Ground-Truth Answer ygold; Answer

checker β(prediction, ground truth); Reasoning Language ModelM; tokenizer T ; EOS token γ;
1: y ← T (x) ▷ Tokenize the input
2: Srunning ← [ ]; ▷ Initialize output
3: t← 0
4: b← True ▷ Initialize stopping criteria
5: while b do ▷ Generate until constraint breaks
6: Generate step si usingM, α, where |si| > k
7: y ← si
8: if β(y, ygold) then b← False ▷ Stop generation
9: else

10: Continue the generation
11: end if
12: t← t+ 1
13: end while
14: return y

Prompt engineering Pguided. Figure 38 presents the different prompt variations as baseline that we
defined.

Prompt Baselines Pguided

User Prompt - P(0)
user

User Prompt: Please do not reason extensively, be succinct, and put your final answer within boxed{}. {question}

System Prompt P(0)
system

System Prompt: Respond concisely and confidently. Skip validations and over-verification steps.
User Prompt: {question}

System Prompt - P(1)
system

System Prompt: Respond concisely and confidently. Skip validations and over-verification steps. Here is an examples: Example 1: {FS 1}
User Prompt: {question}

System Prompt - P(3)
system

System Prompt: Respond concisely and confidently. Skip validations and over-verification steps. Here are some examples: Example 1: {FS 1} Example 2:
{FS 2} Example 3: {FS 3}
User Prompt: {question}

Example 1 - Verification step

Wait, let me double-check. If I plug in x = −3 into the denominator, (−3)2 + (−3) − 6 = 9 − 3 − 6 = 0. Yep, that works. For x = 2 :

22 + 2 − 6 = 4 + 2 − 6 = 0. Correct. So both roots are valid.

Example 2 - Verification step

Therefore, the graph of y = 2(x2 + x − 6) has vertical asymptotes at x = −3 and x = 2, so that’s two vertical asymptotes. I don’t think there’s any
chance that I made a mistake here, but maybe I should check by graphing the function or plugging in values close to −3 and 2 to see if the function does go
to infinity.

Example 3 - Verification step

Another test with n = 3. Let’s compute manually. All non-empty subsets: Single elements: {1}, {2}, {3} with sums 1,2,3. Pairs: {1,2} → 2 − 1 = 1
{1,3} → 3− 1 = 2 {2,3} → 3− 2 = 1. Triple: {1,2,3} → 3− 2+ 1 = 2. Total sum: 1+ 2+ 3+ 1+ 2+ 1+ 2 = 12. Using the formula:
contributions from each k : k = 3: 3 ∗ 22 ∗ 1 = 3 ∗ 4 = 12. k = 1 and k = 2 contribute 0. So total sum 12, which matches.

Figure 38: Prompt baselines
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K CALIBRATION OF THE ST-ES CRITERIA

Figures 39, 40 and 41 present the number of tokens vs. accuracy of every tag-types with values of
threshold ranging from 0 to 20, for the DS-Qwen14B and QwQ-32B models on our train MATH500
and GSM8K datasets using the synthetic tags, respectively. Constraints selected using our method-
ology for each model and dataset are reported in Table 7.

Model Dataset Level Tag / Constraints

ST-ES (95%) ST-ES (90%) ST-ES (85%) ST-ES (Router)

DS-Llama8B MATH500

1 Context Repetition / 0 Context Repetition / 0 Self-Talk / 0 Self-Talk / 0
2 Final Answer / 0 Symbolic Transformation / 2 Self-Talk / 0 Self-Talk / 0
3 Interpretation / 1 Intuition / 1 Exploration / 3 Intuition / 2
4 Context Repetition / 1 Context Repetition / 1 Intuition / 1 Intuition / 2
5 Exploration / 3 Exploration / 3 Edge Case / 1 Intuition / 2

GSM8K – Verification / 3 Verification / 1 Verification / 0 –

DS-Qwen14B MATH500

1 Self-Talk / 0 Verification / 5 Exploration / 0 Self-Talk / 0
2 Exploration / 3 Self-Talk / 0 Exploration / 1 Self-Talk / 0
3 Edge Case / 2 Edge Case / 2 Exploration / 1 Exploration / 3
4 Exploration / 6 Exploration / 4 Intuition / 2 Exploration / 3
5 Intuition / 6 Self-Talk / 2 Exploration / 4 Exploration / 3

GSM8K – Verification / 0 Formula Substitution / 4 Formula Substitution / 3 –

QwQ-32B MATH500

1 Exploration / 2 Formula Substitution / 2 Verification / 4 Exploration / 2
2 Final Answer / 2 Intuition / 1 Exploration / 1 Exploration / 2
3 Verification / 6 Verification / 5 Verification / 4 Intuition / 2
4 Intuition / 3 Final Answer / 4 Exploration / 2 Intuition / 2
5 Self-Talk / 3 Self-Talk / 1 Self-Talk / 1 Intuition / 2

GSM8K – Intuition / 2 Intuition / 1 Exploration / 0 –

Table 7: Overview of tag/constraints determined using the training datasets, for each models.

Figure 39: Early-Stopping selection using Pareto - Deepseek-R1-Qwen14B-Distil on MATH500
train (1,000 samples)

Figure 40: Early-Stopping selection using Pareto - QwQ-32B on MATH500 train (1,000 samples)
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(a) Deepseek-R1-Llama8B-Distil (b) Deepseek-R1-Qwen14B-Distil (c) QwQ-32B

Figure 41: Early-Stopping selection using Pareto - GSM8K train (3,000 samples)

L LLM-ROUTER: PROMPT COMPLEXITY CLASSIFICATION

Table 8 report the classifier performance of the LLM-Router module between classes {1,2} and
{3,4,5} of the MATH500 dataset.

Metric Validation Test
Micro-F1 0.785 0.784
Macro-F1 0.734 0.739

Table 8: Micro-F1 and Macro-F1 scores for validation and test sets

M STEP-TAGGING PERFORMANCE

Figures 42 and 43 presents the performance of the binary step-taggers trained on the training traces
of the DS-Qwen14B and QwQ-32B, respectively.

Figure 42: Step-Tagger performance - DS-Qwen14B

Figure 43: Step-Tagger performance - QwQ-32B
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N IDEAL-EARLY-STOPPING

Figure 44 shows the number of steps and the accuracy of the standard vs. Ideal Early-Stopping IES
criteria. Results are averaged over the 5 seeds, on the MATH500 test dataset.

(a) DS-Llama8B (b) DS-Qwen14B (c) QwQ-32B

Figure 44: Standard vs. IES baseline - number of steps and Avg@5 across the 5 complexity levels
of MATH500 test dataset - Results averaged over the 5 seeds

O PERFORMANCE OF THE ST-ES CRITERIA

Table 9 reports all the token-usage, the proportion of saved number of tokens, the Avg@5, the
Pass@5 and the Cons@5 for all configurations. Results are averaged over the 5 seeds we used. We
also show in Figure 45 and 46 the average token count against the Pass@5 and Con@5, respectively,
for the three LRMs on the MATH500 and GSM8K datasets.

Model Config. MATH500 GSM8K

# Tokens Saved (%) Avg@5 Pass@5 Cons@5 # Tokens Saved (%) Avg@5 Pass@5 Cons@5

DS-8B

Standard 3655.0 – 0.878 0.970 0.726 958.3 – 0.829 0.943 0.651

Basel. IES 1916.6 47.56 0.911 0.980 0.780 385.3 59.79 0.847 0.952 0.726

Basel. P(0)
user 2989.6 18.21 0.866 0.952 0.722 525.8 45.13 0.771 0.917 0.579

Basel. P(0)
system 2634.4 27.92 0.817 0.960 0.592 456.9 52.32 0.763 0.895 0.574

Basel. P(1)
system 2139.5 41.46 0.782 0.942 0.526 560.8 41.48 0.754 0.914 0.537

Basel. P(3)
system 2565.3 29.81 0.789 0.952 0.540 830.5 13.34 0.748 0.904 0.541

ST-ES (95%) 3260.5 10.79 0.883 0.972 0.730 673.8 29.69 0.818 0.933 0.663
ST-ES (90%) 2949.3 19.31 0.859 0.964 0.666 568.5 40.67 0.799 0.931 0.604
ST-ES (85%) 2413.9 33.95 0.801 0.940 0.556 492.1 48.65 0.745 0.923 0.474
ST-ES Router 2656.2 27.33 0.848 0.956 0.686

DS-14B

Standard 3388.8 – 0.923 0.980 0.836 662.9 – 0.910 0.952 0.843

Basel. IES 1655.9 51.14 0.950 0.990 0.884 316.5 52.26 0.931 0.971 0.871

Basel. P(0)
user 2691.5 20.58 0.933 0.982 0.834 505.1 23.80 0.856 0.956 0.662

Basel. P(0)
system 2346.2 30.77 0.886 0.966 0.754 470.9 28.96 0.873 0.949 0.710

Basel. P(1)
system 2211.4 34.74 0.873 0.974 0.708 566.5 14.54 0.838 0.952 0.629

Basel. P(3)
system 2535.0 25.19 0.879 0.968 0.748 839.6 -26.65 0.841 0.952 0.631

ST-ES (95%) 3113.2 8.13 0.923 0.980 0.824 480.0 27.59 0.884 0.951 0.763
ST-ES (90%) 2989.7 11.78 0.906 0.976 0.794 497.9 24.89 0.838 0.940 0.656
ST-ES (85%) 2330.2 31.24 0.841 0.966 0.670 452.5 31.74 0.754 0.918 0.528
ST-ES Router 2545.4 24.89 0.870 0.968 0.734

QwQ-32B

Standard 4475.3 – 0.954 0.984 0.898 2075.7 – 0.953 0.965 0.934

Basel. IES 2213.2 50.55 0.970 0.992 0.940 842.9 59.39 0.976 0.986 0.963

Basel. P(0)
user 2908.8 35.00 0.955 0.986 0.916 988.0 52.40 0.952 0.968 0.937

Basel. P(0)
system 3201.1 28.47 0.932 0.976 0.852 833.3 59.85 0.940 0.974 0.869

Basel. P(1)
system 3182.4 28.89 0.925 0.974 0.856 871.2 58.02 0.943 0.975 0.876

Basel. P(3)
system 3665.5 18.09 0.926 0.974 0.858 1387.3 33.16 0.935 0.974 0.855

ST-ES (95%) 3679.4 17.78 0.921 0.980 0.786 1608.0 22.53 0.945 0.968 0.909
ST-ES (90%) 3459.6 22.69 0.903 0.972 0.768 1506.3 27.43 0.935 0.967 0.888
ST-ES (85%) 3218.3 28.09 0.878 0.976 0.690 1368.7 34.06 0.929 0.967 0.855
ST-ES Router 3623.5 19.03 0.904 0.982 0.714

Table 9: Performance of Step-Tagging Early stopping - 5 seeds (40, 41, 42, 43, 44)
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(a) DS-Llama8B on MATH500 (b) DS-Llama8B on GSM8K

(c) DS-Qwen14B on MATH500 (d) DS-Qwen14B on GSM8K

(e) QwQ-32B on MATH500 (f) QwQ-32B on GSM8K

Figure 45: Number of Tokens vs. Pass@5 - Pguided Baselines and Step-Tagging Early-Stopping (ST-
ES) criteria
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(a) DS-Llama8B on MATH500 (b) DS-Llama8B on GSM8K

(c) DS-Qwen14B on MATH500 (d) DS-Qwen14B on GSM8K

(e) QwQ-32B on MATH500 (f) QwQ-32B on GSM8K

Figure 46: Number of Tokens vs. Cons@5 - Pguided Baselines and Step-Tagging Early-Stopping
(ST-ES) criteria
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