
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEP-TAGGING: TOWARD CONTROLLING THE GENER-
ATION OF LANGUAGE REASONING MODELS THROUGH
STEP MONITORING

Anonymous authors
Paper under double-blind review

ABSTRACT

The field of Language Reasoning Models (LRMs) has been very active over the
past few years with advances in training and inference techniques enabling LRMs
to reason longer, deeper, and more accurately. However, a growing body of
studies show that LRMs are still inefficient, over-generating verification and self-
reflection steps. To address this challenge, we introduce the Step-Tagging frame-
work, a lightweight sentence-classifier enabling real-time annotation of the type
of reasoning steps that an LRM is generating. To cover the wide space of reason-
ing behaviors, we introduced ReasonType: a novel taxonomy of reasoning steps.
Building on this framework, we demonstrated that careful online monitoring of
the count of specific steps can produce effective interpretable early stopping cri-
teria of LRM inferences. We evaluate the Step-tagging framework on three open-
source reasoning models across two standard benchmark datasets, MATH500 and
GSM8K, and achieve 30 to 40% token reduction while maintaining comparable
accuracy to standard generation. This work offers a novel way to increase control
over the generation of LRMs, and a new tool to study behaviors of LRMs.

1 INTRODUCTION

For the past few years, the field of Language Reasoning Models (LRMs) has experienced significant
growth in terms of capabilities. Initiated by the pioneering work on model prompting such as Chain-
of-Thought (Wei et al., 2023) and Self-Consistency (Wang et al., 2023), Inference Time Scaling has
emerged as a popular field with the goal of making models more accurate at reasoning. At the same
time, fundamental work on Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT) as part
of Training Time Scaling has led to the release of strong reasoning models.

However, recent surveys have shown that LRMs need to generate a very large number of tokens—
several thousands—in order to generate an accurate answer on challenging questions (Qu et al.,
2025; Chen et al., 2025b; Sui et al., 2025a). This behavior makes reasoning models extremely ineffi-
cient - scaling in both compute resources and inference time. Although recent works have suggested
solutions to this problem, most of them overlook the possibility of monitoring the output generated
by a model in order to dynamically manage the reasoning of the model, leaving a significant gap in
the literature. To address this challenge, this paper aims to offer a new perspective on the efficiency
of LRMs by focusing on online monitoring of models. Our contributions are as follows:

• Formalization of the Reasoning step concept: From the literature, we have observed numerous
definitions of reasoning steps. We first present a comprehensive review and formalize a more gen-
eralized definition of what constitutes a reasoning step for LRMs. We then propose ReasonType,
the first taxonomy of reasoning steps, enabling a structured identification of reasoning behaviors.

• Step-Tagging module: We introduce the Step-Tagging module (see Figure 1), an online
lightweight sentence classifier capable of identifying the nature of each step that the LRMs are
generating. This novel framework offers a tool to systematically monitor the generation of LRMs.

• Early-Stopping Framework: We observed that LRMs often generate the correct answer early in
the output sequence. Leveraging the Step-Tagging module, we found that the type of reasoning
steps plays a role in determining the early-stopping condition. Based on these observations, we
built an interpretable early-stopping framework that dynamically stops token generation based on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Standard LRM inference

user

LRM

What is the result when the greatest common
factor of 6432 and 132 is increased by 11?

Okay, so I need to find the greatest common factor (GCF) of 6432 and 132, and then increase that GCF by 11.
Hmm, let me remember how to find the GCF of two numbers.

[700 tokens]
I think that's solid. I don't see any mistakes in my calculations, and both methods gave me the same GCF. So,

increasing it by 11 is straightforward. 12 + 11 is 23.
Final Answer: The result is \\boxed{23}. <\/think> [...]

Monolithic answer from the model | Contains thousand of tokens

Step-Tagging Framework

user
What is the result when the greatest common
factor of 6432 and 132 is increased by 11?

LRM

Lightweight

Tagging

module

Okay, so I need to find the greatest common factor (GCF) of 6432 and 132, and then increase that GCF by 11.
Hmm, let me remember how to find the GCF of two numbers. I think the best way is to use the Euclidean
algorithm because it's systematic and works well for larger numbers.

First, let me write down the two numbers: 6432 and 132. Since 6432 is much larger than 132, I'll start by
dividing 6432 by 132 and find the remainder. Then, I'll repeat the process with 132 and that remainder until the
remainder is zero. The last non-zero remainder will be the GCF.

So, let's divide 6432 by 132. Hmm, I need to figure out how many times 132 goes into 6432. Maybe I can
simplify this division. Let me see, 132 times 50 is 6600, which is more than 6432. So, it must be a little less
than 50. Let me try 48 times 132. 48 times 100 is 4800, 48 times 32 is 1536, so adding those together, 4800 +
1536 is 6336. Hmm, 6336 is less than 6432. So, 132 times 48 is 6336. Subtracting that from 6432: 6432 - 6336
is 96. So, the remainder is 96.

Now, to find the GCF, we take the lowest power of the common prime factors. The common primes between
6432 and 132 are 2 and 3. In 132, 2 is squared, and in 6432, 2 is to the fifth power. So, we take the lower one,
which is 2^2. For 3, both have 3^1. So, GCF is 2^2 * 3^1 = 4 * 3 = 12. Yep, that matches my earlier result.

Step 1
Definition Recall

Step 2
Problem Re-statement

Step 3
Intuition

[Intermediate tags] [Intermediate steps]

Step 13
Verification

Ta
g

Tr
ac

ke
r

Tagged steps - monitor the generation process by annotating the reasoning steps

Figure 1: Step-Tagging: a framework for monitoring the generation of LRMs - example on sample 39 from
MATH500 test with DS-Qwen14B, using the ReasonType taxonomy - seed 42

reasoning steps types and counts, calibrated on both models and problem complexity. Tested on
three open-source LRMs across two reasoning datasets, our framework reduced token generation
by 30-40% while maintaining a comparable accuracy.

The paper is organized as follows. We first review research on LRM efficiency. We then propose a
definition of a reasoning step and a taxonomy of reasoning step types. Building on this, we present
our Step-Tagging module that can segment and label the reasoning steps within the output of an
LRM. We also propose an early stopping mechanism, based on frequency constraints defined on
reasoning step types. Finally, we present a set of experiments that validate our framework.

2 RELATED WORK

To render models less verbose and more efficient, Train and Test Time Scaling approaches have
been explored (Qu et al., 2025; Li et al., 2025; Chen et al., 2025a). Also, recent work has explored
monitoring the generation of LRMs. The Related-Work section in the Appendix C complements this
section, defining the inefficiency problem of reasoning models and its origins.

Efficient Reasoning through Training. Using SFT approaches, work such as Xia et al. (2025)
explored fine-tuning models on compressed reasoning traces to limit the verbosity of LRM genera-
tion. Other papers have suggested various RL algorithms designed to make models more efficient.
For instance, Luo et al. (2025); Team et al. (2025); Yu et al. (2025) showed that including a length
component in the reward function leads to more efficient training and inference.

Efficient Reasoning during Inference. Researchers have also explored Inference Time Scaling
technique to increase the efficiency of models (Qu et al., 2025). Model Switch uses a router mod-
ule to select small or large models for inference depending on the complexity of the problem (Ong
et al., 2025). Similarly, System Switch looked at dynamically selecting inference settings based on
the problem (Aytes et al., 2025). Length Budgeting aims to reduce the budget allocated to the gen-
eration of answers. Works such as Lee et al. (2025); Han et al. (2025); Xu et al. (2025) showed that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

careful prompt engineering can lead to more efficient generation compared to standard inference. In
addition, Pu et al. (2025) demonstrated that calibration experiments can be performed to estimate
the optimal number of tokens to solve particular problems. However, these techniques are hardly
interpretable since they rely on either prompt engineering or black box techniques.

Monitoring LRM generation. We observe an emerging theme of research on monitoring LRM
generation at a step level. Specifically, Lee & Hockenmaier (2025) proposes a taxonomy of reason-
ing traces evaluators. However, the authors acknowledged that existing monitoring approaches are
not adapted to complex reasoning traces. Moreover, Zeng et al. (2025) showed that monitoring the
generation of LRMs can enhance their performance by balancing both Exploration and Exploitation.
But their technique does not monitor the reasoning traces at a step-level, and requires many infer-
ence trials. As a result, existing works often overlook the question of how to dynamically monitor
LRMs reasoning during single inferences. To better understand how the generation reflects on the
model’s reasoning, we must begin by precisely defining what constitutes a reasoning step.

3 HOW TO DEFINE A REASONING STEP?

The concept of a reasoning step is central in evaluating and improving the generation of LRMs.
However, defining a reasoning step remains a non-trivial problem. As highlighted by Yao et al.
(2023); Lee & Hockenmaier (2025); Cao et al. (2025), the step segmentation depends on the models,
the problem, and different research goals lead to various definitions. In this section, we survey
existing approaches and select the one that leads to the most robust definition.

Token-per-token generation. From Schuurmans et al. (2024), we can formalize the auto-regressive
generation of text of LLMs, and thereby LRMs. We assume x1:s is an (1, s) dimensional vector
containing the tokens of the input sequence, where each token xi ∈ V = {v1, ..., vV }, |V | being the
size of the vocabulary. We can approximate the next-token generation as following:

Pπθ
(y|x1:s) ≈

n∏
i=1

Pπθ
(yi|x1:s+i−1) (1)

where Pπθ
(y|x1:s) is the probability of generating the output sequence y = y1:n = xs+1:n+s in an

auto-regressive manner, and πθ is the model parametrized by θ.

3.1 WHAT IS A REASONING STEP?

Rather than viewing the model’s output as a monolithic text sequence, recent work has shifted toward
decomposing generation of LRMs into discrete steps. This decomposition enables finer-grained
analysis of model behavior and facilitates targeted interventions. From the literature, we identified
four principal methods to segment the output from a model into distinct thoughts (Appendix E):

• Token or sentence level: Näively, thoughts can be decomposed into token (Yao et al., 2023) or
sentence level (Fu et al., 2023). However, for complex reasoning problems, these definitions are
not ideal since reasoning steps are composed of multiple sentences in mathematical reasoning.

• Paragraph level: LLMs and LRMs such as Deepseek-R1, QwQ, or GPT are natively generating
back-to-line symbols between two thoughts (e.g. .\n\n). Since this observation is model ag-
nostic, it has been adopted by several works (Cao et al., 2025; Park et al., 2024; Lightman et al.,
2023). However, Cao et al. (2025) emphasized that this approach on its own is not enough to cor-
rectly distinguish each steps. Models tend to output these symbols frequently, and so using them
as delimiters for reasoning can result in over-estimating the real number of steps. Figure 8 in the
Appendix E supports this observation, where more than 10 back-to-line symbols are generated for
the same type of step.

• Dynamic steps using special token: Another common approach is to prompt the model to force
the generation of special tokens to split the thoughts (e.g. <next step>). While some works
have used this strategy (Zelikman et al., 2024; Sui et al., 2025b; Paul et al., 2024), it suffers from
low reliability and efficiency. Indeed, this approach artificially generates more tokens, and prompt
engineering could cause mistakes since models are not pre-trained to perform this sub-task.

To clearly identify and monitor reasoning steps, most approaches are insufficient to split the reason-
ing traces of models. This motivated us to find an alternative approach to segmenting the traces.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 MODEL AGNOSTIC REASONING STEP DEFINITION

Since most models separate paragraphs and thoughts using back-to-line symbols, using this token
is a useful starting point to segment reasoning steps. However, to mitigate the over-segmentation
problem caused when back-to-line symbols are generated too frequently, Cao et al. (2025) set a
minimal number of tokens k per reasoning step and merge reasoning steps shorter than k together.
We adopt a similar definition of a reasoning step: a step is delimited by “.\n\n”, and we set a
minimal number of tokens k on the size of each step to avoid considering many small steps.

Step Generation. As introduced in the previous section, we decompose the output sequence of
LRMs into discrete reasoning steps. Building upon Cao et al. (2025) and the definition in Equation
1, we first formalize the notion of stepwise generation. Let y = y1:n ∈ V n be the output token
sequence generated by the model over the vocabulary V . We define a reasoning delimiter token
α ∈ V , such as α = “.\n\n”. Let R = {r0 = 1, . . . , ri, . . . , rT ′ = n} denote the indices in y
corresponding to the occurrence of α in y. r0 and rT ′ correspond to the first and last indexes of y1:n.
Based on these indices, we define a sequence - of length T ′ - of reasoning steps formed by y1:n with
the delimiter α:

S∗ = {s∗1, . . . , s∗i , . . . , s∗T ′}, such as s∗i = yri−1:ri (2)
where each step s∗i corresponds to a sub-part of the full output y. However, we observe that models
tends to generate back-to-line symbols frequently. To reduce redundancy and noise from short or
fragmented steps - highlighted by Cao et al. (2025) - we introduce a minimum token threshold k ∈ N
such as:

S = {s1, . . . , sT }, with |sj | ≥ k for all j ∈ [1, T]. (3)
For any original step s∗i ∈ S∗ such as |s∗i | < k, we continue the generation until the merged span
reaches another delimiter and its length exceeds the threshold k. In this formulation, each new
reasoning step is initiated by the generation of α, offering a more consistent definition between
models. Algorithm 1 in Appendix F.1 formalizes our definition.

4 STEP-TAGGING MODULE

In the previous section, we formalized the method we selected to segment reasoning steps of LRMs.
Building on this, we introduce Step-Tagging, a lightweight module capable of identifying, discrimi-
nating, and tagging reasoning steps in real-time during inference.

Objective. Our definition of a reasoning step enables users to segment reasoning steps within model
outputs. However, this definition alone does not allow the user to annotate the segmented steps
with reasoning types. This annotation would enable users to track logical transitions within model
outputs. To do this, we must first define a tag dictionary Ttags (i.e., a label space of reasoning step
tags) that covers the types of reasoning steps generated by models. Essentially, given a sequence of
reasoning steps S = {s1, s2, . . . , sT }, we wish to label each step si with a tag τi ∈ Ttags. Formally,
we are looking to construct a step-tagging function ϕ such as:

∀ i ∈ [1, T], ϕ(si) = τi (4)

where si ∈ S is a reasoning step from the full output sequence y, where |si| ≥ k, ϕ is the step-
tagging function, and τi ∈ Ttags is the reasoning tag associated to the step si.

Taxonomy of the type of steps. To enable fine-grained monitoring of reasoning behavior, we need
to know the different types of reasoning steps that are typically generated by LRMs (i.e., we need to
define Ttags). To do so, we created a taxonomy based on the outputs of both DeepSeek-R1-Distill-
Llama-8B (DeepSeek-AI et al., 2025) and QwQ-32B (Team, 2025) models.

Inspired by prior work on model behavior analysis (Galichin et al., 2025; Kuznetsov et al., 2025),
we first created a prompt to identify distinct types of reasoning steps in the traces (see Appendix I.1).
We then sampled 40 reasoning traces from the MATH500 train dataset (covering two samples per
difficulty level for each model) and using our prompt submitted the traces to GPT-4o-mini (Ope-
nAI et al., 2024). The prompt resulted in a series of different step-types. We merged overlapping
categories, to construct a taxonomy that reflects the temporal and reasoning progression of model’s
traces. We refer to this taxonomy as ReasonType (Figure 2) encompassing 13 categories, includ-
ing early-stage behaviors such as Problem Re-statement, later reasoning stages like Verification and
Exploration. To validate our taxonomy, we conducted ablation studies (see Appendix H).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ReasonType: a Taxonomy of Reasoning Steps

1. Problem Re-statement

4. Formula Substitution

8. Verification 10. Alternative Approach / Exploration9. Heuristic / Intuition 11. Interpretation 12. Self-Talk

13. Final Conclusion 14. Other

6. Edge Case 7. Pattern Recognition

2. Context Repetition 3. Definition Recall

5. Symbolic Transformation

Early reasoning (Setup)

Mid-reasoning (Calculus and problem solving)

Late-reasoning (Analysis and Reflexion)

End-reasoning (Conclusion)

Figure 2: ReasonType - A taxonomy of reasoning step types as per gpt-4o-mini

Early-stopping criteria. In the following section, we see that LRMs tend to generate the answer
early in the output sequence, with step-types following an ordered pattern. Based on this observation,
the central challenge that we address is to determine when to stop the generation of LRMs based on
step tags, creating an interpretable stopping criterion. Assuming that our Step-Tagging framework
can effectively monitor the steps (Equation 4), we can define a constraint on the frequency of a given
step type. Each constraint operates online, over a running sequence of reasoning steps Srunning =
{s1, . . . , sj}, where each step si is associated with a tag τi ∈ T . We define the constraint cτ∗ as:

cτ∗(Srunning, δ) = 1[ffreq(Srunning, τ
∗) ≤ δ] with ffreq(Srunning, τ

∗) =

j∑
i=1

1[τi = τ∗] (5)

where cτ∗(Srunning, δ) is the constraint on the tag type τ∗ over the step-sequence Srunning being gen-
erated, given the threshold δ. ffreq(Srunning, τ

∗) is the occurrence of the type-step τ∗ over the running
sequence Srunning. While the constraint cτ∗ is satisfied, the generation continues. If the constraint is
violated, the generation stops (see Appendix F.2 for more implementation details).

To facilitate the evaluation of early-exit answers, we prompted the models right after the last step
being generated, and allowed an additional budget of 100 tokens. We used the following prompt:
“\n\n I am confident in my answer. Here is the final answer.\n\n **Final Answer**”. We bor-
rowed this approach from Muennighoff et al. (2025), who showed that this intervention helped the
model to provide explicitly its current best answer - thereby facilitating evaluation.

5 EXPERIMENTAL SETTING

Our paper contains two objectives. First, our goal is to prove that lightweight classifiers can effec-
tively monitor the generation of LRMs. Furthermore, we show that the Step-Tagging framework
can be used to implement an interpretable early-stopping criterion to make the generation of LRMs
more efficient. We will first motivate our choices of datasets and inference settings followed by the
step-tagging pipeline and the choice of metrics to measure the performance of this pipeline.

Datasets. To assess our approach, we selected two state-of-the-art reasoning datasets:

• MATH500 (Hendrycks et al., 2021): This dataset includes 12, 500 mathematical questions span-
ning 5 different levels of complexity, allowing diversity in analysis of efficiency of reasoning be-
haviors. We selected the curated version from Lightman et al. (2023), containing 500 test samples
and selected 1, 000 training samples to form an equivalent distribution of complexity level.

• GSM8K (Cobbe et al., 2021): This dataset contains 8, 792 mathematical questions. We selected
3, 000 train instances, and the original 1, 318 test samples. Overall, this dataset is more homo-
geneous where questions involve logical mathematical reasoning, and include a larger number of
questions - which is good for benchmarking models.

Model selection. To apply our framework a user must have access to the fine-grained reasoning
traces of LRMs. However, many high-performing closed-source models (such as, o3 and Claude
3.7) do not expose raw reasoning traces. Instead, these models output summaries of thinking tokens
generated, which can bias the estimation of their efficiency compared to open-source models. In
contrast, open-source models like DeepSeek-R1 and QwQ consistently provide reasoning traces.
For this reason, we focus our analysis exclusively on DeepSeek-R1-Distill-Llama-8B, DeepSeek-
R1-Distill-Qwen-14B and QwQ-32B, which offer the granularity needed to monitor the reasoning
process. This choice is motivated by their variety in term of size and performance, full open-source
availability, and diversity in providers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Inference setting. To monitor the steps and intervene in the generation process, we suggest a new
definition of the generation process of LRMs. We assume that each model generates one token at a
time, and we split the steps dynamically. However, for the purposes of our experiments instead of
re-designing the generation process, we performed standard inference and applied our Step-Tagging
and Early-Stopping algorithms offline. To ensure the robustness and reproducibility of our approach,
we generated five outputs per test sample using fixed random seeds (namely 40, 41, 42, 43, and 44),
with deterministic decoding.

Metrics. To assess the model’s performance on challenging reasoning tasks, the Avg@k, Pass@k,
and Cons@k are common metrics (Chen et al., 2021; 2025a; Yu et al., 2025). The Pass@k measures
the proportion of the samples where at least one of k attempts leads to the correct answer, while the
Cons@k consider a sample correct if all k attempts are correct. Since we are interested about
both performance and robustness of our approach, we selected the Avg@5, the Pass@5 and the
Cons@5 as the quantitative metrics. Assessing the performance of LRMs on mathematical questions
is challenging. This is due to the open nature of the question. For our experiments, we selected
the Math-Verify1 library which is a common metric to assess mathematical problems. It uses text
extraction and formal verification. This metric also reported strong correctness compared to other
evaluation methods such as Harness (Zhibin Gou, 2024) or Qwen-Math Verifier (Huang et al., 2025).

Baselines. To assess the effectiveness of our early-stopping approach, we define two baselines:

• Ideal Early stopping - IES: We observe a growing understanding that, up to a token-budget,
thinking longer may be leading to worse results. Muennighoff et al. (2025) observes that certain
models achieved correct answers at the beginning, but sometimes backtracked to a wrong answer.
Inspired by this work, we define the Ideal Early Stopping, which prunes the remaining steps after
the first occurrence of the correct answer based on our metric - if any. In this case, this baseline is
theoretical since the ground truth label is needed for each inference (see Appendix J).

• Prompt-guided efficiency - Pguided: We also observe that LRMs are sensitive to the input prompt
(Lee et al., 2025). In this case, we compare our framework with user-prompt and system-prompt
variants, with Zero-Shot and Few-Shot prompts that aim to reduce the reasoning computation
while retaining accuracy. We explicitly instructed the models to not generate verbose output, or
over-verification steps. We selected 4 variants, namely: zero-shot user and system prompt, and
few-shot system prompt with 1 and 3 examples: P(0)

user, P(0)
system, P(1)

system, P(3)
system, respectively. The

prompts used to establish these baselines are listed in Appendix J.

5.1 IMPLEMENTATION OF THE STEP-TAGGER MODULE

Training data generation. Given that our reasoning step taxonomy was created using GPT-4o-
mini OpenAI et al. (2024) the most direct way to label a reasoning trace would be to use GPT-
4o-mini. However, this GPT-4o-mini annotation is costly, each step requiring more than a second
to be annotated (see Table 6 in Appendix I.2). Consequently, instead, we used GPT-4o-mini to
label a dataset of reasoning traces with the labels from the taxonomy that we use to train lighter
weight reasoning step classifiers. We constructed training datasets by running each LRMs on 1, 000
samples from MATH500 train and 3, 000 samples from GSM8K train datasets (with a seed of 42).
For each step si in generated outputs, we prompted GPT-4o-mini to assign a tag τi (Appendix I.1).

Sentence classifiers. We selected the bert-base-uncased sentence classifier (Devlin et al.,
2019) to construct our Step-Tagging framework, including a single hidden layer. Given the large
and fine-grained nature of our taxonomy (13 distinct step types), training a multi-class classifier is
challenging due to significant class imbalance. To address this, we trained separate binary classifiers
for each step-type. This approach notably improved detection accuracy across low-frequency cate-
gories, and fits our definition of early-stopping constraint: one step-type per early-stopping criteria.
We used a balanced cross-entropy to enhance the performance of the models on low-represented
classes. We implemented an early-stopping criteria, and a maximum of 5 epochs. The batch size is
16 and we used an AdamW optimizer with a learning rate of 2.10−5. To evaluate the performance of
our classifiers, we computed the Macro-F1 and Micro-F1 on the test datasets. While the Macro-F1
helps to identify the classifier’s ability to detect rare classes, the Micro-F1 offers a more global view
on the step detector’s performance across all steps.

1https://github.com/huggingface/Math-Verify

6

https://github.com/huggingface/Math-Verify

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2 STEP-SPLIT SETTINGS

Minimal step size k. To apply our definition of reasoning steps, users first need to set the value of k.
From the literature, this task is not straightforward since Cao et al. (2025) uses different values of k
based on the problems and models (e.g. k ≈100s). The value of k directly affects the granularity of
the monitoring. A small value would imply very small steps, sometimes splitting the same thoughts
between many steps, leading to extremely frequent monitoring. Conversely, a large value of k would
imply significantly large steps, including multiple thoughts and hence leading to biased monitoring.

Selecting the optimal k value. To balance fine-grained monitoring and reasoning efficiency, we
rely on two proxies to determine the value of k. First, the IES accuracy provide us a way to assess
if individual steps contains more than one thought. Second, the Step-Tagger performance informs
us about the semantic meaning of steps under a given a value of k. Based on three ablation studies
that we conducted in Appendix G, we set k to 60, 30 and 100 for DS-Llama8B, DS-Qwen14B and
QwQ-32B, respectively.

5.3 EARLY-STOPPING CONSTRAINTS

Early-Stopping calibration using a Pareto curve. To select the correct constraints (tag-type τ
and threshold δ) we rely on the training datasets, and on the synthetic generated tags. Figure 3
presents the number of tokens vs. accuracy of every tag-type with values of threshold ranging from
0 to 20, for the DS-Llama8B model on our train MATH500 per complexity level. We first observe
that LRMs tend to generate an increasing number of tokens when the complexity of the prompt
increases. Figure 3 also shows that early-stopping constraints are dependent on the complexity. For
this reason, we selected one constraint per complexity level for the MATH500 dataset, while for
the GSM8K dataset, we chose a unique constraint since we assume problems to carry equivalent
complexity. Furthermore, we observe that constraints form a Pareto curve (Lee et al., 2025), and
each step-types results in different trade-off between accuracy and token-count (see Appendix H.3).
On the strength of this observation, we set three Early-Stopping criteria that target specific trade-
offs between accuracy and efficiency: ST-ES 95%, ST-ES 90% and ST-ES 85%. For each setting,
we select the tag-type and threshold that lies closest to the Pareto frontier. Selected constraints and
calibrations for the other models and datasets are shown in the Appendix K.

Figure 3: Early-Stopping selection using Pareto - DS-Llama8B on MATH500 train - seed 42

LRM Router: dynamic inference. The MATH500 dataset involves various complexity levels.
For efficient inference, dynamic routing is needed. However, in real-world settings, the complexity
level of a question is sometimes unknown. To address this challenge, we grouped levels {1, 2} and
{3, 4, 5} into two complexity levels, and identified common constraints for both clusters. To route
the inference settings, we trained a BERT classifier on the input problem, using the full MATH500
train dataset. Performance of this classifier is reported in Table 8, Appendix L. For the MATH500
dataset, we included a fourth Early-Stopping criteria, namely ST-ES Router.

6 MONITORING LRMS USING STEP-TAGGER

To validate our taxonomy, we analyse the distribution and sequence of the step-tag labels generated
by GPT-4o-mini, then we evaluate the performance of our sentence classifiers.

Reasoning patterns. First, we observe that our Step-Tagging framework allows us to clearly follow
the reasoning progression of the model. Figures 34 and 35 in the Appendix I.2 present an analysis
(and validation) of reasoning patterns exhibited by models based on the step-types identified in the
reasoning traces generated by the models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Step frequency. Figure 4 presents
the frequency of each step-type in the
GPT-4o-mini labels. The plot shows
a high frequency of Verification, con-
firming our observations from the lit-
erature. We also note that the fre-
quency seems to depend on the prob-
lem complexity and models. For DS-
Llama8B and DS-Qwen14B, Formula
Substitution steps are very occurrent
for GSM8K (≈60%), while Exploration
and Self-Talk steps are more frequent for
QwQ-32B on both datasets.

Figure 4: Step-type distribution from GPT-4o-mini

Performance of step monitoring. Figure 5 presents the performance of the binary step-classifiers
on the selected step-types constraints for the DS-Llama8B model. We observe that the Micro-F1
is generally high across most steps for all models across all datasets - ranging from 0.89 to 0.97,
which demonstrates that the classifiers are good at detecting step-tags. Moreover, we also reported
the macro-F1 score since the distribution of step-types is highly imbalanced (see Figure 4).

We observe lower scores, notably for Context
Repetition with 0.65 (Context Repetition is a rare
step type, representing 1.7% of the labels, and so
we attribute this relatively low score to label im-
balance). However, the scores remain relatively
high, particularly for Verification and Exploration. Figure 5: Step-Tagger performance - DS-Llama8B

We interpret the strong performance of the classifiers as validating our reasoning step taxonomy
in the sense that it indicates that the step types are distinct (i.e., they reflect types with separable
properties). Figures 42 and 43 in the Appendix M present similar results for DS-Qwen14B and
QwQ-32B, respectively.

7 STEP-TAGGING EARLY-STOPPING (ST-ES) CRITERIA

Next, we show in this section that Step-Tagging modules can effectively be used as an early-stopping
criteria. Figure 6 presents the average token count against the Avg@5 for the three LRMs on the
MATH500 and GSM8K datasets. Each plot compares the performance trade-offs between the base-
lines and the ST-ES criteria. Table 9 in the Appendix O reports the quantitative metrics of the
baselines and our approach on the three models, for the 5 seeds that we selected.

Pguided baselines. We first notice that simple instruction on the models results in strong token-
reduction, achieving 20% to 60% saved tokens across configurations. Specifically, it seems that the
baselines are giving much better results on QwQ-32B, and the system-prompt variants generally
lead to more token-reduction for the Deepseek models.

Strong performance of the ST-ES. Next, we observe that our ST-ES criteria effectively leads to
more efficient generation, with all ES-ST settings lying on the left side of the Efficiency line com-
pared to the Standard inference for all models. Furthemore, the ST-ES criteria appear to outperform
most Pguided baselines for both Deepseek models.

Indeed, we observe that our ST-ES criteria is performing well on the DS-Llama8B model on
both datasets since almost all ST-ES configurations lies on the Pareto front. On MATH500 (Figure
6(a)), ST-ES Router and ST-ES 85% achieved approximately the same token reduction as P (0)

system and
P (3)

system (27% and 34%, respectively), while achieving higher accuracy. On GSM8K (Figure 6(d)),
ST-ES 90% achieves the same token reduction as P (1)

system (around 41%) while maintaining higher
Avg@5 (0.799 vs. 0.754, respectively). Furthermore, results on the DS-Qwen14B model also show
good performance of criteria leading to significant token-reduction (10 to 32%), with some config-
urations lying on the Pareto front. However, the Pguided settings appears to lead to more efficient
inference, notably for MATH500. In addition, the criteria suffers from more accuracy loss, as the
ST-ES Line are more vertical than for DS-Llama8B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) DS-Llama8B on MATH500 (b) DS-Qwen14B on MATH500 (c) QwQ-32B on MATH500

(d) DS-Llama8B on GSM8K (e) DS-Qwen14B on GSM8K (f) QwQ-32B on GSM8K

Figure 6: Number of Tokens vs. Avg@5 - Pguided Baselines vs. ST-ES criteria - The efficiency lines
in red highlight the configurations that improve the efficiency relative to the standard inference,
while the Pareto frontiers in yellow show the most efficient approaches. The Step-Tagging Early-
Stopping framework achieved up to 30 to 40% of token-count saving, with minimal accuracy loss.

ST-ES faces challenges on the QwQ model. In contrast, the ST-ES criteria shows nuanced results
on the QwQ-32B model. Baselines are stronger, and for the same token gains as the Deepseek mod-
els, the accuracy loss seems higher. We suspect that this observation can be attributed to two factors.

First, Figure 7 presents the average per percentage of the full output sequence for the three models.
DS-Llama8B and DS-Qwen14B appear to generate correct answers earlier in their output sequences,
but sometimes continue reasoning, leading to the destruction of the correct current answer. In par-
ticular, this is the case on easier problems (Level 1-3 MATH500) and GSM8K, where a drop in the
accuracy can be observed at around 40-50% stopping. By contrast, QwQ-32B exhibits more stable
accuracy gains as the token count increases, which suggests that the model is more conservative of
its current solution in the way it constructs its response.

(a) DS-Llama8B (b) DS-Qwen14B (c) QwQ-32B

Figure 7: Early-Stopping Avg@5 per percentage of the full output sequence

Second, we suspect that larger models are better at controlling the length of their generation using
specific prompts. We observe that the baselines from QwQ-32B are much more efficient than the
ones from both DS-Llama8B and DS-Qwen14B, which are smaller models. We note that Lee et al.
(2025) report similar findings with larger models achieving higher Upper Bound of Token Reduction
when prompted to compress their reasoning.

8 CONCLUSION

This work offers a novel view on both monitoring and efficiency of LRMs. We propose ReasonType,
a novel taxonomy of reasoning steps, and demonstrated that users can effectively track the reasoning
flow of the generation. We validated our taxonomy using the performance of sentence classifiers,
paving the way for more work on the monitoring of reasoning steps.

Furthermore, we show that the frequency of step-type in the reasoning traces can be used as a
reliable and interpretable early-stopping criterion. Through careful monitoring of certain step-types,
our framework can enhance the control of the generation of RLMs enabling a significant reduction
in token generation (up to 40%) while preserving performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We took several measures to ensure the reproducibility of our experiments, namely:

• Code availability: The source code that we developed to conduct our experiments is available in
the submission ZIP folder.

• Experimental Settings: We listed in Section 5 the experimental settings. This includes the
datasets used, the models (open-source available on HuggingFace), the parameters of the algo-
rithms, the prompts of the models, the evaluation functions, and the environment setups (seeds
and deterministic decoding). We also included scripts to reproduce the experiments we lead. We
used one or two A100-80GB GPUs to run our experiments.

REFERENCES

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumaravel, Matthew Stallone,
Rameswar Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, Chulaka Gunasekara, Shajith Ik-
bal, Sachin Joshi, Hima Karanam, Vineet Kumar, Asim Munawar, Sumit Neelam, Dinesh Raghu,
Udit Sharma, Adriana Meza Soria, Dheeraj Sreedhar, Praveen Venkateswaran, Merve Unuvar,
David Cox, Salim Roukos, Luis Lastras, and Pavan Kapanipathi. Granite-function calling model:
Introducing function calling abilities via multi-task learning of granular tasks, 2024. URL
https://arxiv.org/abs/2407.00121.

Simon A. Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning
with adaptive cognitive-inspired sketching, 2025. URL https://arxiv.org/abs/2503.
05179.

Lang Cao, Chao Peng, Renhong Chen, Wu Ning, Yingtian Zou, and Yitong Li. Step guided rea-
soning: Improving mathematical reasoning using guidance generation and step reasoning, 2025.
URL https://arxiv.org/abs/2410.19817.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-
of-thought for reasoning large language models, 2025a. URL https://arxiv.org/abs/
2503.09567.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms, 2025b. URL https://arxiv.
org/abs/2412.21187.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, and Haowei Zhang et al. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/
2501.12948.

10

https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2410.19817
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning, 2023. URL https://arxiv.org/abs/2210.00720.

Andrey Galichin, Alexey Dontsov, Polina Druzhinina, Anton Razzhigaev, Oleg Y. Rogov, Elena
Tutubalina, and Ivan Oseledets. I have covered all the bases here: Interpreting reasoning features
in large language models via sparse autoencoders, 2025. URL https://arxiv.org/abs/
2503.18878.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning, 2025. URL https://arxiv.org/abs/2412.18547.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Arian Hosseini, Alessandro Sordoni, Daniel Toyama, Aaron Courville, and Rishabh Agarwal. Not
all llm reasoners are created equal, 2024. URL https://arxiv.org/abs/2410.01748.

Yuzhen Huang, Weihao Zeng, Xingshan Zeng, Qi Zhu, and Junxian He. Pitfalls of rule- and model-
based verifiers – a case study on mathematical reasoning, 2025. URL https://arxiv.org/
abs/2505.22203.

Kristian Kuznetsov, Laida Kushnareva, Polina Druzhinina, Anton Razzhigaev, Anastasia Voznyuk,
Irina Piontkovskaya, Evgeny Burnaev, and Serguei Barannikov. Feature-level insights into artifi-
cial text detection with sparse autoencoders, 2025. URL https://arxiv.org/abs/2503.
03601.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought?
a token complexity approach, 2025. URL https://arxiv.org/abs/2503.01141.

Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey, 2025. URL
https://arxiv.org/abs/2502.12289v1.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei Li,
Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Xiao Liang, Zhijiang Guo, Le Song, and Cheng-Lin
Liu. From system 1 to system 2: A survey of reasoning large language models, 2025. URL
https://arxiv.org/abs/2502.17419.

Jonathan Light, Wei Cheng, Benjamin Riviere, Wu Yue, Masafumi Oyamada, Mengdi Wang, Yisong
Yue, Santiago Paternain, and Haifeng Chen. Disc: Disc: Dynamic decomposition improves llm
inference scaling, 2025. URL https://arxiv.org/abs/2502.16706.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
2025. URL https://arxiv.org/abs/2501.12570.

Leena Mathur, Marian Qian, Paul Pu Liang, and Louis-Philippe Morency. Social genome: Grounded
social reasoning abilities of multimodal models, 2025. URL https://arxiv.org/abs/
2502.15109.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi,
Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White,
Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2503.18878
https://arxiv.org/abs/2503.18878
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2410.01748
https://arxiv.org/abs/2505.22203
https://arxiv.org/abs/2505.22203
https://arxiv.org/abs/2503.03601
https://arxiv.org/abs/2503.03601
https://arxiv.org/abs/2503.01141
https://arxiv.org/abs/2502.12289v1
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.16706
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2502.15109
https://arxiv.org/abs/2502.15109

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Abdelaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Pa-
tel, Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Ka-
panipathi, Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Car-
los Fonseca, Amith Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, and Rameswar Panda.
Granite code models: A family of open foundation models for code intelligence, 2024. URL
https://arxiv.org/abs/2405.04324.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models, 2025. URL https://arxiv.
org/abs/2502.20122.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2025.
URL https://arxiv.org/abs/2406.18665.

OpenAI, Josh Achiam, Steven Adler, and Sandhini Agarwal et al. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Yoonjeong Park, Hyunjin Kim, Chanyeol Choi, Junseong Kim, and Jy-Yong Sohn. Can separators
improve chain-of-thought prompting? In 2024 2nd International Conference on Foundation and
Large Language Models (FLLM), pp. 493–500. IEEE, November 2024. doi: 10.1109/fllm63129.
2024.10852507. URL http://dx.doi.org/10.1109/FLLM63129.2024.10852507.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis, 2023. URL https://arxiv.org/abs/2305.15334.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations, 2024. URL
https://arxiv.org/abs/2304.01904.

Xiao Pu, Michael Saxon, Wenyue Hua, and William Yang Wang. Thoughtterminator: Bench-
marking, calibrating, and mitigating overthinking in reasoning models, 2025. URL https:
//arxiv.org/abs/2504.13367.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, Peng Li, Wei Wei, Jing Shao, Chaochao Lu, Yue Zhang, Xian-
Sheng Hua, Bowen Zhou, and Yu Cheng. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond, 2025. URL https://arxiv.org/abs/
2503.21614.

Sebastian Raschka. Understanding reasoning llms: Methods and strategies for building and refin-
ing reasoning models, 2025. URL https://magazine.sebastianraschka.com/p/
understanding-reasoning-llms.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Dale Schuurmans, Hanjun Dai, and Francesco Zanini. Autoregressive large language models are
computationally universal, 2024. URL https://arxiv.org/abs/2410.03170.

Kathrin Seßler, Yao Rong, Emek Gözlüklü, and Enkelejda Kasneci. Benchmarking large language
models for math reasoning tasks, 2024. URL https://arxiv.org/abs/2408.10839.

12

https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2406.18665
https://arxiv.org/abs/2303.08774
http://dx.doi.org/10.1109/FLLM63129.2024.10852507
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2504.13367
https://arxiv.org/abs/2504.13367
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://magazine.sebastianraschka.com/p/understanding-reasoning-llms
https://magazine.sebastianraschka.com/p/understanding-reasoning-llms
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2410.03170
https://arxiv.org/abs/2408.10839

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning, 2025. URL
https://arxiv.org/abs/2502.03275.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on effi-
cient reasoning for large language models, 2025a. URL https://arxiv.org/abs/2503.
16419.

Yuan Sui, Yufei He, Tri Cao, Simeng Han, Yulin Chen, and Bryan Hooi. Meta-reasoner: Dynamic
guidance for optimized inference-time reasoning in large language models, 2025b. URL https:
//arxiv.org/abs/2502.19918.

Kimi Team, Angang Du, Bofei Gao, and Bowei Xing et al. Kimi k1.5: Scaling reinforcement
learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct, 2022. URL https://arxiv.org/
abs/2211.00053.

Sean Williams and James Huckle. Easy problems that llms get wrong, 2024. URL https://
arxiv.org/abs/2405.19616.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Control-
lable chain-of-thought compression in llms, 2025. URL https://arxiv.org/abs/2502.
12067.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less, 2025. URL https://arxiv.org/abs/2502.18600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao

13

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2502.03275
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2305.10601

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang, Zifei Shan, and Junxian He. B-star:
Monitoring and balancing exploration and exploitation in self-taught reasoners, 2025. URL
https://arxiv.org/abs/2412.17256.

Yue Zhang Zhibin Gou. Llm math evaluation harness, 04 2024. URL https://github.com/
ZubinGou/math-evaluation-harness.

14

https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2412.17256
https://github.com/ZubinGou/math-evaluation-harness
https://github.com/ZubinGou/math-evaluation-harness

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A LLM Usage 16

B Limitations and Future Work 16

C Related-Work 16
C.1 Language Reasoning Models (LRMs) . 16
C.2 LRMs are Inefficient . 16
C.3 Open-source reasoning path . 17

D Mathematical reasoning datasets 17

E Definition of reasoning steps 18

F Algorithms 19
F.1 Step-wise Generation . 19
F.2 Early Stopping algorithm . 20

G Selecting the minimal number of token k 21
G.1 Ideal Early-Stopping as a proxy for the step-size 21
G.2 Semantic properties implied by the parameter k 23
G.3 Influence of the parameter k on the Step-Tagging Early-Stopping criteria 25
G.4 Summary of takeaways . 27

H Validation of the ReasonType taxonomy 28
H.1 Reason-Type taxonomy for identifying reasoning behaviors 28
H.2 Tracking step-types to design interpretable early-stopping criteria 29
H.3 Certain Step-Type are better early-stopping criteria 31
H.4 Comparison to alternative taxonomy . 33
H.5 Summary of takeaways . 34

I Analysis of reasoning step types 35
I.1 Prompts . 35
I.2 Statistics on the reasoning steps count and types 35

J Baselines 39

K Calibration of the ST-ES criteria 40

L LLM-Router: Prompt complexity classification 41

M Step-Tagging performance 41

N Ideal-Early-Stopping 42

O Performance of the ST-ES criteria 42

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LLM USAGE

We acknowledge the use of Large Language Models for the purpose of our experimentation in our
paper. Specifically, as stated in Section 4, we relied on GPT-4o-mini to set our ReasonType
taxonomy. This approach is borrowed from work on behavior analysis of LLMs, such as Galichin
et al. (2025); Kuznetsov et al. (2025).

B LIMITATIONS AND FUTURE WORK

Our definition of reasoning step is taken from previous work, and relies on empirical evaluation.
We believe that our step taxonomy can enhance the step definition. Future work should look at
leveraging the performance of step-classification to better define reasoning steps.

To train accurate Step-Tagger modules, we suspect that significantly increasing the number of traces
could lead to better results. Also, down-sampling could render our training more effective, and
increase the Macro-F1. In addition, a better definition of a step could lead to more effective moni-
toring. For instance, it would be interesting to explore dynamic values of minimal number of tokens
k, making our approach even more agnostic.

Further, our ST-ES criteria is näive, since it is simply based on frequency monitoring. Some works
have started to explore confidence-based methods on the uncertainty of the logits. We believe that
integrating this knowledge to our criteria could further enhance our early-stopping criteria.

C RELATED-WORK

C.1 LANGUAGE REASONING MODELS (LRMS)

The field of reasoning models has been very active over the recent years. The literature tends to
divide existing models into two distinct categories, namely System-1 and System-2 (Li et al., 2025;
Qu et al., 2025). System-1 models refer to intuitive and fast LLMs. These correspond to standard
instructed LLMs. In contrast, System-2 models are slower and deeper thinking, designed to perform
explicit multi-step thought, and are referred to as LRMs.

Building System-2 models. Driven by substantial research efforts, LLMs now excel at standard
capabilities such as Natural Language Processing (NLP) (Touvron et al., 2023; OpenAI et al., 2024),
code generation (Mishra et al., 2024; Rozière et al., 2024) and Function-calling (Abdelaziz et al.,
2024; Patil et al., 2023). However, traditional LLMs perform poorly on reasoning task as shown
by work such as Williams & Huckle (2024); Seßler et al. (2024); Hosseini et al. (2024). Research
on enhancing LLM reasoning capabilities can be decomposed into two categories: Training, and
Inference Time Scaling (Raschka, 2025).

Training Time Scaling. To enhance the performance of LLMs on reasoning tasks, a substantial
body of work has explored different training techniques. A promising path has been to fine-tune
LLMs on reasoning traces using RL and SFT techniques. For example, Deepseek (Shao et al.,
2024) introduced the Group Relative Policy Optimization (GRPO). Unlike the classic Proximal
Policy Optimization (PPO) (Schulman et al., 2017), GRPO estimates the reward using group scores,
which naturally enhances model’s capability to generate reasoning traces. Nevertheless, this process
renders the models to be much more verbose.

Inference Time Scaling. By contrast, Inference Time Scaling aims to enhance model performance
on reasoning tasks after training. To do so, researchers looked for reasoning instances at sampling
(Wang et al., 2023; Snell et al., 2024), or prompt engineering techniques (Wei et al., 2023; Muen-
nighoff et al., 2025). Since the generation of LLMs is often highly variable, multiple inferences
could lead to a wide diversity of answers. These techniques help the reliability and correctness of
models. However, they comes at the cost of both compute resources and runtime.

C.2 LRMS ARE INEFFICIENT

From the literature, we can observe a strong push for more efficient LRMs. This section will aim to
define the efficiency problem of LRMs, and the underlying gaps in the literature.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Patterns of inefficiency. It is only recently that a few papers highlighted that LRMs tend to generate
thousands of tokens to solve reasoning problems. Chen et al. (2025b) was the first to formalize this
issue, known as model overthinking, where LRMs tend to generate a disproportionate number of
tokens for fairly simple problems. In this emerging field, work such as Qu et al. (2025) began to look
for evidence of inefficiency and showcased examples where reasoning models exhibit patterns of
inefficiency mainly due to redundancy such as verbose problem reformulation, or over-verification.
Munkhbat et al. (2025) also support this claim and gives a general overview of findings in the field.
Su et al. (2025) claims that majority of tokens generated by LRMs ensure textual coherence rather
than core reasoning. Experimentation presented by Luo et al. (2025) supports the argument that
longer answers from models does not necessarily lead to more accurate answers, and in some cases
can even lead to worse answers. However, to the best of our knowledge, the literature lacks tools to
systematically identify patterns of inefficiency such as redundant generation.

Origins of inefficiency. First, Sui et al. (2025a) observed from the Deepseek paper DeepSeek-
AI et al. (2025) that GRPO training leads to a positive correlation between the accuracy of the
model and the average number of tokens generated. Furthermore, Galichin et al. (2025) highlighted
that LRMs such as Deepseek-R1 tend to generate tokens that are responsible for the generation
of certain types of reasoning steps. Referred to as reasoning tokens (e.g. Wait, Hum, Let me
verify, ...), the authors demonstrated that these tokens are responsible for guiding the generation
of intermediate stages of reasoning, such as pausing the thought, re-evaluating the current answer,
or exploring novel solutions. However, their empirical evaluation on activation steering showed that
the over-reliance on such tokens tends to increase the verbosity of model output. Muennighoff et al.
(2025) also supports this claim. Indeed, they demonstrated that prompting reasoning tokens during
the generation forces the model to reason more.

C.3 OPEN-SOURCE REASONING PATH

Table 1 shows the difference between close-source and open-source models. Close-source models
tends to hide the raw reasoning traces generated by models.

LRMs Open Weights Reasoning Traces

DeepSeek-R1 Yes Yes
QwQ Yes Yes
o3 / o4 No Partial
Claude 3.7 No Partial
Gemini 2.5 Pro No Partial

Table 1: Comparison of LRMs and reasoning traces - Partial stands for models that do give access
to full reasoning traces

D MATHEMATICAL REASONING DATASETS

Table 2 presents the selected reasoning datasets, including their references, and the number of sam-
ples per training and testing folds. Due to computational resources constraints, we limit the size
of the training datasets to smaller subsets of their full versions - specifically, 1,000 samples for
MATH500 Lightman et al. (2023) and 3,000 samples for GSM8K Cobbe et al. (2021). These values
were selected to have approximately twice the size of the test datasets of training samples. We used
a seed of 42 to infer training datasets.

Dataset # Train # Train used # Test

MATH500 12,000 1,000 500

GSM8K 7,474 3,000 1,318

Table 2: Description of selected mathematical dataset

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E DEFINITION OF REASONING STEPS

Table 3 gives an overview of the different definitions of reasoning steps in the literature. Notably, we
can define 4 categories, namely: token, sentence, paragraph, and dynamic step delimitation levels.

Step Type Ref. Method M.A.

Token Light et al. (2025) – x
Yao et al. (2023) – x

Sentence Fu et al. (2023) [. , ;] x
Yao et al. (2023) – x

Paragraph

Cao et al. (2025) .\n\n x
Lightman et al. (2023) \n

Fu et al. (2023) \n x
Park et al. (2024) \n\n\n, ###, *** x
Yao et al. (2023) i

Dynamic

Light et al. (2025) Sampling x
Zelikman et al. (2024) < |startofthought| >

Sui et al. (2025b) <next step>
Fu et al. (2023) “step i”

Paul et al. (2024) <equation>
Welleck et al. (2022) special tokens

Table 3: Overview of types of step-delimiters - M.A. for Model Agnostic

Figure 8 presents an example of reasoning step from the Deepseek-R1-Distill-Llama8B model. We
observe that the delimiter .\n\n is very often being generated, specifically when the model executes
a series of operations.

Example of Reasoning step

[...] \n\n Wait, let me double-check my calculations to make sure I didn’t make any mistakes.\n\n
First, f(-2): \n\n 3*(-2) is -6, minus 2 is -8. Denominator: -2 -2 is -4. -8 divided by -4 is 2.
Correct.\n\n f(-1): \n\n 3*(-1) is -3, minus 2 is -5. Denominator: -1 -2 is -3. -5 divided by -3 is
53. Correct.\n\n f(0): \n\n 3*0 is 0, minus 2 is -2. Denominator: 0 -2 is -2. -2 divided by -2 is 1.
Correct.\n\n Adding them up: 2 + 53 + 1.\n\n Converting to thirds: 2 is 63, 1 is 33, so 63 + 53 +
33 = 143. Yep, that seems right.\n\n So, I think I did everything correctly. I don’t see any mistakes
in my calculations or reasoning.

Figure 8: Extract of the reasoning traces of DS-Llama8B - from inference of question 2 of MATH500
test dataset. The extract of the reasoning trace showcases a verification step of the model. Back to
line symbols are highlighted in bold.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F ALGORITHMS

F.1 STEP-WISE GENERATION

To generate the reasoning traces of models step-by-step, we need to modify the model.generate
function from Hugging Face. However, this process comes at the cost of latency in model genera-
tion since we need to interrupt the generation process at each step. The algorithm is presented in
Algorithm 1.

Algorithm 1 Step-wise Generation
Require: Prompt x; reasoning delimiter α ∈ V ; minimal step size k ∈ N; max steps Tmax; language model
M; tokenizer T ; EOS token

1: y ← T (x) ▷ Tokenized input
2: S ← []; β ← ∅ ▷ Initialize output and buffer
3: s← 0
4: while s < Tmax do
5: t←M(y) ▷ Generate next token
6: y ← y + t
7: β ← β + T −1(t) ▷ Add decoded token to buffer
8: if EOS in y then ▷ Stop inference if EOS generated
9: Append β to S

10: break
11: end if
12: if β ends with α then
13: if β > k then ▷ Complete and valid step
14: Append β to S
15: β ←′′ ▷ Empty the buffer
16: s← s+ 1 ▷ Increase S by one step
17: else
18: Continue ▷ Continue until next α or EOS is generated
19: end if
20: else
21: Continue
22: end if
23: end while
24: return S

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F.2 EARLY STOPPING ALGORITHM

Algorithm 2 lists the Step-Tagging Early-Stopping criteria. The user needs to define a constraint
{τ∗, δ}, and input a Binary Step-Tagger ϕτ∗ , which returns 1 if the step tag is τ∗ and 0 otherwise.
If the constraint breaks, the algorithm stops the generation, and prompts the model with Pexit to give
the current best answer.

Algorithm 2 Step-Tagger Early-Stopping
Require: Prompt x; reasoning delimiter α ∈ V ; minimal step size k ∈ N; max steps Tmax; Reasoning

Language ModelM; tokenizer T ; EOS token γ; Constraint {τ∗, δ}; Binary Step-Tagger ϕτ∗ ; Early-Exit
Prompt Pexit

1: y ← T (x) ▷ Tokenize the input
2: Srunning ← []; ▷ Initialize output
3: t← 0
4: fτ∗ ← 0 ▷ Initialize frequency track of τ∗

5: while cτ∗(Srunning, δ) do ▷ Generate until constraint breaks
6: Generate step si usingM, α, where |si| > k
7: y ← si
8: if ϕτ∗(si) then fτ∗ ← fτ∗ + 1 ▷ Increase the counter
9: else

10: Continue the generation
11: end if
12: t← t+ 1
13: end while
14: y ←M(y + Pexit) ▷ InferM with the early exit prompt
15: return y

Figure 9: Illustration of early-stopping based on Step-Tagging

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G SELECTING THE MINIMAL NUMBER OF TOKEN k

G.1 IDEAL EARLY-STOPPING AS A PROXY FOR THE STEP-SIZE

Grounding our approach in the literature. One crucial component of our work is the formaliza-
tion of the reasoning step. From the literature, we selected the definition that seems to be the most
agnostic to the model, and use-cases Cao et al. (2025) (see Section 3.2). Prior research in social
sciences, which we believe can be compared to mathematical reasoning, further support that a rea-
soning step should be self-contained: “each reasoning step ei represents a single piece of evidence
contributing toward the social inference to select an answer Aa from A” (Mathur et al., 2025)[p.3].

Objective and Motivations. To support this claim, we are looking to produce a segmentation such
that each unit clearly reflect a contribution toward the final answer. In addition, we note that this
claim supports our problem setting: monitoring becomes more informative when the segmentation
of the reasoning is well conducted. In our step definition, the step segmentation is controlled by a
minimal number of token per step k. To apply this claim, we should first find a way to see if steps
contain one or multiple thoughts given a value of k. This selection of k is important since we base
the rest of our analysis and work on this step definition.

Methodology. To select optimal values of k for the three models studied, we rely on the Ideal Early-
Stopping (IES) baseline as a signal for the quality of the step segmentation (see Section 5). First,
we consider the accuracy of IES , which reflects the point at which a correct answer first appears in
the reasoning trace. When k is set too large, reasoning steps are likely to contain multiple distinct
thoughts. In such cases, correct intermediate answers may be overwritten by later steps, which can
potentially reduce IES accuracy, and thereby contradicting our claim (more than one thought per
step). Second, we analyze the mean number of tokens per sample given by the IES baseline. If k is
too large, we expect the average step length to increase, potentially erasing all efficiency gained that
the IES baseline is designed to provide. We applied our methodology on reasoning traces obtained
on the MATH500 train dataset, for its diversity in problem complexity.

Evaluation. Figure 10 showcases the accuracy of the IES baseline (red), and its average number of
tokens per sample (blue), for the three LRMs on the MATH500 train dataset, using values of k rang-
ing from 1 to 1, 000. As expected, we observe that the accuracy generally drops when k increases.
In the meantime, the minimal number of tokens of the ideal early-stopping criteria increases when
k increases.

(a) DS-Llama8B (b) DS-Qwen14B (c) QwQ-32B

Figure 10: Selecting optimal k - Efficiency of IES

We interpret the accuracy drops when k increases as a signal that some steps are including multiple
thoughts. Indeed, our metric is by definition taking the latest solution contained in each step (if any,
e.g. located at the last sentence of the step). If the steps are really small, the steps are containing a
minimal number of thought (as per the model’s step segmentation when generating .\n\n). This
explains why k = 1 obtained the highest accuracy for every models. However, k needs to be
set higher than 1 to avoid over-segmentation (see Appendix E). Now, if a step contained a correct
answer with a lower value of k, increasing k results in adding additional reasoning text - potentially
incomplete or erroneous. Then our metric would assign the outcome to the latest solution within the
same step, potentially overriding the correct sub-conclusion. Figures 11 and 12 illustrate this.

Takeaway. On the strength of these observations, we identified sweet-spots for each models, aiming
to balance monitoring efficiency and supports our claims on our step-definitions. We set k = 60,
k = 30, and k = 100 for DS-Llama8B, DS-Qwen14B, and QwQ-32B, respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Example. Figures 11 and 12 show an example of IES traces for the sample 658 from MATH500
train using the DS-Qwen14B with a reasoning step-split parameter k of 30 and 300, respectively.
We selected this example because the model initially drafted a correct answer, but overwrote it
with a wrong reasoning. While the IES algorithm returned the correct answer parsed at step 8 for
the parameter k = 30, the same algorithm applied for a parameter k = 300 return an incorrect
answer, and failed to early-stop. Indeed, with k = 300, the same step correspond now to the step
5, and include an additional self-corrected sentence leading to a different answer. This observation
confirms that the model sometimes over-write/overthink its correct initial reasoning, and suggests
that lower values of k tends to lead to better segmentation of the reasoning traces. Overall, this
observation comforts our observation from the previous section and our selection of k.

Step 1 - Okay, so I’ve got this geometry problem here. It says that line AB is parallel to line CD, and the measure of angle AXF is 118 degrees.
I need to find the measure of angle FYD. Hmm, let me try to visualize this. There’s an Asymptote diagram provided, but since I can’t actually
see the image, I’ll have to go off the description \n\n
Step 2 - First, I know that when two lines are parallel, certain properties hold, like corresponding angles being equal, alternate interior angles
being equal, and so on. Maybe I can use those properties here \n\n
Step 3 - Looking at the Asymptote code, it defines points A, B, C, D, E, F, X, and Y. A, B, C, D are the main points, with AB and CD being the
parallel lines. E is another point below AB, and F is above CD. Lines are drawn from E to F, which intersects AB at point X and CD at point
Y. So, essentially, line EF is a transversal cutting through the two parallel lines AB and CD \n\n
Step 4 - Given that, angle AXF is 118 degrees. Let me try to identify where that angle is located. Point A is on AB, point X is the intersection of
EF and AB, and point F is on EF. So angle AXF is at point X, formed by lines AX and FX. Since AB is parallel to CD, and EF is a transversal,
there might be some corresponding angles or alternate interior angles that I can use \n\n
Step 5 - I need to find angle FYD. Point F is on EF, point Y is the intersection of EF and CD, and point D is on CD. So angle FYD is at point
Y, formed by lines FY and DY. That angle is also on the transversal EF, but on the other side of the parallel lines \n\n
Step 6 - Since AB is parallel to CD, and EF is a transversal, the corresponding angles at X and Y should be equal. So, if angle AXF is 118
degrees, then the corresponding angle at Y should also be 118 degrees. But wait, angle AXF is on the same side as angle FYD? Or is it on
the opposite side? \n\n Wait, angle AXF is above AB, and angle FYD is above CD. Since AB and CD are parallel, the angles formed by the
transversal EF should be corresponding. So, angle AXF and angle FYD are corresponding angles. Therefore, they should be equal. So, angle
FYD should also be 118 degrees \n\n
Step 7 - But hold on, let me double-check. When you have two parallel lines and a transversal, corresponding angles are equal. So, angle AXF
is at the intersection above AB, and the corresponding angle above CD would be angle FYD. So yes, they should be equal \n\n
Step 8 - Alternatively, I can think about the consecutive interior angles. If I consider angle AXF and the angle adjacent to it on the same side,
they should add up to 180 degrees because they are consecutive interior angles. So, if angle AXF is 118 degrees, the adjacent angle on the
same side would be 180 - 118 = 62 degrees \n\n
[...]
Step 37 - **Final Answer** 118 < \think > \n\n [...]

Figure 11: Sample 658 from MATH500 train —— Solution: 62◦ —— k = 30 with DS-Qwen14B

Step 1 - Okay, so I’ve got this geometry problem here. It says that line AB is parallel to line CD, and the measure of angle AXF is 118
degrees. I need to find the measure of angle FYD. Hmm, let me try to visualize this. There’s an Asymptote diagram provided, but since I can’t
actually see the image, I’ll have to go off the description. \n\n First, I know that when two lines are parallel, certain properties hold, like
corresponding angles being equal, alternate interior angles being equal, and so on. Maybe I can use those properties here \n\n
Step 2 - Looking at the Asymptote code, it defines points A, B, C, D, E, F, X, and Y. A, B, C, D are the main points, with AB and CD being the
parallel lines. E is another point below AB, and F is above CD. Lines are drawn from E to F, which intersects AB at point X and CD at point
Y. So, essentially, line EF is a transversal cutting through the two parallel lines AB and CD. \n\n Given that, angle AXF is 118 degrees. Let
me try to identify where that angle is located. Point A is on AB, point X is the intersection of EF and AB, and point F is on EF. So angle AXF
is at point X, formed by lines AX and FX. Since AB is parallel to CD, and EF is a transversal, there might be some corresponding angles or
alternate interior angles that I can use \n\n
Step 3 - I need to find angle FYD. Point F is on EF, point Y is the intersection of EF and CD, and point D is on CD. So angle FYD is at point
Y, formed by lines FY and DY. That angle is also on the transversal EF, but on the other side of the parallel lines \n\n
Step 4 - Since AB is parallel to CD, and EF is a transversal, the corresponding angles at X and Y should be equal. So, if angle AXF is 118
degrees, then the corresponding angle at Y should also be 118 degrees. But wait, angle AXF is on the same side as angle FYD? Or is it on
the opposite side? \n\n Wait, angle AXF is above AB, and angle FYD is above CD. Since AB and CD are parallel, the angles formed by the
transversal EF should be corresponding. So, angle AXF and angle FYD are corresponding angles. Therefore, they should be equal. So, angle
FYD should also be 118 degrees \n\n
Step 5 - ”But hold on, let me double-check. When you have two parallel lines and a transversal, corresponding angles are equal. So, angle AXF
is at the intersection above AB, and the corresponding angle above CD would be angle FYD. So yes, they should be equal.\n\n Alternatively,
I can think about the consecutive interior angles. If I consider angle AXF and the angle adjacent to it on the same side, they should add up to
180 degrees because they are consecutive interior angles. So, if angle AXF is 118 degrees, the adjacent angle on the same side would be 180
- 118 = 62 degrees.\n\n But angle FYD is on the other side, so maybe it’s another corresponding angle. Wait, no, actually, angle FYD is the
corresponding angle to angle AXF, so it should be equal, 118 degrees \n\n
[...]
Step 12 - Wait, but just to make sure, let me think about the transversal EF. At point X, we have angle AXF = 118 degrees. Since AB is parallel
to CD, the corresponding angle at Y should be the same. So, angle FYD is 118 degrees. \n\n Yes, that makes sense. \n\n Alternatively, if I
consider triangle FXD, but I don’t think that’s necessary here because we can solve it using just the properties of parallel lines and transversals.
\n\n So, I think I’m confident that angle FYD is 118 degrees. \n\n **Final Answer** 118 < \think > \n\n
[...]

Figure 12: Sample 658 from MATH500 train —— Solution: 62◦ —— k = 300 with DS-Qwen14B

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.2 SEMANTIC PROPERTIES IMPLIED BY THE PARAMETER k

Objective. To complete the previous section, we adopted a complementary approach to reinforce
our selection. We examine the semantic properties of reasoning steps. We show that the choice
of the segmentation parameter k also affects the meaningfulness and coherence of each step. This
ablation study has two objectives:

1. We demonstrate that certain values of k enhance the semantic meaning of individual steps, mak-
ing them more self-contained and interpretable,

2. An appropriate value of k improves the accuracy of our step-tagger, since the semantic coherence
impact the detection performance of step types using text classifiers.

Methodology. To address these objectives, we selected different values of k, namely:
1, 30, 100, 150, 200, 300. We then constructed their corresponding datasets by segmenting the same
reasoning traces according to the different parameters k that we selected (Section 3.2). We selected
the MATH500 train dataset using the seed 42, obtained from the DS-Qwen14B model. To access
the ground-truth, we re-labeled each datasets using the same method defined in Section 5.1.

Impact of k on the tag distribution. Figure 13 shows that the parameter k affects both number of
steps obtained and the distribution of ground-truth labels step-types. To control this distributional
effects, we considered two dataset variants by pre-processing the datasets as follows: (a) Balanced:
sampling the data to achieve a 50/50 distribution of positive and negative classes, (b) Downsam-
pling: down-sampling the datasets to obtain the same number of samples (as per the smallest dataset
- i.e. k = 300).

Figure 13: Step-tags distribution as per GPT-4o-mini for each values of k - ReasonType taxonomy

For each dataset, we trained binary BERT classifiers with identical hyperparameters (same as in
Section 5.1). Similarly to our Step-Taggers, the classification task is step-type detection, where the
model predicts whether a given step corresponds to a certain step type τ∗. We conducted experi-
mentation on 2 step-types: (a) Validation, (b) Exploration. While Validation is the one of the most
occurrent step-type, Exploration has some interesting sematic properties, and is less frequent.

Figure 14 and 15 shows the label distribution of the three variants on the Verification and Exploration
step-type, respectively. While Downsampling enable clear comparison of performance for different
values of k - same dataset size, Balancing labels of datasets investigates the performance of the
models with ideal distribution for step-type detection. In contrast, switching off the pre-processing
steps preserve the natural distribution of labels, providing insights under more realistic conditions.

Figure 14: Distribution of dataset variants - Verification step-type

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 15: Distribution of dataset variants - Exploration step-type

Evaluation. Figure 16(a) and 16(b) present the Micro-F1 and Macro-F1 of the binary BERT clas-
sifiers trained on the different dataset types for different values of k and for the Verification and
Exploration step-types, respectively. We first note that the training performed on the Exploration
steps lead to higher accuracy than the one achieved on the Verification step (Macro-F1 0.8 − 0.97
vs. 0.8− 0.87). It could be explain by the nature of the steps. The Verification steps might be more
diverse, while the Exploration steps might carry more semantic meaning, making them easier to de-
tect (specifically for the balanced dataset). For imbalanced datasets (Original and Down-sampled), it
is worth noting that reporting the Macro-F1 was also important in order to access to the performance
of the minority class (positive).

(a) Verification step-type (b) Exploration step-type

Figure 16: Step-Tagger performance per dataset distribution and step segmentation parameter k

Importantly, we observe a general trend of performance for the different configuration. The param-
eter k seems to impact the performance of the classifiers. Specifically, the performance seems to
decrease when k is increase from values ranging from 30 to 300. For the Original Validation, the
Micro-F1 drops from 0.9 for k = 30 to 0.84 for k = 300, similarly for the Macro-F1 (from 0.85 for
k = 30 to 0.81 for k = 300). Surprisingly, the value k = 1 lead to lower performance compared to
k = 30. We suspect that very small value of k (such as k = 1) imply noisy steps. Indeed, Figure 8
in Appendix E confirms this observation. When k is very small, a lot of noisy steps are created, and
this could perturb the training.

In addition, for both labels, the Balanced dataset allows for higher performance in term of Macro-
F1. It means that classifiers are better at detecting positive classes, at the cost of the performance on
the negative class (lower Micro-F1 with respect to the two other datasets). However, same effects
on the values of k can be noticed. Moreover, down-sampling the dataset seems to harm slightly
the performance, especially for the Verification step-type. It indicates that limiting the dataset size
reduces the diversity of training samples for lower values of k.

Takeaway. This ablation study supports our selection of k. Based on the semantic properties of
the steps, we found that higher values of k lead to a loss of semantic meaning of the steps. Simi-
larly, small values of k implies noise in the step segmentation - which could perturb the monitoring
analysis of the reasoning.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.3 INFLUENCE OF THE PARAMETER k ON THE STEP-TAGGING EARLY-STOPPING CRITERIA

Objectives. In the two previous ablation studies, we have seen that the step segmentation parameter
k influenced the amount of information contained in each reasoning step. The following ablation
study focus on assessing the impact of the parameter k on the performance of our step-tagging early-
stopping criteria. It is composed of two sections: We first evaluate the impact of the parameter k
on the constraint threshold δ of our criteria (Section G.3.1), and then assess the impact of k on the
performance of the criteria (Section G.3.2).

G.3.1 ST-ES THRESHOLDS δ

We have seen that the step segmentation parameter k influences both size and amount of information
contained in each steps. To further validate our values of k, we are looking at its influence on
the threshold δ of our Step-Tagging Early-Stopping constraint (τ , δ), for each step-types τ of our
taxonomy.

Impact on the constraint values. To assess the influence of k on the constraint values δ, we
adopt a different point of view. For each value of k, we re-used the datasets obtained from the
reasoning traces of the DS-Qwen14B model on the MATH500 of the training datasets labeled by
GPT-4o-mini (see Appendix G.2). For each values of k ∈ {1, 30, 100, 150, 200, 300}, Figures 18
and 18 compare the Accuracy and the Average number of tokens per sample for each constraints δ ∈
[1, 10] for each step-types of the taxonomy, respectively. The positions and speed of convergence
will allow us to assess the impact of the k on the constraints values δ.

Evaluation. First, we observe that lower values of k (e.g. k ∈ {1, 30}) reveal smoother trade-off
for both accuracy and token count. Indeed, the curves converge less quickly to the original traces
(plateau when δ → ∞, tending to no-constraints i.e. the standard inference).

In comparison, when k grows, the curves are sharper and tends to converge faster, which offers
less trade-off between accuracy and token-count. Furthermore, the curves of the different step-types
becomes less distinguishable and overlaps much more than for lower values of k. In the context of
our Early-Stopping framework, these observations confirm the importance of keeping lower values
of k to enable efficient and interpretable inference through the constraints {τ, δ}.

Takeaway. This ablation study shows that higher values of k tends to decrease the controllability of
the inference using our framework.

Figure 17: Constraint values δ vs. Accuracy for each value of k ∈ {1, 30, 100, 150, 200, 300} -
Qwen14B on MATH500 train (1,000 samples) - Seed 42, δ ∈ [1, 10]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 18: Constraint values δ vs. Average Number of Tokens per sample for each value of k ∈
{1, 30, 100, 150, 200, 300} - Qwen14B on MATH500 train (1,000 samples) - Seed 42, δ ∈ [1, 10]

G.3.2 INFLUENCE OF THE PARAMETER k ON THE ST-ES PERFORMANCE

We complete this analysis with an ablation study on the influence of the step segmentation parameter
k on the calibration of the Step-Tagging Early-Stopping. We are assessing if the parameter k affects
the performance of our early-stopping framework (i.e. selecting optimal constraints).

Methodology. To address our objective, we performed the calibration experiment presented in
Section 5.3, using the datasets obtained on our previous experiment, i.e. for the values of k ∈
[1, 30, 100, 150, 200, 300] (see Section G.2). For each value of k, the experiment resulted in one
Pareto Curve, corresponding to the most efficient constraint parameters among the set of thresholds
δ and step-types τ . For each value of k, we re-used the datasets obtained from the reasoning traces
of the DS-Qwen14B model on the MATH500 of the training datasets labeled by GPT-4o-mini.

Evaluation. Figure 19 presents the Pareto Curves of the Step-Tagging Early Stopping applied to DS-
Qwen14B on MATH500 train, for different segmentation parameters k. To enhance the analysis,
Table 4 showcases the AUC of the Pareto curves (restricted to overlapping token ranges between
curves). We can observe that the lower values of k (i.e. 1 and 30) lead to higher efficiency (higher
accuracy and lower token-count) since their associated Pareto curves are above others for almost
every levels of complexity. Table 4 confirms this observation, with k ∈ {1, 30} presenting the
higher AUC values.

It is worth noting that the disparities between curves are greater when the complexity is lower. We
have seen that the complexity increases the verbosity of models. Therefore, more complexity also
increases the number of steps, regardless of the value k. For this reason, more complexity increases
the opportunity of early-stop, minimizing the impact of k.

Figure 19: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each value of k ∈ {1, 30, 100, 150, 200, 300} - Qwen14B on MATH500 train (1,000 samples),
δ ∈ [1, 100]

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

k value Levels Average across Levels
1 2 3 4 5

1 456.15 832.90 1053.85 1376.53 1829.24 1109.74
30 455.42 833.33 1053.79 1376.66 1811.43 1106.13

100 450.06 801.29 1017.66 1327.18 1790.32 1077.30
150 440.02 774.62 1004.62 1304.16 1775.65 1059.81
200 436.50 774.68 993.03 1277.69 1789.72 1054.32
300 421.18 742.81 949.12 1192.54 1726.99 1006.53

Table 4: Area Under the Curve (AUC) of the Pareto Curves - Restricted to overlapping token range
between curves

Takeaway. The parameter k influences the performance of the Step-Tagging Early-Stopping. Lower
values of k seems to increase the performance since these values lead to finer-grained segmentation
(and therefore more flexible early-stopping). However, the divergence in performance seems to
reduce when the complexity of question (i.e. verbosity of the model) increases.

G.4 SUMMARY OF TAKEAWAYS

Our ablation studies contributed to find and validate the parameter k, minimal number of token per
step, of our definition of reasoning step. From the Sections of this Appendix, we can formulate three
main takeaways:

1. The Ideal-Early Stopping (IES) criteria seems to be a good signal for selecting the segmentation
parameter k. We applied this method and compared early-stopped traces from different values of
k. For the three LRMs that we selected, we observe that the IES accuracy drops when values
of k increase. Lower values of k seems to result in steps being more self-contained, including a
minimal number of thoughts/conclusion, allowing better early-stopping performances.

2. Based on the performance of sentence classifier trained on datasets with different values of k, we
found that higher values of k lead to a loss of semantic meaning of the steps. Similarly, small
values of k implies noise in the step segmentation - which could perturb the monitoring analysis
of the reasoning.

3. An ablation study on the calibration process - to find the most efficient constraints per dataset
and models - shows that higher values of k tends to decrease the performance and controllability
of the inference using our framework.

For our reasoning step definition, these takeaways confirms that users needs to carefully select op-
timal value of k, since this parameter has direct implication on both information contained and
semantic properties of the steps.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

H VALIDATION OF THE REASONTYPE TAXONOMY

H.1 REASON-TYPE TAXONOMY FOR IDENTIFYING REASONING BEHAVIORS

Objective. This ablation study is looking at further validating our ReasonType taxonomy. In other
words, we are investigating whether our proposed taxonomy captures meaningful distinctions in
reasoning steps. We are looking to demonstrate that:

1. The ReasonType taxonomy enable semantic distinction of the type of reasoning.
2. Our annotation method with the GPT-4o-mini model, coupled with the ReasonType taxon-

omy, is a robust method to access to the ground-truth labels of the reasoning steps.

Methodology. To address our objective, we compare the performance of BERT classifiers across
Original labels (OG - from GPT-4o-mini annotation using the ReasonType taxonomy), and shuf-
fled labels for three step-types, namely: Verification, Exploration and Self-Talk. For the shuffled
labels version, we took the exact same proportion of positive labels as in Original datasets, and used
random shuffle with a seed of 42. Each experiment is run on the same training and testing dataset,
i.e. the steps obtained with a segmentation parameter k = 30, from the MATH500 training dataset
on the DS-Qwen14B model. We trained BERT classifiers following the exact same training config-
uration (see Section 5.1). To compare performances, we report both training loss, and classification
metrics (precision and recall on both classes, along with macro and micro average.)

Evaluation. Figure 20 shows the train-
ing loss of the Original and Shuffled
versions, for the three labels. We ob-
serve that models trained on the Orig-
inal labels presents significant lower
losses, and are smoothly decreasing. It
demonstrate that the Original datasets
contains meaningful patterns between
reasoning steps and their labels. In com-
parison, the models trained on shuffled
labels present almost constant loss, rela-
tively higher than the one from the Orig-
inal labels. Figure 20: Training losses - ReasonType vs. Shuffled labels

Furthermore, Figures 21(a) and 21(b) show the Precision and Recall classification metrics on the
testing dataset, respectively. For Original runs, both classes (0 and 1) achieve good performance
despite dataset imbalancity, with Macro average Precision and Recall lying between 0.76 and 0.90
across labels. In comparison, shuffled runs presents poor results, with models failing in predicting
positive classes - Precision and Recall of class 1 between 0.00 and 0.06. Along with the training loss,
theses metrics highlight that the models trained on shuffles labels cannot learn meaningful relations
between steps and labels. In comparison, Original labels (from the ReasonType taxonomy) resulted
in satisfying model performance, and smooth training.

(a) Precision (b) Recall

Figure 21: Precision and Recall - ReasonType vs. Shuffled labels

Takeaway. Overall, these results comforts our finding that the ReasonType taxonomy labels enable
annotation methods to results in reasoning steps carrying semantic meaning.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H.2 TRACKING STEP-TYPES TO DESIGN INTERPRETABLE EARLY-STOPPING CRITERIA

Objective. This ablation study is looking at motivating our Step-Tagging Early-Stopping (ST-ES)
framework, as well as our taxonomy. We have seen that the ST-ES approach is an interpretable early-
stopping criteria since the user can select which type of reasoning step to limit to make inference
more efficient. However, we are wondering if simpler approaches such as a simple step-count is
more effective. Despite having less requirements - since no step-tagging is required - only stopping
the reasoning based on the number of steps generated could potentially yield to better results.

Methodology. To assess this alternative approach is more effective, we lead the same calibration
study as in Section 5.3 on the MATH500 training dataset, using the 3 selected LRMs. For clarity,
we applied a common threshold across every levels of complexity of the dataset, and reported their
average accuracy and token-count. To compare our taxonomy with the simple step-count approach,
we present two types of runs:

• ReasonType taxonomy: We performed the same experimentation for each single labels of the
ReasonType taxonomy. For each tags τi ∈ T , we combined a threshold value δ ∈ [1, 20].

• Simple Step-count: The same experiment is done without the labels. To do so, we only applied
simple step-count for thresholds δ ∈ [1, 100].

Evaluation. Figures 22, 23, and 24 present the experiment on the DS-Llama8B, DS-Qwen14B,
and QwQ-32B models, respectively. For both types of runs, each combination of threshold and
step-type results in a point (Average Number of Tokens, Accuracy). For the ReasonType taxonomy,
each step-types forms a blue curve, with color gradient and different markers to differentiate the
tags of the taxonomy. The same experiment with a unique label (equivalent to a simple step-count
early-stopping) resulted in a unique curve, print in red.

We observe over the three models that the red curve is almost constantly under the blue curves,
in particular for the DS-Qwen14B model. Specifically, for token-count from 1, 500, the red curve
is bellow the curves of the Problem-Restatement, Exploration, and Intuition, for the DS-Llama8B,
DS-Qwen14B, and QwQ-32B models, respectively. Furthermore, for lower token-counts, the red
curve is still under the blue curves of the Problem-Restatement for both DS-Llama8B, DS-Qwen14B
models. Overall, it means that for a given number of tokens, implementing a stopping criteria based
on the type of the steps seems to yield to higher accuracy than simply stopping the generation based
on the number of steps.

Takeaways. Beyond interpretability, this experiment shows that tracking the types of steps yields to
better performance than an early-stopping criterion based on the step-count.

Figure 22: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types (in blue) and simple step-count (in red) - DS-Llama8B on MATH500 train

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 23: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types (in blue) and simple step-count (in red) - DS-Qwen14B on MATH500 train

Figure 24: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types (in blue) and simple step-count (in red) - QwQ32B on MATH500 train

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

H.3 CERTAIN STEP-TYPE ARE BETTER EARLY-STOPPING CRITERIA

Objective. In section 5.3, we observed that selecting the step-tagging early-stopping constraint
(both threshold and step-types) was not trivial since it depends on models, and complexity of a
given problem. This ablation study is looking at showing that certain step-types are better to apply
our constraint. Specifically, we are looking to demonstrate that our taxonomy allows us to state that
different step-types are leading to different efficiency trade-off.

Methodology. Similarly to the sub-section H.2, we are showing the same experiment, but we focus
on the curves resulting from the ReasonType taxonomy (in blue). We plot the same Figures, but
with one distinct color and marker for each step-type to better differenciate the curves.

Evaluation. Figure 25 present the different curves obtained applying our early-stopping framework
on the labels of the ReasonType taxonomy, for the DS-Qwen14B on the train MATH500 dataset. We
observe that each step-type results in curves with different lengths (token-count range), and widths
(accuracy range).

First, the Exploration curve seems to be the most efficient for moderate to high token-count range
(from approximately 1, 400 to 3, 000). Indeed, the curve stands above all other curves, meaning that
for constraints with the Exploration tags results in highest accuracy with equivalent token-budget.

In contrast, other step-types such as Problem Re-statement, Verification or Definition Recall cover
larger token-count range (from 500 − 750 to 3, 000). They introduce more flexibility for limited
token-budget, but appears less efficient when the token-count grows.

Figures 26 and 27 present similar findings for the DS-Llama8B and QwQ-32B models, respectively.

Takeaway. Overall, we can conclude that our taxonomy coupled to our methodology allows us to
demonstrate that all reasoning step types are not equally contributing to the reasoning progression.

Figure 25: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types - one color per step-type - DS-Qwen14B on MATH500 train

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 26: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types - one color per step-type - DS-Llama8B on MATH500 train

Figure 27: Accuracy vs. Average number of tokens - Step-Tagging Early-Stopping curves per step-
types - one color per step-type - QwQ-32B on MATH500 train

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

H.4 COMPARISON TO ALTERNATIVE TAXONOMY

Objective. In this ablation study, we assess how robust our taxonomy is for the Step-Tagging Early-
Stopping criteria. To do so, we run the calibration experiment that we conducted on different alter-
native versions of our original taxonomy.

Alternative Taxonomies. Our original taxonomy is wide and fine-grained, containing 13 categories
of labels (excluding the placeholder label “Other”). Therefore, we reduce the number of labels in the
taxonomy, and grouped similar labels at different levels of abstraction. Table 5 shows resulting the
taxonomies, considering from 13, 6, 4, 2, and 1 labels. A unique label represent the simplest form
of constraint, where we obtain only a constraint on the number of steps.

Original Taxonomy 6-labels 4-labels 2-labels 1-label

Problem Re-Statement
Setup Early Reasoning

Early Reasoning

Reasoning

Context Repetition
Definition Re-call

Formula Substitution Manipulation
Mid ReasoningSymbolic Transformation

Edge Case AnalysisPattern Recognition

Verification Checking

Late Reasoning Late Reasoning

Heuristic / Intuition

Exploration
Meta ReasoningInterpretation

Self-Talk

Final Conclusion End Reasoning End Reasoning

Table 5: Alternative taxonomies - we regrouped labels at different levels of abstraction to observe
the impact of the taxonomy on the Step-Tagging Early-Stopping criteria

Methodology. To address our objective, we performed the calibration experiment presented in
Section 5.3, using the different taxonomies (i.e. vocabulary of tags T). For each taxonomies, the ex-
periment resulted in Pareto Curve, corresponding to the most efficient constraint parameters given
a threshold δ and a type-step τ (lying in the taxonomy tested). For each models, we re-used the
MATH500 and GSM8K training datasets labeled by GPT-4o-mini using our methodology expli-
cated in Section 5.1. We then merged labels as in Table 5.

The process of merging labels artificially increases the number of labels per datasets. Therefore, to
encompass a wider range of early-stopping values, we performed the calibration for threshold values
δ ∈ [1, 100]. To evaluate the impact of downsizing the original taxonomy, we look at the position of
the Pareto Curves compared to each other. The taxonomy giving the most efficient constraints is the
one located at the top left (maximizing the accuracy while minimizing the number of tokens).

Evaluation. We can note that downsized tag vocabularies outperformed our Original taxonomy for
low complexity queries (e.g. 1 and 2), specifically for 1 and 2-labels taxonomies. It can be justified
by the nature of the low-label taxonomies. For the purple curve, it acts like a simple step count
constraint. For low-level complexity, the reasoning traces are less verbose (less tokens), meaning
that it is easier to find a simple form of constraint.

However, the Original and Label-6 taxonomy seem to perform well on higher level of complexity.
For higher level of complexity, it seems that the semantic meaning of the steps plays a role in the
determination of the final constraint. Nevertheless, it is worth noting that the differences observed
are relatively small. Pareto Curves of Original and Label-6 are sensibly close, meaning that our
approach seems to be robust to the granularity of the taxonomy.

Takeaway. Our framework seems to be robust with regards to the taxonomy selected. Nevertheless,
fine-grained taxonomies seems to lead to better performance for higher degree of complexity of
questions, while simpler taxonomies might be more adapted to simpler problems (i.e. less verbose).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 28: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each taxonomies - Llama8B on MATH500 train (1,000 samples)

Figure 29: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each taxonomies - Qwen14B on MATH500 train (1,000 samples)

Figure 30: Calibration of Step-Tagging Early-Stopping criteria - Comparison of Pareto Curve for
each taxonomies - QwQ-32B on MATH500 train (1,000 samples)

H.5 SUMMARY OF TAKEAWAYS

Overall, our ablation studies validate our taxonomy. Key takeaways are the followings:

1. The ReasonType taxonomy labels enable annotation methods to results in reasoning steps
carrying semantic meaning.

2. Beyond interpretability, tracking the types of steps using the ReasonType taxonomy yields
to better performance than an early-stopping criterion based on simple step-count.

3. The ReasonType taxonomy coupled to our methodology allows us to demonstrate that all
reasoning step types are not equally contributing to the reasoning progression.

4. Our framework seems to be robust with regards to the taxonomy selected. Nevertheless,
fine-grained taxonomies - such as ReasonType - seems to lead to better performance for
higher degree of complexity of questions, while simpler taxonomies might be more adapted
to simpler problems (i.e. less verbose inferences).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

I ANALYSIS OF REASONING STEP TYPES

I.1 PROMPTS

Figures 31 and 32 show the two prompts used on GPT-4o-mini to build the taxonomy and gener-
ate the step tags on the traces of the LRMs, respectively.

Prompt Taxonomy

Below is a reasoning trace of a reasoning language model, split by steps. In these examples, can you
please identify the different type of steps? Suggest some reasoning-type labels for each of them.
- Step 1: {step 1}
- [...]
- Step t: {step t}

Figure 31: Prompt used to generate the Taxonomy

Prompt Taxonomy

input=[”role”: ”system”, ”content”: ”Classify the following reasoning step into one of the categories
defined. Classes = {taxonomy}”, ”role”: ”user”, ”content”: step],

Figure 32: Prompt used to monitor the steps

Section I contains an additional analysis of the reasoning steps and tags issues to complete our work.

I.2 STATISTICS ON THE REASONING STEPS COUNT AND TYPES

Table 6 presents statistics on the number of steps and GPT-4o-mini annotation for each models
on both datasets we selected. Results are averaged for the seed 42 on test datasets.

Dataset Model # Tok. / Steps # Steps Runtime

MATH500
DS-Llama8B 85.29 44.25 42.18
DS-Qwen14B 71.13 46.92 46.32

QwQ-32B 216.70 21.15 19.55

GSM8K
DS-Llama8B 78.69 6.83 5.80
DS-Qwen14B 74.52 7.16 7.48

QwQ-32B 150.29 13.33 17.63

Table 6: Avg. # of steps and annotation runtime per sample

Step occurrence. Figure 33 presents the average number of consecutive steps of the same category.
Notably, several high-frequent step types (such as Formula Substitution, Verification and Formula
Substitution) tend to appear multiple times consecutively. Conversely, some steps tends to appear
only once, where their average consecutive step is close to 1.

These observations support our design selection. Firstly, the sequence of repeated labels increases
the robustness of the step classification and detection using our Step-Tagging module. Indeed, if a
label appears multiple times in a row, local misclassifications are less likely to impact the overall
framework. Secondly, the fact that certain steps tend to appear only one at a time (such as Final
Conclusion, Interpretation, or Context Repetition) justifies our use of a token threshold k for step
delimitation. In fact, some categories often appear as single instances, suggesting that the step
encapsulates a single type of thought.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 33: Avg. # of consecutive steps of same category

Reasoning patterns. We observe that our Step-Tagging framework allows the monitoring process
to clearly follow the reasoning progression of the model. Figure 34 presents the step-types of the
reasoning traces of the LRMs for a single sample of the MATH500 dataset. We selected samples that
resulted in approximately the same number of steps across the models to allow a fair comparison
between the models.

Figure 34: Reasoning patterns - Sample 109 of MATH500

Figure 35: Reasoning patterns - Sample 97 of GSM8K

We observe a pattern in the reasoning traces. For both datasets, LRMs exhibit the same type of steps
at the beginning of their generated output (e.g., Definition Recall or Problem Re-statement). Then we

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

notice a heavy use of Verification and Formula Substitution, helping the model to find and refine its
current answer. Later, we observe the appearance of transition steps such as Self-Talk or Alternative
Approach Exploration, which seems to lead to different answers and increases the diversity of the
model’s answers. We also observe that Final Conclusion steps appear in the middle of the reasoning
traces, meaning that the model tends to draw intermediate conclusions but still pursues its reasoning,
presumably because it is uncertain of the validity of the current solution.

Visualization of reasoning step types. To further assess the quality of the annotation, we computed
the t-SNE projection of BERT-encoded reasoning steps from 500 DS-Llama8B traces (see Figure
36). For clarity, we excluded the most frequent step-types, Verification and Formula Substitution, as
well as Other (since it does not contain any semantic meaning). Some step types (e.g., Definition
Recall, Problem Re-Statement) are dispersed, which is likely due to question-specific semantics.
However, we can observe distinct semantic clusters, particularly for Interpretation, Self-Talk and
Exploration. Notably, the Self-Talk cluster lies semantically close to Exploration, reflecting their
conceptual overlap: internal dialogue that often prompts the model to question its assumptions,
encouraging alternative approaches.

Figure 36: t-SNE visualization of 500 Deepseek-R1 reasoning steps encoded with bert-base-nli-
mean-tokens (PPL = 80).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Example of Step-Tagging reasoning step annotation by GPT-4o-mini. Figure 37 present an
example of reasoning trace annotated by GPT-4o-mini using our step-tags taxonomy. Figure 1 in
the introduction is based on this example. This example is extracted from the DS-Qwen14B model
on the sample 39 of the MATH500 dataset, using a seed of 42.

Step 1 - Okay, so I need to find the greatest common factor (GCF) of 6432 and 132, and then increase
that GCF by 11. Hmm, let me remember how to find the GCF of two numbers. I think the best way is to
use the Euclidean algorithm because it’s systematic and works well for larger numbers.\n\n
Step 2 - First, let me write down the two numbers: 6432 and 132. Since 6432 is much larger than 132,
I’ll start by dividing 6432 by 132 and find the remainder. Then, I’ll repeat the process with 132 and that
remainder until the remainder is zero. The last non-zero remainder will be the GCF.\n\n
Step 3 - So, let’s divide 6432 by 132. Hmm, I need to figure out how many times 132 goes into 6432.
Maybe I can simplify this division. Let me see, 132 times 50 is 6600, which is more than 6432. So, it
must be a little less than 50. Let me try 48 times 132. 48 times 100 is 4800, 48 times 32 is 1536, so adding
those together, 4800 + 1536 is 6336. Hmm, 6336 is less than 6432. So, 132 times 48 is 6336. Subtracting
that from 6432: 6432 - 6336 is 96. So, the remainder is 96.\n\n
Step 4 - Alright, now I need to find the GCF of 132 and 96. Let’s apply the same method. Divide 132 by
96. 96 goes into 132 once, which is 96. Subtracting, 132 - 96 is 36. So, the remainder is 36.\n\n
Step 5 - Next step, find the GCF of 96 and 36. Dividing 96 by 36. 36 times 2 is 72, which is less than 96.
Subtracting 72 from 96 gives 24. So, the remainder is 24.\n\n
Step 6 - Now, find the GCF of 36 and 24. Dividing 36 by 24, it goes once with a remainder. 36 - 24 is 12.
So, remainder is 12.\n\n
Step 7 - Continuing, find the GCF of 24 and 12. Dividing 24 by 12, it goes exactly 2 times with no
remainder. Since the remainder is zero, the last non-zero remainder is 12. Therefore, the GCF of 6432
and 132 is 12.\n\n
Step 8 - Wait, let me double-check that to make sure I didn’t make a mistake. Starting from the top: 6432
divided by 132 is 48 with a remainder of 96. Then, 132 divided by 96 is 1 with a remainder of 36. Then,
96 divided by 36 is 2 with a remainder of 24. Then, 36 divided by 24 is 1 with a remainder of 12. Then,
24 divided by 12 is 2 with no remainder. Yep, that seems right. So, the GCF is indeed 12.\n\n
Step 9 - Now, the problem says to increase this GCF by 11. So, 12 plus 11 is... 23. Is that right? 12 + 11
is 23. Hmm, okay, that seems straightforward.\n\n
Step 10 - Just to be thorough, let me verify the GCF another way. Maybe by prime factorization. Let’s
factor both numbers into primes.\n\n
Step 11 - Starting with 132. 132 is even, so divide by 2: 132 / 2 = 66. 66 is also even, so divide by 2: 66 /
2 = 33. 33 is divisible by 3: 33 / 3 = 11. 11 is a prime. So, the prime factors of 132 are 22 ∗31 ∗111.\n\n
Step 12 - Now, factorizing 6432. Let’s see, 6432 is even, so divide by 2: 6432 / 2 = 3216. 3216 is even,
divide by 2: 3216 / 2 = 1608. 1608 is even, divide by 2: 1608 / 2 = 804. 804 is even, divide by 2: 804 / 2
= 402. 402 is even, divide by 2: 402 / 2 = 201. Now, 201 is odd. Let’s check divisibility by 3: 2 + 0 + 1
= 3, which is divisible by 3. So, 201 / 3 = 67. 67 is a prime number. So, putting it all together, the prime
factors of 6432 are 25 ∗ 31 ∗ 671.\n\n
Step 13 - Now, to find the GCF, we take the lowest power of the common prime factors. The common
primes between 6432 and 132 are 2 and 3. In 132, 2 is squared, and in 6432, 2 is to the fifth power. So,
we take the lower one, which is 22. For 3, both have 31. So, GCF is 22 ∗ 31 = 4 ∗ 3 = 12. Yep, that
matches my earlier result.\n\n
Step 14 - ’Therefore, the GCF is definitely 12. Adding 11 to that gives 23. So, the result is 23.\n\n”
Step 15 - I think that’s solid. I don’t see any mistakes in my calculations, and both methods gave me the
same GCF. So, increasing it by 11 is straightforward. 12 + 11 is 23.\n\n
Step 16 - ’**Final Answer** The result is boxed{23}. ¡/think¿ To find the greatest common factor (GCF)
of 6432 and 132, we use the Euclidean algorithm: 1. Divide 6432 by 132, which gives a quotient of 48
and a remainder of 96. 2. Divide 132 by 96, which gives a quotient of 1 and a remainder of 36. 3. Divide
96 by 36, which gives a quotient of 2 and a remainder of 24. 4. Divide 36 by 24, which gives a quotient
of 1 and a remainder of 12. 5. Divide 24 by 12, which gives a quotient of 2 and a remainder of 0.\n\n
Step 17 - The last non-zero remainder is 12, so the GCF of 6432 and 132 is 12.\n\n
Step 18 - Next, we increase this GCF by 11: 12 + 11 = 23. Thus, the result is boxed{23}.

Legend:
Definition Recall, Problem Re-statement, Heuristics / Intuition, Formula Substitution, Verification, Final
Conclusion

Figure 37: Step annotation as per GPT-4o-mini using our step-tags taxonomy - Deepseek-R1-
Qwen14b-Distil on MATH500 sample 39.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

J BASELINES

Ideal Early-Stopping IES Algorithm. Algorithm 3 presents the Ideal Early-Stopping IES base-
line algorithm.

Algorithm 3 Ideal Early-Stopping IES
Require: Prompt x; reasoning delimiter α ∈ V ; minimal step size k ∈ N; Ground-Truth Answer ygold; Answer

checker β(prediction, ground truth); Reasoning Language ModelM; tokenizer T ; EOS token γ;
1: y ← T (x) ▷ Tokenize the input
2: Srunning ← []; ▷ Initialize output
3: t← 0
4: b← True ▷ Initialize stopping criteria
5: while b do ▷ Generate until constraint breaks
6: Generate step si usingM, α, where |si| > k
7: y ← si
8: if β(y, ygold) then b← False ▷ Stop generation
9: else

10: Continue the generation
11: end if
12: t← t+ 1
13: end while
14: return y

Prompt engineering Pguided. Figure 38 presents the different prompt variations as baseline that we
defined.

Prompt Baselines Pguided

User Prompt - P(0)
user

User Prompt: Please do not reason extensively, be succinct, and put your final answer within boxed{}. {question}

System Prompt P(0)
system

System Prompt: Respond concisely and confidently. Skip validations and over-verification steps.
User Prompt: {question}

System Prompt - P(1)
system

System Prompt: Respond concisely and confidently. Skip validations and over-verification steps. Here is an examples: Example 1: {FS 1}
User Prompt: {question}

System Prompt - P(3)
system

System Prompt: Respond concisely and confidently. Skip validations and over-verification steps. Here are some examples: Example 1: {FS 1} Example 2:
{FS 2} Example 3: {FS 3}
User Prompt: {question}

Example 1 - Verification step

Wait, let me double-check. If I plug in x = −3 into the denominator, (−3)2 + (−3) − 6 = 9 − 3 − 6 = 0. Yep, that works. For x = 2 :

22 + 2 − 6 = 4 + 2 − 6 = 0. Correct. So both roots are valid.

Example 2 - Verification step

Therefore, the graph of y = 2(x2 + x − 6) has vertical asymptotes at x = −3 and x = 2, so that’s two vertical asymptotes. I don’t think there’s any
chance that I made a mistake here, but maybe I should check by graphing the function or plugging in values close to −3 and 2 to see if the function does go
to infinity.

Example 3 - Verification step

Another test with n = 3. Let’s compute manually. All non-empty subsets: Single elements: {1}, {2}, {3} with sums 1,2,3. Pairs: {1,2} → 2 − 1 = 1
{1,3} → 3− 1 = 2 {2,3} → 3− 2 = 1. Triple: {1,2,3} → 3− 2+ 1 = 2. Total sum: 1+ 2+ 3+ 1+ 2+ 1+ 2 = 12. Using the formula:
contributions from each k : k = 3: 3 ∗ 22 ∗ 1 = 3 ∗ 4 = 12. k = 1 and k = 2 contribute 0. So total sum 12, which matches.

Figure 38: Prompt baselines

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

K CALIBRATION OF THE ST-ES CRITERIA

Figures 39, 40 and 41 present the number of tokens vs. accuracy of every tag-types with values of
threshold ranging from 0 to 20, for the DS-Qwen14B and QwQ-32B models on our train MATH500
and GSM8K datasets using the synthetic tags, respectively. Constraints selected using our method-
ology for each model and dataset are reported in Table 7.

Model Dataset Level Tag / Constraints

ST-ES (95%) ST-ES (90%) ST-ES (85%) ST-ES (Router)

DS-Llama8B MATH500

1 Context Repetition / 0 Context Repetition / 0 Self-Talk / 0 Self-Talk / 0
2 Final Answer / 0 Symbolic Transformation / 2 Self-Talk / 0 Self-Talk / 0
3 Interpretation / 1 Intuition / 1 Exploration / 3 Intuition / 2
4 Context Repetition / 1 Context Repetition / 1 Intuition / 1 Intuition / 2
5 Exploration / 3 Exploration / 3 Edge Case / 1 Intuition / 2

GSM8K – Verification / 3 Verification / 1 Verification / 0 –

DS-Qwen14B MATH500

1 Self-Talk / 0 Verification / 5 Exploration / 0 Self-Talk / 0
2 Exploration / 3 Self-Talk / 0 Exploration / 1 Self-Talk / 0
3 Edge Case / 2 Edge Case / 2 Exploration / 1 Exploration / 3
4 Exploration / 6 Exploration / 4 Intuition / 2 Exploration / 3
5 Intuition / 6 Self-Talk / 2 Exploration / 4 Exploration / 3

GSM8K – Verification / 0 Formula Substitution / 4 Formula Substitution / 3 –

QwQ-32B MATH500

1 Exploration / 2 Formula Substitution / 2 Verification / 4 Exploration / 2
2 Final Answer / 2 Intuition / 1 Exploration / 1 Exploration / 2
3 Verification / 6 Verification / 5 Verification / 4 Intuition / 2
4 Intuition / 3 Final Answer / 4 Exploration / 2 Intuition / 2
5 Self-Talk / 3 Self-Talk / 1 Self-Talk / 1 Intuition / 2

GSM8K – Intuition / 2 Intuition / 1 Exploration / 0 –

Table 7: Overview of tag/constraints determined using the training datasets, for each models.

Figure 39: Early-Stopping selection using Pareto - Deepseek-R1-Qwen14B-Distil on MATH500
train (1,000 samples)

Figure 40: Early-Stopping selection using Pareto - QwQ-32B on MATH500 train (1,000 samples)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

(a) Deepseek-R1-Llama8B-Distil (b) Deepseek-R1-Qwen14B-Distil (c) QwQ-32B

Figure 41: Early-Stopping selection using Pareto - GSM8K train (3,000 samples)

L LLM-ROUTER: PROMPT COMPLEXITY CLASSIFICATION

Table 8 report the classifier performance of the LLM-Router module between classes {1,2} and
{3,4,5} of the MATH500 dataset.

Metric Validation Test
Micro-F1 0.785 0.784
Macro-F1 0.734 0.739

Table 8: Micro-F1 and Macro-F1 scores for validation and test sets

M STEP-TAGGING PERFORMANCE

Figures 42 and 43 presents the performance of the binary step-taggers trained on the training traces
of the DS-Qwen14B and QwQ-32B, respectively.

Figure 42: Step-Tagger performance - DS-Qwen14B

Figure 43: Step-Tagger performance - QwQ-32B

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

N IDEAL-EARLY-STOPPING

Figure 44 shows the number of steps and the accuracy of the standard vs. Ideal Early-Stopping IES
criteria. Results are averaged over the 5 seeds, on the MATH500 test dataset.

(a) DS-Llama8B (b) DS-Qwen14B (c) QwQ-32B

Figure 44: Standard vs. IES baseline - number of steps and Avg@5 across the 5 complexity levels
of MATH500 test dataset - Results averaged over the 5 seeds

O PERFORMANCE OF THE ST-ES CRITERIA

Table 9 reports all the token-usage, the proportion of saved number of tokens, the Avg@5, the
Pass@5 and the Cons@5 for all configurations. Results are averaged over the 5 seeds we used. We
also show in Figure 45 and 46 the average token count against the Pass@5 and Con@5, respectively,
for the three LRMs on the MATH500 and GSM8K datasets.

Model Config. MATH500 GSM8K

Tokens Saved (%) Avg@5 Pass@5 Cons@5 # Tokens Saved (%) Avg@5 Pass@5 Cons@5

DS-8B

Standard 3655.0 – 0.878 0.970 0.726 958.3 – 0.829 0.943 0.651

Basel. IES 1916.6 47.56 0.911 0.980 0.780 385.3 59.79 0.847 0.952 0.726

Basel. P(0)
user 2989.6 18.21 0.866 0.952 0.722 525.8 45.13 0.771 0.917 0.579

Basel. P(0)
system 2634.4 27.92 0.817 0.960 0.592 456.9 52.32 0.763 0.895 0.574

Basel. P(1)
system 2139.5 41.46 0.782 0.942 0.526 560.8 41.48 0.754 0.914 0.537

Basel. P(3)
system 2565.3 29.81 0.789 0.952 0.540 830.5 13.34 0.748 0.904 0.541

ST-ES (95%) 3260.5 10.79 0.883 0.972 0.730 673.8 29.69 0.818 0.933 0.663
ST-ES (90%) 2949.3 19.31 0.859 0.964 0.666 568.5 40.67 0.799 0.931 0.604
ST-ES (85%) 2413.9 33.95 0.801 0.940 0.556 492.1 48.65 0.745 0.923 0.474
ST-ES Router 2656.2 27.33 0.848 0.956 0.686

DS-14B

Standard 3388.8 – 0.923 0.980 0.836 662.9 – 0.910 0.952 0.843

Basel. IES 1655.9 51.14 0.950 0.990 0.884 316.5 52.26 0.931 0.971 0.871

Basel. P(0)
user 2691.5 20.58 0.933 0.982 0.834 505.1 23.80 0.856 0.956 0.662

Basel. P(0)
system 2346.2 30.77 0.886 0.966 0.754 470.9 28.96 0.873 0.949 0.710

Basel. P(1)
system 2211.4 34.74 0.873 0.974 0.708 566.5 14.54 0.838 0.952 0.629

Basel. P(3)
system 2535.0 25.19 0.879 0.968 0.748 839.6 -26.65 0.841 0.952 0.631

ST-ES (95%) 3113.2 8.13 0.923 0.980 0.824 480.0 27.59 0.884 0.951 0.763
ST-ES (90%) 2989.7 11.78 0.906 0.976 0.794 497.9 24.89 0.838 0.940 0.656
ST-ES (85%) 2330.2 31.24 0.841 0.966 0.670 452.5 31.74 0.754 0.918 0.528
ST-ES Router 2545.4 24.89 0.870 0.968 0.734

QwQ-32B

Standard 4475.3 – 0.954 0.984 0.898 2075.7 – 0.953 0.965 0.934

Basel. IES 2213.2 50.55 0.970 0.992 0.940 842.9 59.39 0.976 0.986 0.963

Basel. P(0)
user 2908.8 35.00 0.955 0.986 0.916 988.0 52.40 0.952 0.968 0.937

Basel. P(0)
system 3201.1 28.47 0.932 0.976 0.852 833.3 59.85 0.940 0.974 0.869

Basel. P(1)
system 3182.4 28.89 0.925 0.974 0.856 871.2 58.02 0.943 0.975 0.876

Basel. P(3)
system 3665.5 18.09 0.926 0.974 0.858 1387.3 33.16 0.935 0.974 0.855

ST-ES (95%) 3679.4 17.78 0.921 0.980 0.786 1608.0 22.53 0.945 0.968 0.909
ST-ES (90%) 3459.6 22.69 0.903 0.972 0.768 1506.3 27.43 0.935 0.967 0.888
ST-ES (85%) 3218.3 28.09 0.878 0.976 0.690 1368.7 34.06 0.929 0.967 0.855
ST-ES Router 3623.5 19.03 0.904 0.982 0.714

Table 9: Performance of Step-Tagging Early stopping - 5 seeds (40, 41, 42, 43, 44)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

(a) DS-Llama8B on MATH500 (b) DS-Llama8B on GSM8K

(c) DS-Qwen14B on MATH500 (d) DS-Qwen14B on GSM8K

(e) QwQ-32B on MATH500 (f) QwQ-32B on GSM8K

Figure 45: Number of Tokens vs. Pass@5 - Pguided Baselines and Step-Tagging Early-Stopping (ST-
ES) criteria

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

(a) DS-Llama8B on MATH500 (b) DS-Llama8B on GSM8K

(c) DS-Qwen14B on MATH500 (d) DS-Qwen14B on GSM8K

(e) QwQ-32B on MATH500 (f) QwQ-32B on GSM8K

Figure 46: Number of Tokens vs. Cons@5 - Pguided Baselines and Step-Tagging Early-Stopping
(ST-ES) criteria

44

	Introduction
	Related Work
	How to define a reasoning step?
	What is a reasoning step?
	Model agnostic reasoning step definition

	Step-Tagging module
	Experimental Setting
	Implementation of the Step-Tagger module
	Step-split settings
	Early-Stopping constraints

	Monitoring LRMs using Step-Tagger
	Step-Tagging Early-stopping (ST-ES) criteria
	Conclusion
	
	Appendix

	 Appendix
	LLM Usage
	Limitations and Future Work
	Related-Work
	Language Reasoning Models (LRMs)
	LRMs are Inefficient
	Open-source reasoning path

	Mathematical reasoning datasets
	Definition of reasoning steps
	Algorithms
	Step-wise Generation
	Early Stopping algorithm

	Selecting the minimal number of token k
	Ideal Early-Stopping as a proxy for the step-size
	Semantic properties implied by the parameter k
	Influence of the parameter k on the Step-Tagging Early-Stopping criteria
	ST-ES thresholds
	Influence of the parameter k on the ST-ES performance

	Summary of takeaways

	Validation of the ReasonType taxonomy
	Reason-Type taxonomy for identifying reasoning behaviors
	Tracking step-types to design interpretable early-stopping criteria
	Certain Step-Type are better early-stopping criteria
	Comparison to alternative taxonomy
	Summary of takeaways

	Analysis of reasoning step types
	Prompts
	Statistics on the reasoning steps count and types

	Baselines
	Calibration of the ST-ES criteria
	LLM-Router: Prompt complexity classification
	Step-Tagging performance
	Ideal-Early-Stopping
	Performance of the ST-ES criteria

