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RESCALING INTERMEDIATE FEATURES MAKES
TRAINED CONSISTENCY MODELS PERFORM BETTER

Junyi Zhu†, Zinan Lin‡, Enshu Liu§, Xuefei Ning§, Matthew B. Blaschko†∗

ABSTRACT

In the domain of deep generative models, diffusion models are renowned for their
high-quality image generation but are constrained by intensive computational de-
mands. To mitigate this, consistency models have been proposed as a computa-
tionally efficient alternative. Our research reveals that post-training rescaling of
internal features can enhance the one-step sample quality of these models without
incurring detectable computational overhead. This optimization is evidenced by
an obvious improvement in Frèchet Inception Distance (FID). For example, with
our rescaled consistency distillation (CD) model, FID on the ImageNet dataset
reduces from 6.2 to 5.2, on the LSUN-cat dataset from 10.9 to 9.5. Closer inspec-
tion of the generated images reveals that this enhancement may originate from
improved visual details and clarity.

1 INTRODUCTION AND RELATED WORKS

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2021; Rombach et al., 2021) have achieved unprecedented success across different generative tasks
of multiple domains. Diffusion models progressively remove noise from random initialized samples,
hence inducing high computational cost (time) during inference. Many works attempt to accelerate
the inference of diffusion models by reducing the number of denoising iterations (Salimans & Ho,
2022; Lu et al., 2022; Liu et al., 2023b; Song et al., 2023). Specifically, Song et al. (2023) propose
consistency models, which manage to map any point at any time of a probability flow (PF) trajectory
to the trajectory’s starting point in a single step and obtain competitive sample quality.

Prior work shows that the training objective of diffusion models is not directly related to their image
quality (Liu et al., 2023a). Therefore, we anticipate the opportunity to improve the image quality
by tweaking the parameters of pre-trained consistency models. While there exist many ways to
do that, we observe a perhaps surprising phenomenon: simply tuning two numbers that control the
scale of intermediate features of pre-trained consistency models could improve the image quality.
In particular, the two scalars multiply the embedding feature and the features passing from encoder
to decoder in the U-Net (Ronneberger et al., 2015) respectively. Intuitively, the introduced scalars
regulate the intensity of conditioning and the reuse of input’s high-resolution features, thereby af-
fecting the generated images. The optimal rescaling scalars can be found through grid search with
respect to image quality metrics such as FID using a small sampling batch. This method does not
involve any costly training process.

Empirically, we find that our approach can improve the FID by a large margin. While FID may not
always be consistent with the visual evaluation (Kirstain et al., 2023), our experimental results in
Sections 3 and C show that after rescaling, we could indeed obtain more satisfying examples, i.e.
examples showing more realistic features or fewer artifacts. Moreover, our work reveals a novel
way to elicit new output of the off-the-shelf consistency models (e.g. the same object with different
poses, see Fig. 7), beyond adjusting the initial noise.

2 METHOD

Our method rescales the intermediate features of the consistency models. To this end, we introduce
two new scalars s0, s1 to multiply the output of the embedding layer and the encoder-decoder con-
nections. Fig. 1 illustrates our modification. A code snippet is provided in §A. Our idea is simple but
turns out to be effective. We find the best values of s0, s1 through grid search within a range around
1. For each combination of s0 and s1, we generate a few hunderds examples (500 for ImageNet, 200
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for LSUN). Since only one-step inference is conducted, this grid search is cheap. For an 11 × 11
grid, the search can be done within a couple of hours using an NVIDIA TITAN XP.

Figure 1: A schematic illustration of the
rescaling operations.

Figure 2: FIDs on ImageNet against vary-
ing combination of rescaling scalars. The
red square highlights the lowest FID value.

3 RESULTS

We set up the experiments using official codes and model checkpoints of consistency models (Song
et al., 2023), more details of the experimental setup are given in §A.

Numerical Metrics against Rescaling. We first observe that the original configuration, i.e.
s0 = 1, s1 = 1, usually does not achieve the lowest FID. Fig. 2 shows a heatmap of FIDs computed
on ImageNet using a CD model. Tab. 1 provides a more comprehensive numerical comparison be-
tween the original models and the rescaled models, which are found through grid search on different
datasets using FIDs. Selected scalars for rescaled models and more heatmaps are presented in §B.

ImageNet LSUN-cat LSUN-bedroom
FID ↓ Prec. ↑ Rec. ↑ FID ↓ Prec. ↑ Rec. ↑ FID ↓ Prec. ↑ Rec. ↑

CD 6.19 0.68 0.63 10.88 0.65 0.36 8.20 0.68 0.31
rescaled CD 5.21 0.71 0.60 9.52 0.66 0.38 7.57 0.67 0.35

CT 12.83 0.71 0.47 20.64 0.56 0.24 16.03 0.59 0.16
rescaled CT 11.07 0.78 0.41 19.99 0.63 0.25 13.62 0.72 0.17

Table 1: Metrics computed using 50K examples. Best results are in bold.

Visual Quality against Rescaling. We further investigate the impact of rescaling on generation
quality. Fig. 3 shows an example that rescaling assists in generating reasonable object. Additionally,
we find that rescaling can elicit new output of the off-the-shelf models, see §C for more results.

Figure 3: Images generated using varing rescal-
ing scalars s0, s1. Zoom in to discern subtleties.
These results are produced by the CD model,
which was trained on the ImageNet dataset. At
the original configuration (s0 = 1, s1 = 1), image
generation fails to produce recognizable objects.
Incrementally increasing s1 reveals a distinct pug
figure. We also observe that reducing s0 aids in
artifacts mitigation. An extended series of these
images is displayed in Fig. 6.

4 DISCUSSION AND CONCLUSION

Our research demonstrates that rescaling the intermediate features within consistency models not
only has the potential to enhance generation quality but also fosters a more diverse output. We
propose two directions for future work: i) Applying different scalars to different layers and time
steps (in case of few-step generation); ii) Extending our method’s evaluation to encompass other
frameworks, such as Rectified Flow (Liu et al., 2023b) and LCM (Luo et al., 2023), etc.
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A EXPERIMENTS

Our experiments are based on the official code and model checkpoints of consistency mod-
els (Song et al., 2023), which are available on GitHub (https://github.com/openai/
consistency_models). We only evaluate checkpoints using the LPIPS metric (Zhang et al.,
2018), which is claimed by Song et al. (2023) to be the optimal metric for both consistency distilla-
tion (CD) and consistency training (CT). Additionally, we evaluate the models trained on ImageNet
(Deng et al., 2009) and LSUN datasets (Yu et al., 2015). To rescale the intermediate features of
the consistency model, we need to modify the forward function of the UNetModel class in
unet.py. As shown in the following code snippet A, rescaling operations are conducted in Line
19 and Line 23.

When comparing numerical metrics and visual quality against different combinations of rescaling
scalars, we always use the same initial noises (and classes in the conditioned setting) to generate
images.

1 def forward(self, x, timesteps, y=None, scalar0=1., scalar1=1.):
2 """
3 Apply the model to an input batch.
4

5 :param x: an [N x C x ...] Tensor of inputs.
6 :param timesteps: a 1-D batch of timesteps.
7 :param y: an [N] Tensor of labels, if class-conditional.
8 :return: an [N x C x ...] Tensor of outputs.
9 """

10 assert (y is not None) == (
11 self.num_classes is not None
12 ), "must specify y if and only if the model is class-conditional"
13

14 hs = []
15 emb = self.time_embed(timestep_embedding(timesteps, self.

model_channels))
16 if self.num_classes is not None:
17 assert y.shape == (x.shape[0],)
18 emb = emb + self.label_emb(y)
19 emb.mul_(scalar1)
20 h = x.type(self.dtype)
21 for module in self.input_blocks:
22 h = module(h, emb)
23 hs.append(h * scalar0)
24 h = self.middle_block(h, emb)
25 for module in self.output_blocks:
26 h = th.cat([h, hs.pop()], dim=1)
27 h = module(h, emb)
28 h = h.type(x.dtype)
29 return self.out(h)
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ImageNet LSUN-cat LSUN-bedroom
s0 s1 s0 s1 s0 s1

rescaled CD 0.96 1.02 0.94 1.0 0.96 0.9
rescaled CT 1.0 1.36 0.84 1.1 0.8 1.0

Table 2: Scalars selected for the experiments in Tab. 1.

(a) FIDs on LSUN-bedroom. (b) FIDs on LSUN-cat.

Figure 4: FIDs of CD model against varying combinations of rescaling scalars. The red square
highlights the lowest FID value.

B MORE RESULTS ON NUMERICAL METRICS

For CD models, we find that it is efficient to search within range of [0.9, 1.1] for both s0 and s1. The
results of heatmaps are shown in Figs. 2 and 4. For CT models, we find it is beneficial to extend the
search range, the heatmaps are shown in Fig. 5. Using the best combination of s0 and s1 (see Tab. 2),
we numerically evaluate rescaled CD models and rescaled CT models, and results are recorded in
Tab. 1. Overall, the rescaled models achieve better metrics than the original models.
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(a) FIDs on ImageNet. (b) FIDs on LSUN-bedroom.

(c) FIDs on LSUN-cat.

Figure 5: FIDs of CT model against varying combinations of rescaling scalars. The red square
highlights the lowest FID value.
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Figure 6: Images generated by a CD model trained on the ImageNet dataset.

C MORE RESULTS ON VISUAL QUALITY

In this section, we demonstrate the impact of rescaling on visual quality using image examples.

Figure 6 illustrates that scaling up s1 aids in generating the desired objective in the conditioned
setting. At the original configuration (s0 = 1, s1 = 1), there is no discernible object. However, as
s1 increases, a pug figure emerges. It is noteworthy that the condition for this image is “Norwegian
elkhound” instead of “pub”, but scaling up s1 still pushes the generation result towards the specific
condition.

Fig. 7 shows that scaling up s1 results in a new outcome, as a dog appears to be turning its head
from its right side towards the screen. Interestingly, it seems to be the same dog in different poses.

Fig. 8 shows that the generated cat’s left eye is corrupted at the original configuration (s0 = 1, s1 =
1). However, adjusting towards smaller s0 and s1 values (e.g., s0 = 0.9, s1 = 0.9) resolves this
issue.

Fig. 9 reveals that transitioning from the configuration (s0 = 0.9, s1 = 0.9) to (s0 = 1.1, s1 = 1.1)
causes the bedside lamp to dim.

Effects of the rescaling operation: We inspect several hundred generation results and our observa-
tions can be summarized as follows: i) We note that decreasing s0 can mitigate artifacts. Compared
to the row where s0 = 1.1, images in the row with s0 = 0.9 exhibit smoother textures in both
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the object and the background; ii) For the conditioned setting, e.g. ImageNet, tuning up s1 appears
to emphasize the condition in the generated result, e.g. the condition becomes clearer (see Fig. 6)
or the object adopts a facing-forward pose (see Fig. 7); iii) The configurations yielding the lowest
FIDs do not always produce the visually best images. However, the regions of high visual qual-
ity in the image grid generally correspond to the regions of low FID values in the corresponding
heatmaps; iv) The best scaling scalars are different across datasets, which is reasonable since the
feature distribution is not consistent across datasets.

Figure 7: Images generated by a CD model trained on the ImageNet dataset.
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Figure 8: Images generated by a CD model trained on the LSUN-cat dataset.
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Figure 9: Images generated by a CD model trained on the LSUN-bedroom dataset.
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